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Abstract. Two major trends in computing systems are the growth
in high performance computing (HPC) with in particular an interna-
tional exascale initiative, and big data with an accompanying cloud in-
frastructure of dramatic and increasing size and sophistication. In this
paper, we study an approach to convergence for software and applica-
tions/algorithms and show what hardware architectures it suggests. We
start by dividing applications into data plus model components and clas-
sifying each component (whether from Big Data or Big Compute) in the
same way. This leads to 64 properties divided into 4 views, which are
Problem Architecture (Macro pattern); Execution Features (Micro pat-
terns); Data Source and Style; and finally the Processing (runtime) View.
We discuss convergence software built around HPC-ABDS (High Perfor-
mance Computing enhanced Apache Big Data Stack) and show how one
can merge Big Data and HPC (Big Simulation) concepts into a single
stack and discuss appropriate hardware.
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1 Introduction

Two major trends in computing systems are the growth in high performance
computing (HPC) with an international exascale initiative, and the big data phe-
nomenon with an accompanying cloud infrastructure of well publicized dramatic
and increasing size and sophistication. There has been substantial discussion
of the convergence of big data analytics, simulations and HPC [1, 11–13, 29, 30]
highlighted by the Presidential National Strategic Computing Initiative [5]. In
studying and linking these trends and their convergence, one needs to consider
multiple aspects: hardware, software, applications/algorithms and even broader
issues like business model and education. Here we focus on software and appli-
cations/algorithms and make comments on the other aspects. We discuss appli-
cations/algorithms in section 2, software in section 3 and link them and other
aspects in section 4.

2 Applications and Algorithms

We extend the analysis given by us [18, 21], which used ideas in earlier parallel
computing studies [8,9,31] to build a set of Big Data application characteristics
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with 50 features– called facets – divided into 4 views. As it incorporated the ap-
proach of the Berkeley dwarfs [8] and included features from the NRC Massive
Data Analysis Reports Computational Giants [27], we termed these characteris-
tics as Ogres. Here we generalize approach to integrate Big Data and Simulation
applications into a single classification that we call convergence diamonds with
a total of 64 facets split between the same 4 views. The four views are Problem
Architecture (Macro pattern abbreviated PA); Execution Features (Micro pat-
terns abbreviated EF); Data Source and Style (abbreviated DV); and finally the
Processing (runtime abbreviated Pr) View.

The central idea is that any problem – whether Big Data or Simulation,
and whether HPC or cloud-based, can be broken up into Data plus Model.
The DDDAS approach is an example where this idea is explicit [3]. In a Big
Data problem, the Data is large and needs to be collected, stored, managed and
accessed. Then one uses Data Analytics to compare some Model with this data.
The Model could be small such as coordinates of a few clusters or large as in a
deep learning network; almost by definition the Data is large!

On the other hand for simulations the model is nearly always big – as in values
of fields on a large space-time mesh. The Data could be small and is essentially
zero for Quantum Chromodynamics simulations and corresponds to the typically
small boundary conditions for many simulations; however climate and weather
simulations can absorb large amounts of assimilated data. Remember Big Data
has a model, so there are model diamonds for big data they describe analytics.
The diamonds and their facets are given in a table put in the appendix. They
are summarized above in Figure 1.

Comparing Big Data and simulations is not so clear; however comparing the
model in simulations and the model in Big Data is straightforward while the
data in both cases can be treated similarly. This simple idea lies at heart of our
approach to Big Data - Simulation convergence. In the convergence diamonds
given in Table presented in Appendix, one divides the facets into three types

1. Facet n (without D or M) refers to a facet of system including both data
and model – 16 in total.

2. Facet nD is a Data only facet – 16 in Total

3. Facet nM is a Model only facet – 32 in total

The increase in total facets and large number of model facets corresponds
mainly to adding Simulation facets to the Processing View of the Diamonds.
Note we have included characteristics (facets) present in the Berkeley Dwarfs
and NAS Parallel Benchmarks as well the NRC Massive Data Analysis Com-
putational Giants. For some facets there are separate data and model facets. A
good example in Convergence Diamond Micropatterns or Execution Features is
that EF-4D is Data Volume and EF-4M Model size.

