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Abstract: We discuss the development and application of Web Service-based 
Geographical Information System Grids.  Following the WS-I+ approach of building 
Grids on Web Service standards, we have developed Data Grid components for 
archival and real-time data, map generating services that can be used to build user 
interfaces, information services for storing both stateless and stateful metadata, and 
service orchestration and management tools. Our goal is to support dynamically 
assembled Grid service collections that combine both Geographical Information 
System services with more traditional Grid capabilities such as file transfer and 
remote code execution.  We are applying these tools to problems in earthquake 
modeling and forecasting, but we are attempting to build general purpose tools by 
using and extending appropriate standards. 
 

1. Introduction: Information Architecture for the Data Deluge 
As Grid technologies [1][2][3][4] and their applications mature, a common theme in many 
projects has been the recognition that distributed data access is at least as important as scientific 
computation.  Data access is often thought of as dealing with large data archives and their 
replicas [5][6][7], but in this paper we argue that continuous data streaming, especially for real-
time applications, is also essential.  In general we see the future of many Grid applications as 
being dominated by data stream filtering, management, event detection, and data mining on data 
streams from sensors.  The connection between sensor data sources and Geographical 
Information Systems (GIS) is particularly strong.  Developing a Web Service architecture that 
allows us to manage these data sources, connect them to data filters and applications, and deliver 
them to users in a comprehensible fashion serves as our focus in this paper.  This subject thus 
naturally encompasses GIS service implementations, information systems, streaming data 
management software, messaging substrate technology, and workflow.  We will present our 
work on these topics in this paper, but we begin with some general architectural principles. 

1.1. Sensor Filter Grids 
In later sections of this paper we will address specific development work and research issues for 
GIS Grids.  However, we wish to first emphasize in this introduction that we believe our 
approach is fundamental and can be generalized to other problem domains besides GIS 
applications.  We discuss here a common Grid infrastructure for data analysis and other 
applications in distributed scientific research with an architecture termed Sensor Filter Grids 
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(SFG). These Grids are built around streams supported by a powerful messaging system to 
achieve high interactivity and performance for distributed analysis. The approach is applicable to 
management and analysis of general distributed information resources including those found in 
data analysis as well as the documents and presentations associated with a scientific activity. Our 
approach exploits the multi-tier federated and hierarchical structure of most problems of the type 
sketched in Figure 1. 
A Sensor Filter Grid can support the scenario of Figure 1. One can define a particular Sensor 
Filter Grid to correspond to a particular workflow linking services together and produce the 
associated support for this workflow. Figure 2 shows what we call the microscopic workflow in 
Sensor Filter Grid federating different information sources together. Different instances of this 
paradigm correspond to different configuration parameters and to different choices of component 
application services in the workflow. The different instances share the overall paradigm of 
workflow, sensors and filters as well as general Grid system services.  We discuss 
implementations of these ideas in Sections 5-7. 

 
Figure 1 Vision of Sensor Filter Grid with filters (FS) shown from many fields, processing SOAP 
messages from sensors (SS), Grid(let)s and services controlled by meta-data (MD) and supported by 
other services (OS). 

A Sensor Filter Grid is built around three distinctive features: information services that present 
data through traditional service interfaces; filters that accept data with these interfaces, transform 
them and present them with the same interfaces; and streaming connections between all services 
that provide on the fly archiving, high-performance transport, security and fault tolerance. A very 
common feature is that the filters are composable in a distributed federated hierarchical fashion. 
We suggest that scientific data analysis has this characteristic whereas for example distributed 
simulations would typically not be composable in this fashion. 
As shown in Figure 3, Sensor Filter Grid is built from information services and filters that 
support identical service interfaces. The source, structure and processing of data in information 
services is opaque while filters transform or aggregate data from other filters or information 
services. Figure 2 shows how full filter services are built from basic filter services using 
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application dependent dataflow. We term this the microscopic workflow as it is embedded in the 
Gridlets shown in Figure 4. The filters in this Grid style combine hierarchically e.g. in 
information retrieval one can merge ranked lists to obtain a new ranked list while in statistical 
analysis, moments and histograms can easily be combined. 
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Figure 2 A Filter Service (FS) is a general workflow (the microscopic workflow) of Basic Filter Services 
(BFS). 
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Figure 3 A Sensor Filter Grid is built from information resources wrapped as Web Services and basic 
filters that either transform or aggregate information. Information services and filters support identical 
service Interfaces 

This composability of the filters supports natural scaling and federation algorithms and defines 
the Sensor Filter Grid structure. Note that superimposed on the tree of filters and information 
sources one has a Grid of system services like security and reliability which are shared between 
the different applications. One supports this paradigm with an interactive administrative interface 
allowing system configuration, information sources and filters to be defined. The system can be 
elegantly virtualized so that in specifying the information sources, one can either give very 
specific resources or Semantic Web-style specifications for a discovery service. Of course this 
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type of support is independent of the Sensor Filter Grid application area; one must just 
distinguish service specification from the location and number of services. Note that there is no 
implication that all filter actions are identical; one will design the messages on the data streams 
between filters so they are self describing. Thus, in information retrieval the filter services are 
designed so they can accept full documents (specified by a URI), title or simple metadata. This 
flexible construction allows filter trees to be built that don't depend on number and exact features 
of information resources. 

1.2. Role of Data Streams 
A critical feature of the architecture is the use of a powerful messaging infrastructure 
NaradaBrokering [8][9] for linking between the services in Figure 3 and Figure 4.  This allows 
all services to be linked by managed reliable streams. NaradaBrokering can be deployed as a 
distributed set of brokers, and (in current releases) as Apache Axis handlers. This release 
supports WS-ReliableMessaging [10], WS-Eventing and WS-Notification [11]. These 
capabilities allow fault tolerance and asynchronous messaging with publish-subscribe semantics 
[12]. We are developing a sophisticated management environment that controls and monitors all 
streams in a Grid [13][14] and extends fault tolerance across streams, services and message 
brokers. The latter allows one to control the flow of data into filters so that there is no overflow. 
NaradaBrokering supports the subscription of redundant services to aid in fault tolerance. The 
Web Service messages flowing in NaradaBrokering can be archived at any link. This provides 
for dynamic caching to support system performance and is also used in message throttling. This 
NaradaBrokering archiving service replaces the replica management familiar from current 
particle physics Grids [7]. The archive service is of course supported by a metadata catalog to 
manage it.  
NaradaBrokering supports software multicast and so it is straightforward to build collaborative 
sessions by multicasting the links. NaradaBrokering has been successfully used for audio-video 
conferencing and other collaborative tools in the commercial Anabas product and the open 
source GlobalMMCS project [15][16]. A current successful use of this technology is for 
integrating seismic archives with data assimilation techniques [17] for medium-range (5-10) 
earthquake forecasting.  We are also developing real-time GPS sensors used by NASA for 
Earthquake monitoring [14]. We deploy simple versions of the architectures proposed here with 
sensors, filters and data mining codes linked by real-time streams.  
We need to ensure that our architecture streams information as fast as possible between services 
while retaining the advantage of Grids and Web Services. This can be achieved as all service 
messages are handled by the “system” through NaradaBrokering which formally one “binds” to 
SOAP as the transport. There are two important aspects that need to be optimized – the transport 
protocol and the representation of the information in the message. For the protocol we exploit 
NaradaBrokering’s ability to support general protocols which can be chosen independently of the 
application with in a service model the last handler in a container choosing the protocol. UDP, 
TCP, parallel TCP, HTTP, HTTPS are currently supported. One should also investigate the 
FAST kernel [18]. NaradaBrokering can also link to network monitoring tools and here we 
should study links to the MonALISA agent-based global monitoring and control system [19]. 
This is widely deployed in the physics community and now part of the Virtual Data Toolkit [20]. 
Now we turn to the wire-representation used in the messaging. Several studies have shown that 
transport of XML and SOAP messages encoded in conventional “angle-bracket” representation 
is too slow for applications that demand high performance. At the same time several groups are 
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developing ways of representing XML in binary formats for fast message exchange [21][22] 
[23]. We are developing [24] a Web Service negotiation language for higher performance Web 
Services to negotiate both the protocol described above as well as the representation scheme such 
as choice between Fast and Binary XML. Initial negotiation will be done using standard SOAP 
angle-bracketed messages to determine the supported representation and transport protocol 
capabilities. We will employ handlers to take care of the conversion and transport issues, which 
will make the negotiation and transport process transparent to the services. Once the services 
agree on the conditions of the data exchange, handlers convert XML data into an appropriate 
binary format and stream it over a high performance transport protocol using NaradaBrokering. 
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Figure 4 A Gridlet is defined by combining information services and filters. The Multiple IS in a Gridlet 
can be explicitly defined or generated by IS virtualization using Sensor Filter Grid directory and 
Metadata services 

1.3. Overview of Paper 
In this paper we describe our efforts to implement the general architecture outlined above, with 
specific applications to our SERVOGrid project.  Our general approach is based on the “WS-I+” 
approach [4] to building Grids: we start from core Web Service standards (SOAP, WSDL, 
UDDI) and build outward on other applicable World Wide Web Consortium and OASIS 
standards. General overviews of Grid technology are available from [1][3]. 
The major components of our efforts are detailed in separate sections.  We begin with two 
sections describing our work to build and extend Web Services to support basic Open Geospatial 
Consortium standards: the Web Feature Service and the Web Map Service.  These are foundation 
components for GIS Grids.  The feature service is a basic Data Grid component that provides 
access to data and metadata about geographic features.  This work is described in Section 2.  As 
we have discussed in the introduction, Data Grids must support both archival and real-time data.  
We discuss our architecture and implementation of real-time data services for Global Positioning 
Systems in Section 3.  The Web Map Service is used to build user interface components for GIS 
Grid components.  Distributed map services render maps from overlays that may be created from 
feature data as well as other map service components.  We describe our efforts to build “pure” 
Open Geospatial Consortium (OGC) [26] map services as well as map services and clients that 
combine Open Geospatial Consortium and Google map approaches in Sections 3 and 4.  We 
conclude with two sections on “glue” activities that bind these services into Grids and Grid 
applications (see Figure 2 and Figure 4).  Our Information System approach (Section 6) is based 
on the Web Service standards UDDI and WS-Context.  Finally, Web Service-based Grid systems 
must be managed, and services may be combined into composite applications that integrate GIS 
and more typical Grid services for code execution.  This is described in Section 7.  Finally, 
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Section 8 proposes that GIS Grid and Web Services may be usefully abstracted and applied to 
other, non-GIS domains.  More extensive technical documentation on this project is available 
from the SERVOGrid Technical Documentation report [27].  More information and project 
downloads are available from [28]. 

2. Web Feature Services to Support Data Grids 
Geographical Information System standards provide useful data models and specifications for 
data transport.  In this section we discuss using these to build services for archival data storage 
and access through Web Service protocols.  We use this to provide access to Global Positioning 
System records, earthquake fault descriptions, and seismic activity records.  More detail on 
supported formats and available data can be found in [27].  We address problems in supporting 
real-time streaming data is addressed in Section 5. 

