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Abstract

Recently, recommender systems have attracted increased attention because
of their ability to suggest appropriate choices to users based on intelligent
prediction. As one of the most popular recommender system techniques, Col-
laborative Filtering (CF) achieves efficiency from the similarity measurement
of users and items. However, existing similarity measurement methods have
reduced accuracy due to problems such as data correlation and data spar-
sity. To overcome these problems, this paper introduces the Grey Forecast
(GF) model for recommender systems. First, the Cosine Distance method is
used to compute the similarities between items. Then, we rank the items,
which have been rated by an active user, according to their similarities to
the target item, which has not yet been rated by the active user; we use the
ratings of the first k items to construct a GF model and obtain the required
prediction. The advantages of the paper are three-fold: first, the proposed
method introduces a new prediction model for CF, which, in turn, yields bet-
ter performance of the model; second, it is able to alleviate the well-known
sparsity problem as it requires less data in constructing the model; third,
the model will become more effective when strong correlations exist among
the data. Extensive experiments are conducted and the results are compared
with several CF methods including item based, slope one, and matrix fac-
torization by using two public data sets, namely, MovieLens and EachMovie.
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The experimental results demonstrate that the proposed algorithm exhibits
improvements of over 20% in terms of the mean absolute error (MAE) and
root mean square error (RMSE) when compared with the item based method.
Moreover, it achieves comparative, or sometimes even better, performance
when compared to the matrix factorization methods in terms of accuracy
and F-measure metrics, even with small k.
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1. Introduction

Recommender systems help users cope with the information overload ex-
perienced in a wide range of Web services and have been widely adopted
in various applications, such as e-commerce (e.g., Amazon1), online video
sharing (e.g., YouTube2), and online news aggregators (e.g., Digg3). Recom-
mender systems have also been successfully developed for e-business and
e-government applications [1], [2] and [3]. They can be used to present
the most attractive and relevant items to the user based on the individual
user’s characteristics. As one of the most promising recommender techniques
[4], collaborative filtering (CF) predicts the potential interests of an active
user by considering the opinions of users with similar preferences. As com-
pared to other recommender techniques (e.g., content based methods [5]),
CF technologies have the capability to recommend unanticipated items to
users, which are not similar to those they have seen before; this could work
well in domains where the attribute content of items is difficult to parse.
Generally, the representative CF technique, namely, the memory based CF
technique [6], has been widely used in many commercial systems due to its
simplistic algorithm and reasonably accurate recommendations. It obtains
the user’s ratings on different items by explicitly asking the user or by im-
plicitly observing the user’s interactions with the systems; these ratings are
stored into a table known as the user-item rating matrix. Then, the mem-
ory based CF methods use similarity measurement methods to filter out the

1www.amazon.com
2www.youtube.com
3www.digg.com
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users (or items) that are similar to the active user (or the target item) and
calculate the prediction from the ratings of these neighbors. Memory based
methods can be further classified into user based methods [7] or item based
methods [8] depending on whether the process of defining neighbors follows
the process of finding similar users or similar items.

Despite its widespread use, memory based CF techniques still suffer from
several major problems, including the data sparsity problem [4] and [9], data
correlation problem [10], and cold start problem [11] and [12]. The cold start
problem can be regarded as a data sparsity problem. Hence, in this paper,
we focus on the first two issues. In most recommender systems, each user
rates only a small subset of the available items, and therefore, most of the
entries in the rating matrix are empty. In such cases, determining similar
users or items becomes a considerable challenge. Consequently, the simi-
larity between two users or items cannot be calculated and the prediction
accuracy becomes very low. Furthermore, the active users always tend to
consume similar commodities, and the ratings for these items will be close,
which indicates that there are strong correlations among the ratings. How-
ever, the existing similarity measurement methods, such as Cosine Distance
and Pearson Correlation, suffer from such issues. Therefore, we cannot di-
rectly use similarities for rating prediction. To overcome these shortcomings,
some researchers have developed algorithms that use models employing pure
rating data to make predictions, such as clustering CF models [13] and [14],
Bayesian belief nets (BNs) CF models [15] and [16], Markov decision process
based (MDP-based) CF models [17], and latent semantic CF models [18].
However, some of these models are extremely complicated, require estima-
tion of multiple parameters, and are sensitive to the statistical properties of
data sets. In practice, many of these theoretical models have not been used
in recommender systems due to the high costs involved.

In addition, dimensionality reduction techniques, such as singular value
decomposition (SVD) [19], have been investigated to alleviate the data spar-
sity problem, where the unrepresentative users or items in the user-item
rating matrix are removed to reduce the dimensionalities. However, useful
information may be lost when certain users or items are discarded, and it is
difficult to factor the matrix due to the high portion of missing values caused
by its sparseness. Koren et al. [20] proposed a matrix factorization model,
which is closely related to SVD. The model learns by only fitting the previ-
ously observed ratings. Its excellent performance enables it to be considered
a state-of-the-art approach in rating prediction, but it also faces parameter
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estimation problems and high time complexities. Luo et al. [21] and [22]
improved the matrix factorization based method by including incremental
computations and applying an adaptive learning rate.

In this paper, we present novel approaches that aim at overcoming data
sparsity limitations and benefiting from the data correlations existing among
the ratings rather than eliminating them altogether. In particular, the pro-
posed algorithm calculates the similarities between the items using the sim-
plest method, namely, the Cosine Distance measurement method. It is worth
noting that we do not directly use the exact value of the similarities, but
rather rank the items according to their similarities. Then, a grey forecast
(GF) model is constructed for rating prediction. This model has been success-
fully adopted for forecasting in several fields, such as finance [23], integrated
circuit industry [24], the market for air travel [25], and underground pressure
for working surface [26]. We compare the performances of the proposed algo-
rithm with several other CF methods, including item based methods, slope
one, and the state-of-the-art matrix factorization based method. Extensive
experiments were conducted on two public data sets, namely, MovieLens and
EachMovie. The results provide empirical evidence that the GF model can
indeed cope effectively with data sparsity and correlation problems.

