

A Scalable Durable Grid Event Service

Geoffrey Fox (gcf@indiana.edu)
Community Grids Laboratory

Computer Science & Informatics, Indiana University

Shrideep Pallickara (shrideep@cat.syr.edu)
 Dept. Of Electrical Eng. & Computer Science, Syracuse University

3-211 CST, 111 College Place
Syracuse, New York 13244

Tel: (315)-443-4884

Abstract
It is interesting to study the system and software architecture of environments, which integrate the evolving
ideas of computational grids, distributed objects, web services, peer-to-peer networks and message oriented
middleware. Such peer-to-peer (P2P) Grids should seamlessly integrate users to themselves and to resources,
which are also linked to each other. We can abstract such environments as a distributed system of “clients”
which consist either of “users” or “resources” or proxies thereto. These clients must be linked together in a
flexible fault tolerant efficient high performance fashion. In this paper, we study the messaging or event system
– termed GES or the Grid Event Service -- that is appropriate to link the clients (both users and resources of
course) together. For our purposes (registering, transporting and discovering information), events are just
messages – typically with time stamps. The messaging system GES must scale over a wide variety of devices –
from hand held computers at one end to high performance computers and sensors at the other extreme. We have
analyzed the requirements of several Grid services that could be built with this model, including computing and
education and incorporated constraints of collaboration with a shared event model.

Keywords: Message Oriented Middleware, Grid Systems, publish/subscribe, guaranteed messaging

1.0 Introduction
We believe that it is interesting to study the system and software architecture of environments, which integrate
the evolving ideas of computational grids, distributed objects, web services, peer-to-peer networks and message
oriented middleware. Such peer-to-peer (P2P) Grids should seamlessly integrate users to themselves and to
resources, which are also linked to each other. We can abstract such environments as a distributed system of
“clients” which consist either of “users” or “resources” or proxies thereto. These clients must be linked together
in a flexible fault tolerant efficient high performance fashion. In this paper, we study the messaging or event
system – termed GES or the Grid Event Service -- that is appropriate to link the clients (both users and
resources of course) together. For our purposes (registering, transporting and discovering information), events
are just messages – typically with time stamps. The messaging system GES must scale over a wide variety of
devices – from hand held computers at one end to high performance computers and sensors at the other
extreme. We have analyzed the requirements of several Grid services that could be built with this model,
including computing and education and incorporated constraints of collaboration with a shared event model. We
suggest that generalizing the well-known publish-subscribe model is an attractive approach and here we study
some of the issues to be addressed if this model is used in the GES.
 We have built a “production” system and an advanced research prototype. The production system uses
the commercial Java Message Service (SonicMQ) and has been used very successfully to build a synchronous
collaboration environment applied to distance education. The publish/subscribe mechanism is powerful but this
comes at some performance cost and so it is important that it satisfies the reasonably stringent constraints of
synchronous collaboration. We are not advocating replacing all messaging with such a mechanism – this would
be quite inappropriate for linking high performance devices such as nodes of a parallel machine linked today by
messaging systems like MPI or PVM. Rather we have recommended using a hybrid approach in such cases.
 In this paper we study an advanced publish/subscribe mechanism for GES, which goes beyond JMS
and other operational publish/subscribe systems in many ways. A basic JMS environment has a single server
(although by linking multiple JMS invocations you can build a multi-server environment and you can also
implement the function of a JMS server on a cluster). We propose that GES be implemented on a network of
brokers where we avoid the use of the term servers for two reasons; the publish/subscribe broker service could
be implemented on any computer – including a users desktop machine. Secondly we have included the many
application servers needed in a P2P Grid as clients in our abstraction for they are the publishers and subscribers
to many of the events to be serviced by the GES. Brokers can run on either on separate machines or on clients
whether these are associated with users or resources. This network of brokers will need to be dynamic for we
need to service the needs of dynamic clients. For example suppose one started a distance education session with
six distributed classrooms each with around 20 students; then the natural network of brokers would have one for
each classroom (created dynamically to service these clusters of clients) combined with static or dynamic
brokers associated with the virtual university and perhaps the particular teacher in charge.
 Here we study the architecture and characteristics of the broker network. We are using a particular
internal structure for the events (defined in XML but currently implemented as a Java object). Further we
assume a sophisticated matching of publishers and subscribers defined as general topic objects (defined by an
XML Schema that we have designed). However these are not the central issues to be discussed here. Our study
should be useful whether events are defined and transported in Java/RMI or XML/SOAP or other mechanisms;
it does not depend on the details of matching publishers and subscribers. Rather, we are interested in the
capabilities needed in any implementation a GES in order to abstract the broker system in a scalable
hierarchical fashion (section 2); the delivery mechanism (section 3); the guarantees of reliable delivery whether
brokers crash or disappear or whether clients leave or (re)join the system (section 4). This section also discusses
persistent archiving of the event streams. We have emphasized the importance of dynamic creation of brokers
but this was not implemented in our initial prototype. However by looking at the performance of our system
with different static broker topologies we can study the impact of dynamic creation and termination of broker
services.