2.1. Building Web Feature Services with Web Service Principals 
The Open Geospatial Consortium Web Feature Service (WFS) [29] implementation specification 
defines interfaces for data access and manipulation operations on geographic features using 
HTTP as the distributed computing platform. Via these interfaces, a web user or service can 
combine, use and manage geographic data from different sources by invoking several standard 
operations.  
As a minimal requirement a basic Web Feature Service should be able to provide requested 
geographical information as Geographic Markup Language [30] feature collections. However, 
more advanced versions also support create, update, delete and lock operations. Three 
operations must be supported by a basic Web Feature Service:  GetCapabilities, 
DescribeFeatureType and GetFeature. 
Web Feature Services allows clients to access and manipulate the geographic features without 
having to consider the underlying data stores. Clients’ only view of the data is through the Web 
Feature Service interface which allows the data providers to integrate various types of data stores 
with one Web Feature Service instance. Clients interact with a Web Feature Service by 
submitting database queries encoded in Open Geospatial Consortium Filter Encoding 
Implementation and in compliance with the Open Geospatial Consortium’s Common Query 
Language.  
According to the Open Geospatial Consortium’s Web Feature Service implementation 
specification, hosts implementing HTTP are the only explicitly supported distributed computing 
platform. Employing HTTP as the default transport protocol requires use of one of the two 
request methods: GET and POST. However using HTTP protocol introduces significant 
limitations for both producers and consumers of a service.  In contrast, Grid Web Services 
provide us with valuable capabilities such as providing standard interfaces to access various 
databases or remote resources, ability to launch and manage applications remotely, or control 
collaborative sessions. Developments in the Web Service and Grid areas provide us with 
significant technologies for exposing our resources to the outer world using relatively simple yet 
powerful interfaces and message formats. Furthermore, we need to access several data sources 
and run several services at the same time for solving complex problems. This is out of scope for 
HTTP but is a part of rapidly developing workflow technologies for Web and Grid Services (see 
Section 7). For these reasons we have based our Web Feature Service implementation on Web 
Services principals [31].  
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We have initially implemented a Web Services version of basic WFS which supports the three 
mandatory operations through a WSDL interface. Each operation takes an XML document as 
argument and returns another XML document as response. While implementing these operations 
in a Web Service context, we had to choose appropriate types corresponding to the programming 
world. Ideally, we would define these in the <wsdl:types> section of our WSDL service 
definition, but unfortunately support for complicated, developer-defined types in Apache Axis 
(our deployment framework) is limited.  
Since the requests and responses are well-defined XML documents one possibility is to create 
object representations of these in our favorite programming language, i.e. we can create a Java 
Object for each GetFeature request document and the returning Geographic Markup Language 
document can be cast into another Java object.  That is, we will make the service itself (rather 
than the container) responsible for XML serialization and de-serialization. In this case the 
communication between the Web Feature Service and the client is based on exchanging Java 
objects. However this approach severely undermines the interoperability with clients who might 
use other programming languages such as C++ or Python to communicate with our service. As a 
simpler solution we have used strings as argument and return types in these operations. This 
allows clients who use other programming APIs to communicate with our Web Service to simply 
send and receive XML documents without any format conversions. However this method also 
has a significant shortcoming; since the Web Service returns the resulting XML document as an 
<xsd:string>, this has to be constructed in memory and the size will depend on several 
parameters such as the system configuration and memory allocated to the Java Virtual Machine 
etc. Consequently there will be a limit on the size of the returned XML documents. 
We have tested our Web Service implementation of WFS in several scenarios such as producing 
fault maps of Southern California, displaying seismic history of particular regions on the map 
etc. A very interesting application domain was integrating our GIS services with Pattern 
Informatics [32] code to forecast future seismic activities in a selected geographic region. This is 
described in more detail in [17]. 
To measure the performance of our WFS implementation we made several tests using seismic 
catalog for year 1992 (the most eventful year) from Southern California Earthquake Data Center 
(SCEDC). Tests were performed for the following lower bounds with seismic event magnitudes: 
M>5.0, 4.5, 4.0, 3.5, and 3.0.  These correspond to increasing data file size, as shown in Table 1. 
The entire catalog from 1932 to 2004 has 401,403 entries. 

Table 1 SCEDC entries for test year 1992 

Event 
Magnitude 
Lower Bound 

Number of 
Seismic 
Events 

GML  
Result Size 
(KB) 

5.0 19 11 

4.5 67 36 

4.0 209 106 

3.5 587 287 

3.0 1790 880 

 
The Web Feature Service starts processing user requests by extracting the database query from 
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the request (encoded as a GML Filter) and uses this to construct a corresponding MySQL query.  
The results of the database querying process are used to create a GML FeatureCollection which 
usually contains multiple features (1790 features for magnitude 3 and larger). We measure WFS 
performance by timing the steps required to process GetFeature requests. The tests are made over 
15 runs. Data from 1/1/1992 to 12/31/1992 were requested and latitude/longitude bounding box 
(-117.0, 32.0)-(-114.0-37.0) was used.  Table 2 shows the results of the performance tests. 
Measurements are in milliseconds, standard deviations are given in parentheses. Timings less 
than 10ms are marked with (*).  

Table 2 Web Feature Service performance is reported in milliseconds. Standard deviations are given in 
parenthesis.  

Event 
Magnitude 
Lower 
Bound 

Database 
Query Time 
 

Building 
GML 
Object 
 

Total 
Request 
Processing 
Time 

Data 
Transport 
Time 

3 3632 (18) 335 (14) 3992 (31) 2623 (87) 

3.5 3616 (63) 131 (15) 3774 (66) 1412 (66) 

4 3615 (28) 31 (27) 3664 (38)  558 (38) 

4.5 3612 (31) *  3639 (35) 214 (35) 

5 3609 (27) * 3627 (27) 80 (27) 

 
For each event magnitude we make four different measurements. Although there are few other 
steps involved in the process such as initialization of the Java objects and extraction of the 
database query from the user request, they do not take significant amount of time and are not 
determinative in the total response time. Database query time displayed in column 2 is the major 
contributor to the total response time and demonstrates a similar value for all the data sizes. 
Building GML objects from database query results was another major time consuming process in 
our previous tests [17] especially for larger GML payloads however with the new improvements 
this process only takes about 10% at most and can be ignored for the larger event magnitudes. 
“Total Request Processing Time” column shows the total amount of time spent on the server side 
for processing a user request. From the client’s point of view the performance of the WFS is 
simply the amount of time between submission of the request and the retrieval of the result. For 
this reason we also measure the data transport time. However the actual transport time will 
greatly depend on the quality of the network connection between the client and the WFS server, 
and the transport timings we give her are only sample results for our test set up.  
These results demonstrate significant improvement from our earlier results discussed in [17]. 
Although the previous results did not include the data transport time since it was computed by 
another system component, we can say that the internal optimizations made in WFS to better 
handle GML creation gave significant results.   
Performance tests teach us valuable lessons in terms of the capabilities and limits of our 
implementation. From the above result we draw following conclusions. First, for small data 
payloads the response time is acceptable. However for larger data sets the performance decreases 
sharply and the response time is relatively long.  Second, there exists a maximum threshold for 
the amount of data to be transported.  
In our further tests we found that for event magnitude lower than 3 the WFS does not return any 
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results and throws an out of memory exception due to the fact that it is not possible to create an 
in memory string representation of the resulting GML document 

2.2. Streaming Web Feature Services 
Scientific applications such as Pattern Informatics [32] and RDAHMM [32] require large 
amounts of data to be transferred between servers and clients. Our Web Services-based WFS 
implementation proved to be appropriate for transporting smaller data payloads; however for 
large data sets either the performance is low or the system does not work. For these reasons we 
have investigated alternative ways for data transport and researched use of topic based publish-
subscribe messaging systems for streaming the data. Our research on NaradaBrokering shows 
that it can be used to stream large amount of data between nodes without significant overhead. 
Additional capabilities such as reliable messaging and support for different transport protocols 
already inherent in NaradaBrokering show that it is a powerful yet easy to integrate messaging 
infrastructure. For these reasons we have developed a novel Web Feature Service that integrates 
Open Geospatial Consortium specifications with Web Service-SOAP calls and NaradaBrokering 
messaging system.  
Our streaming Web Feature Service works similarly with the non-streaming version, however 
instead of using HTTP as the transfer medium we publish the results to a NaradaBrokering topic. 
The clients make the requests with standard SOAP messages but for retrieving the results a 
NaradaBrokering subscriber class is used. The ability to stream the results over NaradaBrokering 
topics also gives us another opportunity for improving the performance: we utilize MySQL’s 
ability to stream results from database row by row thus create and publish the GML feature 
members as they become available. This allows us to start publishing the results after a short 
query processing time without waiting for the whole result set to be returned from the database 
as in the conventional implementation. 
Initial performance test results for out streaming-WFS implementation is discussed in brief in 
[32]. Here we give a detailed description of the test scenario and compare both WFS versions. 
The performance tests are made with the same parameters used for testing the non-streaming 
version; we used SCEDC seismic catalog for year 1992 and queried data for seismic event 
magnitudes M>5.0, 4.5, 4.0, 3.5, and 3.0. Table 3 shows the timings taken for various steps. All 
measurements are in milliseconds and standard deviations are given in parentheses. Timings less 
than 10ms are marked with (*). 
Table 3 Streaming Web Feature Service performance for seismic records (in millisecond) is reported. 

Event 
Magnitude 
Lower Bound 

Database 
Query Time 
 

Building 
GML Object 
 

Request 
Processing 
Time 

Data 
Transport 
Time 

3 2511 (29) 359 (17) 2972 (50) 710 (72) 
3.5 2493 (24) 120 (22) 2690 (33) 177 (55) 
4 2503 (32) 56 (20) 2655 (56) 218 (46) 
4.5 2507 (45)  14 (9) 2612 (44) 164 (81) 
5 2503 (25)  * 2594 (35) 11 (7) 

The results show that by streaming query results from the database we reduce the database query 
time by around 30%. Perhaps the most interesting result of these tests is that the data transport 
time does not significantly affect the overall system performance. Even for the largest data 
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payload the transport time is only 17% of database query time. Overall the streaming-WFS 
outperforms non-streaming version by a significant margin for large data payloads and 
demonstrate an equal or better performance for smaller data sizes. Another important point is 
that there is no size limit for the data to be transported between WFS server and the client in 
streaming version which is a major advantage.  Figure 5 and Figure 6 plot these results. 
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Figure 5 Performance of streaming Web Feature Service 
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Figure 6 Performance of non-streaming Web Feature Service 

2.3. Web Feature Service Future Work 
Although we have improved the performance of our initial WFS implementation and solved the 
data payload size limit by developing a streaming version, we still have to investigate further 
improvements, as the transport time will eventually dominate the relatively flat database query 
time. One interesting field to explore is binary XML representation schemes [21][22] [23]. We 
are currently developing a framework for Web Services to negotiate various characteristics of 
their communication for better performances. We will apply our research in this area to negotiate 
transport protocol and binary XML format for encoding GML feature collections. We think that 
by encoding XML in a binary format we will be able to reduce the size of the data significantly 
and by using alternative transport protocols such as UDP we will be able to transfer data faster. 

3.  Visualization Web Services for Geographical Information Systems 
In the previous section we addressed the problems of accessing data sources using Geographical 
Information Service data models and services. GIS standards such as the Open Geospatial 
Consortium’s Web Map Services (WMS) [25] introduce methods and environments to visualize, 
manipulate, and analyze geospatial data using maps.  These map servers typically compose maps 
as layers.  These layers in turn may come from distributed sources: Web Feature Services 
provide abstract feature representations that can be converted to images, and other map servers 
may contribute map images.  These supporting services must be found using information 
services and metadata descriptions.  Thus, map generation services provide interesting problems 
in distributed service coordination.  
Map generation is also obviously where GIS services meet user interfaces.  In this section we 
examine several issues: how do we implement a Web Map Server to support Web Service 
standards, how do we integrate this server with other (data and information) services, and what 
approaches should we use to create client interfaces and manage the client-service interactions.  

3.1. Challenges in GIS Visualization Systems 
To provide context for our distributed map service research and development work, we begin 
with a discussion of general challenges in building these systems  
Interoperable and easy to integrate services: As we will discuss in more detail below, Web Map 
Services depend on other services to do their work: distributed map servers can aggregate both 
abstract plotting instructions and images from several sources. By building Web Map Services 
that use Web Service standards and generally follow Web Services Architecture [31] principles, 
we can make use of general purpose information services and workflow standards that can be 
used to create composite maps using distributed computing techniques [38]. 
Efficient data representation and information extraction:  Web Map and Feature Servers are 
closely linked: map servers consume feature service data and use them to draw maps.  In Section 
2 we discussed techniques for streaming feature data.  Similarly, the Web Map Service must 
efficiently process the incoming GML streams.  For the manipulation and information extraction 
of the XML structured data, we use the XML Pull Parser [32]. Pull parsing does not provide any 
support for validation. This is the main reason that it is much faster than its competitors.  If you 
are sure that data is completely valid, or if validation errors are not catastrophic to your system, 
or you can trust validation on the server, then using XML Pull Parsing gives the highest 
performance results. 
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Supporting legacy and Web Service messaging and transport: Open Geospatial Consortium 
specifications for the Web Map Services must support both HTML Get/Post and SOAP over 
HTTP protocols. Each of these access methods uses HTTP as its underlying transport protocol. 
Although Web Services can operate over almost any internet protocol, HTTP is the preferred 
protocol for legacy GIS applications. The most well-known drawback of the HTTP protocol is 
the lack of support for asynchronous messaging. On the other hand, Web Services provide 
valuable capabilities such as providing standard interfaces to access various remote resources, 
ability to launch and manage applications remotely, or control collaborative sessions etc.  
Bridging between multiple map servers:  We must be able to aggregate capabilities from 
different mapping services running on different hosts.  These are referred to as Cascading Web 
Map Services. In that context, a map server acts like a client to another Web Map Service and as 
a server to the clients. The client does not need to keep track of several Web Map Service 
servers; it only has to be aware of one. The cascading Web Map Service reports the capabilities 
of the other Web Map Service as its own and aggregates the contents and capabilities of several 
distinct Web Map Service servers into one service. In our project [17], we have been using 
Landsat 7 satellite imagery map from Web Map Service at NASA OnEarth [37][38]. 