The views Problem Architecture; Execution Features; Data Source and Style;
and Processing (runtime) are respectively mainly System Facets, a mix of sys-
tem, model and data facets; mainly data facets with the final view entirely model
facets. The facets tell us how to compare diamonds (instances of big data and
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Fig. 1. Summary of the 64 facets in the Convergence Diamonds
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simulation applications) and see which system architectures are needed to sup-
port each diamond and which architectures across multiple diamonds including
those from both simulation and big data areas.

In several papers [17, 33, 34] we have looked at the model in big data prob-
lems and studied the model performance on both cloud and HPC systems. We
have shown similarities and differences between models in simulation and big
data area. In particular the latter often need HPC hardware and software en-
hancements to get good performances. There are special features of each class;
for example simulations often have local connections between model points cor-
responding either to the discretization of a differential operator or a short range
force. Big data sometimes involve fully connected sets of points and these for-
mulations have similarities to long range force problems in simulation. In both
regimes we often see linear algebra kernels but the sparseness structure is rather
different. Graph data structures are present in both cases but that in simula-
tions tends to have more structure. The linkage between people in Facebook
social network is less structured than the linkage between molecules in a com-
plex biochemistry simulation. However both are graphs with some long range
but many short range interactions. Simulations nearly always involve a mix of
point to point messaging and collective operations like broadcast, gather, scatter
and reduction. Big data problems sometimes are dominated by collectives as op-
posed to point to point messaging and this motivates the map collective problem
architecture facet PA-3 above. In simulations and big data, one sees a similar
BSP (loosely synchronous PA-8), SPMD (PA-7) Iterative (EF-11M) and this
motivates the Spark [32], Flink [7], Twister [15,16] approach. Note that pleas-
ingly parallel (PA-1) local (Pr-2M) structure is often seen in both simulations
and big data.

In [33, 34] we introduce Harp as a plug-in to Hadoop with scientific data
abstractions, support of iterations and high quality communication primitives.
This runs with good performance on several important data analytics includ-
ing Latent Dirichlet Allocation LDA, clustering and dimension reduction. Note
LDA has a non trivial structure sparse structure coming from an underlying bag
of words model for documents. In [17], we look at performance in great detail
showing excellent data analytics speed up on an Infiniband connected HPC clus-
ter using MPI. Deep Learning [14,24] has clearly shown importance of HPC and
uses many ideas originally developed for simulations.

Above we discuss models in the big data and simulation regimes; what about
the data? Here we see the issue as perhaps less clear but convergence does not
seem difficult technically. Given models can be executed on HPC systems when
needed, it appears reasonable to use a different architecture for the data with the
big data approach of hosting data on clouds quite attractive. HPC has tended not
to use big data management tools but rather to host data on shared file systems
like Lustre. We expect this to change with object stores and HDFS approaches
gaining popularity in the HPC community. It is not clear if HDFS will run
on HPC systems or instead on co-located clouds supporting the rich object,
SQL, NoSQL and NewSQL paradigms. This co-location strategy can also work
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for streaming data with in the traditional Apache Storm-Kafka map streaming
model (PA-5) buffering data with Kafka on a cloud and feeding that data to
Apache Storm that may need HPC hardware for complex analytics (running
on bolts in Storm). In this regard we have introduced HPC enhancements to
Storm [26].

We believe there is an immediate need to investigate the overlap of appli-
cation characteristics and classification from high-end computing and big data
ends of the spectrum. Here we have shown how initial work [21] to classify big
data applications can be extended to include traditional high-performance ap-
plications. Can traditional classifications for high-performance applications [8]
be extended in the opposite direction to incorporate big data applications? And
if so, is the end result similar, overlapping or very distinct to the preliminary
classification proposed here? Such understanding is critical in order to eventu-
ally have a common set of benchmark applications and suites [10] that will guide
the development of future systems that must have a design point that provides
balanced performance.

Note applications are instances of Convergence Diamonds. Each instance will
exhibit some but not all of the facets of Fig. 1. We can give an example of the
NAS Parallel Benchmark [4] LU (Lower-Upper symmetric Gauss Seidel) using
MPI. This would be a diamond with facets PA-4, 7, 8; Pr-3M,16M with its
size specified in EF-4M. PA-4 would be replaced by PA-2 if one used (unwisely)
MapReduce for this problem. Further if you read initial data from MongoDB, the
data facet DV-1D would be added. Many other examples are given in section 3
of [18]. For example non-vector clustering in Table 1 of this section is a nice data
analytics example. It exhibits Problem Architecture view PA-3, PA-7, and PA-
8; Execution Features EF-9D (Static), EF-10D (Regular), EF-11M (iterative),
EF-12M (bag of items), EF-13D (Non-metric), EF-13M(Non metric), and EF-
14M(O(N2) algorithm); Processing view Pr-3M, Pr-9M (Machine learning and
Expectation maximization), and Pr-12M (Full matrix, Conjugate Gradient).