2.0 The Broker Topology
One of the reasons why one would use a distributed model is high availability. Having a centralized model
would imply a single broker (constituting a single point of failure) hosting multiple clients. A highly available
distributed solution would have data replication at various broker nodes in the network. Solving issues of
consistency while executing operations, in the presence of replication, leads to a model where other broker
nodes can service a client despite certain broker node failures. The smallest unit of the system is a broker node
and constitutes a unit at level-0 of the system. Broker nodes grouped together form a cluster, the level-1 unit of

the system. Clusters could be clusters in the traditional sense, groups of broker nodes connected together by
high-speed links. A single broker node could also decide to be part of such traditional clusters, or along with
other such broker nodes form a cluster connected together by geographical proximity but not necessarily high-
speed links.

Several such clusters grouped together as an entity comprises a level-2 unit of our network and is referred to as
super-cluster. Clusters within a super-cluster have one or more links with at least one of the other clusters
within that super-cluster. When we refer to the links between two clusters, we are referring to the links
connecting the nodes in those individual clusters. In general there would be multiple links connecting a single
cluster to several other clusters. This approach provides us with a greater degree of fault-tolerance, by providing
us with multiple routes to reach nodes within other clusters. This topology could be extended in a similar
fashion to comprise of super-super-clusters (level-3 units), super-super-super-clusters (level-4 units) and so on.
Another factor, crucial for optimization of routing algorithms is the block-limit, which limits the number of
super-clusters within a super-super-cluster, the number of clusters within a super cluster and the number of
nodes within a cluster. Thus, in a system comprising of super-super-clusters with a block-limit of 32, the total
number of broker nodes that can be present in the system is 32 x 32 x 32 x 32 i.e. 1048576.

SSC-A

SC-1

SC-2

SC-3

e

g

c

b

f

d

a

SSC-BSC-4

SC-5

SC-6

l

n

i

j

m

k

h

SSC-C

SC-7

SC-8

SC-9

s

u

o

q

t

r

p

SSC-D

SC-11

y

z

SC-10

w

x

v

Link connecting super-super-cluster gateways.
Link connecting super-cluster gateways.

Link connecting cluster gateways.

Figure 1 : An example network of brokers

The topology we have employed with strongly connected nodes in a cluster, along with multiple connections
between different units in the system leads to the creation of small world [1] networks. These networks have the
advantage that the communication pathlengths that a broker node requires to communicate with any other
broker node in the system increases logarithmically with geometric increases in the size of the broker network.
Clusters have broker nodes at least one of which is connected to at least one of the nodes within some other
cluster. In some cases there would be multiple links from a cluster to some other cluster. This architecture
provides a greater degree of fault tolerance by providing multiple routes to reach the same cluster. We refer to
such nodes as gatekeepers. The link connecting two gatekeepers is referred to as the gateway, which the
gatekeepers provide, to the unit that the other gatekeeper is a part of. If a broker is connected to a broker in
some other cluster within the same super-cluster we refer to those brokers as cluster gatekeepers (gatekeepers at
level-1). Similarly if the brokers are in different super-clusters but within the same super-super-cluster, the
brokers providing this gateway are referred to as super-cluster gatekeepers (gatekeepers at level-2). A given
broker node could be a gatekeeper at several levels. Thus, in Figure 1 we have 12 super-super-cluster
gatekeepers, 18 super-cluster gatekeepers (6 each in SSC-A and SSC-C, 4 in SSC-B and 2 in SSC-D) and 4
cluster-gatekeepers in super-cluster SC-1.