The remainder of this paper is organized as follows. Section 2 provides
a detailed description of conventional user based CF (UCF) methods, item
based CF (ICF) methods, the definition of existing problems, and our con-
tributions. Section 3 presents the proposed GF model based algorithm in
detail. Section 4 describes the experimental study, including experimental
data sets, evaluation metrics, methodology, analysis of results, followed by a
final section on conclusions and future work.

2. Related Work

The CF technique is one of the most successful recommender techniques
[27]: it can be classified into memory based CF techniques [7] and [8] such as
similarity or neighborhood based CF algorithms, model based CF techniques
such as clustering CF algorithms [13] and [14], and hybrid CF techniques
such as personality diagnosis [28], hybrid fuzzy-based personalized recom-
mender system [1], and hybrid semantic recommendation system [29]. As
a representative memory based CF technique, the similarity based method
represents one of the most successful approaches for recommendation. They
have been extensively deployed into commercial systems and been compre-
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hensively studied [4] and [30]. This class of algorithms can be further divided
into user and item based methods. The former is based on the basic assump-
tion that people who share similar past preferences tend to agree in their
future preferences. Hence, for the target user, the potential interest for an
object is predicted according to the ratings from the users who are similar
to the target user. As opposed to the user based method, an item based
method recommends the items that are similar to what the active user has
consumed before. In a typical memory based CF scenario, there is a set of
n users U = {u1, u2,. . . , un},a set of m items I = {i1, i2,. . . , im},and the
n × m user-item rating matrix. The ratings can either be explicit indica-
tions, such as an integer number from 1 to 5 (The integer number represents
the rating a user gives to the item. Usually, number 1 means that the user
does not like the item, while number 5 indicates the user is very satisfied
with the item.), or implicit indications, such as purchases or click-throughs
[31]. For example, implicit user behaviors (Table 1a) can be converted into
a user-item rating matrix R (Table 1b). When the k -th user has purchased
the l -th item, R(k,l) for the k -th row and the l -th column of the matrix is
assigned to rating 1. If the k -th user has not purchased the l -th item yet, a
null value is assigned toR(k,l). Therefore, the recommendation problem is
reduced to predicting the null entries (Lily is the active user for whom we
want to make recommendations for in Table 1b). Generally, the procedure
for this type of CF method consists of two steps: similarity measurement
and rating prediction.

2.1. Similarity measurement

The critical step in memory based CF algorithms is the similarity compu-
tation between users or items [32], [33], [34] and [35]. In UCF methods, the
similarity s(ux, uy), between the users ux, and uy is determined by compar-
ing the items that both of them have rated. In ICF methods, the similarity
s(ix, iy) between the items ix, and iy is determined by the users who have
rated both the items. There are various methods to compute the similarity
between two users or items. The two most popular methods are Cosine Dis-
tance [5] and [36] and Pearson Correlation [5] and [36]. To define them, let I
be the set of all items rated by both the users ux, and uy, and let U be the
set of all users who have rated the items ix, and iy. For example, in Table
1b, the co-rated items of Alice (ux) and Lily (uy) are Bread and Milk (item
set I ); therefore, these two items’ ratings given by individual user form a
d -dimensional vector, where d is equal to the size of set I. In this case, d is
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Table 1: An example of a user-item rating matrix

(a)

User Purchase Not Purchase
Alice Milk, Bread, Cake Beer
Lily Milk, Bread Cake, Beer
Lucy Milk, Cake Bread, Beer
Bob Bread, Beer Milk, Cake

(b)

Bread Beer Cake Milk
Alice 1 1 1
Lily 1 ? 1
Lucy 1 1
Bob 1 1

equal to two. Analogously, items Cake (ix) and Milk (iy) are rated by both
Alice and Lucy (user set U ) whose ratings on each item form a d -dimensional
vector, where d is equal to the size of set U. d is equal to two in this case.

2.1.1. Cosine distance

For the Cosine Distance approach, the cosine of the angle between the
two vectors represents the similarity between them. For UCF, the similarity
between two users with Cosine Distance method can be calculated as follows:

s(ux, uy) =

∑

i∈I rux,i · ruy ,i
√

∑

i∈I r
2
ux,i

√∑

i∈I r
2
uy ,i

(1)

where rux,i and ruy,i are the ratings of the users ux and uy on item i. I has
the same definition in Section 2.1. Analogously, for ICF, the Cosine Distance
between two items can be expressed as follows:

s(ix, iy) =

∑

u∈U ru,ix · ru,iy
√

∑

u∈U r2u,ix

√∑

u∈U r2u,iy

(2)

where ru,ix and ru,iy are the ratings of the user u for items ix and iy. U is
defined in Section 2.1.
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2.1.2. Pearson correlation

We should note that, during the computation of similarity, it is necessary
to eliminate the rating correlations (e.g., the average rating of the user) to
improve the significance of similarity. The Pearson Correlation is one such
method, which can be used to improve the accuracy of similarity computation
to a certain extent. For UCF, the Pearson Correlation between two users can
be expressed as

s(ux, uy) =

∑

i∈I(rux,i − rux
)(ruy,i − ruy

)
√∑

i∈I(rux,i − rux
)2
√∑

i∈I(ruy ,i − ruy
)2

(3)

where the terms rux,i and ruy,i mean the same as in Eq. (1) and rux
and ruy

are the average ratings of the users ux and uy, respectively. Similarly, for
ICF, the Pearson Correlation between two items can be formulated as

s(ix, iy) =

∑

u∈U(ru,ix − rix)(ru,iy − riy)
√∑

u∈U(ru,ix − rix)
2
√∑

u∈U(ru,iy − riy)
2

(4)

where the terms ru,ix and ru,iy mean the same as in Eq. (2) and rix and riy
are the average ratings of all the users for items ix and iy, respectively.