3 HPC-ABDS Convergence Software

In previous papers [20, 25, 28], we introduced the software stack HPC-ABDS
(High Performance Computing enhanced Apache Big Data Stack) shown on-
line [4] and in Figures 2 and 3. These were combined with the big data application
analysis [6, 19, 21] in terms of Ogres that motivated the extended convergence
diamonds in section 2. We also use Ogres and HPC-ABDS to suggest a system-
atic approach to benchmarking [18,22]. In [23] we described the software model
of Figure 2 while further details of the stack can be found in an online course [2]
that includes a section with about one slide (and associated lecture video) for
each entry in Figure 2.

Figure 2 collects together much existing relevant systems software coming
from either HPC or commodity sources. The software is broken up into layers so
software systems are grouped by functionality. The layers where there is especial
opportunity to integrate HPC and ABDS are colored green in Figure 2. This is
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Kaleidoscope of (Apache) Big Data Stack (ABDS) and HPC Technologies  

Cross-Cutting 

Functions 

17) Workflow-Orchestration: ODE, ActiveBPEL, Airavata, Pegasus, Kepler, Swift, Taverna, Triana, 

Trident, BioKepler, Galaxy, IPython, Dryad, Naiad, Oozie, Tez, Google FlumeJava, Crunch, Cascading, 

Scalding, e-Science Central, Azure Data Factory, Google Cloud Dataflow, NiFi (NSA), Jitterbit, Talend, 

Pentaho, Apatar, Docker Compose, KeystoneML 
1) Message and 

Data Protocols: 

Avro, Thrift, 

Protobuf 

16) Application and Analytics: Mahout , MLlib , MLbase, DataFu, R, pbdR, Bioconductor, ImageJ, 

OpenCV, Scalapack, PetSc, PLASMA MAGMA, Azure Machine Learning, Google Prediction API & 

Translation API, mlpy, scikit-learn, PyBrain, CompLearn, DAAL(Intel), Caffe, Torch, Theano, DL4j, 

H2O, IBM Watson, Oracle PGX, GraphLab, GraphX, IBM System G, GraphBuilder(Intel), TinkerPop, 

Parasol, Dream:Lab, Google Fusion Tables, CINET, NWB, Elasticsearch, Kibana, Logstash, Graylog, 

Splunk, Tableau, D3.js, three.js, Potree, DC.js, TensorFlow, CNTK 

2) Distributed 

Coordination: 

Google Chubby, 

Zookeeper, 

Giraffe, JGroups 

15B) Application Hosting Frameworks: Google App Engine, AppScale, Red Hat OpenShift, Heroku, 

Aerobatic, AWS Elastic Beanstalk, Azure, Cloud Foundry, Pivotal, IBM BlueMix, Ninefold, Jelastic, 

Stackato, appfog, CloudBees, Engine Yard, CloudControl, dotCloud, Dokku, OSGi, HUBzero, OODT, 

Agave, Atmosphere 

15A) High level Programming: Kite, Hive, HCatalog, Tajo, Shark, Phoenix, Impala, MRQL, SAP 

HANA, HadoopDB, PolyBase, Pivotal HD/Hawq, Presto, Google Dremel, Google BigQuery, Amazon 

Redshift, Drill, Kyoto Cabinet, Pig, Sawzall, Google Cloud DataFlow, Summingbird 
3) Security & 

Privacy: 

InCommon, 

Eduroam, 

OpenStack, 

Keystone, LDAP, 

Sentry, Sqrrl, 

OpenID, SAML 

OAuth 

14B) Streams: Storm, S4, Samza, Granules, Neptune, Google MillWheel, Amazon Kinesis, LinkedIn, 

Twitter Heron, Databus, Facebook Puma/Ptail/Scribe/ODS, Azure Stream Analytics, Floe, Spark 