3.0 Routing events
The event delivery problem is one of routing events to clients based on the type of events that clients are
interested in. Events need to be relayed through the broker network prior to being delivered to clients. The
dissemination process should efficiently deliver events to the destinations, which could be internal or external to
the event. In the latter case the system needs to compute the destination lists pertaining to the event. The system
merely acts as a conduit to efficiently route the events from the issuing client to the interested clients. A simple
approach would be to route all events to all clients, and have the clients discard those events that they are not
interested in. This approach would however place a strain on network resources. Under conditions of high load
and increasing selectivity by the clients, the number of events that a client discards would far exceed the
number of events it is actually interested in. This scheme also affects the latency associated with the reception
of real time events at the client. The increase in latency is due to the cumulation of queuing delays associated
with the uninteresting/flooded events. The system thus needs to be very selective of the kinds of events that it
routes to a client.

In Elvin [2] network traffic reduction is accomplished through the use of quench expressions. Quenching
prevents clients from sending notifications for which there are no consumers. Strategies to route events to
clients by selectively employing links for dissemination do not exist. In Gryphon [4] each broker maintains a
list of all the subscriptions within the system in a parallel search tree (PST). The PST is annotated with a vector
encoding link routing information. At matching time, these annotations are employed by every broker to
determine which of its neighbors should receive that event. The obvious disadvantage of this approach is that all
subscriptions are maintained at every broker. Thus when a broker is newly added into the system all
subscriptions need to be routed to this broker. The approach adopted by the OMG Event and Notification
services [6] is one of establishing channels and registering suppliers/consumers to those channels. This scheme
of registering with multiple channels does not scale well increasing number of clients as well as greater
selectivity in events. In some commercial JMS implementations, events that conform to a certain topic are
routed to the interested clients. Refinement in subtopics is made at the receiving client. Under conditions where
the number of subtopics is far greater than the number of topics, the situation of client discards could approach
the flooding case.

3.1 Connectivity graph
A broker needs to be aware of the network layout to optimize routing to destinations. However, given the
potential size (millions) of the broker network, it is impractical for any broker to be aware of the complete
network inter-connection scheme. What is required is an abstract view of the broker network, while still being
able to ensure the calculation of optimal paths for communication within the system. This information is
encapsulated within the connectivity graph. The information encapsulated within the connectivity graph depicts
inter-connections between the brokers in the cluster that it is a part of, the interconnections between the clusters
within the super-cluster that it belongs to and so on. The connectivity graph at each node would be different,
while still providing a consistent view of the system interconnections. Connectivity graphs are updated at each
node in response to the creation of connections between brokers. Dissemination constraints are imposed on the
propagation of connection information outside a given unit. For example information regarding connections

within a cluster should not be propagated outside the cluster. This connection information is also modified as it
is being propagated through certain sections of the broker network.

Thus, in Figure 1 the connection between SC-2 and SC-1 in SSC-A, is disseminated as one between node 5
and SC-2. When this information is received at 4, it is sent over as a connection between the cluster c and SC-
2. When the connection between cluster c and SC-2 is sent over the cluster gateway to cluster b, the
information is not updated. Conforming to the dissemination constraints, the super cluster connection (SC-
1,SC-2) information is disseminated only within the super-super-cluster SSC-A and is not sent over the super-
super-cluster gateway available within the cluster a in SC-1 and cluster g in SC-3. Details regarding the
information encapsulated in a connection, the update of this information during disseminations and the
enforcement of dissemination constraints can be found in [8][9].

6

SC-2

SSC-B

ba

54

SSC-CSSC-D

SC-3

6 (2)

4

6

5

4

3

2

1

0 0

2

level-0

level-1

level-2

level-3

SSC-A.SC-1.c.6

Figure 2 : Connectivity graph at broker node 6

Figure 2 depicts the connectivity graph depicts the connectivity graph that is constructed at the node SSC-
A.SC-1.c.6 in Figure 1. Every edge created due to the dissemination of connection information also has a link
count associated with it, which is incremented by one every time a new connection is established between two
units that were already connected. This scheme also plays an important role in determining if a connection loss
would lead to partitions. Further, associated with every edge is the cost of traversal. This cost scheme is
encapsulated in the link cost matrix, which can be dynamically updated to reflect changes in link behavior with
the passage of time.