2.2. Rating prediction

The rating prediction stage aims to predict the value that the active user
will assign to the target item. The k Nearest Neighbors (KNN) method [37]
is usually used for prediction by weighting the sum of the ratings that similar
users give to the target item or the ratings of the active user on similar items
depending on whether UCF or ICF is used.

2.2.1. UCF

The UCF algorithm is based on the basic assumption that people who
share similar past preferences will be interested in similar items. The algo-
rithm uses the following steps: first, the similarities between the users are
computed using similarity measurement methods introduced in Section 2.1;
then, the prediction for the active user is determined by taking the weighted
average of all the ratings of the similar users for a certain item [37] according
to the formula in Eq. (5); finally, the items with the highest predicted ratings
will be recommended to the user.

pux,i = rux
+

∑

uy∈U(ux)
s(ux, uy)(ruy,i − ruy

)
∑

uy∈U(ux)
|s(ux, uy)|

(5)
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where U (ux) denotes the set of users similar to the user ux, and pux,i is the
prediction for the user ux on item i.

2.2.2. ICF

The ICF algorithm recommends items to users that are similar to the
items that they have already consumed. Similarly, after calculating the sim-
ilarities between the items, the unknown rating of user u on item ix can be
represented as an aggregation of user u on similar items:

pu,ix = rix +

∑

iy∈I(ix)
s(ix, iy)(ru,iy − riy)

∑

iy∈I(ix)
|s(ix, iy)|

(6)

where I (ix) denotes the set of similar items of item ix. Further, pu,ix denotes
the prediction of user u on item ix.

2.3. Problem analysis

After using the co-rated entries as a vector to represent the object, the
Cosine Distance method measures the similarity between two users or items
by computing the cosine of the angle between them. Pearson Correlation
takes the rating correlation into consideration to eliminate the influence of
average ratings. Obviously, Pearson Correlation can be considered a variation
of Cosine Distance. Taking UCF as an example, we select the items that both
users have rated earlier and then use these ratings of each user for these items
to construct a d -dimensional vector, namely, (ru,i1 , ru,i2, . . . , ru,id), where d

is the number of co-rated items. If we subtract each element by the average
rating of user u, the vector will be converted to (ru,i1−ru, ru,i2−ru, . . . , ru,id−
ru). In this case, the Pearson Correlation is equivalent to Cosine Distance.
With Pearson Correlation, the accuracy of similarity computation can be
improved to a certain extent. However, it still suffers from many issues.

• Data sparsity. It is difficult to determine co-rated entries when the
data is sparse. For instance, Bob and Lucy have not consumed the
same items before (Table 1). Therefore, the similarity between such
users cannot be computed by using the existing methods elaborated
in Section 2.1. Furthermore, it might not be possible to obtain the
similarities between the users or items in the same dimensionality. For
example, Alice and Lucy both rated milk and cake (Table 1): the
similarity between them is computed in a 2-dimensional space; however,
Bob and Lily have only one co-rated entry, namely, bread (Table 1);
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therefore, the similarity between them is computed in a 1-dimensional
space. Therefore, the results seem biased.

• Data correlation. In this paper, data correlation corresponds to the
general features hidden in the data because of the similar attributes
among the users or items. For example, people who like Tom Cruise

tend to give similar rating to movies the “Mission: Impossible III”
and “Mission: Impossible IV”. People of the same age will have sim-
ilar preferences; therefore, their ratings for the same item will also
be close. These correlations among the ratings yield a nonorthogonal
vector space since the elements in different dimensions are not inde-
pendent. Although the Pearson Correlation eliminates the influence
of average ratings, such rating correlations still exist. Therefore, the
similarities computed with these similarity measurement methods are
not accurate (see Appendix A).

Because of these issues, in practice, the similarity between two users or
items computed using Cosine Distance or Pearson Correlation is not accu-
rate. Consequently, if we take a weighted average of the ratings using the
similarities to directly generate the prediction, we may not obtain a good re-
sult. To overcome these shortcomings, Xie et al. [38] utilized the statistical
values of the ratings related to the object to form a vector for the similarity
measurement, which improved the prediction accuracy. Moreover, similarity
transitivity [39] was proven to be an effective method for sparse data sets,
which can effectively balance the tradeoff between the quality and quantity
of similarity. In this paper, we relate these problems as being those of data
sparsity and data correlation, and we use the GF model for rating prediction.

2.4. Contributions

The GF process for prediction can be described as follows. The Cosine
Distance method is used to measure the similarity between two items. Then,
an m × m similarity matrix is generated, where m is the number of items.
Although the similarity computation is not accurate, as discussed in Section
2.3, the value can represent the degree of similarity. Therefore, in our algo-
rithm, we do not use the exact value of similarity; rather, we only rank the
items according to the similarity. Then, to generate the prediction of the
active user u on item i, the k most similar items that have been rated by the
active user on item i are selected. Finally, we use these items as the input
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to build a GF model and predict the rating of the active user u on item i. If
the user u does not rate k items, a fixed value will be used to complete the
k ratings. Empirically, the fixed value can be the median value of the rating
scale. For example, when the rating scale is 1-5, the number 3 is selected
as the fixed value. The proposed method provides the following three main
contributions:

• Overcoming data sparsity. Although the data is sparse and few
items are rated by each user, only a few ratings are needed to con-
struct the GF model for our algorithm and the experimental results
show that the prediction accuracy is still high even when k is equal to
5. Obviously, the proposed algorithm can efficiently address the data
sparsity problem.

• Benefiting from data correlation. The stronger the data correla-
tion, the more accurate is the GF model. In the experiments, when
the user’s average rating or overall average rating is eliminated, the
GF model performs considerably worse. In other words, the proposed
algorithm can effectively benefit from the data correlations rather than
eliminating them.