Streaming, Flink Streaming, DataTurbine 

14A) Basic Programming model and runtime, SPMD, MapReduce: Hadoop, Spark, Twister, MR-MPI, 

Stratosphere (Apache Flink), Reef, Disco, Hama, Giraph, Pregel, Pegasus, Ligra, GraphChi, Galois, 

Medusa-GPU, MapGraph, Totem 
13) Inter process communication Collectives, point-to-point, publish-subscribe: MPI, HPX-5, Argo 

BEAST HPX-5 BEAST PULSAR, Harp, Netty, ZeroMQ, ActiveMQ, RabbitMQ, NaradaBrokering, QPid, 

Kafka, Kestrel, JMS, AMQP, Stomp, MQTT, Marionette Collective,  Public Cloud: Amazon SNS, 

Lambda, Google Pub Sub, Azure Queues, Event Hubs 
4) Monitoring: 

Ambari, Ganglia, 

Nagios, Inca 

12) In-memory databases/caches: Gora (general object from NoSQL), Memcached, Redis, LMDB (key 

value), Hazelcast, Ehcache, Infinispan, VoltDB, H-Store 
12) Object-relational mapping: Hibernate, OpenJPA, EclipseLink, DataNucleus, ODBC/JDBC  

12) Extraction Tools: UIMA, Tika 

21 layers 

Over 350 

Software 

Packages 

 

January 29 

2016 

11C) SQL(NewSQL): Oracle, DB2, SQL Server, SQLite, MySQL, PostgreSQL, CUBRID, Galera 

Cluster, SciDB, Rasdaman, Apache Derby, Pivotal Greenplum, Google Cloud SQL, Azure SQL, Amazon 

RDS, Google F1, IBM dashDB, N1QL, BlinkDB, Spark SQL 
11B) NoSQL: Lucene, Solr, Solandra, Voldemort, Riak, ZHT, Berkeley DB, Kyoto/Tokyo Cabinet, 

Tycoon, Tyrant, MongoDB, Espresso, CouchDB, Couchbase, IBM Cloudant, Pivotal Gemfire, HBase, 

Google Bigtable, LevelDB, Megastore and Spanner, Accumulo, Cassandra, RYA, Sqrrl, Neo4J, graphdb, 

Yarcdata, AllegroGraph, Blazegraph, Facebook Tao, Titan:db, Jena, Sesame 

Public Cloud: Azure Table, Amazon Dynamo, Google DataStore 
11A) File management: iRODS, NetCDF, CDF, HDF, OPeNDAP, FITS, RCFile, ORC, Parquet 

10) Data Transport: BitTorrent, HTTP, FTP, SSH, Globus Online (GridFTP), Flume, Sqoop, Pivotal 

GPLOAD/GPFDIST 

9) Cluster Resource Management: Mesos, Yarn, Helix, Llama, Google Omega, Facebook Corona, 

Celery, HTCondor, SGE, OpenPBS, Moab, Slurm, Torque, Globus Tools, Pilot Jobs 
8) File systems: HDFS, Swift, Haystack, f4, Cinder, Ceph, FUSE, Gluster, Lustre, GPFS, GFFS 

Public Cloud: Amazon S3, Azure Blob, Google Cloud Storage 
7) Interoperability: Libvirt, Libcloud, JClouds, TOSCA, OCCI, CDMI, Whirr, Saga, Genesis 

6) DevOps: Docker (Machine, Swarm), Puppet, Chef, Ansible, SaltStack, Boto, Cobbler, Xcat, Razor, 

CloudMesh, Juju, Foreman, OpenStack Heat, Sahara, Rocks, Cisco Intelligent Automation for Cloud, 

Ubuntu MaaS, Facebook Tupperware, AWS OpsWorks, OpenStack Ironic, Google Kubernetes, Buildstep, 

Gitreceive, OpenTOSCA, Winery, CloudML, Blueprints, Terraform, DevOpSlang, Any2Api 
5) IaaS Management from HPC to hypervisors: Xen, KVM, QEMU, Hyper-V, VirtualBox, OpenVZ, 

LXC, Linux-Vserver, OpenStack, OpenNebula, Eucalyptus, Nimbus, CloudStack, CoreOS, rkt, VMware 

ESXi, vSphere and vCloud, Amazon, Azure, Google and other public Clouds  

Networking: Google Cloud DNS, Amazon Route 53 

 