The process of calculating the shortest path, from the node to the vertex (broker hosting the connectivity graph),
starts at the node in question. The directional arrows indicate the links, which comprise a valid path from the
node in question to the vertex node. Edges with no imposed directional constraints are bi-directional. Hops
computed for destinations are then maintained in a routing cache so that events can be disseminated faster
throughout the system. The routing cache used in tandem with the event routing information to decide on the
next best broker hop for an event ensures efficient dissemination. Sections of the routing cache are
invalidated/updated in response to the addition of brokers or initiation of connections between existing brokers.

3.2 Organization of Profiles
A profile comprises of constraints on successive attributes in an event's signature. Constraints from multiple
profiles are organized in the profile graph. We use the general matching algorithm the Gryphon [4] system to
organize profiles and match the events. A constraint is the specification of a value that a particular attribute can
take. We however also allow for the weakest constraint, denoted *, which encompasses all the values within the
range permitted by the attribute's type. Figure 3 depicts the profile graph constructed from three different

profiles. To ensure reliable delivery and subsequent garbage collection of events from stable storage along
every edge, we maintain information regarding the units that are interested in its traversal. For each of these
units we also maintain the number of predicates (individual filters in a client profile) within that unit that are
interested in the traversal of that edge. The predicate information also allows us to remove certain edges and
nodes from the profile graph, when clients are not interested in those constraints any more.

A

B

D C

C

C

a [s1,s2][1,1]

f [s
3][1]

d [s3][1] c [s3][1]

b [s2][1]
c [s2][1]

* [s1][1]
c [s2][1]

s1= {A=a, B=*, C=c}
s2= {A=a, B=b,C=c}
s3= {A=f, D=d, C=c}

Figure 3 : Profile Graph example

When an event arrives we first check to see if the profile graph contains the first attribute contained in the event.
If that is the case we can proceed with the matching process. When an event's content is being matched, the
traversal is allowed to proceed only if –
(a) There exists a wildcard (*) edge connecting the two successive attributes in the event.
(b) The event satisfies the constraint on the first attribute in the edge, and the attribute node that this edge

leads into is based on the next attribute contained in the event.

3.3 Propagation of profiles
In our scheme no broker maintains all subscriptions that exist within the system. Information regarding profiles
is propagated hierarchically; a broker maintains profiles of all attached clients, cluster gatekeepers maintain
profiles all brokers within that cluster and so on. In the case of multiple unit-gatekeepers within the same unit,
profile information needs to be propagated to every such gatekeeper. This organization of profiles ensures that –
(a) When an event is routed to a unit, there is at least one destination within that unit which is interested in the

content contained in that event.
(b) There are no events that are not routed to that unit, which would have at least one valid destination within

that unit.

To ensure these properties, a change in profile of the broker node should in turn be propagated to the cluster
gateway(s) within the cluster that the node is a part of. A profile change in broker (as a result of a change in an
attached client's profile) needs to be propagated to the unit (cluster, super-cluster, etc) gatekeeper within the unit
that the broker is a part of. This information regarding the nodes to propagate profile changes (at different unit
levels) is computed from the connectivity graph. In the connectivity graph depicted in Figure 2 profile changes
at any of the broker nodes within cluster c, need to be routed to node 4. Any profile changes at cluster
gatekeeper node 4 needs to be routed to node 5, and also to a node in cluster b. Similarly level-2 changes at
node 5 needs to be routed to the level-3 gatekeeper in cluster a and super-clusters SC-3, SC-2. When such
propagations reach any unit the process is repeated till such time that the gateway that the node seeks to reach is
reached. Every profile change has a unique-id associated it, which aids in ensuring that the reference count
scheme, associated with edges in the profile graph, does not fail due to delivery of the same profile change
multiple times within the same unit.