• Obtaining accurate predictions. We test our algorithm on two pub-
lic data sets, namely, MovieLens4 and EachMovie5 . The experimental
results when compared with traditional ICF (using Cosine Distance for
similarity measurement) reveal that our algorithm yields better per-
formance with respect to the metrics of Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE). In particular, with regard to
the MovieLens data set, the accuracy has been improved by over 20%
in terms of the MAE. Moreover, it achieves comparative or even better
performance with regard to accuracy and F-measure when compared
to the state-of-the-art matrix factorization based method.

3. Proposed algorithm

Memory based CF algorithms aggregate ratings of similar users for a tar-
get item or ratings of the active user for similar items to generate prediction.

4www.grouplens.org/
5www.kumpf.org/eachtoeach/eachmovie.html
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Consequently, the prediction accuracy depends mainly on the similarity com-
putation. However, when the data is sparse and exhibits strong correlations,
the existing similarity measurement methods cannot obtain accurate similar-
ities between the users or items. In other words, the similarities are not very
accurate. Hence, we cannot use the similarities to directly obtain reliable
predictions. In this paper, the GF model is used for rating prediction. It
involves two steps: rating preprocessing and rating prediction.

3.1. Rating preprocessing

Since the similarities between the items computed by using existing sim-
ilarity measurement methods have significance, we use them to preprocess
the ratings. First, for simplicity, the Cosine Distance method is utilized to
compute the similarity between two items. Then, an m ×m similarity ma-
trix is generated, where m is the number of items. If we want to predict the
unrated entry of the user u on item i in the rating matrix, the k most similar
items to the item i that have been rated by the user u are selected. Note
that when the user u does not rate k items, the fixed value with the lowest
similarity will be used to complete the k ratings. Finally, the k ratings are
sorted according to their incremental similarities to the item i to produce a
rating sequence. In the next step, the proposed algorithm inputs the rating
sequence to the GF model and forecasts the rating that the user u will give
to item i. For instance, a section of a rating matrix with ratings in the 1-5
scale is shown in Table 2. We want to predict the rating of user u3 on item
i1. According to Cosine Distance, the similarities between item i1 with the
other items are shown in Table 3. The items rated by user u3 can be sorted
as their similarities with item i1 increase: i5, i7, i3, i9, i4. If we set k = 3,
the last three items (namely i3, i9, and i4) will be selected, since they have
been rated by the user u3 and have higher similarities to item i1. Then, the
rating sequence is (4, 3, 5). Furthermore, if we set k = 7, since the number of
items rated by the user u3 is less than 7, all the ratings of the items rated by
the user u3 will be selected and the median value (number 3) will be used to
complete seven ratings with the lowest similarity. Then, the rating sequence
is (3, 3, 5, 4, 4, 3, 5), where the first two numbers are replaced with the
number 3 in the rating sequence. Note that when two or more items have
the same similarity to the target item, the order of their ratings is random.
For example, item i5 is sorted in front of item i7 although they have the same
similarity to item i1.

The rating sequence has several special attributes:
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Table 2: Fragment of a rating matrix

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10
u1 4 4 5 5 4 4 5
u2 3 4 2 4 3 4
u3 ? 4 5 5 4 3
u4 1 3 2 3 4

Table 3: Similarities between item i1 with other nine items

i2 i3 i4 i5 i6 i7 i8 i9 i10
i1 0.989 0.789 0.991 0 0.999 0 0.942 0.857 0.999

• The similarities among the items are very high, since they are the k

most similar items to the target item. Hence, these ratings are highly
correlated. Intuitively, the user tends to allocate closer ratings to sim-
ilar items.

• The ratings of the sequence are incrementally sorted by the items’
similarities to the target item. Consequently, the ratings with higher
similarities will contribute more to the final prediction, which makes
the GF model more effective.

Due to these valid attributes, the rating prediction stage can be more
effective.

3.2. Rating prediction

Grey theory was originally developed by Deng in 1982 [40]. It mainly
focuses on model uncertainty and information insufficiency when analyzing
and understanding systems via research on conditional analysis, prediction,
and decision making. A recommender system can be considered as a grey
system; further, with our algorithm, the GF model is used to yield the rat-
ing prediction. The GF model utilizes accumulated generation operations to
build differential equations, which benefit from the data correlations. Mean-
while, it has another significant characteristic wherein it requires less data
so it can overcome the data sparsity problem. The rating sequence gener-
ated in the rating preprocessing stage is the only input required for model
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construction and subsequent forecasting. These are the reasons why we have
selected the GF model for rating prediction: the GM(1,1) method is adopted
in this paper. GM(1,1) indicates a single variable first-order GF model. The
general procedure followed in a GF model is derived as follows [41]:

Step 1: Assume the original rating sequence to be r
(0)
u :

r(0)u = {r(0)u (l)}, l = 1, 2, . . . , k (7)

where r
(0)
u (l) represents the original rating of the user u for the l -th value of

the rating sequence. Further, k is the number of neighbors or the length of
the rating sequence, and it must be equal to or greater than 4.

Step 2: A new sequence r
(1)
u is produced by the Accumulated Generating

Operation (AGO). The GF model is based on the generating sequence rather
than the original one:

r(1)u = {r(1)u (l)}, l = 1, 2, . . . , k (8)

where r
(1)
u (l) =

l∑

j=1

r
(0)
u (j), l = 1, 2,. . . , k.

