
Low latency stream processing: Apache Heron with Infiniband &
Intel Omni-Path

Supun Kamburugamuve
School of Informatics, Computing, and Engineering

Indiana University
Bloomington, IN 47408
skamburu@indiana.edu

Karthik Ramasamy
Streaml.io

Palo Alto, CA
karthik@streaml.io

Martin Swany
School of Informatics, Computing, and Engineering

Indiana University
Bloomington, IN 47408

swany@indiana.edu

Geo�rey Fox
School of Informatics, Computing, and Engineering

Indiana University
Bloomington, IN 47408

gcf@indiana.edu

ABSTRACT
Worldwide data production is increasing both in volume and ve-
locity, and with this acceleration, data needs to be processed in
streaming se�ings as opposed to the traditional store and process
model. Distributed streaming frameworks are designed to process
such data in real time with reasonable time constraints. Apache
Heron is a production-ready large-scale distributed stream pro-
cessing framework. �e network is of utmost importance to scale
streaming applications to large numbers of nodes with a reason-
able latency. High performance computing (HPC) clusters feature
interconnects that can perform at higher levels than traditional
Ethernet. In this paper the authors present their �ndings on inte-
grating Apache Heron distributed stream processing system with
two high performance interconnects; In�niband and Intel Omni-
Path and show that they can be utilized to improve performance of
distributed streaming applications.

KEYWORDS
Streaming data, In�niband, Omni-Path, Apache Heron

1 INTRODUCTION
With ever increasing data production by users and machines alike,
the amount of data that needs to be processed has increased dra-
matically. �is must be achieved both in real time and as batches
to satisfy di�erent use cases. Additionally, with the adoption of
devices into Internet of �ings setups, the amount of real time data
are exploding, and must be processed with reasonable time con-
straints. In distributed stream analytics, the large data streams are
partitioned and processed in distributed sets of machines to keep
up with the high volume data rates. By de�nition of large-scale
streaming data processing, networks are a crucial component in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
UCC’17, December 5–8, 2017, Austin, Texas, USA
© 2017 ACM. ISBN 978-1-4503-5149-2/17/12. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3147213.3147232

transmi�ing messages between the processing units for achieving
e�cient data processing.

�ere are many hardware environments in which big data sys-
tems can be deployed including High performance computing (HPC)
clusters. HPC clusters are designed to perform large computa-
tions with advanced processors, memory, IO systems and high
performance interconnects. High performance interconnects in
HPC clusters feature microsecond latencies and large bandwidths.
�anks to recent advancements in hardware, some of these high
performance networks have become cheaper to set up than their
Ethernet counterparts. With multi-core and many-core systems
having large numbers of CPUs in a single node, the demand for
high performance networking is increasing as well.

Advanced hardware features such as high performance intercon-
nects are not fully utilized in the big data computing frameworks,
mostly because they are accessible to low level programming lan-
guages and most big data systems are wri�en on Java platform.
In recent years we have seen e�orts to utilize high performance
interconnects into big data frameworks such as Spark [24] and
Hadoop [22]. Big data frameworks such as Spark and Hadoop focus
on large batch data processing and hence their communication
requirements are di�erent compared to streaming systems which
are more latency sensitive.

�ere are many distributed streaming frameworks available to-
day for processing large amounts of streaming data in real time.
Such systems are largely designed and optimized for commodity
hardware and clouds. Apache Storm [29] was one of the popular
early systems developed for processing streaming data. Apache
Heron 1 [19] is similar to Storm with a new architecture for stream-
ing data processing. It features a hybrid design with some of the
performance-critical parts wri�en in C++ and others wri�en in
Java. �is architecture allows the integration of high performance
enhancements directly rather than going through native wrappers
such as Java Native Interface(JNI). When these systems are de-
ployed on clusters that include high performance interconnects,
they need to use an TCP interface to high performance interconnect
which doesn’t perform as well as a native implementation.