3.4 Routing events
Event routing is the process of disseminating events to relevant clients. This includes matching the content,
computing the destinations and routing the content along to its relevant destinations by determining the next
broker node that the event must be relayed to. Events have routing information associated with them, which

indicate its dissemination within various parts of the broker network. The dissemination information at each
level can be accessed to verify disseminations in various sections of the broker network. Routing decisions are
made on the basis of this information, which is added by the system to ensure the fastest dissemination. As the
event flows through the system, via gateways, the routing information is modified to snapshot its dissemination
within the broker network.

Before an event is sent over a gateway, the broker analyses the routing information to ensure that the event is
not routed to a unit, which had already received the event. Further, information pertaining to lower level
disseminations are discarded prior to routing an event over a higher level gateway. A gatekeeper at a higher
level, when it is presented with an event, computes the lower level destinations e.g. a cluster gatekeeper
computes the broker destinations associated with a newly arrived event. This calculation is based on the profiles
available at the gatekeeper. At every node the best hops to reach the destinations are computed. Nodes and links
that have not been failure suspected are the only entities that can be part of the shortest path. Thus, at every
node the best decision is taken. The event routing protocol, along with the profile propagation protocol and the
gateway information ensure the near optimal routing scheme for the dissemination of events in the existing
topology.

4.0 Reliable Delivery of events
Reliable delivery involves the guaranteed delivery of events to intended recipients. The delivery guarantees
need to be satisfied even in the presence of single or multiple broker failures, link failures and network
partitions. In GES clients need not maintain an active online presence and can also roam the network attaching
themselves to any of the nodes in the broker network. Events missed by clients in the interim need to be
delivered to these clients irrespective of the failures that have already taken place or are currently present in the
system.

Systems such as Sienna [3] and Elvin [2] focus on efficiently disseminating events, and do not sufficiently
address the reliable delivery problem in the presence of failures. In Gryphon the approach to dealing with
broker failures is one of reconstructing the broker state from its neighboring brokers. This approach requires a
failed broker to recover within a finite amount of time, and recover its state from the brokers that it was attached
to prior to its failure. What is not clear is the state recovery problem in the presence of multiple broker failures.
SmartSockets [5] provides high availability/reliability through the use of software redundancies. Mirror
processes receive the same data and perform identical sequence of actions as the primary process, and can thus
take over in the event of process failures. This approach runs into scaling problems since each process needs to
have a mirror counterpart. Also, since entire networks would be mirrored in this approach, network cycles
expended for dissemination increase with network size. Recovery mechanisms during process/mirror pair
failures are however not addressed. TIB/Rendezvous [10] in tandem with TIB/Hawk allow uninterrupted local
operations while recovering from application outages. Most of these systems nevertheless require failed brokers
to recover within a finite amount of time. Statically pre-configured message queuing products such as IBM's
MQSeries and Microsoft's MSMQ employ the store-and-forward approach and do not handle changes to the
network (node/link failures) very well. They also require these queues to recover within a finite amount of time
to resume operations.

4.1 Stable storage and data replication issues
Storages exist en route to destinations but decisions need to be made regarding when and where to store an
event and also on the number of replications that we intend to have for any given event. Events can be
forwarded to clients only after they have been written to stable storage. Since events arrive at a unit via
gatekeepers, the stable storages are configured at these brokers. These stable storages are then responsible for
ensuring the guaranteed delivery of events for clients attached to brokers within the unit that it is servicing. The
level of the gatekeeper, which hosts the stable storage dictates the replication granularity of the brokers being
serviced by that stable storage. Also if a unit has more than one unit-gatekeepers, only one of them can be
configured to have access to stable storage.

SSC-BSC-4

SC-5

SC-6

l
13 14
15

n
20

21

i4 5
6

j7 8
9

m16
17
18

k10 11
12

h1 2
3

1
19
14

9
Cluster Storage

Super Cluster Storage

Super Super Cluster Storage

19

Figure 4 : The replication scheme

Figure 4 depicts the different replication granularities that can exist within different parts of a sub system. Table
1 outlines the stable storages that service the nodes within the system. Also, in the depicted replication scheme
there could be no other node in SSC-B that serves as a stable storage to provide the nodes in SSC-B with a
replication granularity of 3. Similarly there could be no other stable storages, which try to service units SC-4
and SC-6 with a replication granularity of 2.