This step is vital, since the randomness of the data is somehow smoothed
and it further enhances the tendency of the new sequence due to the corre-
lation between the values of the original sequence. For example, r

(0)
u = {3,

4, 3, 4, 5} is a user’s original rating sequence. Obviously, the sequence does

not have a clear regularity. If AGO is applied to this sequence, r
(1)
u = {3, 7,

10, 14, 19} is obtained which has a clear growing tendency.
Step 3: Based on the property, that the relation between the grey deriva-

tive and the background grey number is approximate linear regression, of
smooth discrete function, a grey differential model called GM(1,1) can be
defined as follows [41]:

d(1)u (l) + az(1)u (l) = b, l = 2, 3, . . . , k (9)

where a, b are the coefficients, especially in the terms of Grey System theory,
a is the grey development coefficient and b is the grey input. They are
estimated in Step 5. d

(1)
u (l) = r

(1)
u (l) - r

(1)
u (l−1) = r

(0)
u (l) is the grey derivative,

therefore, the grey differential model is always denoted as r
(0)
u (l) + az

(1)
u (l)

= b. z
(1)
u (l) is the grey background number, which is the weighted sum of

the values of the consecutive neighbors of the sequence r
(1)
u . More specially,

z
(1)
u (l) = αr

(1)
u (l−1) + (1 - α)r

(1)
u (l). Further, α(0<α<1) is the weight. Here,

13



α is selected so as to yield the smallest prediction error rate. When α<0.5,
the values in the sequence with higher rankings will make more contribution
to the differential equation, and therefore, the final result. In fact, extensive
experiments with different values of α have found that when α<0.5, the GF
model based method performed well. This convinces us to incrementally sort
the ratings with items’ similarities to the target item. The more similar the
items are to the target item, the more important are their ratings to the final
prediction. Therefore, in our experiments, we set α= 1/3.

Step 4: If the discrete space is mapped into the continuous one (discrete
variable l to the continuous variable t), the grey differential model can be
whitened as:

dr(1)u (t)/dt+ ar(1)u (t) = b (10)

where r
(1)
u is converted to the continuous function, r

(1)
u = r

(1)
u (t). The grey

derivative d
(1)
u (l) is mapped to dr

(1)
u (t)/dt, and z

(1)
u (l) to r

(1)
u (t), since z

(1)
u (t)

= r
(1)
u (t) = r

(1)
u (t− 1) in the continuous space.

Step 5: From Step 4, the solution r̂
(1)
u (t) is:

r̂(1)u (t) = (r(0)u (1)− b/a)e−a(t−1) + b/a (11)

where a, b have the same definitions in Step 3. Let v = (a, b)T ,

B =








−z
(1)
u (2) 1

−z
(1)
u (3) 1
...

...

−z
(1)
u (k) 1







, Y =








d
(0)
u (2)

d
(0)
u (3)
...

d
(0)
u (k)







=








r
(0)
u (2)

r
(0)
u (3)
...

r
(0)
u (k)







,

then, the GM(1,1) defined in Eq. (9) is equivalent to Y = Bv. By minimzing
J(v̂) = (Y −Bv̂)T (Y −Bv̂), the least squares estimation of parameters are:
v̂ = (a, b)T = (BTB)−1BTY .

When we set t = l, r̂
(1)
u (l) is the estimation of the l -th value of the AGO

data.
Step 6: Inverse Accumulated Generation Operation (IAGO). Because

the GF model is formulated using the data of AGO rather than the original
data, we should use the IAGO to convert the AGO data to an actual rating
prediction:
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r̂(0)u (l) = r̂(1)u (l)− r̂(1)u (l − 1) = (r(0)u (1)− b/a)e−a(l−1)(1− ea) (12)

When we set l= k + 1, the rating prediction pu,i of the user u on item i

can be represented by r̂
(0)
u (k + 1) = (r

(0)
u (1)− b/a)e−ak(1− ea).

Obviously, during the estimation of the parameters a and b in Step 5,
a matrix inverse operation is needed. Hence, we cannot always forecast the
ratings using the GF model. In these cases, the average of the k ratings is
used as the rating prediction of the active user for the target item.

4. Experimental results

In this section, we present the results of the experimental evaluation of our
novel algorithm. We describe the data sets used; the experimental methodol-
ogy and performance improvement are compared with several CF methods,
particularly the state-of-the-art matrix factorization based method.

4.1. Data sets

We conducted extensive experiments on two standard data sets: Movie-
Lens [42] and EachMovie [43]. Both these data sets are publicly available data
sets regarding movie ratings. MovieLens rating sets are collected by Grou-
pLens research from the MovieLens Web site (http://movielens.umn.edu).
Three different sizes of data sets are available. In this paper, the MovieLens
1M data set was used, which consists of 1 million ratings (in the scale of
1-5 stars) from 6,040 users on 3,952 movies. We also implemented the ex-
periment for another data set, namely, EachMovie, which is collected by the
DEC Systems Research Center. It consists of 2,811,983 numerical ratings
from 74,424 users on 1,648 different movies (films and videos). Since the
ratings are linearly mapped to the interval [0, 1], for convenience, we multi-
plied the ratings by 5 and deleted the records in which the ratings were zero.
Finally, 2,464,792 ratings remained, which were in 1-5 rating scale. Table 4
summarizes the statistical properties of both these data sets. The sparsity
level of the data set can be computed as follows [4]:

sparsity level =
#total entries−#rating entries

#total entries
(13)
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Table 4: Statistical properties of MovieLens and EachMovie

Movielens EachMovie
Users 6,040 74,424
Items 3,952 1,648
Ratings 1,000,000 2,464,792
Ratings Per User 165 33
Ratings Per Item 253 1,495
Sparsity Level 95.81% 97.99%

4.2. Metrics and methodology

To evaluate the performance of a recommender algorithm, the data set
needs to be partitioned into two sections: training set and testing set. The
former is dedicated to the model’s construction, while the latter is used for
testing the model. Here, we set x as the training ratio, which is the propor-
tion of the training set in the data set. For example, when x is equal to 80%,
the training set comprises 80% of the data set, while the remaining 20% is
the testing set. In this paper, two classes of metrics are used to evaluate
the algorithmic performance: error metrics and classification metrics. Error
metrics evaluate the error between the actual rating and the predicted value.
MAE [44] and RMSE [45] are the most frequently used error metrics. There-
fore, we use these two metrics to evaluate the accuracy of rating prediction.
MAE and RMSE can be defined as

MAE =

∑

(u,i)∈T |ru,i − pu,i|

|T |
(14)

RMSE =

√∑

(u,i)∈T (ru,i − pu,i)2

|T |
(15)

where T is the set of all the pairs (u, i) in the testing set.
Generally, we are not interested in the precise prediction of ratings; rather,

we are concerned about suggesting a short list of interesting items to the user
[19] and [37].