To utilize these hardware features, we have integrated In�niband
and Intel Omni-Path interconnects to Apache Heron to accelerate
1h�p://incubator.apache.org/projects/heron.html

its communications. In�niband [4] is an open standard protocol for
high performance interconnects that is widely used in today’s high
performance clusters. Omni-Path [6] is a proprietary interconnect
developed by Intel and is available with the latest Knights Landing
architecture-based (KNL) [27] many-core processors. With this im-
plementation, we have observed signi�cantly lower latencies and
improved throughput in Heron. �e main contribution in this work
is to showcase the bene�ts of using high performance interconnects
for distributed stream processing. �ere are many di�erences in
hardware available for communications with di�erent bandwidths,
latencies and processing models. Ethernet has comparable hard-
ware available to some of the high performance interconnects; it is
not our goal to show that one particular technology is superior to
others, as di�erent environments may have alternate sets of these
technologies.

�e remainder of the paper is organized as follows. Section 2
presents the background information on In�niband and Omni-Path.
Section 3 describes the Heron architecture in detail and section 4
the implementation details. Next the experiments conducted are
described in sections 5 and results are presented and discussed in
section 6. Section 7 presents related work. �e paper concludes
with a look at future work.

2 BACKGROUND
2.1 In�niband
In�niband is one of the most widely used high performance fab-
rics. It provides a variety of capabilities including message channel
semantics, remote memory access and remote atomic memory op-
erations, supporting both connection-oriented and connectionless
endpoints. In�niband is programmed using the Verbs API, which
is available in all major platforms. �e current hardware is capa-
ble of achieving up to 100Gbps speeds with microsecond latencies.
In�niband does not require the OS Kernel intervention to transfer
packets from user space to the hardware. Unlike in TCP, its proto-
col aspects are handled by the hardware. �ese features mean less
CPU time spent on the network compared to TCP for transferring
the same amount of data. Because the OS Kernel is bypassed by
the communications, the memory for transferring data has to be
registered in the hardware.

2.2 Intel Omni-Path
Omni-Path is a high performance fabric developed by Intel. Omni-
Path fabric is relatively new compared to In�niband and there are
fundamental di�erences between the two. Omni-Path does not
o�oad the protocol handling to network hardware and it doesn’t
have the connection oriented channels as in In�niband. Unlike
in In�niband the Omni-Path network chip can be built into the
latest Intel Knights Landing (KNL) processors. Omni-Path supports
tagged messaging with a 96 bit tag in each message. A Tag can carry
any type of data and this information can be used at the application
to distinguish between di�erent messages. Omni-Path is designed
and optimized for small high frequency messaging.

2.3 Channel & Memory Semantics
High performance interconnects generally supports two modes
of operations called channel and memory semantics [13]. With

channel semantics queues are used for communication. In memory
semantics a process can read from or write directly to the memory
of a remote machine. In channel mode, two queue pairs for trans-
mission and receive operations are used. To transfer a message,
a descriptor is posted to the transfer queue, which includes the
address of the memory bu�er to transfer. For receiving a message, a
descriptor needs to be submi�ed along with a pre-allocated receive
bu�er. �e user program queries the completion queue associated
with a transmission or a receiving queue to determine the success
or failure of a work request. Once a message arrives, the hardware
puts the message into the posted receive bu�er and the user pro-
gram can determine this event through the completion queue. Note
that this mode requires the receiving bu�ers to be pre-posted before
the transmission can happen successfully.

With memory semantics, Remote Direct Memory Access(RDMA)
operations are used. Two processes preparing to communicate
register memory and share the details with each other. Read and
write operations are used instead of send and receive operations.
�ese are one-sided and do not need any so�ware intervention
from the other side. If a process wishes to write to remote memory,
it can post a write operation with the local addresses of the data.
�e completion of the write operation can be detected using the
completion queue associated. �e receiving side is not noti�ed
about the write operation and has to use out-of-band mechanisms
to �gure out the write. �e same is true for remote reads as well.
RDMA is more suitable for large message transfers while channel
mode is suitable for small messages. In general RDMA has 1 − 2µs
latency advantage over channel semantics for In�niband and this
is not signi�cant for our work.

2.4 Openfabrics API
Openfabrics 2 provides a library called libfabric [12] that hides the
details of common high performance fabric APIs behind a uniform
API. Because of the advantage of such an API, we chose to use
libfabric as our programming library for implementing the high
performance communications for Heron. Libfabric is a thin wrap-
per API and it supports di�erent providers including Verbs, Aries
interconnect from Cray through GNI, Intel Omni-Path, and Sockets.