Nodes Granularity Servicing Storage
10,11,12 3 1
1,2,3,4,5,6,7,8,9 2 9
16,17,18,19,20,21 2 19
13,14,15 1 14

Table 1: Replication granularity at different nodes

With the addition of stable storages to service smaller units, brokers within those units that were being serviced
by higher-level stable storages, will now have their replication granularities updated. In the topology in Figure 4
if we were to set up a level-2 stable storage at node 10, the replication granularities at nodes 10,11 and 12
would be updated from 3 to 2. The replication granularity for every broker node in the cluster SC-5.l remains
unchanged at 1.

4.2 Epochs
Epochs are used to aid the reconnected clients and also to recover from failures. We use epochs to ensure that
the recovery queues constructed for clients would not comprise of events that a client was not originally
interested in. Failure to ensure this could lead to starvation of some of the clients. We also need epochs to

provide us with a precise indication of the time from which point on a client should receive events. Not having
this precise indication (during recoveries) leads to client starvations, with the system expending precious
network cycles in routing these events. We also have an epoch associated with every profile change and require
that the client wait till it receives the epoch notification, before it can disconnect from the system.

Epochs are truly determined by the replication schemes that exist in different parts of the system. Some of the
details pertaining to epoch generation are listed below –
(a) Epochs should monotonically increase.
(b) Epochs for clients exist within the context of the finest grained stable storage that the broker node (that it is

attached to) is a part of.
(c) For every client profile there is an epoch associated with it.
To aid in precise recoveries of clients every event received at a client needs to have an epoch associated with it.
The arrival of such an epoch bearing event results in an advancement of the epoch associated with the client's
profile.

When a node is hosting a stable storage, destinations pertaining to lower level disseminations are computed.
The node also computes the predicate count per destination for every computed destination, a feature that aids
in the garbage collection scheme. These destinations, along with the predicate count for individual destinations,
the epoch and event itself is what is stored at the stable storage.

4.3 System storages and guaranteed delivery of events
We refer to units at the highest level comprising the broker network as super-units. The constraint imposed by
the system is that there should be a stable storage, which is responsible for ensuring the stability of events being
delivered to clients attached to any of the brokers within the super-unit. Stable storages servicing these
individual super units are also additional responsibility of functioning as system storages. For events issued by
clients attached to nodes within these units, the system storage nodes have the responsibility to maintain events
in stable storage till such time that they are sure that all the other system storages within the system have
received that event. When an event is issued within a unit, the destinations are computed as described in the
event routing protocol. However, before the event is allowed to leave the super-unit in which it was issued, it
must be stored onto the system storage within that super-unit. The system storage node maintains the list of all
known super-unit destinations within the system. This destination list is associated with every event that is
stored by the system storage. Also associated with these events is a sequence number, which is different from
the epoch number associated with the events that clients receive. Further, sequence numbers associated with
events are used only by system storages to conjecture the events that they should have received from any other
system storage within the system.

Once the event is stored at the system storage, it is ready to be sent across to the other super-unit destinations
within the system. Also, for an event that is issued by a client within a given super-unit, the event is stored to
only at the system storage within the super-unit in which the event was issued, and not at any other system
storages within the system. Positive acknowledgements from other system storages aid in the garbage collection
of events that have been stored by a system storage. Negative acknowledgements are used to retrieve events
from a given system storage once holes have been detected in the sequence of events that should have been
received.

4.4 Routing events to a reconnected client
When a client is not present in the system, the event is not acknowledged and thus cannot be garbage collected
by the storage that this client was being serviced by. The events are thus available for the construction of
recovery queues when the client connects back into the system. The recovering client in question could be both
a roaming client or a client, who has reconnected after a prolonged disconnect. Associated with every client is
the epoch number associated with the last event that it received or the last profile change initiated by the client.
The routing for the client is based on the node that the client was last attached to. It is this node that serves as a
proxy for the client. If this node fails it is the cluster gateway, of the cluster that the node belonged to, which
serves as a proxy for the client. As mentioned earlier, in our system a node/unit can fail and remain failed
forever.