3.2. Creating Maps from Geographic Data  
Web Map and Feature Services cooperate to create map images. XML-represented geographical 
features obtained from Web Feature Services are converted by Web Map servers into images 
using matrix-pixel (raster data), or points, lines and polygons (vector data). The basic operations 
related to mappings include discovering the physical address of the data providers, transferring 
the data from data servers and rendering it to create a map.  A map is not the data itself. Maps 
create information from raw geographic data, vector or coverage data. Maps are generally 
rendered in pictorial formats such as JPEG (Joint Photographic Expert Group), GIF (Graphics 
Interchange Format), and PNG (Potable Network Graphics). Web Map Service also produces 
maps from vector-based graphical elements using Scalable Vector Graphics (SVG).  
 
A Web Map Service provides three main services: getCapabilities, getMap and GetFeatureInfo. 
GetCapabilities and getMap are required to produce a map, and GetFeatureInfo is an optional 
metadata service. In this section, we only give information about the workflow of producing 
maps. For more details about our Web Map Service implementation, please see [39]. 
Maps are created upon a specific request (getMap) from the clients. Chained processes to 
produce maps are illustrated in Figure 7. After getting the getMap request, the Web Map Service 
goes over the flow depicted in Figure 7 and if everything succeeds, then returns the result as an 
image in a format defined in the getMap request. All the supported image formats are defined in 
Web Map Service capability document. Requests for the image formats should be made in 
accordance with the Web Map Service’s capability file. Clients should make first getCapabilities 
request to be able to set appropriate parameters for their getMap requests.  
Web Mapping Services are provided over the HTTP Get/Post and SOAP/HTTP protocol. Each 
of these access methods uses HTTP as its underlying protocol. The image is returned back to the 
Web Map Service Client as a SOAP attachment; the client invokes getMap through the Web 
Service interface. If the Web Map Service encounters any problem during handling of the 
request, it sends an exception message back to the Web Map Service Client. If the request is well 
formed, then the Web Map Service first parses the parameters and gets their values from the 
getMap. Depending on these parameters, Web Map Service might need to make some requests to 
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some other Web Map Service services.  
 
 
 

 
Figure 7 Web Map Server architecture showing basic servers and interactions to create maps 

The Web Map Service first determines what layers are requested, in which bounding box, in 
which form, and so forth. After determining all the request parameters, it makes find_service and 
getAccess_point requests to information service providers (Section 6) to determine the WFS 
providing requested feature data. These requests are done as SOAP messages to the information 
service interfaces which are implemented as Web Services. GetAccess_point returns the Web 
Service access point address of the Web Feature Service that provides the requested feature. Web 
Map Service makes getFeature request to the returned Web Feature Service and gets the 
requested feature data in GML format. The Web Map Service derives geometry elements from 
the GML file to visualize the feature data. These geometry elements in GML are Point, Polygon, 
LineString, LinearRing, MultiPoint, MultiPolygon, MultiGeometry, etc. At each step of the 
process displayed in the figure, Web Map Service modules are checked against the Web Map 
Service’s capabilities file. The capabilities file keeps information about the service metadata and 
provided layers.  

3.3. Different Approaches to Web-Based Client Architectures  
Web application client solutions can range from simple “thin client” browsers to more capable 
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“thick client” implementations that combine broad levels of data collection, manipulation, and 
presentation. In the thin client model, most of the processing is done on the server side. The 
client is responsible only for rendering the display.  All computations are performed on the 
server (typically developed with Java Servlets, PHP, or similar technologies).  Thin clients must 
go back to the server to process any user interface events (like button clicks and form 
submissions). In contrast, a thick client model assumes some non-trivial data processing on the 
client side.  These clients can validate forms and handle events without making a request back to 
the server. Thick client examples include Java applets and Java Web Start applications as well as 
JavaScript. 
We have examined map clients using both of these approaches and are currently examining a 
hybrid approach. In this way we hope to take advantage of both approaches’ advantages. In order 
to achieve this, we create a middle proxy server for the real map server. Each client makes its 
request to this middle server. The middle server must implement caching and session information 
for each connected clients. This prevents unnecessary, repeated data transfers and increases 
transaction performance. In this scenario, the workload comes from integration of images 
produced from caches and newly coming data. A drawback is the storage limit in the middle 
server keeping cached image data.  

 
Figure 8: (A) Pure AJAX Approach, (B) Web Services Approach, and (C) Hybrid (AJAX + Web Services) 
Approach 

We have investigated this hybrid approach using Asynchronous Java Script and XML (AJAX) 
[39] [40] techniques for building map clients. AJAX uses HTTP GET/POST requests (through 
JavaScript’s XMLHttpRequest) for the message transfers (see (A) in Figure 8). Web Services use 
Simple Object Access Protocol (SOAP) as a communications protocol (see (B) in Figure 8). In 
order to be able to integrate these two different message protocols, we must convert the message 
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format from one protocol to another. Since there is no ready to use common protocol to handle 
messages communications between AJAX and Web Services, we implemented a simple message 
conversion technique (see (C) in Figure 8).   This essentially works by having the 
XMLHttpRequest communicate with a servlet, which in turn acts as a client to a remote Web 
service.  This allows us to easily convert between SOAP invocations and HTTP POSTS. It also 
has the benefit of avoiding JavaScript sandbox limitations: normally the XmlHttpRequest object 
in the browser can only interact with its originating Web server.  An example result is show in 
Figure 9. 

 
Figure 9: Google Map is overlaid California Earthquake seismic data and state boundary layers from the 
Web Feature Service.  Seismic events locations (in response to calls to a Web Feature Service) are 
represented with points. 

4. Integrating Web Map Servers and Google Maps 
In the previous section, we discussed our efforts to build an Open Geospatial Consortium (OGC) 
compatible Web Map Server, as well as methods for building clients to this service.  The key 
division is between the thin client model (which requires requests for each user interaction) and 
the thick client model (which allows some processing and event handling on the client side).  
The former approach is more commonly seen with standard clients to Web Map Service systems, 
while Google Maps exemplifies the latter approach.  We discussed how we can integrate both 
techniques.  
In this section, we take a look at a slightly different problem: using Google Maps as a Web Map 
Server.  That is, instead of building Web browser interfaces with Google Map tools (like Figure 
9), we want to treat Google Maps as a Web Map Service that can be integrated with other Web 
Map Services (as shown in Figure 7). This requires reverse engineering the Google Map API.  It 
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has the advantage that it allows us to treat Google Maps as just another map server in a larger, 
integrated Geographical Information System deployment: the Google Maps themselves are 
wrapped and accessed through services rather than clients.  This is useful for non-interactive 
processing that does not involve Web Browser clients. 
Google Maps is a free web map server application and technology provided by Google at 
http://maps.google.com. It was first introduced in early 2005 and provides high resolution 
satellite images along with hybrid views that combine the illustrated map and satellite view. The 
Google Maps client has a simple interface and creates map images using a large amount of 
JavaScript. As the user drags the map, the grid squares are downloaded from the server 
performing asynchronous network requests with JavaScript and XML (i.e. AJAX). The Google 
Maps features of providing user-interactive interfaces, a map API [41] and rich map images have 
been attractive to many third party areas [42] including scientific applications. However, Google 
Maps is not Open Geospatial Consortium compliant and, to our knowledge, there are no current 
Open Geospatial Consortium standard interfaces for layering, combining, or importing and 
exporting data between Google Maps and open mapping environments. Besides publishing 
Google Maps images through Web Map Service, others have introduced adding Open Geospatial 
Consortium based Web Map Server layers to Google Map client [43]. 
In this section, we introduce a Google Maps connector which provides Open Geospatial 
Consortium standard interfaces for higher interoperability in Grid computing environment. To 
accomplish this, we first investigate Google Maps mapping procedure. This information is meant 
for the proof of concept. Some use cases that involve scraping the map images from Google’s 
servers may be against the terms of service, so it is advised that these be reviewed. For more 
information on the inner workings of Google Maps, see [44][45]. 

4.1. Map Tiles 
Google Maps are made of dozens to thousands of tile images, depending on the zoom level. 
Google Maps uses 256x256 pixel tiles for their map images. Each Google tile has corresponding 
latitude, longitude and zoom Value. These are represented by x, y, and zoom. Here is what a tile 
path from Google showing San Francisco looks like:  
http://mt.google.com/mt?v=w2.6&x=20&y=49&zoom=10     (A) 

The x and y coordinates specify the location at the given zoom level; zoom = 0 is the highest 
possible, and zoom is a logarithmic scale. The value ‘v=’ is version number and as of the date of 
this paper, it is w2.6. To get the x, y tile number, we compute the address of the tile which 
contains the given coordinates and zoom level, as well as their pixel address on the entire map. 
Next, based on the tile number and zoom level, find the minimum and maximum x, y pixel on 
the entire map. The later is used to crop part of a map image before outputting to the requestor. 
Computing zoom level will discuss later in this section. 
Processing satellite maps is totally different than Google illustrated map. The satellite map tiles 
are also encoded as 256x256 jpegs and its URL showing San Francisco is look likes: 

http://kh.google.com/kh?v=3&t=tqtsqrqt      (B) 

A satellite URL ‘v=’ parameter value is v=3 as of the date of this paper. The last parameters of 
the satellite URL is a string of letters encoding the location of a particular map square. This 
simple hierarchical structure is known as quad tree. Google labels the four quadrants q, r, s & t. 
The topmost tile contains the entire world map, and is referenced with an address of t, adding an 
s to this selects the bottom-right quadrant of the map, adding r to the top-right of that map, and 
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adding q to the top-left. This continues inside each quadrant until the maximum detail is reached. 
Since we know the x, y, zoom values of the Google Map tile, it is easy to find corresponding q, r, 
s, t based on their quad tree characteristic. The detailed conversion information between these is 
available at [46]. 
A Google Map connector provides a parameter layers to distinguish illustrated and satellite map. 
The form of the URL-encoded request showing satellite map of California with bbox values is as 
follows. 

http://GoogleMapsConnectorServer/cgi-bin/wms.cgi?layers=satellite& 
height=500&width=400&bbox=-124.85,32.26,-113.56,42.74      (C) 

The width and height values are optional. If these are omitted, a returned map image is not 
cropped or resized. 

4.2. Bounding box and zoom level 
We need at least bbox, width and height interfaces to comply with Web Map Server 
specifications. The bounding box (bbox) is a set of four comma-separated decimal, or integer 
values. When the map projection is a Platte Carre of longitude and latitude coordinates, X refers 
to the longitudinal axis and Y to the latitudinal axis. 
Based on the given bounding box value, finding the matching zoom level of the Google Map is 
necessary to compute tile coordinates. Information explaining a selection box for Google Maps is 
available at [47]. Based on this script file, an array of 18 zoom-level-area data is used to 
determine the correct zoom level of the Google Map. With given bbox values, the size of the 
(pixel) area is 

areaSize = | (maxX - minX) * (maxY - minY) |. 
When  

zoomLevelAreaData[i] < areaSize < zoomLevelAreaData[i+1], 
the corresponding index i is the zoom level. For instance, the size of the bbox of above URL-
encoded request (C) is 118.3192 and its zoom level is 11. Here is a sample of area data; 
zoomLevelAreaData = (0.000044782205316291115, 0.00017912880077214252, 
0.0007165152014842625, 0.0028660594751396392, 0.01146422704873143, 
0.04585681809304249, 0.18342716717851734, 0.7337069855714002, 
2.9348010091822907, 11.738430973389503, 46.94408531995497, 
187.64344725577126, 748.5823131256056, 2961.473356669126, 11242.849261491675, 
36095.54334444813, 86649.85238489839, 177134.48041308092) 

4.3. Implementation Details 
We have implemented Open Geospatial Consortium compliant Google Maps connector using 
XAMPP [48] to facilitate the installation of a free cross platform Web server able to serve 
dynamic pages. This software package contains Apache, MySql, PHP and Perl. To crop, resize 
and convert map images, PerlMagick is adopted. PerlMagick is a free graphics module designed 
to be used online. It is based upon the ImageMagick library and uses the module to read, 
manipulate, or write an image or image sequence from within a Perl script. This makes it very 
suitable for Web CGI scripts and can be used for the automated and interactive manipulation of 
images. 
Map tiles can be fetched with wget, or from a Perl script, etc. All accessed map tile images 
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including satellite are cached each time on the Google connector server to run to save time on 
future runs. After grabbing all corresponding tiles, combining these together is needed. There are 
script files available providing this feature on the Web [49]. Based on this, a Perl script using 
ImageMagick command has been used to gather and stitch image together. However, this script 
needs additional functions to crop and resize the map images based on the tile pixel and given 
width and height values.  
To return a map image to the requestor, it must be treated as binary mode otherwise some part of 
image is garbled. We use Perl's built-in function binmode to indicate that we are outputting 
binary data. System command call inside Perl script is not working on Windows when it is used 
as CGI in Tomcat. Therefore Fedora 4 has been used for the web server and CGI scripts.  
One must be careful when integrating maps with different projection conventions. As 
discussed at the end of previous section, NASA’s OnEarth map service is based on Plate-
Carree projection and Google Maps are based on Mercator map projection. For relatively 
small areas (a bounding box with sides of few hundred kilometers, such as is required to show 
the western coast of the United States, Figure 9), the difference is relatively small area 
comparing a whole earth, and the gap of the map layers between these two projections is 
negligible. However, transforming between those two to support general GIS application 
should be provided for the large area maps or more precise multilayer display in the future. 