2.5 TCP & High performance Interconnects
TCP is one of the most successful protocols developed. It provides
a simple yet powerful API for transferring data reliably across the
Internet using unreliable links and protocols underneath. One of the
biggest advantages of TCP is its wide adoption and simplicity to use.
Virtually every computer has access to a TCP-capable adapter and
the API is well supported across di�erent platforms. TCP provides
a streaming API for messaging where the fabric does not maintain
message boundaries. �e messages are wri�en as a stream of bytes
to the TCP and the application has to de�ne mechanisms such as
placing markers in between messages to indicate the boundaries.
On the other hand, In�niband and Omni-Path both support message
boundaries.

High performance interconnects have drivers that make them
available through the TCP protocol stack. �e biggest advantage of
such implementation is that an existing application wri�en using
2h�ps://www.openfabrics.org/

Figure 1: High level architecture of Heron. Each outer box
shows a resource container allocated by a resource scheduler
like Mesos or Slurm. �e arrows show the communication
links between di�erent components.

the TCP stack can use high performance interconnect without any
modi�cations to the code. It is worth noting that the native use of
the interconnect through its API always yields be�er performance
than using it through TCP/IP stack. A typical TCP application allo-
cates memory in user space and the TCP stack needs to copy data
between user space and Kernel space. Also each TCP invocation in-
volves a system call which does a context switch of the application.
Recent advancements like Netmap [26] and DPDK [11] removes
these costs and increases the maximum number of packets that can
be processed per second. Also it is possible to achieve direct packet
copy from user space to hardware. High performance fabrics usu-
ally do not go through OS kernel for network operations and the
hardware is capable of copying data directly to user space bu�ers.
In�niband o�oads the protocol processing aspects to hardware
while Omni-Path still involves the CPU for protocol processing.

3 APACHE HERON
Heron is a distributed stream processing framework developed at
Twi�er and now available as an open source project in Apache
Incubator 3. Heron is similar to Apache Storm in its API with many
di�erences in underlying engine architecture. It retains the same
Storm API, allowing applications wri�en in Storm to be deployed
with no or minimal code changes.

3.1 Heron Data Model
A stream is an unbounded sequence of high level objects named
events or messages. �e streaming computation in Heron is re-
ferred to as a Topology. A topology is a graph of nodes and edges.
�e nodes represent the processing units executing the user de-
�ned code and the edges between the nodes indicate how the data
(or stream) �ows between them. �ere are two types of nodes:
spouts and bolts. Spouts are the sources of streams. For example,
a Ka�a [18] spout can read from a Ka�a queue and emit it as a
stream. Bolts consume messages from their input stream(s), ap-
ply its processing logic and emit new messages in their outgoing
streams.

Heron has the concept of a user de�ned graph and an execution
graph. �e user de�ned graph speci�es how the processing units
are connected together in terms of message distributions. On the
other hand, the execution graph is the layout of this graph in actual
nodes with network connections and computing resources allocated
3h�ps://github.com/twi�er/heron

to the topology to execute. Nodes in the execution graph can
have multiple parallel instances (or tasks) running to scale the
computations. �e user de�ned graph and the execution graph are
referred to as logical plan and physical plan respectively.

3.2 Heron Architecture
�e components of the Heron architecture are shown in Fig. 1. Each
Heron topology is a standalone long-running job that never termi-
nates due to the unbounded nature of streams. Each topology is self
contained and executes in a distributed sandbox environment in
isolation without any interference from other topologies. A Heron
topology consists of multiple containers allocated by the scheduler.
�ese can be Linux containers, physical nodes or sandboxes cre-
ated by the scheduler. �e �rst container, referred to as the master,
always runs the Topology Master that manages the topology. Each
of the subsequent containers have the following processes: a set
of processes executing the spout/bolt tasks of the topology called
Heron instances, a process called a stream manager that manages
the data routing and the connections to the outside containers,
and a metrics manager to collect information about the instances
running in that container.

Each Heron instance executes a single task of the topology. �e
instances are connected to the stream manager running inside the
container through TCP loop-back connection. It is worth noting
that Heron instances always connect to other instances through
the stream manager and they do not communicate with each other
directly even if they are on the same container. �e stream manager
acts as a bridge between Heron instances. It forwards the messages
to the correct instances by consulting the routing tables it main-
tains. A message between two instances in di�erent containers goes
through two stream managers. Containers can have many Heron
instances running in them and they all communicate through the
stream manager. Because of this design, it is important to have
highly e�cient data transfers at the stream manager to support the
communication requirements of the instances.