For a profile associated with a client, when a disconnected client joins the system it presents the node that it
connects to in its present incarnation the following -
(a) The logical address of the broker node that this client was attached to in its previous incarnation.
(b) The last epoch received from the stable storage of the sub system that it was formerly attached to.
(c) The list of the profile ID's associated with client's profile.
Item (a) provides us with the stable storage that has stored events for the client. Item (b) provides us with the
precise instant of time from which point on, event queues of events needs to be constructed and routed to the
client's new location. Item (c) provides for the precise recovery of the disconnected client. Details regarding the
precise recovery mechanism can be found in [8][9].

4.5 GES Solution Highlights and extension to dynamic topologies
Our solution to the reliable delivery problem eliminates the finite-time-recovery constraint for individual
brokers, while not relying on state reconstructions from neighboring brokers. The solution allows the replication
strategy to evolve over time while ensuring that no client is affected by these changes. Clients reconnecting
after system failures or prolonged disconnects make a complete and precise recovery. The stable storage
persistence model is very selective about the events that it subscribes to, and incorporates a garbage collection
scheme that performs even in the presence of roaming/disconnected clients and multiple broker failures. The
solution allows lends itself very well to dynamic topologies. Brokers could be dynamically created, connections
established or removed, and the events would still be routed to the relevant clients based on the current network
fabric. Any given node in the system would thus see the broker network undulate, as the brokers are being
added and removed. Average pathlengths for communication could be reduced by instantiating connections to
optimize clustering coefficients within the network.

5.0 Results:
The system comprises of 22 broker node processes organized into the topology shown in the Figure 5. Each
broker node process is hosted on 1 physical Sun SPARC Ultra-5 machine (128 MB RAM, 333 MHz), with no
machine hosting two or more broker node processes. For the purpose of gathering performance numbers we
have one publisher in the system and one measuring subscriber (the client where we do our measurements)
residing on the same Ultra-5 machine and attached to nodes 22 and 10 respectively. In addition to this there are
100 subscribing client processes, with 5 client processes attached to every broker node (except nodes 22 and
10) within the system. The 100 client node processes all reside on a SPARC Ultra-60 (512 MB RAM, 360
MHz) machine. The run-time environment for all the broker node and client processes is Solaris JVM (JDK
1.2.1, native threads, JIT).

SSC-BSC-4

SC-5

SC-6

l20 19
21

n
9

10

i11 4
5

j15 6

7

m17 18
16

k1 2
3

h
14 12

13

8

22
Publisher

Measuring
Subscriber 8

1 Level-3 Storage
Level-2 Storage

Persistent
Subscriber

Figure 5: Testing topology

Clients attached to different broker nodes specify an interest in the type of events that they are interested in.
Since we are aware of the footprints for the events published by the publisher, we can accordingly specify
profiles, which will allow us to control the dissemination within the system. When we vary the matching rate
we are varying the percentage of events published by the publisher that are actually being received by clients
within the system. For each matching rate we vary the size of the events from 30 to 500 bytes, and vary the
publish rates at the publisher from 1 Event/Sec to around 1000 Events/second. For each of these cases we
measure the latencies in the reception of events.

5.1 Latencies for routing events to clients
The delays are in the range of 1-2 mSec for every broker hop. Imp lementing certain sections of the networking
code in C/C++ and then employing JNI to provide access to these native routines could improve the broker hop
latencies by a factor of 20. Latencies would thus be in the range of tens of microseconds. The only disadvantage
that would result is that we would need to compile programs separately for different platforms. However the
brokers written in Java and Java/JNI could still continue to inter-operate with each other.