5. Streaming Services for GPS and Other Data 
Recent technological developments have allowed Web-accessible sensors to be deployed in a 
large variety of environments. Environmental monitoring, air pollution and water quality 
measurements, detection of the seismic events and understanding the long-term motions of the 
Earth crust are only a few areas where the extent of the deployment of sensor networks can 
easily be seen. Extensive use of sensing devices and deployment of the networks of sensors that 
can communicate with each other to achieve a larger sensing task will fundamentally change 
information gathering and processing [50]. However, the rapid proliferation of sensors presents 
unique challenges different than the traditional computer network problems. 
Several studies have discussed the technological aspects of the challenges with the sensor 
devices, such as power consumption, wireless communication problems, autonomous operation, 
and adaptability to the environmental conditions [51][52]. Here we describe service architecture 
to support real-time information gathering and processing from GPS sensors by leveraging SOA 
principles and open GIS standards.  
Most scientific applications that couple high performance computing, simulation or visualization 
codes with databases or real-time data sources require more than remote procedure calls that 
typical Web Services rely upon. These applications are sometimes composite systems where 
some of the components require output from others and they are asynchronous: it may take hours 
or days to complete. Such properties require additional layers of control and capabilities from 
Web Services which introduces the necessity for a messaging substrate that can provide these 
extra features. In the next section we discuss the application of NaradaBrokering (a topic based 
publish-subscribe messaging system that can provide us several useful capabilities) for managing 
and serving real-time streaming data. 

5.1. Streaming Data with NaradaBrokering 
NaradaBrokering [8][9] provides two related capabilities. First, it provides a message oriented 
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middleware which facilitates communications between entities (which includes clients, 
resources, services and proxies) through the exchange of messages. Second, it provides a 
notification framework by efficiently routing messages from the originators to only the registered 
consumers of the message in question. 
NaradaBrokering facilitates the idea of loosely coupled systems by supporting asynchronous 
communication, and it can be used to support different interactions by encapsulating them in 
specialized messages called events. Events can encapsulate information pertaining to 
transactions, data interchange, method invocations, system conditions and finally the search, 
discovery and subsequent sharing of resources. 
Some of the important features of NaradaBrokering can be summarized as follows: 

• Ensures reliable delivery of events in the case of broker or client failures and prolonged 
entity disconnects. 

• Provides compressing and decompressing services to deal with events with large 
payloads. Additionally there is also a fragmentation service which fragments large file-
based payloads into smaller ones. A coalescing service then merges these fragments into 
the large file at the receiver side.  

• Provides support for multiple transport protocols such as TCP (blocking and non-
blocking), UDP, SSL, HTTP, RTP, HHMS (optimized for PDA and cell-phone access) 
and GridFTP with protocol chosen independently at each link  

• Implements high-performance protocols (message transit time of 1 to 2 ms per hop) 

• Order-preserving optimized message delivery  

• Quality of Service (QoS) and security profiles for sent and received messages 

• Interface with reliable storage for persistent events, reliable delivery via WS-Reliable 
Messaging. 

• Discovery Service to find nearest brokers /resources 
In summary, NaradaBrokering supports many-to-many messaging for distributed systems, where 
messages may range from SOAP envelopes to binary packets.  The connections between 
publishers, brokers, and subscribers are “virtualized” in that we can choose between different 
protocols for delivery and between different qualities of service (guaranteed delivery, once-only 
delivery, replayed delivery, secure delivery, and so forth).  For a general discussion of messaging 
substrates for Grids and Web Services, see [9][12]. 
In the following sections, we describe how NaradaBrokering stream management software may 
be used to deliver real-time data through successive filters to consuming applications.  We are 
developing this particularly with the goal to support on-line versions of the RDAHMM 
application [32], which may potentially be used to detect aseismic events in GPS data streams.   

5.2. Sensor Grid Components 
We now examine the components for integrating geographical sensor sources with 
NaradaBrokering.  The architecture is shown in Figure 10.  In summary, the core of the system is 
to implement filter chains that convert or otherwise process the incoming data streams.  These 
filters serve as both subscribers (data sinks) and publishers (data sources).  Topics are used to 
organize different data stream sources into hierarchies.  
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Sensor Grid Agent: This service provides interfaces for clients to access/query available data 
products. It may have both visual (maps) and textual (HTML forms) elements to help users 
construct queries. The basic idea behind this service is to simplify clients’ communication with 
the SensorGrid. A scientist may use this agent to request sensor observations for a particular 
geographical region and time. For instance by selecting a rectangular region on an interactive 
map and entering time boundaries we can construct queries such as “Get GPS measurements for 
San Diego County for September 2005”. In addition to helping users construct queries for 
archived geospatial data Sensor Grid Agent displays available real-time sensors as well.  
Information Service: Web Services are stateless; they do not keep session related information. 
We need to use additional services to provide session support. Sensor Grid architecture consists 
of multiple independent Web Services which do not keep any information about each other. The 
Information Service is used to keep several futures of the services in the system to make easy 
access to these services possible. For instance all Open Geospatial Consortium conformant data 
services provide a capabilities document (in XML) that describes the types and constraints of the 
data they can serve. Information services provide a registry through which the users can locate 
available services in the system and discover their futures. For more on our information services 
work, see Section 6.  This has GIS specific extensions appropriate for our architecture.   
Web Feature Service: WFS provides a repository for GIS archival data and is described in 
Section 2.  In addition to the streaming support described there, we are investigating using binary 
XML to provide highly efficient XML representations that should provide 
significant performance enhancements in current services.  
Sensor Collection Service: Open Geospatial Consortium Sensor Web Enablement is intended to 
be a revolutionary approach for exploiting Web-connected sensors such as flood gauges, air 
pollution monitors, satellite-borne earth imaging devices etc. The goal of SWE is to creation of 
Web-based sensor networks. That is to make all sensors and repositories of sensor data 
discoverable, accessible and where applicable controllable via the Web [54][54]. 
Sensor Collection Service [56] is a service to fetch observations from a sensor or constellation of 
sensors. Provides real time or archived observed values. Clients can also obtain information that 
describes the associated sensors and platforms. This is the intermediary between a client and a 
sensor collection management environment. We will research using publish/subscribe based 
systems for real-time data delivery using the Sensor Collection Service. 
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Figure 10  Major Components of the Sensor Grid architecture are shown: filters are used to convert data 
formats obtained from the data source (such as the Global Positioning System RTD server) and can be 
delivered to numerous clients, including data analysis applications (RDAHMM), streaming  feature 
servers, and user interfaces. Clients control subscriptions through information services. 

5.2.1. Filter Chains 
To process sensor streams in real-time we are researching use of publish/subscribe based 
messaging system. We will test deploying geo-processing applications and format converters as 
successive filters.  We can leverage NaradaBrokering topics for publishing for this purpose. 
GIS applications consume data in different formats. To support various types of geo-processing 
tools we need to provide data in different formats, for this reason we can deploy format 
converters successively on the NaradaBrokering topics. 

5.2.2. Typical Query Scenario 
The client makes a sensor observation request with some spatial and temporal constraints, i.e. 
“Get GPS positions for San Diego County for September 2005”. Depending on the nature of the 
query, the information service may take two actions. If the query is for archived sensor data then 
it requests data from the Observation Archives using WFS and returns it to the client. But if the 
client wants to access real-time data then it returns a data handler which contains the broker 
information and topic name for the sensor. Also depending on the size of the archived data, the 
Sensor Collection Service may choose one of two options for data transfer. If the result size is 
relatively small then it is returned via SOAP message, otherwise NaradaBrokering is used. The 
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Sensor Collection Service also keeps information about the sensors themselves. This information 
is encoded in SensorML [55]. After receiving the broker address and the topic name, client may 
subscribe to the NaradaBrokering server to receive real-time data. 

5.3. Real time streaming support for GPS Networks 
The Global Positioning System has been used in geodesy to identify long-term tectonic 
deformation and static displacements while Continuous GPS has proven very effective for 
measurement of the interseismic, coseismic and postseismic deformation [57]. Today networks 
of individual GPS Stations (monuments) are deployed along the active fault lines, and data from 
these are continuously being collected by several organizations. One of the first organizations to 
use GPS in detection of the seismic events and for scientific simulations is Southern California 
Integrated GPS Network (SCIGN) [58]. One of the collaborators in SCIGN is Scripps Orbit and 
Permanent Array Center (SOPAC) [59] which maintains several GPS networks and archives 
high-precision GPS data, particularly for the study of earthquake hazards, tectonic plate motion, 
crustal deformation, and meteorology. Real time sub-networks maintained by SOPAC include 
Orange County, Riverside County (Metropolitan Water District), San Diego County, and 
Parkfield. These networks provide real-time position data (less than 1 sec latency) and operate at 
high rate (1 – 2 Hz).  Raw data from the GPS stations are continuously collected by a Common 
Link proxy (RTD server) and archived in RINEX files.  
The data collected from the GPS stations are served in 3 formats: 

• RAW: For archiving and record purposes, not interesting for scientific applications, not 
available in real-time. 

• RTCM: Published real-time and no records are kept. This is useful for RTCM capable 
GPS receivers as reference. 

• Positions: Positions of the stations. Updated and presented every second. GPS Time 
Series can be produced using these positions and they can be in different epochs such as 
hourly, daily etc. 

The most interesting of these formats to our application scientist collaborators is the position 
information, which can be used in scientific calculations, simulation or visualization 
applications. The RTD server however outputs the position messages in a binary format called 
RYO. More importantly, RTD signals include all GPS stations (typically 5-15) in a particular 
network.   
To receive station positions, clients open a socket connection to the RTD server. An obvious 
downside of this approach is the extensive load this might introduce to the server when multiple 
clients are connected, so the many-to-many publishing style discussed above also address this 
problem. 
After the RTD server receives raw data from the stations it applies some filters and for each 
network generates a message. This message contains a collection of position information for 
every individual station from which the position data has been collected in that particular instant. 
In addition to the position information there are other measurements in a message such as quality 
of the measurement, variances, etc.  

5.3.1. Chain of Filters 
We have developed several filters to decode and present the original RYO data in different 
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formats. Once we receive the original binary data we immediately publish this to a 
NaradaBrokering topic (null filter), another filter that converts the binary message to ASCII 
subscribes to this topic and publishes the output message to another topic. We have developed a 
GML schema to describe the GPS position messages. Another filter application subscribes to 
ASCII message topic and publishes GML representation of the position messages to a different 
topic. This approach allows us to keep the original data intact and different formats of the 
messages accessible by multiple clients in a streaming fashion. 
Decoding RYO Messages 
RYO Message Type 1 (Figure 11) starts with a 5-byte Header which is followed by a 47-byte 
GPS Position message. Three types of optional blocks may follow the Position Message and a 2-
byte checksum is located at the end of the message. 

 
Figure 11 RYO Type 1 Message Parts 

A non-blocking Java Socket connection is opened to RTP server to collect RYO messages. We 
use thread programming techniques for this purpose. We have developed an RYO Decoder 
application which uses binary conversion tools to convert RYO messages into text messages.  
Furthermore, since we do not expect clients to know about the GPS time format we convert 
GPSWeek and GPSmsOfWeek values to Gregorian calendar format (i.e. 2005-19-
07/04:19:44PM-EST). Additionally since we anticipate some clients to expect position 
information in terms of Latitude and Longitude, we calculate Latitude, Longitude and Height 
values from XYZT Position. 

