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Harp   
	
Data	 analytics	 is	 undergoing	 a	 revolution	 in	many	 scientific	 domains,	 demanding	 cost-effective	 parallel	 data	
analysis	 techniques.	 We	 consider	 the	 challenges	 of	 creating	 a	 high	 performance	 data	 analysis	 software	
framework	 in	 the	 context	 of	 the	 current	 HPC-ABDS	 software	 stack	 (High	 Performance	 Computing	 enhanced	
Apache	Big	Data	Stack)	[1].	We	have	summarized	a	list	of	current	data	processing	software	from	either	HPC	or	
commercial	sources	[2].	Many	critical	components	of	the	commodity	stack	(such	as	Hadoop)	come	from	Apache	
open	source	projects	 for	community	usage,	while	HPC	 (such	as	collective	communication)	 is	needed	to	bring	
performance	and	other	parallel	computing	capabilities.		
	
Many	machine	learning	algorithms	are	built	on	iterative	computation,	which	can	be	formulated	as		

𝐴" = 𝐹(𝐷, 𝐴"())	 	 	 	 	 	 (1)	
where	D	 is	 the	 observed	 dataset,	A	 is	model	 parameters	 to	 learn,	 and	 F	 is	 the	model	 update	 function.	 The	
algorithm	keeps	updating	model	A	until	convergence,	either	by	reaching	a	threshold	criterion	or	fixed	number	
of	iterations.	There	are	several	advantages	of	this	iterative	procedure	as	apparently	simple	functions	can	iterate	
and	produce	complex	behavior	 for	 interesting	problems.	The	power	of	 iteration	and	 its	extensions	 lies	 in	 the	
approximation	or	accuracy	 that	 can	be	obtained	at	each	 step	even	 if	 the	 computation	 stops	abruptly	before	
converges	to	the	final	answer.		
	
To	 effectively	 support	 large-scale	 data	 processing,	 Twister	 [3]	 introduced	 iterative	 MapReduce	 using	 long-
running	 processes	 or	 threads	 with	 in-memory	 caching	 of	 invariant	 data.	 Harp	 [4]	 introduces	 full	 collective	
communication	in	Table	1	(broadcast,	reduce,	allgather,	allreduce,	rotation,	regroup	or	push	&	pull),	adding	a	
separate	 communication	 abstraction	where	 the	Harp	 prototype	 implements	 the	MapCollective	 concept	 as	 a	
plug-in	 to	 Hadoop	 Ecosystem	 (see	 Figure	 1	 and	 Figure	 2).	 Instead	 of	 using	 the	 shuffling	 phase,	 Harp	 uses	
optimized	 collective	 communication	 operations	 for	 data	 movement	 since	 fine-grained	 data	 alignment	 for	
multiple	 models	 is	 critical	 for	 improving	 performance.	 It	 further	 provides	 high-level	 interfaces	 with	 various	
synchronization	 patterns	 for	 parallelizing	 iterative	 computation.	 These	 enhancements	 make	 it	 possible	 to	
exploit	HPC	capabilities	for	big	data	software	systems.	
	
	

  
	

Figure	1	Map-Collective	Model	

	

Figure	2	Harp	Architecture	

	

Shuffle
M M M M

Collective	Communication

M M M M

R R

MapCollective ModelMapReduce Model

YARN

MapReduce V2

Harp

MapReduce
Applications

MapCollective
ApplicationsApplication

Framework

Resource	Manager



 
 