Heron is designed from the ground up to be extensible, and
important parts of the core engine are wri�en in C++ rather than
Java, the default language of choice for Big Data frameworks. �e
rationale for the use of C++ is to leverage the advanced features
o�ered by the OS and hardware. Heron instances and schedulers
are wri�en in Java while stream manager and topology master are
wri�en in C++.

3.2.1 Acknowledgements. Heron uses an acknowledgement mech-
anism to provide at least once message processing semantics that
ensures the message is always processed in the presence of pro-
cess/machine failures. In order to achieve at least once, the stream
manager tracks the tuple tree generated while a message progresses
through the topology. When a bolt emits a message, it anchors the
new message to the parent message and this information is sent to
originating stream manager (in the same container) as a separate
message. When every new message �nishes its processing, a sepa-
rate message is again sent to the originating stream manager. Upon
receiving such control messages for every emit in the message tree,
the stream manager marks the message as fully processed.

Figure 2: Heron high performance interconnects are be-
tween the stream managers

3.2.2 Processing pipeline. Heron has a concept called max mes-
sages pending with spouts. When a spout emits messages to a
topology, this number dictates the amount of in-�ight messages
that are not fully processed yet. �e spout is called to emit messages
only when the current in-�ight message count is less than the max
spout pending messages.

3.3 Heron Stream Manager
Stream manager is responsible for routing messages between in-
stances inside a container and across containers. It employs a sin-
gle thread that use event-driven programming using non-blocking
socket API. A stream manager receives messages from instances
running in the same container and other stream managers. �ese
messages are Google protocol bu�er [30] serialized messages packed
into binary form and transmi�ed through the wire. If a stream man-
ager receives a message from a spout, it keeps track of the details
of the message until all the acknowledgements are received from
the message tree. Stream manager features a in-memory, store and
forward architecture for forwarding messages and can batch multi-
ple messages into single message for e�cient transfers. Because
messages are temporarily stored, there is a draining function that
drains the store at a user de�ned rate.

4 IMPLEMENTATION
Even though high performance interconnects are widely used by
HPC applications and frameworks, they are not o�en utilized in
big data systems. Furthermore, experiences in using these inter-
connects in big data systems are lacking in the public domain. In
this implementation, In�niband and Omni-Path interfaces with
Heron through its stream manager, as shown in Fig. 2. In�niband
or Omni-Path message channels are created between each stream
manager in the topology. �ese then carry the data messages go-
ing between the stream managers. �e control messages that are
sent between stream manager and topology master still use the
TCP connections. �ey are not frequent and do not a�ect the per-
formance of the data �ow. �e TCP loop-back connections from
the instances to the stream manager are not altered in this imple-
mentation as loop back connection is much more e�cient than
the network. Both In�niband and Omni-Path implementations use
channel semantics for communication. A separate thread is used
for polling the completion queues associated with the channels. A
credit based �ow control mechanism is used for each channel along
with a con�gurable bu�er pool.

4.1 Bootstrapping
In�niband and Omni-Path require information about the communi-
cation parties to be sent out-of-band through other mechanisms like
TCP. In�niband uses the RDMA(Remote direct memory access) Con-
nection manager to transfer the required information and establish
the connections. RDMA connection manager provides a socket-like
API for connection management, which is exposed to the user in
a similar fashion through Libfabric API. �e connection manager
also uses the IP over In�niband network adapter to discover and
transfer the bootstrap information. Omni-Path has a built-in TCP
server for discovering the endpoints. Because Omni-Path does not
involve connection management, only the destination address is
needed for communications. �is information can be sent using an
out-of-band TCP connection.

4.2 Bu�er management
Each side of the communication uses bu�er pools with equal size
bu�ers to communicate. Two such pools are used for sending and
receiving data for each channel. For receiving operations, all the
bu�ers are posted at the beginning to the fabric. For transmi�ing
messages, the bu�ers are �lled with messages and posted to the
fabric for transmission. A�er the transmission is complete the bu�er
is added back to the pool. �e message receive and transmission
completions are discovered using the completion queues. Individual
bu�er sizes are kept relatively large to accommodate the largest
messages expected. If the bu�er size is not enough for a single
message, the message is divided in to pieces and put into multiple
bu�ers. Every network message carries the length of the total
message and this information can be used to assemble the pieces.