5.3.2. GML Schema for Position Messages and Data Binding  
We developed a GML conformant Schema to describe Position Messages. The Schema is based 
on RichObservation type which is an extended version of GML3 Observation model [60].  This 
model supports Observation Array and Observation Collection types useful in describing 
SOPAC Position messages since they are collections of multiple individual station positions. We 
follow strong naming conventions for naming the elements to make the Schema more 
understandable to the clients.  
We used Apache XML Beans for data binding purposes and created an application that reads 
ASCII position messages and generate GML instances using the code generated by XML Beans. 
SOPAC GML Schema and sample instances are available here: 
http://www.crisisgrid.org/schemas.  We give a sample XML instance created according to the 
above schema from GPS station measurements in Appendix 10.1. 
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5.3.3. Integrating NaradaBrokering 
We use NaradaBrokering to provide real-time access to data in various formats, as described 
above. We have developed filters to publish RYO, ASCII and GML formatted position messages 
to different NaradaBrokering topics. Clients can subscribe to any of these topics to receive 
position messages in that particular format. Figure 12 depicts use of NaradaBrokering Topics in 
the system and provides a zoomed-in view of Figure 10. 
 

 
Figure 12 SOPAC GPS Services 

5.3.4. GPS Station Messages and Filters 
As discussed above, station messages collected from GPS stations have several sub-sections. We 
have developed several filters that simplify or convert the messages since not all the parts of a 
position message are needed by most clients. We describe such a client that displays real-time 
station positions on Google Maps in the next section. Here we give sample output messages from 
different filters: 
The first filter in our architecture is a null filter which forwards original RYO binary messages 
from RTD server to a NaradaBrokering topic. The output of this filter is a binary message. 
The second filter is called ryo2ascii which converts RYO messages to ASCII and publishes to a 
NB topic. An example of the decoded RYO message is shown in Appendix 10.2. The ryo2ascii 
filter converts the whole RYO message and does not filter out anything.  
Most of the information included in a position message is unnecessary for many clients, so we 
can apply further filtering. For instance we have developed a user interface to display the current 
positions of the stations on a map. For this particular application we only need station names and 
their positions in terms of latitude and longitude. For this client interface we have developed 
ryo2pos filter which converts RYO messages to simple position messages. Following is a sample 
output message from ryo2pos filter: 

LEMA 2005-12-12 03:58:37PM-EST 36.29202028791537 
-119.78237425030088 35.90217063464758 

 
Here we only include Station name, date-time and latitude, longitude and height values in the 
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message. This small application is an example of how individual filters can be chained using 
NaradaBrokering to achieve specific tasks. Another example application integrated using this 
approach is RDAHMM which only requires X, Y, Z or Lat, Lon Height values for a given 
station. We can easily write a filter to strip unwanted parts from the message and output only the 
position information. 

5.3.5. Current System Configuration 
Currently the system is being tested for eight GPS networks with only one NaradaBrokering 
server installed on xsopac.ucsd.edu:3045. However we are planning to deploy multiple, 
distributed brokers for further performance tests. Table 4 shows the latest information about 
these networks.  PARKFIELD is an archived network’s data stream that includes a recent 
earthquake event on the Parkfield fault. 

Table 4 Sensor Grid’s supported GPS networks. 

Network 
Name 

RTD Server 
Address 

Stations 

LACRTN 132.239.154.69:5014 VTIS,  HBCO,  CVHS,  LORS,  TABL, UCSB, 
AZU1, CSDH, DYHS, VDCY, UCLP, CIT1, LAPC 

PARKFIELD n/a HOGS, POMM, MIDA, CRBT, CARH, LAND, 
MNMC, LOWS, RNCH, CAND, MASW, TBLP, 
HUNT 

OCRTN 132.239.154.69:5010 OEOC, CAT2, WHYT, TRAK, SACY, MJPK, 
SCMS, SBCC, FVPK, BLSA 

SDCRTN 132.239.154.69:5013 P486, MONP, RAAP, MVFD, P472, SIO5,  
DVLW, PMOB, P480, DSME, OGHS 

IMPERIAL 132.239.154.69:5012 SLMS, CRRS, USGC, DHLG, GLRS 
 

DVLRTN 132.239.152.72:8001 DVLE, DVNE, DVSW, DVSE, ESRW, DVLS,  
DVNW, ESE2 

CVSRN 132.239.154.69:5015 COMA, RBRU, LEMA 
 

RCRTN 132.239.154.69:5011 PIN2, WIDC, KYVW, PSAP, COTD, PIN1,  
MLFP, CNPP, BILL, EWPP, AZRY 

  
Table 5 shows the NaradaBrokering topic names for several filters. 

Table 5 GPS station topics for RYO and ASCII formats. 

Network Name RYO Topic 
(null filter Publishes to) 

ASCII topic 
(ryo2ascii filter Publishes to) 

LACRTN /SOPAC/GPS/LACRTN/RYO /SOPAC/GPS/LACRTN/ASCII 
PARKFIELD /SOPAC/GPS/PARKFIELD/RYO /SOPAC/GPS/PARKFIELD/ASCII
OCRTN /SOPAC/GPS/OCRTN/RYO /SOPAC/GPS/OCRTN/ASCII 
SDCRTN /SOPAC/GPS/SDCRTN/RYO /SOPAC/GPS/SDCRTN/ASCII 
IMPERIAL /SOPAC/GPS/IMPERIAL/RYO /SOPAC/GPS/IMPERIAL/ASCII 
DVLRTN /SOPAC/GPS/DVLRTN/RYO /SOPAC/GPS/DVLRTN/ASCII 
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CVSRN /SOPAC/GPS/CVSRN/RYO /SOPAC/GPS/CVSRN/ASCII 
RCRTN /SOPAC/GPS/RCRTN/RYO /SOPAC/GPS/RCRTN/ASCII 

 
Similarly the ryo2pos filter subscribes to the appropriate RYO topic and publishes to for instance 
/SOPAC/GPS/LACRTN/POS topic. 

5.4. Displaying GPS Station Positions Using AJAX Methods 
To demonstrate the technologies discussed earlier we have developed several JSP based client 
interfaces leveraging AJAX techniques. The user interfaces we discuss here demonstrate use of a 
topic based publish-subscribe messaging for managing and serving real-time data coupled with 
several real-time data filters. 
AJAX or Asynchronous JavaScript and XML is a relatively new web development technique for 
creating highly interactive web interfaces. AJAX is not a technology by itself rather a name for 
using a collection of several well-known technologies together. It employs XHTML or HTML, 
JavaScript, DOM and XMLHttpRequest. XMLHttpRequest is originally developed by Microsoft 
and available since Internet Explorer 5.0. It is supported today by most major browsers. This 
object is used to exchange data with the server asynchronously.  
For this architecture we use an online XML document (an RSS-like feed) provided by SOPAC to 
retrieve up-to-date list of available GPS stations [61]. This data is obtained from other filter we 
developed in collaboration with Scripps.  This document contains several properties of each GPS 
station:  

<station> 
   <network> 
    <name>LACRTN</name> 
    <ip>132.239.154.69</ip> 
    <port>5014</port> 
  </network> 
  <id>vtis</id> 
  <longitude>-118.294</longitude> 
  <latitude>33.713</latitude> 
  <status>up</status> 
</station> 
 

This format is much more simplistic than the GML encoding discussed earlier, but it may be 
easily integrated with the JavaScript DOM parser used in AJAX. Figure 13 shows all of the GPS 
stations managed by SOPAC. The GPS networks are color-coded.  
Our user interfaces first retrieves the XML document from SOPAC and creates a form table for 
the user to select a network.  Once the user selects a network and clicks the Submit button a 
server side Java Bean subscribes to the appropriate NaradaBrokering topic and starts receiving 
position messages at the same time user is forwarded to the second JSP page which contains a 
Google Map. Figure 14 depicts the use of AJAX techniques to update station positions on the 
map and display the actual real-time latitude-longitude values. GPS stations which did not 
publish a position message in the previous epoch are represented with red markers while online 
stations are green. 
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Figure 13 SOPAC GPS networks in Southern California 

 
Figure 14  Status and positions of GPS stations data streams are displayed using Google mapping 
techniques. 
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5.5. Conclusion and Future Work 
The work described in this section will form the foundation of many future applications.  The 
simplest of these (shown in Figure 14) is useful as a heartbeat monitor for GPS networks.  
However, this is primarily a proof of concept and verification that the fundamental system 
described above is operational.  We are currently integrating individual GPS network station 
feeds with the aforementioned RDAHMM event-detection code (itself wrapped as another filter).  
Our hope is to be able to use RDAHMM for the near real-time detection of GPS signal changes 
near earthquake faults. 

6. Information Services to Support Geographical Information System 
Grids 

Geographical Information System-based Grid applications introduce a large amount of services 
managed by different organizations or individuals to let users acquire, process and share 
geospatial-data, resources and geo-processing applications.  
As Web Service Architecture principles [31] have gained importance, an emerging need has 
appeared for methodologies to locate desired services that provide access and data mining 
capabilities to geospatial data. Also, as these services interact with each other within a workflow 
session to produce a common functionality such as earthquake forecasting [32], another 
emerging need has also appeared for storing/querying transitory metadata needed to describe 
session state information.  
In service-oriented Grids, Information Services support the discovery and handling of both static 
and session-related, transitory metadata associated to services. Here, we discuss the limitations in 
existing Information Services and introduce a novel system as a solution. We design a hybrid 
Information Service supporting both large amounts of relatively slowly varying data and rapidly 
updated, dynamically generated information. To do this we use and extend the following two 
Web Service standards: Universal Description, Discovery, and Integration (UDDI) and Web 
Services Context (WS-Context) in our design. 
We utilize existing UDDI Specifications [62] and design an extension to UDDI Data Structure 
and UDDI XML API to be able to associate both prescriptive and descriptive metadata with 
service entries.  There have been some solutions introduced to provide better retrieval 
mechanism by extending existing UDDI Specifications. UDDIe [63] project introduces the idea 
of associating metadata and lifetime with UDDI Registry service descriptions where retrieval 
relies on the matches of attribute name-value pairs between service description and service 
requests. UDDI-MT [64] improves the metadata representation from attribute name-value pairs 
into RDF triples. A similar approach to leverage UDDI Specifications was introduced by 
METEOR-S [65] project which identifies different semantics when describing a service, such as 
data, functional, quality of service and executions. In our design, we also extend the UDDI 
Information Model, by providing an extension where we associate metadata with service 
descriptions similar to existing solutions where we use name-value pairs to describe 
characteristics of services. Apart from the existing methodologies, we provide both general and 
domain-specific query capabilities. An example for domain-specific query capability could be 
XPATH queries on the auxiliary and domain-specific metadata files stored in the UDDI 
Registry. 
The main intended use of our approach is to support information in dynamically assembled 
workflow-style Grid applications where services are tied together in a dynamic workflow to 
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solve a particular problem. Our particular approach to service orchestration is described in 
Section 7. There are varying specifications, such as WSRF, WS-Context, WS-Transfer, and WS-
Metadata Exchange, introduced to define stateful interactions among services. Among them, we 
choose WS-Context Specifications [66] to create a metadata catalog system for storing transitory 
metadata needed to describe distributed session state information. Unlike the other specifications 
defining service communications, WS-Context models session metadata repository as an external 
entity where more than two services can easily access/store highly dynamic metadata.  
We highlight the following problems in Information Services supporting Grid Applications. 
First, classic Grid Information Services are not built along a model that can support dynamically 
assembled services. Second, existing solutions to Information Services, i.e., data-hosting 
systems, focus on storing information on pre-defined locations and ignore changing user 
demands when making decisions on metadata access and storage. Third, classic Grid Information 
Services do not provide a uniform programming interface for publishing and discovery of both 
dynamically generated and static information.  
We therefore see this as an important area of investigation. Here, we research/investigate a novel 
architecture for fault tolerant and high performance Information Services, maintaining dynamic 
session-related metadata of widely distributed services and providing uniform interface to both 
interaction-independent and session-related context. 