In	order	to	build	a	general	machine	learning	framework,	we	have	studied	different	parallel	patterns	(kernels)	of	
machine	 learning	 applications,	 looking	 in	 particular	 at	 Gibbs	 Sampling [Gibbs	 Sampling],	 Stochastic	 Gradient	
Descent	 (SGD)	 [5],	 Cyclic	 Coordinate	 Descent	 (CCD)	 [6]	 and	 K-Means	 clustering.	 These	 algorithms	 are	
fundamental	 for	 large-scale	data	analysis	and	cover	several	 important	categories:	Markov	Chain	Monte	Carlo	
(MCMC),	Gradient	Descent	and	Expectation	and	Maximization	(EM).	We	show	that	parallel	iterative	algorithms	
can	 be	 categorized	 into	 four	 types	 of	 computation	 models	 (a)	 locking,	 (b)	 rotation,	 (c)	 allreduce,	 (d)	
asynchronous,	based	on	the	synchronization	patterns	and	the	effectiveness	of	the	model	parameter	update.		
	

	
Figure	3	Computation	Models	

	
Based	on	these	computation	models	and	the	collective	communication	abstractions	defined,	we	propose	a	new	
set	of	model-centric	computation	abstractions	shown	in	Figure	3.	These	set	up	parallel	machine	learning	as	the	
combination	 of	 training	 data-centric	 and	 model	 parameter-centric	 processing.	 Model	 A	 is	 “locking”	 based	
computation	 model	 while	 Model	 D	 is	 an	 “asynchronous”	 model	 that	 allows	 workers	 (mappers)	 to	 fetch	 or	
update	the	same	model	parameters	in	parallel	with	asynchronous	“push”	and	“pull.”	This	contrasts	with	Model	
B	 “allreduce”	 and	 Model	 C	 “rotation,”	 which	 have	 a	 clear	 synchronization	 barrier.	 The	 Allreduce	 model	 is	
effective	 for	machine	 learning	 algorithms	with	 a	 summation	 form,	 but	 it	 doesn’t	 scale	 for	 a	 problem	with	 a	
model	that	cannot	fit	into	the	memory.	Since	rotation	partitions	the	global	model	among	distributed	workers,	it	
effectively	reduces	the	memory	footprint	but	requires	model	synchronization	using	collective	communication.	
	
The	computation	models	provide	the	basis	for	a	systematic	approach	to	parallelizing	iterative	algorithms,	which	
can	 be	 implemented	 on	 different	 programming	 interfaces	 (e.g.	 Harp,	 Petuum,	 MPI,	 Spark,	 Flink)	 and	
implementation	details	 (e.g.	 Java,	C++	 languages).	These	tools	differ	 in	the	computation	models	 they	support	
effectively.	For	example,	“rotation”	has	been	supported	by	Harp	and	Petuum,	while	“broadcast,”	“reduce”	or	
“allreduce”	 have	 been	 implemented	 by	 most	 big	 data	 processing	 tools.	 Note	 that	 although	 the	 5	 Harp	
collectives	 (“broadcast,	 reduce,	 allgather,	 allreduce,	 rotation/shift”)	 correspond	 to	MPI	 operations	 since	 the	
communications	 are	 between	 processes	 (threads	 for	 Harp),	 “regroup”	 and	 “push&pull”	 are	 specific	 to	 data-
driven	solutions	where	a	key	ID	of	the	data	object	decides	the	routing	pattern.	
	

Table 1: Collective Communication Operation Interfaces 
 

Operation 
Name 

Definition Algorithm Time 
Comple
xity broadcast The master worker broadcasts all the partitions to 

the tables on other workers. 
chain 

nβ 
minimum spanning tree 



 
 

reduce 
The partitions from all the workers are reduced to 
the master worker (partitions with the same ID are 
combined). 

minimum spanning tree (log2 p)nβ 

allreduce The partitions from all the workers are reduced and 
received by all the workers. bi-directional exchange (log2 p)nβ 

allgather Partitions from all the workers are gathered on all 
the workers. 

bucket pnβ 

regroup 
Regroup partitions on all the workers based on the 
partition ID (partitions with the same ID are 
combined). 

point-to-point direct sending (log2 p)nβ 

push & pull Partitions are pushed from local tables to the global 
table or pulled from the global table to local tables. 