Latencies under different matching rates:22 Servers 102 Clients

Match Rate=100%
Match Rate=50%
Match Rate=10%

0 100 200 300 400 500 600 700 800 900 1000
Publish Rate
 (Events/sec)

0 50100150200250300350400450500

Event Size
 (Bytes)

0
50

100
150
200
250
300
350
400
450

Latencies
 (MilliSeconds)

Figure 6 : Latencies under different selectivity rates for clients

At high publish rates and increasing event sizes, the effects of queuing delays come into the picture. This
queuing delay is a result of the events being added to the queue faster than they can be processed. In general,
the mean latency associated with the delivery of events to a client is directly proportional to the size of the
events and the rate at which these events were published. The results in
Figure 6 clearly demonstrate the effects of flooding/queuing that take place at high publish rates and high event
sizes and high matching rates at a client. It is clear that as the matching rate reduces the latencies involved also
reduce; an affect that is more pronounced at higher publish rates and increasing event size. This reduction in the
latencies for decreasing matching rates, is a result of the routing algorithms that we have in place. These routing
algorithms ensure that events are routed only to those parts of the system where there are clients, which are
interested in the receipt of those events. Additional results for different matching rates, varying broker inter-
connectivity clustering coefficients and also under replication strategies can be found in [8][9].

6.0 Conclusion
This paper outlined a scheme for the guaranteed delivery of events to roaming/disconnected clients in the
presence of broker and link failures. In section 2 we discussed how the small world behavior of our broker
layout leads to greater resilience and better pathlength characteristics. Section 3 outlined the hierarchical

dissemination of profiles and content, which along with the routing strategy employed at each broker hop leads
to a near optimal solution. In section 4 we described a strategy which allows the replication scheme to evolve
with the passage of time. The reliable delivery solution eliminated the finite recovery constraint for brokers and
accommodated stable storage failures, while accounting for precise recoveries of disconnected clients in the
presence of failures. This model provides an excellent foundation in the development of dynamic topology
strategies. This paper addressed broker organization issues, dealt with routing strategies needed for extremely
large broker networks, a solution for the reliable delivery problem and shown how these problems can be solved
while ensuring good performance. The GES system currently available could be used to test the dynamic
topology strategies that we outlined. In the GES protocol layer, a strategy to initiate dynamic servers and
connections could very easily be employed. This will be addressed in our future production system and is not
the focus of our future research. The results in section 5 demonstrated the efficiency of the routing algorithms
and confirmed the advantages of our dissemination scheme, which intelligently routes messages. Industrial
strength JMS solutions, which support the publish/subscribe paradigm are generally optimized for a small
network of brokers. The seamless integration of multiple broker nodes and the failure models in our framework
provide for very easy maintenance of large broker networks.

References

[1] D.J. Watts and S.H. Strogatz. Collective Dynamics of Small-World Networks. Nature. 393:440. 1998.

[2] Bill Segall and David Arnold. Elvin has left the building: A publish/subscribe notification service with

quenching. In Proceedings AUUG97, pages 243-255, Canberra, Australia, September 1997.

[3] Antonio Carzaniga, David S. Rosenblum and Alexander L. Wolf. Achieving Scalability and
Expressiveness in an Internet-Scale Event Notification Service. Proceedings of the Nineteenth Annual
ACM Symposium on Principles of Distributed Computing, pages 219-227, Portland OR, USA, July
2000.

[4] Marcos Aguilera, Rob Strom, Daniel Sturman, Mark Astley and Tushar Chandra. Matching Events in a

Content-based Subscription System. Proceedings of the 18th ACM Symposium on Principles of
Distributed Computing. May 1999.

[5] Talarian Corporation. SmartSockets: Everything you need to know about middleware: Mission Critical

Interprocess Communication. Technical Report: URL: http://www.talarian.com/products/smartsockets

[6] The Object Management Group (OMG). OMG’s CORBA Services.
URL: http://www.omg.org/technology/documents/ June 2000, Version 3.0.

[7] Shrideep Pallickara and Geoffrey Fox. The Grid Event Service (GES) Framework: Research

Directions & Issues. Technical Report. IPCRES Grid Computing Laboratory, Indiana University.

[8] Shrideep Pallickara and Geoffrey Fox. Initial Results from an Early Prototype of the Grid Event
Service. Technical Report. IPCRES Grid Computing Laboratory, Indiana University.

[9] Geoffrey Fox and Shrideep Pallickara. An Event Service to Support Grid Computational Environments

Under Review Concurrency and Computation: Practice & Experience.

[10] TIBCO Corporation. TIB/Rendezvous White Paper. URL: http://www.rv.tibco.com/whitepaper.html,
June 1999.