Fig. 2. Big Data and HPC Software subsystems arranged in 21 layers. Green layers
have a significant HPC integration
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Fig. 3. Comparison of Big Data and HPC Simulation Software Stacks

termed HPC-ABDS (High Performance Computing enhanced Apache Big Data
Stack) as many critical core components of the commodity stack (such as Spark
and Hbase) come from open source projects while HPC is needed to bring per-
formance and other parallel computing capabilities [23]. Note that Apache is the
largest but not only source of open source software; we believe that the Apache
Foundation is a critical leader in the Big Data open source software movement
and use it to designate the full big data software ecosystem. The figure also
includes proprietary systems as they illustrate key capabilities and often moti-
vate open source equivalents. We built this picture for big data problems but it
also applies to big simulation with caveat that we need to add more high level
software at the library level and more high level tools like Global Arrays. This
will become clearer in the next section when we discuss Figure 2 in more detail.

The essential idea of our Big Data HPC convergence for software is to make
use of ABDS software where possible as it offers richness in functionality, a com-
pelling open-source community sustainability model and typically attractive user
interfaces. ABDS has a good reputation for scale but often does not give good
performance. We suggest augmenting ABDS with HPC ideas especially in the
green layers of Figure 2. We have illustrated this with Hadoop [33,34], Storm [26]
and the basic Java environment [17]. We suggest using the resultant HPC-ABDS
for both big data and big simulation applications. In the language of Figure 2, we
use the stack on left enhanced by the high performance ideas and libraries of the
classic HPC stack on the right. As one example we recommend using enhanced
MapReduce (Hadoop, Spark, Flink) for parallel programming for simulations
and big data where its the model (data analytics) that has similar requirements
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to simulations. We have shown how to integrate HPC technologies into MapRe-
duce to get performance expected in HPC [34] and that on the other hand if
the user interface is not critical, one can use a simulation technology (MPI) to
drive excellent data analytics performance [17]. A byproduct of these studies is
that classic HPC clusters make excellent data analytics engine. One can use the
convergence diamonds to quantify this result. These define properties of appli-
cations between both data and simulations and allow one to specify hardware
and software requirements uniformly over these two classes of applications.

4 Convergence Systems

Fig. 4. Dual Convergence Architecture

Figure 3 contrasts modern ABDS and HPC stacks illustrating most of the
21 layers and labelling on left with layer number used in Figure 2. The omitted
layers in Figure 2 are Interoperability, DevOps, Monitoring and Security (layers
7, 6, 4, 3) which are all important and clearly applicable to both HPC and
ABDS. We also add in Figure 3, an extra layer corresponding to programming
language, which feature is not discussed in Figure 2. Our suggested approach is
to build around the stacks of Figure 2, taking the best approach at each layer
which may require merging ideas from ABDS and HPC. This converged stack is
still emerging but we have described some features in the previous section. Then
this stack would do both big data and big simulation as well the data aspects
(store, manage, access) of the data in the data plus model framework. Although
the stack architecture is uniform it will have different emphases in hardware
and software that will be optimized using the convergence diamond facets. In
particular the data management will usually have a different optimization from
the model computation.

Thus we propose a canonical dual system architecture sketched in Figure 4
with data management on the left side and model computation on the right. As
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drawn the systems are the same size but this of course need not be true. Further
we depict data rich nodes on left to support HDFS but that also might not be
correct – maybe both systems are disk rich or maybe we have a classic Lustre
style system on the model side to mimic current HPC practice. Finally the sys-
tems may in fact be coincident with data management and model computation
on the same nodes. The latter is perhaps the canonical big data approach but
we see many big data cases where the model will require hardware optimized
for performance and with for example high speed internal networking or GPU
enhanced nodes. In this case the data may be more effectively handled by a
separate cloud like cluster. This depends on properties recorded in the facets
of the Convergence Diamonds for application suites. These ideas are built on
substantial experimentation but still need significant testing as they have not be
looked at systematically.

We suggested using the same software stack for both systems in the dual
Convergence system. Now that means we pick and chose from HPC-ABDS on
both machines but we neednt make same choice on both systems; obviously the
data management system would stress software in layers 10 and 11 of Figure 2
while the model computation would need libraries (layer 16) and programming
plus communication (layers 13-15).
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Appendix: Convergence Diamonds with 64 Facets

These are discussed in Section 2 and summarized in Figure 1

Table 1: Convergence Diamonds and their Facets.