point-to-point direct sending 
plus routing optimization 

nβ 

rotate Build a virtual ring topology, and rotate partitions 
from a worker to a neighbor worker. 

direct sending between 
neighbors on a ring 

topology 

nβ 

 

Harp	 is	 designed	 with	 a	 hybrid	 distributed	 and	 shared	 memory	 architecture.	 Figures	 3	 and	 4	 show	 that	
distributed	worker	nodes	can	be	synchronized	via	collective	communication	(e.g.	model	rotation	pipeline)	while	
fine-grained	parallelism	 is	achieved	on	a	 shared	memory	architecture.	Here	we	 split	 the	data	and	 the	model	
into	 small	 blocks	 (a	 row	 or	 a	 column	 of	matrices),	which	 the	 scheduler	 randomly	 selects	while	 avoiding	 the	
model	update	conflicts	on	the	same	data	block.		
	

	
	

Figure 3 Model Rotation Figure 4 Dynamic Scheduler for shared memory 
	
Hadoop/Harp on HPC   
We	identify	the	importance	of	the	HPC-ABDS	software	stack	[7,	8,	9,	10]	illustrated	by	Hadoop	(with	the	Harp	
plug-in)	 which	 can	 run	 K-means,	 Graph	 Layout,	 and	 Multidimensional	 Scaling	 algorithms	 with	 realistic	
application	datasets	over	4096	cores	on	the	IU	Big	Red	II	Supercomputer	(Cray/Gemini)	while	achieving	linear	
speedup	[8]	shown	in	figure	5.	This	demonstrates	the	portability	of	HPC-ABDS	to	current	and	future	(exascale)	
HPC	systems.	
	

K-means	Cluster Forced-directed	Graph	Drawing WDA-SMACOF	(MDS) 

    
	

Figure 5 Performance of Hadoop/Harp Applications on the Big Red II Supercomputer	



 
 

We	compare	in	Figure	6	our	Harp	parallel	LDA	(Latent	Dirichlet	Allocation)	[11]	[12]		implementation	with	other	
state-of-the-art	implementations	(Petuum	Strads	LDA	[13]	and	Yahoo!	LDA	[14])	on	two	Intel	Haswell	and	KNL	
clusters	 (one	 with	 Xeon	 E5-2699	 v3	 Haswell	 processors	 and	 another	 with	 Xeon	 Phi	 7250F	 Knights	 Landing	
processors).	We	test	all	three	implementations	side-by-side	over	two	large	datasets.	One	is	“clueweb”	[15]	(76	
million	documents;	1	million	words,	30	billion	tokens)	and	another	is	“enwiki”	(3.8	million	documents;	1	million	
words,	1	billion	tokens).	Both	are	set	up	with	the	same	CGS	parameters	(k	=	10000,	α	=	0.01,	β	=	0.01).	
	

	 	 	 	
Figure 6 Performance of Hadoop/Harp LDA Applications on Intel Haswell and KNL clusters  

(a). clueweb, 24x30, Haswell	 (b). enwiki, 10x30, Haswell	 (c) clueweb, 12x60, Knights Landing	 (d) enwiki, 5x60, Knights Landing	

Figure	 6	 presents	 the	 model	 convergence	 in	 the	 Harp	 at	 different	 data	 and	 scale	 settings.	 Harp	 LDA	
implementation	 is	 significantly	 faster	 than	 other	well	 known	 LDA	 implementations	 (2	 to	 4	 times	 faster	 than	
Petuum	 Strads	 LDA	 and	 10	 times	 faster	 than	 Yahoo!	 LDA).	 All	 the	 implementations	 use	 the	 SparseLDA	
algorithm.	Harp	performance	gain	comes	from	a	set	of	system	optimizations,	exploiting	our	understanding	of	
the	model	convergence	characteristics	and	the	time	complexity	bounds	in	different	stages	of	computation.		