Therefore, the information retrieval classification metrics are used to mea-
sure the recommendation accuracy more precisely. When using classification
metrics, four different kinds of recommendations are distinguished. If the
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algorithm recommends an interesting item to the user, we have a true posi-
tive (TP); however, if an uninteresting item is recommended, we have a false
positive (FP). If the algorithm does not recommend an uninteresting item
to the user, we have a true negative (TN); however, if an interesting item is
missed, we have a false negative (FN). We set the number 3 as the threshold
to determine whether the user is interested in the item or not. In particular,
if the actual and predicted ratings are not less than 3, there is a TP; if the
actual and predicted ratings are less than 3, there is a TN; if the actual rating
is not less than 3 while the predicted rating is less than 3, there is a FN; and
if the actual rating is less than 3 while the predicted rating is not less than
3, there is a FP.

The most popular classification metrics [4] and [19] are precision and
recall:

precision =
TP

TP + FP
(16)

recall =
TP

TP + FN
(17)

Precision measures the percentage of interesting items recommended to
the users with respect to the total number of recommended items, while
recall measures the percentage of interesting items recommended to the users
with respect to the total number of interesting items. Often, there is an
inverse relationship between precision and recall. To better understand the
recommendation quality, a combination between precision and recall is used,
which is called F-measure [4] and [19]:

F -measure =
2 · precision · recall

precision + recall
(18)

We compute the overall values of precision, recall, and F-measure.
To evaluate the performance of our proposed algorithm, we compare its

performance with those of several other methods:

• ICF [8]: This is a well-known memory based CF approach, which
calculates the similarity between two items using the Cosine Distance
measurement. Due to its easy implementation and interpretability, it
is one of the most popular recommender methods.
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• SlopeOne [46]: This also belongs to a class of CF methods. Its predic-
tion accuracy is relatively high, but this method requires high storage
capacities.

• SVD+: This is a basic matrix factorization based method [20], which
is closely related to SVD, and it uses the stochastic gradient descent
for minimizing the regularized squared error on a set of known ratings.

• SVD++: This is another matrix factorization based method [20],
which takes biases into account. These biases are the observed varia-
tions in the rating values induced by the effects associated with either
users or items independent of any interactions. Examples of such ef-
fects are the overall average rating or the users’ and items’ average
deviations. Therefore, SVD++ is an improved version of SVD+. It
has been shown that this method yields accuracy superior than con-
ventional memory based CF techniques. However, multiple parameters
need to be estimated, which is time-consuming.

• Cosine based GF: The proposed method is based on the GF model
and uses the Cosine Distance method to determine similarity between
items.

4.3. Experimental results and analysis

4.3.1. Variations in training ratio

We increase the training ratio x from 10% to 90% for a variation of 10%
in the MovieLens data set. The MAE and RMSE values for the ICF, cosine
based GF, and correlation based GF methods are shown in Fig. 1 and Fig.
2; here, the correlation based GF method uses Pearson Correlation for item
similarity measurement. We select the 100 nearest neighbors for the ICF
method and 5 nearest neighbors for the cosine and correlation based GF
methods having the following abbreviations in the figures: Item based CF
(100), Cosine based GF (5), and Correlation based GF (5), respectively. In
the subsequent experiments, the numbers given in the brackets have the same
meaning.

Fig. 1 and Fig. 2 show that the cosine and correlation based GF meth-
ods perform much better than the ICF method with regard to error metrics,
particularly when the training ratio is set at 80%. Moreover, although Pear-
son Correlation yields more accurate similarities than Cosine Distance, the
results obtained from the correlation based GF method are slightly different
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Figure 1: MAE values for different training ratios using MovieLens data set.

Figure 2: RMSE values for different training ratios using MovieLens data set.
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than those obtained from the cosine based GF method. This indicates that
the similarities derived from these two similarity measurements are valuable
for effective item ranking. Therefore, GF model based methods can efficiently
perform independent of the similarity accuracy. A similar conclusion is de-
rived from the EachMovie data set; the experimental results are not shown
here.

4.3.2. Influence of the number of neighbors

To determine the optimal number of neighbors for GF model based meth-
ods, the training ratio x is set at 80% and the number of neighbors k is
adopted as 5, 10, 15, 30, 40, and 60. The cosine based GF method is com-
pared with the ICF method in terms of the MAE and RMSE metrics using
two data sets. The results are shown in Fig. 3, Fig. 4, Fig. 5, and Fig. 6.

Figure 3: MAE values for different number of neighbors using MovieLens data set.

The results shown in these four figures reveal that the cosine based GF
method outperforms the ICF method with regard to prediction error. More-
over, as the value of k increases, the performance of the cosine based GF
method improves steadily. The optimal performance is achieved when k is
approximately equal to 30. However, the prediction accuracy of the ICF
method varies smoothly as k increases.
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Figure 4: RMSE values for different number of neighbors using MovieLens data set.

Figure 5: MAE values for different number of neighbors using EachMovie data set.
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Figure 6: RMSE values for different number of neighbors using EachMovie data set.

4.3.3. Comparison with state-of-the-art methods in terms of error metrics

To effectively evaluate the performances of GF based methods, it is neces-
sary to compare them with other CF methods, particularly the state-of-the-
art methods. In the experiments, slope one and two variants of the matrix
factorization based method are tested, except the ICF method. We set 15
as the number of neighbors for the cosine based GF method and 100 for the
ICF method. These two methods use Cosine Distance for item similarity
measurements. Moreover, the training ratios of the two data sets are set at
80%. The obtained MAE and RMSE values are shown in Fig. 7 and Fig. 8.