�e stream manager de-serializes the protocol bu�er message
in order to determine the routing for the message and handling
the acknowledgements. �e TCP implementation �rst copies the
incoming data into a bu�er and then use this bu�er to build the
protocol bu�er structures. �is implementation can directly use
the bu�er allocated for receiving to build the protocol message.

4.3 Flow control at communication level
Neither In�niband nor Omni-Path implement �ow control between
the communication parties, and it is up to the application developer
to implement the much higher level functions [33]. �is implemen-
tation uses a standard credit-based approach for �ow control. �e
credit available for sender to communicate is equal to the number
of bu�ers posted into the fabric by the receiver. Credit information
is passed to the other side as part of data transmissions, or by using
separate messages in case there are no data transmissions to send it.
Each data message carries the current credit of the communication
party as a 4-byte integer value. �e credit messages do not take into
account the credit available to avoid deadlocks, otherwise there
may be situations where there is no credit available to send credit
messages.

4.4 Interconnects
In�niband implementation uses connection-oriented endpoints
with channel semantics to transfer the messages. �e messages
are transferred reliably by the fabric and the message ordering is

guaranteed. �e completions are also in order of the work request
submissions.

Intel Omni-Path does not support connection-oriented message
transfers employed in the In�niband implementation. �e applica-
tion uses reliable datagram message transfer with tag-based mes-
saging. Communication channels between stream managers are
overlaid on a single receive queue and a single send queue. Mes-
sages coming from di�erent stream managers are distinguished
based on the tag information they carry. �e tag used in the im-
plementation is a 64-bit integer which carries the source stream
manager ID and the destination stream manager ID. Even though
all the stream managers connecting to a single stream manager
are sharing a single queue, they carry their own �ow control by
assigning a �xed amount of bu�ers to each channel. Unlike in
Ini�niband, the work request completions are not in any order of
their submission to the work queue. Because of this, the application
keeps track of the submi�ed bu�ers and their completion order
explicitly.

IP over Fabric or IP over In�niband(IPoIB) is a mechanism to
allow a regular TCP application to access the underlying high per-
formance interconnects through the TCP Socket API. For using
IPoIB heron stream manager TCP sockets are bound to the IPoIB
network interface explicitly without changing the existing TCP
processing logic.

5 EXPERIMENTS
An Intel Haswell HPC cluster was used for the In�niband exper-
iments. �e CPUs are Intel Xeon E5-2670 running at 2.30GHz.
Each node has 24 cores (2 sockets x 12 cores each) with 128GB of
main memory, 56Gbps In�niband interconnect and 1Gbps dedicated
Ethernet connection to other nodes. Intel Knights Landing(KNL)
cluster was used for Omni-Path tests. Each node in KNL cluster
has 72 cores (Intel Xeon Phi CPU 7250F, 1.40GHz) and is connected
to a 100Gbps Omni-Path fabric and 1Gbps Ethernet connection.
�ere are many variations of Ethernet, In�niband and Omni-Path
performing at di�erent message rates and latencies. We conducted
the experiments in the best available resources to us.

We conducted several micro-benchmarks to measure the latency
and throughput of the system. In these experiments the primary
focus was given to communications and no computation was con-
ducted in the bolts. �e tasks in each experiment were con�gured
with 4GB of memory. A single Heron stream manager was run
in each node. We measured the IP over Fabric (IPoIB) latency to
showcase the latency possible in case no direct implementation of
In�niband or Omni-Path.

5.1 Experiment Topologies
To measure the behavior of the system, two topologies shown in
Fig. 4 and Fig. 3 is used. Topology A in Fig. 3 is a deep topology
with multiple bolts arranged in a chain. �e parallelism of the
topology determines the number of parallel task for bolts and spout
in the topology. Each adjacent component pair is connected by a
shu�e grouping. Topology B in Fig. 4 is a two-component topology
with a spout and a bolt. Spouts and bolts are arranged in a shu�e
grouping so that the spouts load balance the messages among the
bolts.

Figure 3: Topology A: Deep topology with a spout and mul-
tiple bolts arranged in a chain. �e spout and bolt run mul-
tiple parallel instances.