• applying	high-performance	inter-node/intra-node	parallel	computation	models	
• dynamic	control	on	model	synchronization		
• loop	optimization	for	token	sampling	
• utilizing	efficient	data	structures	for	searching	training	tokens	and	model	parameters		
• caching	intermediate	results	in	the	sampling	process	

	
Hadoop/Harp and DAAL  
	
Now	 we	 introduce	 a	 new	 framework,	 Harp-DAAL	 and	 demonstrate	 that	 the	 combination	 of	 Big	 Data	 (e.g.	
Hadoop	with	Harp	plugin)	and	HPC	 (DAAL)	can	achieve	both	productivity	and	performance.	Harp	has	already	
been	 introduced	 and	 is	 a	 distributed	 framework	 based	 on	 Java	 implementations	 while	 DAAL	 is	 Intel’s	 Data	
Analytics	Accelerator	Library	in	C++.	Specifically,	Hadoop/Harp	invokes	DAAL	so	as	to	get	good	performance	of	
machine	learning	kernels	on	both	Intel	Haswell	and	KNL	architectures.	This	way,	high-level	interfaces	of	big	data	
tool	(intro-node	model	synchronization)	can	be	preserved	while	intra-node	fine-grained	parallelism	is	properly	
optimized	 for	different	HPC	nodes.	 Such	a	hybrid	approach	 can	also	apply	 to	GPU	and	other	emerging	node	
hardware	platforms.	
	
In	 the	 experiments,	 we	 select	 three	 typical	 learning	 algorithms	 to	 evaluate	 our	 framework:	 1)	 K-means	
Clustering	 (K-means),	 a	 computation-bounded	 algorithm;	 2)	 Matrix	 Factorization	 by	 Stochastic	 Gradient	
Descent	 (MF-SGD),	 a	 computation-	 bounded	 and	 communication-bounded	 algorithm;	 3)	 Alternating	 least	
squares	 (ALS),	 a	 communication-bounded	algorithm.	We	evaluate	 the	performance	of	Harp-DAAL	 framework	
and	 compare	 it	 with	 Spark	 and	 NOMAD	 implementations.	 Spark-Kmeans	 and	 Spark-ALS	 are	 pure	 Java	
applications	from	Apache	Spark.	NOMAD-SGD	is	a	distributed	MF-SGD	application	in	C/C++	and	MPI.	
	
Through	evaluating	computation	and	communication-bounded	applications,	we	show	that	Harp-DAAL	combines	
advanced	 communication	operations	 from	Harp	 and	high	performance	 computation	 kernels	 from	DAAL.	Our	
framework	achieves	15x	to	40x	speedups	over	Spark-Kmeans	and	25x	to	40x	speedups	to	Spark-ALS.	Compared	



 
 

to	NOMAD-SGD,	a	state-of-the-	art	C/C++	implementation	of	the	MF-SGD	application,	we	still	get	a	factor	of	2.5	
improvement	in	performance.	
	

   
Figure 10. Performance on KNL Single Node 

   
Figure 11. Performance on KNL Multi-Node 

   
       Figure 12. Breakdown of Intra-node Performance 

	
	
Figure	 10	 shows	 the	 execution	 time	 (per	 iteration)	 on	 a	 single	 KNL	 node.	 Each	 subgraph	 compares	 two	
implementations	 on	 the	 same	 algorithm	 with	 different	 datasets.	 (a)	 K-means	 dataset:	 5	 million	 points,	 10	
thousand	 centroids,	 1000	 feature	 dimension;	 (b)	MF-SGD	 dataset:	 1)	Movielens	 9	million	 points,	 40	 feature	
dimension,	2)	Netflix	100	million	points,	40	feature	dimension,	3)	Yahoomusic	250	million	points,	1000	feature	
dimension,	4)	Enwiki	600	million	points,	100	feature	dimension;	(c)	ALS	dataset:	1)	Movielens	9	million	points,	
40	feature	dimension,	2)	Netflix	100	million	points,	40	feature	dimension,	3)	Yahoomusic	250	million	points,	100	
feature	dimension.	
	