6.1. An Integrated Information System Architecture 
We designed and built a novel architecture [67] for a WS-Context complaint metadata catalog 
service supporting distributed or central paradigms. The main intended use of our approach is to 
support information in dynamically assembled Grids where services are tied together in a 
dynamic workflow to solve a particular problem. Also, the intended scale for our design is in the 
order of thousand entities that are participating in a workflow session.  
We based the programming interface of our system on two widely used specifications: WS-
Context and Universal Description, Discovery and Integration (UDDI). We extend both 
specifications to provide advanced capabilities to support handling and discovery of not only 
quasi-static, stateless metadata, but also session related metadata.  Our approach is to utilize the 
existing state-of-art systems for handling and discovering static metadata and address the 
problems of distributed management of dynamic metadata.  
Our architecture consists of various modules such as Query and Publishing, Expeditor, Access, 
Storage and Sequencer Modules. The Context Query and Publishing Modules receive/process 
client requests through a uniform Web Service interface for publishing/discovering dynamic and 
static metadata. The Expediter Module is a generalized caching mechanism. One consults the 
expediter to find how to get (or set) information about a dataset in an optimal fashion. The 
Access Module supports request distributions by publishing messages to topics in a topic-based 
publish-subscribe based brokering network. It locates the nodes that are closest in terms of 
network distance with lowest load balance from the node requesting access to the communal 
node in question. The Storage Module runs storage algorithm which decides whether a metadata 
is to be replicated. If the metadata is decided to be replicated, then Storage module advertise this 
replication by multicasting it to available peers through publish/subscribe mechanism. The 
Sequencer Module ensures that an order is imposed on actions/events that take place in a session. 
The Sequencer Module interacts with Storage Module and labels each metadata which will be 
replicated in this replicated metadata hosting environment. For further detail reading on design 
details and architecture of Information Services, we refer the reader to [67]. 
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6.2. Implementation of UDDI and WS-Context complaint XML 
Metadata Services 

We implemented a centralized version of Information Services handling discovery of both static 
and dynamic, session related metadata. We use/extend both UDDI and WS-Context 
specifications in our design.  
The Information Service applies following programming logic to serve client requests, upon 
receiving querying/publishing metadata requests. First, the system separates dynamic and static 
portions of the metadata. Here, static metadata could be throughput or location of a service 
whereas dynamic metadata could be session identifier pointing to a workflow session in which 
the service is participating. Second, the system delegates the task of handling and discovery of 
static portion of the metadata to one of the existing state-of-art technologies handling with static 
metadata such as UDDI, a widely accepted and WS-I compatible standard. As for the UDDI 
Service, we use our own implementation of Extended UDDI XML Metadata Service. We refer 
the reader [67]. Third, the system itself provides handling and discovery of dynamic metadata, 
using session-related portions of the metadata query. 
Here, session related metadata is short-lived and dependent on the client. The Information 
Service keeps track of context information shared between multiple participants in Web Service 
interactions.  The context here has information such as unique ID and shared data. It allows a 
collection of action to take place for a common outcome.  
Each session is started by the coordinator of an activity. The coordinator service publishes the 
session metadata to Information Service and gets a unique identifier in return. The uniqueness of 
the session-id is ensured by the Information Service. Sessions can obviously be composed from 
other “sub” sessions hierarchically. Here, each session is associated with the participant services 
of that session. Dynamic session information, i.e. context, travels within the SOAP header blocks 
among the participant entities within the same activity. In order to correlate (collective) work 
participants may propagate more contexts using the same session-id created by the coordinator.  
Upon receiving the system response to a request for session creation, the user can store the 
context associated to the unique session identifier assigned by the Information Service.  This 
enables the Information Service to be queried for contexts associated to a session under 
consideration.  Each context is stored with a lifetime as the Information Service is being used as 
third-party repository for dynamic information.  

6.3. Example Usage 
In order to present the applicability of our system, we outline the following example usage 
scenarios. The first example use domain is the Pattern Informatics GIS Grid. This example 
illustrates a workflow based GIS Grid Application where session metadata needs to be managed 
to enable services to better interact with each other for common outcome. The second usage is as 
a persistent metadata storage repository for user interactions with a computational Web portal.  
The user’s interactions with the browser interface must be stored for later retrieval and can be 
used to establish the provenance of certain results. The third usage domain is the Hand-Held 
Message Service and Handheld Flexible Representation Project [24]. This project investigates a 
fast Web Service communication model in collaborative mobile computing environment.  
In the first example usage domain, Information Services are used for storing transitory metadata 
needed to describe distributed session state information. In the current test system, it is used to 
store information needed by a workflow engine (HPSearch) to orchestrate system interactions.  
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Also, geospatial data sources are available online through GIS enabled data services (WFS). 
These data services provide different data and data formats with varying spatial coverage. Here, 
Information Services provide domain specific metadata catalog for GIS domain and enable users 
to pose queries to locate GIS data.   
In the second example application, Information Services are used as a lightweight, Web Services 
based archival data store.  Typical Grid portal project such as our SERVO Project provide a 
computational Grid environment where users may upload input data to execute scientific 
applications on remote computers. The input data is usually given trough input form pages which 
are tedious to fill out and it is more likely that uses will have minor changes on the input 
parameters to a particular job and resubmit it later. The input data can be preserved as serialized 
Java Bean Objects to be reused later in user-system interaction. Here, each Java Bean Object is 
simply being stored as “context”, i.e., metadata associated with a session into WS-Context 
Information Service. Contexts may be arranged in parent-child relationships. When storing a 
context, we first create a session in the WS-Context Information Service. Here, a session can be 
considered an information holder; in other words, it is a directory where contexts with similar 
properties are stored. Similar to an access control list in a UNIX file system, each session 
directory may have associated metadata, called “session directory metadata.” Session directory 
metadata describes the child and parent nodes of a session. This enables the system to track the 
associations between sessions. One can create a hierarchical session tree where each branch can 
be used as an information holder for contexts with similar characteristics. This enables the WS-
Context compliant Information Service to be queried for contexts associated to a session under 
consideration.  Each context is stored with unlimited lifetime as the Context Store is being used 
as an archival data store.   
The third example use scenario is fast Web Service communication model in mobile 
communication environment. These techniques may also potentially be used in improving the 
performance of more traditional Web Services. In this scenario, a user has a PDA, which is 
running a video conferencing application packaged as a “lightweight” Web Service. Such service 
could be a conferencing, streaming, or instant messaging service. Here, the Information Service 
is being used as a third party transitory metadata store, to store/maintain redundant parts of the 
SOAP messages which are being exchanged between the mobile service and its clients. This 
way, the size of SOAP messages is being minimized to make the service communication much 
faster. The redundant parts of a SOAP message can be considered as XML elements which are 
encoded in every SOAP message exchanged among two services. These XML elements are 
stored as “context”, i.e. metadata associated to a conversation”, into WS-Context store. Each 
context is referred with a system defined URI where the uniqueness of the URI is ensured by the 
Information Service. The corresponding URI replaces the redundant XML elements in the SOAP 
messages which in turn reduce the size of the message for faster message transfer. Upon 
receiving the SOAP message, the corresponding parties in service conversation  interact with 
WS-Context compliant Information Service to retrieve the context associated with the URIs 
listed in the SOAP message.  

7. Managing and Scripting Web Services: HPSearch 

7.1. Introduction 
As we discussed in the previous section and the introduction, Web Services provide atomic 
functionality for distributed systems, but to integrate a collection of such services into a Grid, we 
need to address problems of interaction, information, and orchestration.  Recently, the Web 
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Service community has developed different languages to address the question of invoking 
multiple related Web Services, collectively termed as workflow. Various languages such as 
BPEL [68] and tools such as Triana [69] and Kepler [70] have demonstrated success in 
connecting disparate services together. Data transfer between services is typically handled by 
transferring files using tools such as GridAnt [71].  
A growing number of applications involve real-time streams of information that need to be 
transported in a dynamic, high-performance, reliable and secure fashion. Critical infrastructure 
applications also mandate real-time processing of data and visualization of results. [Section 5.3] 
is an example of application that uses real-time inputs from distributed sensors. Assuming that 
the sources, sinks and data processing elements for these data streams are Web or Grid Services, 
we need to transparently manage shipping of data in a streaming fashion through a chain of these 
services. This would enable existing data processing applications to be utilized as Web Services 
possibly with minor modifications. 
HPSearch [72] primarily addresses this requirement of data stream management. HPSearch has 
been used to demonstrate [73] the use of this system for processing real-time data for critical 
infrastructure applications. HPSearch also enables connecting disparate services for data analysis 
in real-time. In the sections to follow we show how HPSearch uses a scalable, fault-tolerant 
middleware, NaradaBrokering, to construct Web Services that can process data in streaming 
fashion. 
As mentioned earlier, HPSearch uses NaradaBrokering to route data in streams. However, to 
setup the distributed application, one needs to setup and deploy a broker network topology. 
Typical characteristics of this network topology is providing alternate connection points, 
multiple interconnect routes and failure detection. To help manage these characteristics, 
HPSearch provides management tools for deploying and managing the broker network at 
runtime. Further to access various services in the routing substrate such as replay of events, 
special configuration might be necessary.  
Thus, HPSearch provides dual functionality:  1) it provides a high-level language suitable for 
application developers to program workflows in a Grid that utilizes the messaging middleware, 
and 2) it provides tools to manage the messaging middleware. 

7.2. Architecture 
HPSearch uses a scripting based architecture to provide management console functionality. The 
basic HPSearch architecture is shown in Figure 15. 
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Figure 15 HPSearch architecture consists of a shell for creating workflow scripts, a workflow 
engine(WFE) that processes the scripts, and Web Service proxy wrappers that provide NaradaBrokering 
ports as well as more traditional HTTP ports .  See text for a full description of the system components. 

The HPSearch kernel consists of a Mozilla Rhino [74] Javascript based console application along 
with a FlowHandler and Work Flow Engine (WFE) component and other system objects. These 
system objects are bound to the scripting language to provide specific functionality. This 
includes objects to manage the brokering network, setup distributed workflows and other tasks 
such as reading / writing to a context service [67]. 
The workflow engine component of the HPSearch kernel is responsible for managing the flow. 
Multiple workflow engines may exist to control multiple flows and for load balancing purposes. 
These engines communicate through the brokering network using a set of predefined messages. 
This communication is represented by black double-headed arrows. The HPSearch suite also 
contains a special wrapper proxy service called WSProxy for enabling streaming data 
processing. The WSProxy exports a Web Service interface and handles all data communication 
(shown by green double headed arrows) on behalf of the wrapped service. Instantiation of such a 
service and its operation (shown by the thick dashed line) can be done by sending simple SOAP 
requests.  
WSProxy [Figure 16] encapsulates a service using two interfaces (Runnable and Wrapped). 
Runnable is suited to quickly creating data filtering applications and provide more control on the 
life-cycle operations of the service. Wrapped provides less control on the lifecycle of the service 
but allows us to wrap an existing code for creating a pluggable component and exposing it as a 
Web Service. A wrapped service provides best results if the service being wrapped reads data 
from STDIN and writes data to STDOUT. 
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Figure 16 WSProxy wraps Web services and provides additional communication ports.  See text for a full 
description. 

We can compose a distributed data-flow by joining multiple WSProxy wrapped services and 
setting the correct input and output streams. The brokering network is used to handle the data 
communication between the services. 

7.3. Geophysical Application Example: Pattern Informatics 
Pattern Informatics [32] tries to discover patterns given past data to predict probability of future 
events. The process of analysis involves data mining which is made using results obtained from a 
Web Feature Service. The Web Map Service is responsible for collecting parameters for 
invoking the PI code. These parameters are then sent to an HPSearch engine which invokes the 
various services to start the flow. The process is diagrammatically illustrated in Figure 17.  The 
Code Runner Service is a sample wrapper service that invokes the Pattern Informatics 
application. 
As shown in the figure, the Web Map Service submits a flow for execution by invoking the 
HPSearch Web Service.  
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Figure 17 A general GIS Grid orchestration scenario involves the coordination of GIS services, data 
filters, and code execution services.  These are coordinated by HPSearch. 

Figure 17’s steps are summarized below.  This is the basic scenario that we use for integrating 
Pattern Informatics, RDAHMM, and other applications. 

0. WFS and WMS publish their WSDL URLs to the UDDI Registry.  
1. User starts the WMS Client on a web browser; the WMS Client displays the available 

features. User submits a request to the WMS Server by selecting desired features and an 
area on the map.  

2. WMS Server dynamically discovers available WFSs that provide requested features 
through UDDI Registry and obtains their physical locations (WSDL address).  

3. WMS Server forwards user's request to the WFS.  
4. WFS decodes the request, queries the database for the features and receives the response.  
5. WFS creates a GML FeatureCollection document from the database response and 

publishes this document to a specific NaradaBrokering topic.  
6. WMS receives the streaming feature data through NaradaBrokering's agreed upon topic.  

WMS Server creates a map overlay from the received GML document and sends it to 
WMS Client which in turn displays it to the user.  

7. The WMS submits a flow for execution by invoking the HPSearch Web Service. This 
request also includes all parameters required for execution of the script. The HPSearch 
system works in tandem with a context service for communicating with the WMS.  
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8. Initially, the context corresponding to the script execution is marked as "Executing". 
9. Once submitted, the HPSearch engine invokes and initializes (a) the various services, 

namely the Data Filter service, that filters incoming data and reformats it to the proper 
input format as required by the data analysis code, and the Code Runner service that 
actually runs the analysis program on the mined data. After these services are ready, the 
HPSearch engine then proceeds to execute (b) the WFS Web Service with the appropriate 
GML (Geographical Markup Language) query as input.  