Figure 4: TopologyB: Shallow topologywith a spout and bolt
connected in a shu�le grouping. �e spout and bolts run
multiple parallel instances.

Figure 5: Yahoo Streaming benchmark with 7 stages. �e
join bolts and sink bolts communicate with a Redis server.

In both topologies the spouts generated messages at the highest
sustainable speed with acknowledgements. �e acknowledgements
acted as a �ow control mechanism for the topology. �e latency is
measured as the time it takes for a tuple to go through the topology
and its corresponding acknowledgement to reach the spout. Since
tuples generate more tuples when they go through the topology, it
takes multiple acknowledgements to complete a tuple. In topology
A, it needs control tuples equal to the number of Bolts in the chain
to complete a single tuple. For example if the length of the topology
is 8, it takes 7 control tuples to complete the original tuple. Tests
were run with 10 in �ight messages through the topology.

5.2 Yahoo streaming benchmark
For evaluating the behavior with a more practical streaming applica-
tion, we used a benchmark developed at Yahoo!4 to test streaming
frameworks. We modi�ed the original streaming benchmark to sup-
port Heron and added additional features to support our case. �e
modi�ed benchmark is available open source in Github 5. It focuses
on an advertisement application where ad events are processed
using a streaming topology as shown in Fig. 10. We changed the
original benchmark to use a self-message-generating spout instead

4h�ps://yahooeng.tumblr.com/post/135321837876/benchmarking-streaming-
computation-engines-at
5h�ps://github.com/iotcloud/streaming-benchmarks.git

of reading messages through Kakfa [18]. �is was done to remove
any bo�lenecks and variations imposed by Ka�a.

�e benchmark employs a multiple stage topology with di�er-
ent processing units. �e data is generated as a JSON object and
sent through the processing units, which do de-serialization, �l-
ter, projection and join operations on each tuple. At the joining
stage, it uses a Redis [8] database to query data about the tuples.
Additionally, the last bolt saves information to the Redis database.
At the �lter step about 66% of the tuples are dropped. We use an
acking enabled topology and measured the latency as the time it
takes for a tuple to go through the topology and its ack to return
back to the spout. For our tests we used 16 nodes with 8 parallelism
at each step, totaling 56 tasks. Each spout was sending 100,000
messages per second, which gave 800,000 messages per second in
total. Note that this topology accesses the Redis database system
for 33% messages it receives.

6 RESULTS & DISCUSSION
Fig. 6 shows the latency of the Topology A with varying message
sizes and parallelism for IB, TCP and IPoIB. In�niband performed
the best while Ethernet showed the highest latency. Fig. 7 shows
the latency of the Topology B with varying message sizes and par-
allelism as in Fig. 6. For small messages, we see both IPoIB and
Ethernet performing at a similar level while In�niband was perform-
ing be�er. When increasing the parallelism, the latency increased
as expected and In�niband showed a smaller increase than IPoIB
and Ethernet. As expected Topology B showed less improvements
compared to Topology A. For most practical applications, the mini-
mum latency possible will be within the results observed in these
two topologies as these represent the minimum possible topology
and a deep topology for most practical applications.

Fig. 8 shows the latency results of Omni-Path implementation
with Topology A, in the KNL cluster for large and small messages.
IPoFabric is the IP driver for Omni-Path. �e KNL machine has less
powerful CPU cores and hence the latency was higher compared
to In�niband in the tests. Fig 10 shows the latency distribution
of the Topology A with 100 and 10 in�ight messages with 128k
message size for TCP and IB. �e graphs show that the network
latencies are according to a normal distribution with high latencies
at the 99th percentile. Fig. 11 shows the latency distribution seen by
the Yahoo stream benchmark with In�niband fabric. For all three
networking modes, we have seen high spikes at the 99th percentile.
�is was primarily due to Java garbage collections at the tasks
which is unavoidable in JVM-based streaming applications. �e
store and forward functionality of the stream manager contributes
to the distribution of latencies as a single message can be delayed
up to 1ms randomly at stream manager.