Fig. 7 and Fig. 8 show that the SVD++ method outperforms the other
four methods in terms of MAE and RMSE, whereas SVD+ comes second.
Since the EachMovie data set is sparser than the MovieLens data set, cosine
based GF, SVD+, and SVD++ perform better when using the latter, while
contradictory results are obtained when using it with the slope one and ICF
methods. Although the cosine based GF yields poor performance when com-
pared to matrix factorization based methods, an improvement of over 20%
in terms of the MAE and RMSE values is observed when compared with the
traditional ICF method.
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Figure 7: MAE value comparisons of five methods.

Figure 8: RMSE value comparisons of five methods.
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4.3.4. Comparison with state-of-the-art methods in terms of classification

metrics

In real-world recommender systems, we are interested in suggesting inter-
esting items to users rather than accurately predicting ratings. Therefore, the
precision, recall, and F-measure metrics are used to evaluate this capability.
These metrics are defined in Section 4.2, and the settings of the evaluation
methods are the same as the ones in Section 4.3.3. The experimental results
with classification metrics are shown in Fig. 9 and Fig. 10.

Figure 9: Classification metrics comparisons of five methods using MovieLens data set.

Fig. 9 and Fig. 10 show that both algorithmic precision and recall cannot
be simultaneously high. For example, when using the MovieLens data set,
SVD+ achieves the highest precision, but its recall is the lowest. Because
of their accurate but conservative rating predictions, the prediction ratings
of both the matrix factorization based methods are generally less than the
actual ones. Therefore, the number of FPs is low, but the number of FNs
is high. Consequently, they yield higher precision but lower recall. More-
over, with regard to the ICF method, if the rating of a user on an item in
the testing set cannot be predicted, 3 is taken to be the default value for
such a prediction. In other words, no matter if the actual ratings are more
or less than 3, the predictions are set at 3. Therefore, the number of FPs
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Figure 10: Classification metrics comparisons of five methods using EachMovie data set.

is high, but the number of FNs is low; this results in lower precision but
higher recall. In fact, due to the sparsity of the data set, a large number of
ratings cannot be predicted by the ICF method. Therefore, its precision, re-
call, and F-measure values seem insignificant. The cosine based GF method
yields comparative performance in terms of both precision and recall. In
particular, its F-measure value is considerably higher than the ones yielded
by the matrix factorization based methods when using the EachMovie data
set, while their F-measure values are similar when using the MovieLens data
set. Overall, the GF model based methods can significantly outperform con-
ventional ICF methods in terms of error metrics and achieve comparative
or even better performance than the state-of-the-art methods in terms of
classification metrics, which are more important in real-world systems.

4.3.5. Influence of correlations

Typically, some aggressive users tend to give higher ratings, while con-
servative users like to give lower ratings. This difference lies in the user
average ratings. Intuitively, different systems may have different overall av-
erage ratings. We call these tendencies as correlations. To verify whether
these correlations are useful for the GF model construction, we eliminate the
user average rating and the overall average rating from the rating sequence
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(see Section 3.1) before building the model. Consequently, two variants of
the GF model based methods are generated, and they have the following
abbreviations: cosine based GF-UA and cosine based GF-OA. A comparison
of the results obtained using these two methods with the cosine based GF
method in terms of the MAE and RMSE values are shown in Fig. 11, Fig.
12, Fig. 13, and Fig. 14.

Figure 11: MAE value comparisons of three methods using MovieLens data set.

The experimental results show that the performances sharply deteriorate
when the correlations are removed. Therefore, this suggests that the GF
model based methods can benefit from data correlations. Moreover, it is also
evident that the correlation of the user average rating is more significant than
that of the overall average rating, since the performance decreases more dras-
tically when the user average rating is eliminated. It can be supposed that
the GF model based methods may be more effective when strong correlation
exists among the data.

4.3.6. Effect of median value

As the median value is used to complete k ratings when the user does not
rate enough items, it is necessary to compare with the traditional item based
CF taking the same preprocessing. Item based CF++ is such a variant of
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Figure 12: RMSE value comparisons of three methods using MovieLens data set.

Figure 13: MAE value comparisons of three methods using EachMovie data set.

27



Figure 14: RMSE value comparisons of three methods using EachMovie data set.

item based CF method, which uses the median value as the default rating
when the user have not given a rating to the item which is one of the k

nearest neighbors of the target item. Therefore, there are always k ratings
for the weighted sum in the prediction process. The performance comparison
is shown in Table 5, where k is set to be 15 for both.

Table 5: Comparison with the improved item based CF

Metric
MovieLens EachMovie

Item based
CF++

Cosine based
GF

Item based
CF++

Cosine based
GF

MAE 0.7956 0.7152 0.8796 0.8364

RMSE 0.9922 0.9258 1.0777 1.0629

Precision 0.8986 0.8936 0.8451 0.8352
Recall 0.8451 0.9385 0.8374 0.9424

F-measure 0.871 0.9155 0.8412 0.8856

The GF model based method consistently outperforms item based CF++
in terms of error metrics and classification metrics except precision. However,
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their precisions are about the same. Because item based CF++ alleviates
data sparsity using median value as the default, it achieves better perfor-
mance than traditional item based CF. However, its predictions are around
the median value, which results in mediocre performance in classification
metrics. Actually, the ratings for most users (Ratings Per User in Table 4)
are enough for GF model based methods when k equals to 15, therefore,
only small part of testing pairs need to use the median value to complete
the rating sequences. Furthermore, since the median values have the lowest
similarity, they contribute less to the final predictions as described in Sec-
tion 3.2. Consequently, these indicate that GF model based methods achieve
outstanding performance independent of the median value.