10. The WFS then outputs the result of the query onto a predefined topic. This stream of data 
is filtered as it passes through the Data Filter service and the result is accumulated by the 
code runner service.  

11. The code runner service then executes the analysis code on the data and the resulting 
output can either be streamed onto a topic, or stored on a publicly accessible Web server. 
The URL of the output is then written to the context service by HPSearch. 

12. The WMS constantly polls the context service to see if the execution has finished.  
13. The execution completes and the context is updated.  
14. The WMS downloads the result file from the web server and displays the output. 

7.4. Future Work 
We are currently working on making management standards compliant and global. Web Services 
community has recently introduced two competing management specifications, namely WS-
Management and WS-Distributed Management. We are currently investigating, making 
management compatible with these standards. Further management is restricted by presence of 
firewalls and Network Address Translation (NAT) routers. We are also investigating how we 
management can span these restrictions and can be made more administratively scalable. 

8. Summary and Conclusion: Abstracting GIS for General Information 
Grid Systems 

We have described in this text various approaches that we have taken to integrate Geographical 
Information System components into Web Service-based Grids using the WS-I+ approach.  The 
implementations of basic data services for both real time and archival data were discussed, as 
were techniques for generating human-comprehensible maps that represent the data.  These 
services are bound into Grids using information services and workflow orchestration techniques.  
We illustrated the integration of geophysical applications together with all of these tools.  
We believe that the approach we have adopted can be extended to other domains besides 
Geographic Information Systems, particularly if they involve Web-enabled sensors, instruments, 
and similar data sources.   In future work we hope to be able to develop abstractions equivalent 
to GIS systems to support specific research projects in chemical informatics and audio-video 
service Grids, and in the longer term determine abstractions of these systems.  
As stressed by Birman [75], Web Services provide key low level capability but deliberately do 
not define an information or data architecture.  This is left to domain specific specification 
activities such as CellML/SBML for biology, ChemistryML for chemistry and chemical 
informatics, and Web Map Services/Web Feature Services/GML for Geographical Information 
Systems. This extensibility is one of the strengths of the Web Service approach for those willing 
to build upon it. 
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The Open Geospatial Consortium defines a data language (GML) and ways to store, access, 
query, manipulate and display geographical features. In a service-oriented architecture, this 
corresponds to a domain specific XML language and a suite of services for the needed functions. 
We suggest that one can define a GIS-style information model in many application areas. This 
leads to concepts like Biological Information Systems (BIS); Service Infrastructure Information 
System (SIIS) for the overall system; and one should also add concepts like the Physics Analysis 
Information Systems (PAIS).  
In each application, there are some services such as discovery and notification that do not need to 
be made application specific. Other domain-specific services must be derived from general 
abstractions. We will need the domain-specific equivalent of the Web Feature Service for 
metadata and data. We call this generalization the Application Specific Feature Service (ASFS). 
We also need to define the generalization of the GML, which is a language expressing the 
domain specific features. We call this the Application Specific Language, or ASL. One would 
need a set of basic tools, Application Specific Tools and Transformations (ASTT), to manipulate 
information expressed in language and key data of the application.  Coordinate transformations 
in geographic applications would be one domain-specific example.   
Continuing the analogy, we may introduce Application Specific Visualization Services (ASVS) 
generalizing the Web Map Service to both visualize information and provide a way of navigating 
ASFS compatible databases (cf. GetFeatureInfo for GIS). The ASVS can itself be federated and 
presents an ASFS output interface.  
On the other hand, we believe that information systems, workflow tools, and distributed 
management tools are already at or near the correct level of abstraction: application specific 
versions of information systems can already be derived from more general standards (like 
UDDI), so one should consider these preferable to domain specific tools in the long run.  
This work is supported by the NASA Advanced Information Systems Technology program.  We 
thank Dr. Yehuda Bock and Michael Scharber at SOPAC for help developing and deploying GPS 
sensor grid services. 



 38

9. References 

[1] The Grid 2: Blueprint for a new Computing Infrastructure, edited by Ian Foster and Carl 
Kesselman, Morgan Kaufmann 2004. 

[2] I. Foster, Globus Toolkit Version 4: Software for Service-Oriented Systems. IFIP 
International Conference on Network and Parallel Computing, Springer-Verlag LNCS 
3779, pp 2-13, 2005. 

[3] Grid Computing: Making the Global Infrastructure a Reality edited by Fran Berman, 
Geoffrey Fox and Tony Hey, John Wiley & Sons, Chichester, England, ISBN 0-470-
85319-0, March 2003. http://www.grid2002.org.  

[4] Malcolm Atkinson, David DeRoure, Alistair Dunlop, Geoffrey Fox, Peter Henderson, 
Tony Hey, Norman Paton, Steven Newhouse, Savas Parastatidis, Anne Trefethen and 
Paul Watson.Web Service Grids: An Evolutionary Approach UK e-Science Technical 
Report July 13 2004 published in a special issue of Concurrency&Computation: 
Practice&Experience 17, 377-389, 2005. 

[5] The Data Grid: Towards an Architecture for the Distributed Management and Analysis 
of Large Scientific Datasets.  A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, S. 
Tuecke. Journal of Network and Computer Applications, 23:187-200, 2001 (based on 
conference publication from Proceedings of NetStore Conference 1999). 

[6] Wide Area Data Replication for Scientific Collaborations. A. Chervenak, R. Schuler, C. 
Kesselman, S. Koranda, B. Moe. Proceedings of 6th IEEE/ACM International Workshop 
on Grid Computing (Grid2005), November 2005.   

[7] Data Management and Transfer in High Performance Computational Grid Environments. 
B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster, C. Kesselman, S. Meder, 
V. Nefedova, D. Quesnal, S. Tuecke. Parallel Computing Journal, Vol. 28 (5), May 
2002, pp. 749-771. 

[8] Shrideep Pallickara, Geoffrey Fox: NaradaBrokering: A Distributed Middleware 
Framework and Architecture for Enabling Durable Peer-to-Peer Grids. Middleware 
2003: 41-61. 

[9] Geoffrey Fox, Shrideep Pallickara, Marlon Pierce, Harshawardhan Gadgil, Building 
Messaging Substrates for Web and Grid Applications to be published in special Issue on 
Scientific Applications of Grid Computing in Philosophical Transactions of the Royal 
Society of London 2005 http://grids.ucs.indiana.edu/ptliupages/publications/RS-CGL-
ColorOnlineSubmission-Dec2004.pdf   

[10] Shrideep Pallickara, Geoffrey Fox, Sangmi Lee Pallickara: An Analysis of Reliable 
Delivery Specifications for Web Services. ITCC (1) 2005: 360-365. 

[11] Shrideep Pallickara, Geoffrey Fox: An Analysis of Notification Related Specifications 
for Web/Grid Applications. ITCC (2) 2005: 762-763. 



 39

[12] Geoffrey Fox, Sang Lim, Shrideep Pallickara, Marlon Pierce: Message-based cellular 
peer-to-peer grids: foundations for secure federation and autonomic services. Future 
Generation Comp. Syst. 21(3): 401-415 (2005). 

[13] Geoffrey Fox, Alex Ho, Shrideep Pallickara, Marlon Pierce, Wenjun Wu: Grids for the 
GiG and Real Time Simulations. DS-RT 2005: 129-138 28 

[14] Geoffrey Fox, Galip Aydin, Harshawardhan Gadgil, Shrideep Pallickara, Marlon Pierce, 
Wenjun Wu: Management of Real-Time Streaming Data Grid Services. GCC 2005: 3-12 

[15] Hasan Bulut, Wenjun Wu, Geoffrey Fox, Ahmet Uyar, Shrideep Pallickara, Harun Altay: 
A Web Services Based Streaming Gateway for Heterogeneous A/V Collaboration. 
International Conference on Internet Computing 2004: 493-502. 

[16] Geoffrey Fox, Wenjun Wu, Ahmet Uyar, Hasan Bulut, Shrideep Pallickara: Global 
multimedia collaboration system. Concurrency - Practice and Experience 16(5): 441-447 
(2004) 

[17] Galip Aydin, Mehmet S. Aktas, Geoffrey C. Fox, Harshawardhan Gadgil, Marlon Pierce, 
Ahmet Sayar SERVOGrid Complexity Computational Environments (CCE) Integrated 
Performance Analysis Proceedings of Grid Computing Conference, 2005. The 6th 
IEEE/ACM International Workshop 13-14 Nov. 2005. Page(s): 256 - 261 DOI  

[18]  C. Jin, D. X. Wei, S. H. Low, G. Buhrmaster, J. Bunn, D. H. Choe, R. L. A. Cottrell, J. 
C. Doyle, W. Feng, O. Martin, H. Newman, F. Paganini, S. Ravot, S. Singh, "FAST 
TCP: From Theory to Experiments", IEEE Network, 19(1):4-11, January/February 2005. 

[19]  Harvey B. Newman, I. C. Legrand, Philippe Galvez, R. Voicu, C. Cirstoiu: MonALISA 
: A Distributed Monitoring Service Architecture CoRR cs.DC/0306096: (2003).  

[20]  The Virtual Data Toolkit Web Site: http://vdt.cs.wisc.edu/index.html. 

[21] Chiu, K., Govindaraju, M., and Bramley, R.: Investigating the Limits of SOAP Perform-
ance for Scientific Computing, Proc. of 11th IEEE International Symposium on High 
Per-formance Distributed Computing HPDC-11 (2002) 256. 

[22] R. Berjon, chair, “XML Binary Characterization Working Group Public Page.”  
Available from http://www.w3c.org/XML/Binary/ 

[23] Paul Sandoz, Alessando Triglia, and Santiago Pericas-Geertsen, “Fast Infoset.”  
Available from http://java.sun.com/developer/technicalArticles/xml/fastinfoset/. 

[24] Oh, S., Bulut, H., Uyar, A., Wu, W., Fox G., Optimized Communication using the SOAP 
Infoset For Mobile Multimedia Collaboration Applications. in proceedings of the 
Interna-tional Symposium on Collaborative Technologies and Systems CTS05 (2005). 
http://grids.ucs.indiana.edu/ptliupages/publications/OptSOAP_CTS05.pdf 

[25] Jeff De La Beaujardiere, OpenGIS Consortium Web Mapping Server Implementation  
Specification 1.3, OGC Document #04-024, August 2002. 



 40

[26] The Open Geospatial Consortium, Inc. web site: http://www.opengeospatial.org/. 

[27] Mehmet Aktas, Galip Aydin, Geoffrey Fox, Harshawardhan Gadgil, Marlon Pierce and 
Ahmet Sayar,  SERVOGrid Technical Documentation. Technical Report for the NASA 
AIST project.  Available from 
http://www.servogrid.org/slide/iSERVO/SERVO/SERVOTechDocuments/SERVOTech
ReportAll.pdf. 

[28] Geographical Information System Research at the Community Grids Laboratory Project 
Web Site: http://www.crisisgrid.org. 

[29] Vretanos, P. (ed.), Web Feature Service Implementation Specification (WFS) 1.0.0, 
OGC Document #02-058, September 2003. 

[30] Simon Cox , Paul Daisey, Ron Lake, Clemens Portele, Arliss Whiteside,   Geography 
Language (GML) specification 3.0, Document #02-023r4., January 2003. 

[31] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion, Chris 
Ferris, and David Orchard, Web Services Architecture, W3C Working Group Note 11 
February 2004.  Available from http://www.w3.org/TR/ws-arch/. 

[32] Tiampo, K. F., Rundle, J. B., McGinnis, S. A., & Klein, W.: “Pattern dynamics and 
forecast methods in seismically active regions”, Pure Applied Geophysics 159, 2429-
2467 (2002). 

[33] Robert A. Granat: Regularized Deterministic Annealing EM for Hidden Markov Models, 
Doctoral Dissertation, University of California, Los Angeles, June, 2004 

[34] Geoffrey C. Fox, Mehmet S. Aktas, Galip Aydin, Hasan Bulut, Harshawardhan Gadgil, 
Sangyoon Oh, Shrideep Pallickara, Marlon E. Pierce, Ahmet Sayar, and Gang Zhai Grids 
for Real Time Data Applications Invited talk in proceedings of PPAM 2005 – 6th 
International Conference on Parallel Processing and Applied Mathematics Poznan 
Poland September 11-14 2005  

[35] Ahmet Sayar, Marlon Pierce and Geoffrey Fox, “Integrating AJAX Approach into GIS 
Visualization Web Services”, Proceedings of IEEE International Conference on Internet 
and Web Applications and Services ICIW'06 February 23-25, 2006 Guadeloupe, French 
Caribbean. 