Figure	 11	 is	 strong	 scaling	 on	multiple	 KNL	nodes.	 The	bars	 refer	 to	 the	 execution	 time	of	 each	 application.	
Dashed	line	is	the	linear	speedup	of	multiple	nodes	to	a	single	node.	Solid	lines	are	the	measured	speedup	of	
applications	on	multiple	nodes	against	a	single	node.	E.g.,	the	value	25.7	of	the	marker	for	lines	Harp-DAAL-SGD	
in	(b)	 illustrates	a	25.7	speedup	computed	as	T(1)/T(20).	 (a)	K-means	dataset:20	million	points,	100	thousand	
centroids,	 100	 feature	dimension;	 (b)	MF-SGD	dataset,	Hugewiki,	with	 3	 billion	 training	points,	 1000	 feature	
dimension;	(c)	ALS	dataset,	Yahoomusic,	with	250	million	training	points,	100	feature	dimension.	 In	Figure	11	
(a),	Harp-DAAL-Kmeans	runs	15x	to	40x	faster	than	Spark	Kmeans,	and	shows	better	scalability	from	10	nodes	
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to	20.	Beyond	20	nodes,	due	to	low	computation	workload	on	local	nodes,	the	scalability	of	Harp-DAAL-	Kmeans	
drops	while	 Spark-Kmeans	 still	 has	 substantial	 computation	workload.	 It	 suggests	 that	 Spark-Kmeans	 is	more	
computation-bounded	 than	Harp-DAAL-Kmeans	 because	 strong	 scalability	 reflects	 how	 an	 implementation	 is	
bounded	by	local	computations.	Since	Harp-DAAL-Kmeans	invokes	fast	MKL	kernels	at	the	low	level,	it	is	much	
less	 bounded	by	 computation	 time.	 Figure	11	 (b)	 shows	 that	Harp-DAAL-SGD	 runs	2.5x	 faster	 than	NOMAD-
SGD,	 and	 it	 even	 achieves	 super-linear	 scalability	 on	 20	 nodes	 and	 30	 nodes,	 which	 is	 also	 better	 than	 the	
scalability	of	NOMAD-SGD.	
	
Figure	12	is	strong	scaling	on	threads	of	a	single	KNL	node.	(a)	K-means	dataset:	5	million	points,	10	thousand	
centroids,	 100	 feature	 dimension;	 (b)	 MF-SGD	 dataset:	 Yahoomusic	 with	 250	 million	 training	 points,	 1000	
feature	dimension;	(c)	ALS	dataset,	Yahoomusic,	with	250	million	training	points,	100	feature	dimension.	Figure	
6	shows	the	performance	of	K-	means,	MF-SGD	and	ALS	with	varying	numbers	of	threads	on	one	single	node.	
 
Core Algorithms and Applications 
 

Table 3: Core and Optimizations Algorithms 
• 	

Algorithm Category Applications Features Computation 
Model 

Collective 
Communication 

K-means Clustering Clusters for Biology, 
Web, Images  Vectors 

AllReduce 

allreduce, 
regroup+allgather 
broadcast+reduce, 
push+pull 

Rotation rotation 

Multi-class 
Logistic 
Regression 

Classification  Vectors, 
words 

Regroup  

Rotation  

AllReduce  

Random Forests Classification  Vectors AllReduce allreduce 

Support Vector 
Machine 

Classification, 
Regression  Vectors AllReduce allgather 

Neural Networks Classification Image processing, voice 
recognition Vectors AllReduce allreduce 

Latent Dirichlet 
Allocation 

Structure learning  
(Latent topic model) 