Facet and View Comments
PA: Problem Architecture View of Diamonds

(Meta or MacroPatterns)
Nearly all are the system of Data and Model

Continued on next page
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Facet and View Comments
PA-1 Pleasingly Parallel As in BLAST, Protein docking. Includes Local

Analytics or Machine Learning ML or filtering
pleasingly parallel, as in bio-imagery, radar im-
ages (pleasingly parallel but sophisticated local
analytics)

PA-2 Classic MapReduce Search, Index and Query and Classification al-
gorithms like collaborative filtering.

PA-3 Map-Collective Iterative maps + communication dominated by
collective operations as in reduction, broadcast,
gather, scatter. Common datamining pattern
but also seen in simulations

4 Map Point-to-Point Iterative maps + communication dominated by
many small point to point messages as in graph
algorithms and simulations

PA-5 Map Streaming Describes streaming, steering and assimilation
problems

PA-6

Shared memory
(as opposed to

distributed parallel
algorithm)

Corresponds to problem where shared memory
implementations important. Tend to be
dynamic and asynchronous

PA-7 SPMD Single Program Multiple Data, common paral-
lel programming feature

PA-8
Bulk

Synchronous
Processing (BSP)

Well-defined compute-communication phases

PA-9 Fusion Full applications often involves fusion of multi-
ple methods. Only present for composite Dia-
monds

PA-10 Dataflow Important application features often occurring
in composite Diamonds

PA-11M Agents Modelling technique used in areas like epidemi-
ology (swarm approaches)

PA-12
Orchestration

(workflow)
All applications often involve orchestration
(workflow) of multiple components

EF: Diamond Micropatterns or Execution Features

EF-1
Performance

Metrics
Result of Benchmark

EF-2
Flops/byte

(Memory or I/O).
Flops/watt (power).

I/O Not needed for pure in memory benchmark.

Continued on next page



Big Data, Simulations and HPC Convergence 13

Facet and View Comments

EF-3
Execution

Environment
Core libraries needed: matrix-matrix/vector al-
gebra, conjugate gradient, reduction, broad-
cast; Cloud, HPC, threads, message passing
etc. Could include details of machine used for
benchmarking here

EF-4D Data Volume Property of a Diamond Instance. Benchmark
measure

EF-4M Model Size
EF-5D Data Velocity Associated with streaming facet but value de-

pends on particular problem. Not applicable to
model

EF-6D Data Variety Most useful for composite Diamonds. Applies
separately for model and data

EF-6M Model Variety
EF-7 Veracity Most problems would not discuss but poten-

tially important

EF-8M
Communication

Structure
Interconnect requirements; Is communication
BSP, Asynchronous, Pub-Sub, Collective, Point
to Point? Distribution and Synch

EF-9D
D=Dynamic

or S=Static Data
Clear qualitative properties. Importance famil-
iar from parallel computing and important sep-
arately for data and model

EF-9M
D=Dynamic

or S=Static Model
Clear qualitative properties.
Importance familiar from parallel computing
and important separately for data and modelEF-10D

R=Regular
or I=Irregular Data

EF-10M
R=Regular

or I=Irregular Model

EF-11M
Iterative
or not?

Clear qualitative property of Model. High-
lighted by Iterative MapReduce and always
present in classic parallel computing

EF-12D
Data

Abstraction
e.g. key-value, pixel, graph, vector, bags of
words or items. Clear quantitative property al-
though important data abstractions not agreed
upon. All should be supported by Programming
model and run time

EF-12M
Model

Abstraction
e.g. mesh points, finite element, Convolutional
Network.

Continued on next page
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Facet and View Comments

EF-13D
Data in

Metric Space
or not?

Important property of data.

EF-13M
Model in

Metric Space
or not?