[36] XML Pull Parsing Web Site:  http://www.xmlpull.org/; See also JSR 173: Streaming 
API for XML (StAX): http://www.jcp.org/en/jsr/detail?id=173 

[37] Project OnEarth at NASA JPL (Jet Propulsion Lab) http://onearth.jpl.nasa.gov/ 

[38] Lucian Plesea, “Remote Access to Very Large Image Repositories, A High Performance 
Computing Perspective”, ESTC2005, June 2005.  

[39] Sayar A., Pierce M., Fox G., “Developing GIS Visualization Web Services for 
Geophysical Applications” ISPRS 2005 Spatial Data Mining Workshop, Ankara, 
Turkey. 



 41

[40] Jesse James Garret, Ajax: A New Approach to Web Applications.  Available from 
http://www.adaptivepath.com/publications/essays/archives/000385.php 

[41] Google Maps API. http://www.google.com/apis/maps/. 

[42] Web GIS in practice III: creating a simple interactive map of England's Strategic Health 
Authorities using Google Maps API, Google Earth KML, and MSN Virtual Earth Map 
Control. International Journal of Health Geographics 2005, 4:22  
http://www.ij-healthgeographics.com/content/4/1/22#B2#B2 

[43] Google Maps API and WMS Servers.  
http://www.spatialdatalogic.com/cs/blogs/brian_flood/archive/2005/07/11/39.aspx. 

[44] Google Mapki. http://mapki.com 

[45] Google Maps Hacks. Rich Gibson, Schuyler Erle. O'Reilly  ISBN: 0-596-10161-9 
http://www.oreilly.com/catalog/googlemapshks/ 

[46] Simple Analysis of Google Map and Satellite Tiles.  
http://dunck.us/collab/Simple_20Analysis_20of_20Google_20Map_20and_20Satellite_2
0Tiles.  

[47] Implementing a selection box for Google Maps: 
http://weblogs.asp.net/rajbk/archive/2005/07/23/420315.aspx 

[48] XAMPP. http://www.apachefriends.org/en/xampp.html 

[49] Stitch together Google Map tiles. 
http://mapki.com/index.php?title=Stitch_together_Google_Map_tiles 

[50] D. Estrin, R. Govindan, J. Heidemann and S. Kumar, “Next Century Challenges: 
Scalable Coordination in Sensor Networks,” In Proceedings of the Fifth Annual 
International Conference on Mobile Computing and Networks (MobiCOM '99), August 
1999, Seattle, Washington. 

[51] Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., and Cayirci, E., “A Survey on Sensor 
Networks” IEEE Communications Magazine, August 2002. 

[52] Flexible Power Scheduling for Sensor Networks. Barbara Hohlt, Lance Doherty, Eric 
Brewer. Proceedings of the third international symposium on Information processing in 
sensor networks. Pages: 205 – 214, 2004  

[53] Mehmet S. Aktas, Geoffrey Fox, Marlon Pierce Managing Dynamic Metadata as Context 
Istanbul International Computational Science and Engineering Conference (ICCSE2005) 
June 2005 http://grids.ucs.indiana.edu/ptliupages/publications/maktas_iccse05.pdf 

[54] OGC Sensor Web Enablement Web page 
http://www.opengeospatial.org/functional/?page=swe 

[55] Botts, Mike, Sensor Model Language (SensorML) for In-situ and Remote Sensors, OGC 



 42

document reference number 04-019r2 

[56] OGC Sensor Collection Service specification, document reference number 03-023r1 

[57] Bock, Y., Prawirodirdjo, L, Melbourne, T I. : “Detection of arbitrarily large dynamic 
ground motions with a dense high-rate GPS network” GEOPHYSICAL RESEARCH 
LETTERS, VOL. 31, 2004  

[58] Southern California Integrated GPS Network web site: http://www.scign.org/ 

[59] Scripps Orbit and Permanent Array Center web site: http://sopac.ucsd.edu/ 

[60] Open Geospatial Consortium Discussion Paper, Editor Simon Cox: “Observations and 
Measurements”. OGC Document Number: OGC 03-022r3 

[61] XML feed provided by SOPAC available at  
http://sopac.ucsd.edu/input/mapServer/mapFiles/gps_rt_rss.xml 

[62] Bellwood, T., Clement, L., and von Riegen, C. (eds)  (2003), UDDI Version 3.0.1: 
UDDI Spec Technical Committee Specification.  Available from 
http://uddi.org/pubs/uddi-v3.0.1-20031014.htm.’ 

[63] Ali ShaikhAli, Omer Rana, Rashid Al-Ali and David W. Walker.., UDDIe: An Extended 
Registry for Web Services, Proceedings of the Service Oriented Computing: Models, 
Architectures and Applications, SAINT-2003 IEEE Computer Society Press. Oralndo 
Florida, USA, January 2003 

[64] Miles, S., Papay, J., Dialani, V., Luck, M., Decker, K., Payne, T., and Moreau, L. 
Personalized Grid Service Discovery. Nineteenth Annual UK Performance Engineering 
Workshop (UKPEW'03), University of Warwick, Conventry, England, 2003. 

[65] Verma, K., Sivashanmugam, K. , Sheth, A., Patil, A., Oundhakar, S. and Miller, J. 
“METEOR–S WSDI: A Scalable P2P Infrastructure of Registries for Semantic 
Publication and Discovery of Web Services” , Journal of Information Technology and 
Management.TM03-006.pdf 

[66] Bunting, B., Chapman, M., Hurlery, O., Little M., Mischinkinky, J., Newcomer, E., 
Webber J, and Swenson, K., Web Services Context (WS-Context), available from 
http://www.arjuna.com/library/specs/ws_caf_1-0/WS-CTX.pdf 

[67] Mehmet S. Aktas, Geoffrey C. Fox, Marlon Pierce Information Services for Dynamically 
Assembled Semantic Grids Proceedings of 1st International Conference on Semantics, 
Knowledge and Grid Beijing China November 27-29 2005. 

[68] Business Process Execution Language, Available from:  
http://www-106.ibm.com/developerworks/library/ws-bpel/ 

[69] The Triana Project, http://www.triana.co.uk/ 

[70] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludscher, S. Mock: Kepler: Towards a 



 43

Grid-Enabled System for Scientific Workflows, In the Workflow in Grid Systems 
Workshop in GGF10 - The Tenth Global Grid Forum, Berlin, Germany, March 2004. 

[71] Kaizar Amin, Gregor von Laszewski, Mihael Hategan, Nestor J. Zaluzec, Shawn 
Hampton, Albert Rossi: GridAnt: A Client-Controllable Grid Work.ow System. HICSS.  
2004  See also “GridAnt: A Grid Workflow System. Project page: http://www-
unix.globus.org/cog/projects/gridant/”. 

[72] Harshawardhan Gadgil, Jin-Yong Choi, Bernie Engel, Geoffrey Fox, Sunghoon Ko, 
Shrideep Pallickara, Marlon Pierce: Management of Data Streams for a Real Time Flood 
Simulation Technical Report June 2004 

[73] Harshawardhan Gadgil, Geoffrey Fox, Shrideep Pallickara, Marlon Pierce, Robert 
Granat: A Scripting based Architecture for Management of Streams and Services in 
Real-time Grid Applications. In Proceedings of the IEEE/ACM Cluster Computing and 
Grid 2005 Conference, CCGrid 2005, Vol. 2, pp. 710-717, Cardiff, UK. 

[74] Mozilla Rhino: Javascript for Java. Project Website: http://www.mozilla.org/rhino  

[75] Ken Birman, Robert Hillman, Stefan Pleisch, Building network-centric military 
applications over service oriented architectures SPIE Conference on Defense 
Transformation and Network-Centric Systems at Orlando Florida 31 March 2005. 

 

10. Appendices 

10.1. Sample Position Messages Encoding for SOPAC GPS Stations 
<?xml version="1.0" encoding="UTF-8"?> 
<sopac:PositionMessage xmlns:sopac="http://www.crisisgrid.org/sensorgrid" 
xmlns:gml="http://www.opengis.net/gml" xmlns:om="http://www.opengis.net/om" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://www.crisisgrid.org/sensorgrid/schemas/om/sopacGPS.
xsd"> 
   <gml:timeStamp> 
      <gml:TimeInstant> 
         <gml:timePosition> 
  2005-19-07/04:19:44PM-EST 
         </gml:timePosition> 
      </gml:TimeInstant> 
   </gml:timeStamp> 
   <gml:resultOf> 
      <gml:CompositeValue> 
  <gml:valueComponents> 
   <sopac:XYZTPosition> 
    <gml:valueComponents> 
         <sopac:X uom="">-2483933.959009682</sopac:X> 
         <sopac:Y uom="">-4692210.903343215</sopac:Y> 
         <sopac:Z uom="">3522794.2822901704</sopac:Z> 
         <sopac:T uom="">2.3280574187794465</sopac:T> 
    </gml:valueComponents> 
   </sopac:XYZTPosition> 
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   <sopac:XYZVarianceBlock> 
    <gml:valueComponents> 
     <sopac:Scale uom="">0.0653659</sopac:Scale> 
     <sopac:Xvar uom="">0.0471768</sopac:Xvar> 
     <sopac:Yvar uom="">0.1301267</sopac:Yvar> 
     <sopac:Zvar uom="">0.085100</sopac:Zvar> 
         <sopac:YXcovar uom="">0.0736906 
      </sopac:YXcovar> 
         <sopac:YZcovar uom="">-0.098750 
     </sopac:YZcovar> 
         <sopac:ZXcovar uom="">-0.056698 
     </sopac:ZXcovar> 
    </gml:valueComponents> 
   </sopac:XYZVarianceBlock> 
   <sopac:SatelliteInfoBlock> 
    <sopac:SatelliteCount> 
    <gml:Count>8</gml:Count> 
   </sopac:SatelliteCount> 
   <sopac:GDOP> 
    <gml:Quantity uom="">3.186955808173595 
       </gml:Quantity> 
   </sopac:GDOP> 
   <gml:valueComponents> 
    <sopac:SatelliteInfo> 
       <gml:valueComponents> 
      <sopac:PRN_Value uom="">3 
      </sopac:PRN_Value> 
      <sopac:PRNFlags uom="">7 
      </sopac:PRNFlags> 
      <sopac:Elevation uom="">29 
      </sopac:Elevation> 
      <sopac:Azimuth uom="">-50 
      </sopac:Azimuth> 
       </gml:valueComponents> 
    </sopac:SatelliteInfo> 
   <!-- Remaining entries deleted for brevity --> 
   </gml:valueComponents> 
  </sopac:SatelliteInfoBlock> 
 </gml:valueComponents> 
    </gml:CompositeValue> 
   </gml:resultOf> 
   <sopac:PositionQuality method=""> 
 <om:Description>00010010</om:Description> 
   </sopac:PositionQuality> 
   <om:relatedFeature> 
 <sopac:Site> 
   <gml:name>SACY</gml:name> 
   <sopac:SiteCount>15</sopac:SiteCount> 
   <sopac:SiteIndex>2</sopac:SiteIndex> 
 </sopac:Site> 
   </om:relatedFeature> 
</sopac:PositionMessage> 
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10.2. Example Global Positioning System RYO Data 
This Appendix shows the RYO output of a typical GPS station in the Southern California 
Integrated GPS Network.  
Message time  
Date Time 

2005-12-12 03:23:16PM-EST 

 
Station Metadata 
Station Name Station Number Station Count

LEMA 2 3 

 
XYZT Position  
X Y Z T 

2556508.624797094 4467101.665687391 3754378.932770622 2.295049246581960

 
Latitude-Longitude-Height Position  
Latitude Longitude Height 

36.29202035061081 119.78237412236496 35.929088668037025

 
Position quality : L1/L2  
Flags: Phase  
Optional blocks present in this message: XYZ variance block + Satellite info block 
XYZ variance block 
Scale Xvar Yvar 
0.06901739184684381 0.0377138796649775 0.10830764487854985 

Zvar YXvar YZvar 
0.08631783233709235 0.06057192662251049 -0.09281413763791896 

ZXvar 
-0.05338606394765551   

 
Satellite Info Block 
Satellite No 1  2 3  4  5  6  7  8  

PRN 2   4  5  7  9  24 26 28 

PRN Flags 7  7  7  7  7  7  7  7  

Elevation 42  61  23  50  55 35 5  17 

 