Text mining, 
Bioinformatics, Image 
Processing 

Bag of words Rotation rotation, allreduce 

Matrix 
Factorization 

Structure learning 
(Matrix completion) Recommender system Irregular 

sparse Matrix Rotation rotation 

Multi-
Dimensional 
Scaling 

Dimension reduction 
Visualization and 
nonlinear identification 
of principal components 

Vectors AllReduce allgarther, 
allreduce 

Subgraph 
Mining Graph 

Social network analysis, 
fraud detection, chemical 
informatics, 
bioinformatics 

Graph Rotation rotation 

Force Directed 
Graph Drawing Graph Community detection and 

visualization Graph AllReduce allgarther, 
allreduce 

	

	



 
 

Related Work 
	
MapReduce	is	popular	owing	to	its	simplicity	and	scalability,	yet	is	still	slow	when	running	iterative	algorithms.	
Frameworks	 like	 Twister,	 Spark	 [16,	 17]	 and	 HaLoop	 [18]	 solved	 this	 issue	 by	 caching	 the	 training	 data	 and	
developing	 the	 iterative	MapReduce	model.	Another	 iterative	 computation	model	 is	 the	graph	model,	which	
abstracts	data	as	vertices	and	edges	and	executes	 in	Bulk	Synchronous	Parallel	style.	Pregel	[19]	and	its	open	
source	 version	 Giraph	 and	 Hama5	 follow	 this	 design.	 By	 contrast,	 GraphLab	 [20]	 abstracts	 data	 as	 a	 “data	
graph”	 and	 uses	 consistency	 models	 to	 control	 vertex	 value	 updates.	 GraphLab	 (called	 Turi	 now)	 was	 later	
enhanced	with	 PowerGraph	 [21]	 abstraction	 to	 reduce	 the	 communication	 overhead.	 This	was	 also	 used	 by	
GraphX	 [22].	 For	 all	 these	 tools,	 the	 collective	 communication	 is	 still	 implicit	 and	 coupled	with	 the	dataflow.	
Although	some	research	work	[23,	7,	17,	9,	24]	tries	to	add	or	 improve	collective	communication	operations,	
they	are	still	limited	in	operation	types	and	constrained	by	the	dataflow.	The	third	type	of	iterative	computation	
model	 is	 the	Parameter	Server	[25]	and	Petuum	[26]	approach.	Unlike	the	solutions	above,	Parameter	Server	
does	 not	 enforce	 a	 global	 synchronization.	 Parallel	 workers	 can	 exchange	 model	 updates	 asynchronously.	
However,	 this	 modifies	 the	 execution	 dependency	 of	 the	 original	 algorithm	 and	 may	 affect	 the	 model	
convergence	speed.		

 
Table 2: Programming Models and Synchronization Patterns in Tools for Big Data Tools 

Tool Programming Model Synchronization Pattern 
 
 

MPI 

a set of parallel workers are spawned 
with communication support between 
them 

 
send/receive or collective communication operations 

Hadoop  
(iterative) MapReduce, DAG-like 
distributed job execution flow may 
be supported 

disk-based shuffle between Map stage and Reduce stage 
 

Twister in-memory regroup between Map stage and Reduce stage,  “broadcast” and 
“aggregate” 

 
Spark RDD transformations on RDD, “broadcast” and “aggregate” 

 
Giraph 

 
 
 
 
 
BSP model, data are expressed 
as vertices and edges in a graph 

graph-based message communication following Pregel model (messages are 
sent between neighbor vertices) 

 
Hama 

graph-based communication following Pregel model or direct message 
communication between workers. 