Often driven by data but model and data can
be different here

EF-14M
O(N2) or O(N)

Complexity?
Property of Model algorithm

DV: Data Source and Style View of Diamonds
(No model involvement except in DV-9)

DV-1D
SQL/NoSQL/

NewSQL?
Can add NoSQL sub-categories such as key-
value, graph, document, column, triple store

DV-2D
Enterprise
data model

e.g. warehouses. Property of data model high-
lighted in database community / industry
benchmarks

DV-3D Files or Objects? Clear qualitative property of data model where
files important in Science; objects in industry

DV-4D File or Object System HDFS/Lustre/GPFS. Note HDFS important in
Apache stack but not much used in science

DV-5D

Archived
or Batched

or Streaming

Streaming is incremental update of datasets
with new algorithms to achieve real-time
response; Before data gets to compute system,
there is often an initial data gathering phase
which is characterized by a block size and
timing. Block size varies from month (Remote
Sensing, Seismic) to day (genomic) to seconds
or lower (Real time control, streaming)

Streaming
Category S1)

S1) Set of independent events where precise
time sequencing unimportant.

Streaming
Category S2)

S2) Time series of connected small events where
time ordering important.

Streaming
Category S3)

S3) Set of independent large events where each
event needs parallel processing with time se-
quencing not critical

Streaming
Category S4)

S4) Set of connected large events where each
event needs parallel processing with time se-
quencing critical.

Continued on next page
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Facet and View Comments
Streaming

Category S5)
S5) Stream of connected small or large events
to be integrated in a complex way.

DV-6D

Shared and/or
Dedicated and/or
Transient and/or

Permanent

Clear qualitative property of data whose
importance is not well studied. Other
characteristics maybe needed for auxiliary
datasets and these could be interdisciplinary,
implying nontrivial data movement/replication

DV-7D
Metadata

and Provenance
Clear qualitative property but not for kernels
as important aspect of data collection process

DV-8D Internet of Things Dominant source of commodity data in future.
24 to 50 Billion devices on Internet by 2020

DV-9
HPC Simulations

generate Data
Important in science research especially at ex-
ascale

DV-10D
Geographic
Information

Systems
Geographical Information Systems provide at-
tractive access to geospatial data

Pr: Processing (runtime) View of Diamonds
Useful for Big data and Big simulation

Pr-1M Micro-benchmarks Important subset of small kernels

Pr-2M
Local Analytics
or Informatics
or Simulation

Executes on a single core or perhaps node and
overlaps Pleasingly Parallel

Pr-3M
Global Analytics

or Informatics
or simulation

Requiring iterative programming models across
multiple nodes of a parallel system

Pr-12M

Linear
Algebra Kernels

Important property of some analytics

Many
important
subclasses

Conjugate Gradient, Krylov, Arnoldi iterative
subspace methods
Full Matrix
Structured and unstructured sparse matrix
methods

Pr-13M Graph Algorithms Clear important class of algorithms often hard
especially in parallel

Pr-14M Visualization Clearly important aspect of analysis in simula-
tions and big data analyses

Pr-15M Core Libraries Functions of general value such as Sorting,
Math functions, Hashing

Big Data Processing Diamonds

Continued on next page
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Facet and View Comments

Pr-4M
Base Data
Statistics

Describes simple statistical averages needing
simple MapReduce in problem architecture

Pr-5M Recommender Engine Clear type of big data machine learning of es-
pecial importance commercially

Pr-6M
Data Search/
Query/Index

Clear important class of algorithms especially
in commercial applications.

Pr-7M Data Classification Clear important class of big data algorithms
Pr-8M Learning Includes deep learning as category

Pr-9M
Optimization
Methodology

Includes Machine Learning, Nonlinear
Optimization, Least Squares, expectation
maximization, Dynamic Programming, Lin-
ear/Quadratic Programming, Combinatorial
Optimization

Pr-10M
Streaming Data

Algorithms
Clear important class of algorithms associated
with Internet of Things. Can be called DDDAS
Dynamic Data-Driven Application Systems

Pr-11M Data Alignment Clear important class of algorithms as in
BLAST to align genomic sequences

Simulation (Exascale) Processing Diamonds

Pr-16M
Iterative

PDE Solvers
Jacobi, Gauss Seidel etc.

Pr-17M Multiscale Method? Multigrid and other variable resolution ap-
proaches

Pr-18M Spectral Methods Fast Fourier Transform
Pr-19M N-body Methods Fast multipole, Barnes-Hut
Pr-20M Particles and Fields Particle in Cell

Pr-21M
Evolution of

Discrete Systems
Electrical Grids, Chips, Biological Systems,
Epidemiology. Needs ODE solvers

Pr-22M
Nature of

Mesh if used
Structured, Unstructured, Adaptive