4.3.7. Time complexity analysis

GF model based methods have the same time complexity with that of
ICF method in constructing item similarity matrix, which is O(m2), where
m is the number of items. In the procedure of prediction, kCF multiplica-
tions are needed for ICF, where kCF is the number of nearest neighbors.
Intuitively, when the input rating sequences are the same, GF model based
methods will produce the same prediction. Therefore, if we assume s (All
ratings are integers from 1 to s) as the rating scale and kGF as the number
of neighbors, there are only sKGF combinations for the rating sequence. In
our experiment design, the sKGF unique predictions are generated offline and
stored in memory. Each rating sequence is mapped into a key which is used
to get the prediction from memory. Then, the time complexity decreases to
kGF with binary search. As illustrated in Figs. 3-6, GF model based meth-
ods can achieve high performance even when kGF is small, while kCF is much
bigger in ICF. For example, kCF =100, kGF=5, s=5, then, kGF log s ≪ KCF ,
while the storage consumption is less than 1M. Therefore, we can consume
little storage space to achieve better time efficiency. The time consumption
of model building in SVD is proportional to the size of training set which
is much less than the one of item similarity matrix constructing when the
data set is sparse. After the model is constructed, the time consumption of
prediction is kSVD for SVD, where kSVD is the number of factors. In general,
kSVD has the same scale with kCF and increases as the sparsity of data set
increases. However, the model parameters need to be re-estimated when new
ratings are injected. In practice, item similarity is stable which means we
do not need to frequently update the similarity matrix. Therefore we can
reduce the frequency of similarity calculation to make GF model based meth-
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ods more efficient. Moreover, its prediction efficiency can be greatly improved
by using little storage space to store the possible predictions beforehand.

5. Conclusions and future work

Since the existing similarity measurement methods, such as Cosine Dis-
tance and Pearson Correlation, cannot accurately compute the similarities
between users or items when the data is sparse or when there are strong data
correlations, UCF and ICF methods do not perform well when it comes to
prediction accuracy. In this paper, we used the GF model for rating predic-
tion in recommender systems and conducted a series of experiments on two
public movie data sets, namely, MovieLens and EachMovie. The experimen-
tal results demonstrated that the GF model based methods can overcome
the problem of data sparsity, benefit from data correlations, and outperform
conventional memory based CF (ICF) methods. In particular, even when
only 15 nearest neighbors are adopted, the GF model based method still re-
duces the prediction error by over 20% in terms of MAE and RMSE when
compared to the ICF method with 100 nearest neighbors. Although the
state-of-the-art methods, such as the matrix factorization based methods,
perform better than the GF model based methods in terms of error met-
rics, the latter presents comparative, or sometimes even better, performance
in terms of classification metrics—which are more valuable for algorithmic
estimation in real-world systems as compared to error metrics.

Improving the accuracy of recommendations has been extensively in-
vestigated. In this paper, we adopt a mature forecasting model used in
economics—called the GF model—to gain high-accuracy recommendations.
This fosters a new era in prediction wherein advanced technologies in other
fields can employ novel recommender algorithms, and the various problems
in recommender systems, such as data sparsity and data correlation, can
be overcome. As an effective rating prediction method, the GF model has
room for improvement. In our future work, we consider the case when the
user does not rate a sufficient number of k items, the average of the user’s
ratings on all the items is used instead of a fixed value to complete the k

ratings. Moreover, we will also try to employ GF model based methods for
larger data sets, and it is our target to implement the proposed method into
recommender systems for real world applications. Actually, we are planning
to apply it for video recommendation on iqiyi.com website.
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Appendix A.

Theorem 1. In a nonorthogonal coordinate space, the cosine of the angle
between two vectors cannot be computed directly by using Eq. (1) or Eq.
(2). An orthogonal transformation is needed.

Proof. We define (e1,e2,. . . ,en) as the standard orthogonal basis of an

n-dimensional vector space, i.e., ei =

(
0, . . . , 0
︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0
)

T

Assume (α1, α2,. . . , αn)is an arbitrary basis of ℜn;then, (α1, α2,. . . , αn)
= (e1, e2,. . . , en)A, where ei, αi are column vectors and A is the Rn×n

transition matrix from(e1, e2,. . . , en) to (α1, α2,. . . , αn). In terms of the
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basis (α1, α2,. . . , αn), suppose the coordinates of the vectors β1,β2 are x =
(
x1, x2, . . . , xn

)
T and y =

(
y1, y2, . . . , yn

)
T , respectively. Equivalently, β1 =

(α1, α2,. . . , αn)x and β2 = (α1, α2,. . . , αn)y.The cosine of the angle between
vectors β1,β2 can be calculated as cos<β1,β2>= β1·β2

||β1||||β2||
.

β1 · β2 = β1
Tβ2 = xT (α1

T , α2
T , . . . , αn

T )
T
(α1, α2, . . . , αn)y = xTFy (A.1)

Similarly,||β1| |
2 = β1·β2 = xTFx,||β1| |

2 = β1·β2 = yTFy. Further, F de-
notes the measurement matrix in terms of the basis (α1, α2,. . . , αn), namely,








(α1, α1) (α1, α2) · · · (α1, αn)
(α2, α1) (α2, α2) · · · (α2, αn)

...
...

. . .
...

(αn, α1) (αn, α2) · · · (αn, αn)








(A.2)

Let E be the measurement matrix in terms of the basis (e1,e2,. . . ,en); obvi-
ously, E = I, where I is the n-dimensional unit vector; then,

F = (αT
1 , α

T
2 , . . . , α

T
n )

T (α1, α2, . . . , αn)

= AT (eT1 , e
T
2 , . . . , e

T
n )

T (e1, e2, . . . , en)A

= ATEA = ATA

(A.3)

Therefore,

β1 · β2 = xTFy = xTATAy = (Ax)TAy

‖β1‖
2 = xTFx = (Ax)TAx

‖β2‖
2 = yTFy = (Ay)TAy

(A.4)

Hence,cos< β1,β2 > = (AX)TAy

(AX)TAx(Ay)TAy
, which is XT y

||x||||y||
only when A = E;

therefore, the basis is a standard orthogonal basis. Therefore, in a nonorthog-
onal coordinate space, we cannot directly use Eq. (1) or Eq. (2) to compute
the cosine of the angle between two vectors. As the Pearson Correlation is
a variation of the Cosine Distance method for similarity measurement, the
theorem is also applicable to Eq. (3) and Eq. (4).
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