 
GraphLab 

(Turi)  

graph-based communication through caching and fetching of ghost vertices 
and edges, or the communication between master vertex and its replicas in 
Power-Graph (GAS) model 

 
GraphX graph-based communication supports both Pregel model and PowerGraph 

model 
 

Parameter Server    
BSP model, or loosely synchronized 
on the parameter server 

asynchronous “push” and “pull” calls are used for fetching model 
parameters from parameter servers to workers 

 
Petuum 

in addition to asynchronous “push” and “pull” calls, the framework 
allows scheduling model parameters between workers 

	
In	 a	 broader	 context,	 the	 schematics	 in	 Figure	 13	 illustrate	 how	 our	 research	 enables	 us	 to	 classify	 data	
intensive	computation	into	six	computation	models	that	map	into	six	distinct	system	architectures.	The	central	
batch	architectures	are	categories	1	to	4,	which	correspond	exactly	to	the	four	forms	of	MapReduce.	Category	4	
is	the	classic	distributed	memory	model,	category	5	is	the	new	Map-streaming	model	we	pioneered	with	the	IU	
network	 science	 group	 [27],	 and	 category	 6	 is	 the	 shared	 memory	 architecture	 needed	 for	 some	 graph	
algorithms	as	well	as	large	memory	applications.		



 
 

 
Figure	13	Six	Computation	Models	for	Data	Analytics	

	
Map-Collective	and	Map-(Point	to	Point)	Communication	are	separated	following	the	Apache	projects	Hadoop,	
Spark,	and	Giraph	which	focus	on	these	cases.	These	programming	models	or	runtimes	differ	in	communication	
style	 (bandwidth	 versus	 latency),	 application	 abstraction	 (key-value	 versus	 graph),	 scheduling	 and	 load-
balancing.	HPC	with	MPI	suggests	that	one	could	 integrate	categories	3	and	4	 into	a	single	environment.	This	
approach	is	 illustrated	by	the	Harp	plug-in	which	supports	both	models	[28].	Most	stream	processing	engines	
such	as	Apache	Storm	organize	distributed	workers	 in	 the	 form	of	a	directed	acyclic	graph,	which	makes	 it	a	
challenge	to	synchronize	the	state	of	parallel	workers	dynamically.		
	
Conclusions and Future Work 
	

	

Hadoop/Harp-DAAL:	Prototype	and	Production	Code	

Source	codes	became	available	on	
Github at	Harp-DAAL	project in	
February,	2017.

• Harp-DAAL	follows	the	same	
standard	of	DAAL’s	original	codes

• Three	applications	
§ Harp-DAAL	Kmeans
§ Harp-DAAL	MF-SGD	

§ Harp-DAAL	MF-ALS
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In	 summary,	 Harp	 is	 designed	 to	 use	 collective	 communication	 techniques	 to	 improve	 the	 performance	 of	
synchronization	 in	 parallel	 iterative	 algorithms.	 The	 advantage	 of	 using	 collective	 communication	 is	 that	 the	
performance	 of	many	 synchronization	 patterns	 can	 be	 optimized.	We	 categorize	 four	 types	 of	 computation	
models	(locking,	rotation,	allreduce,	asynchronous)	based	on	the	synchronization	patterns	and	the	effectiveness	
of	 the	 model	 parameter	 update.	 These	 are	 implemented	 with	 Harp	 collective	 communication	 interfaces	 in	
order	to	simplify	the	implementation	of	parallel	iterative	algorithms.	These	enhancements	are	implemented	as	
a	plugin	to	Hadoop	so	that	Harp	can	support	machine	learning	and	data	analysis	with	HPC	capabilities	for	the	
community	 ecosystems.	 Harp	 is	 portable	 to	 both	 Cloud	 (Hadoop)	 and	 HPC	 platforms	 (e.g.	 Big	 Red	 II	
supercomputing,	Intel	Haswell	and	Knights	Landing	clusters).	
	
The	Harp	framework	has	been	released	as	open	source	project	that	is	available	at	public	github	domain.	It	has	
been	used	by	over	350	IU	students	for	the	past	two	years.	It	has	a	collection	of	iterative	machine	learning	and	
data	analysis	algorithms	that	has	been	tested	and	benchmarked	on	Cloud	and	HPC	platforms	including	Haswell	
and	Knights	Landing	hardware.		
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