Fig. 9 present the message rates observed with Topology B. �e
experiment was conducted with 32 parallel bolt instances and vary-
ing numbers of spout instances and message sizes. �e graph shows
that In�niband had the best throughput, while IPoIB achieved
second-best and Ethernet came in last. Fig. 9 c) and d) show the
throughput for 128K and 128 bytes messages with varying number
of spouts. When the number of parallel spouts increases, the IPoIB
and Ethernet maxed out at 16 parallel spouts for 128k messages,
while In�niband kept on increasing. Fig. 12 shows the total time

required to serialize protocol bu�ers and time it took to complete
the same number of messages with TCP and IB implementations. It
is evident that IB implementation overhead is much less compared
to TCP.

�e results showed good overall results for In�niband and Omni-
Path compared to the TCP and IPoIB communication modes. �e
throughput of the system is bounded by the CPU usage of stream
managers. For TCP connections, the CPU is used for message
processing as well as the network protocol. In�niband, on the other
hand, uses the CPU only for message processing at the stream
manager, yielding be�er performance.

�e results showed much higher di�erence between TCP and In-
�niband for large message sizes. For small messages the bandwidth
utilization is much lower than large messages. �is is primarily due
to the fact that CPU is needed to process every message. For larger
messages, because of the low number of messages transferred per
second, the CPU usage is low for that aspect. For smaller messages,
because of the large number of messages per second, the CPU usage
is much higher. Because of this, for small messages, the stream
managers saturate the CPU without saturating the communication
channel. For practical applications that require large throughput,
Heron can bundle small messages into a large message in-order
to avoid some of the processing overheads and transfer overheads.
�is makes it essentially a large message for the stream manager
and large message results can be observed with elevated latencies
for individual messages. We used 10 bu�ers with 1 megabyte allo-
cated to each for sending and receiving messages. Protocol bu�ers
are optimized for small messages and it is unlikely to get more than
1 megabyte messages for streaming applications targeting Heron.

�e KNL system used for testing Omni-Path has a large num-
ber of processes with less CPU frequencies compared to Haswell
cluster. In order to fully utilize such a system, multiple threads
need to be used. For our implementation we did not explore such
features speci�c to KNL and tried to �rst optimize for the Omni-
Path interconnect. �e results show that Omni-Path performed
considerably be�er than the other two options. In this work the
authors did not try to pick between Omni-Path or In�niband as a
be�er interconnect as they are tested in two completely di�erent
systems under varying circumstances. �e objective of the work is
to show the potential bene�ts of using interconnects to accelerate
stream processing.

7 RELATEDWORK
In large part, HPC and Big Data systems have evolved indepen-
dently over the years. Despite this, there are common requirements
that raise similar issues in both type of systems. Some of these
issues are solved in HPC and some in Big Data frameworks. As
such, there have been e�orts to converge both HPC and Big Data
technologies to create be�er systems that can work in di�erent
environments e�ciently. SPIDAL [9] and HiBD are two such e�orts
to enhance the Big Data frameworks with ideas and tools from HPC.
�is work is part of an ongoing e�ort by the authors to improve
stream engine performance using HPC techniques. Previously we
showed [15] how to leverage shared memory and collective commu-
nication algorithms to increase the performance of Apache Storm.

Figure 6: Latency of the TopologyAwith 1 spout and 7 bolt instances arranged in a chainwith varying parallelism andmessage
sizes. a) and b) are with 2 parallelism and c) and d) are with 128k and 128bytes messages. �e results are on Haswell cluster
with IB.

Figure 7: Latency of the Topology B with 32 parallel bolt instances and varying number of spouts and message sizes. a) and b)
are with 16 spouts and c) and d) are with 128k and 128bytes messages. �e results are on Haswell cluster with IB.

Figure 8: Latency of the TopologyAwith 1 spout and 7 bolt instances arranged in a chainwith varying parallelism andmessage
sizes. a) and b) are with 2 parallelism and c) and d) are with 128k and 128bytes messages. �e results are on KNL cluster.

Also the authors have looked at various available network protocols
for Big Data applications [28].

�ere are many distributed stream engines available today in-
cluding Apache Spark Streaming [32], Apache Flink [7], Apache
Apex [1] and Google Cloud Data �ow [3]. All these systems follow
the data �ow model with comparable features to each other. Stream
bench [21] is a benchmark developed to evaluate the performance
of these systems in detail. �ese systems are primarily optimized
for commodity hardware and clouds. �ere has been much research
done around Apache Storm and Apache Heron to improve its capa-
bilities. [10] described architectural and design improvements to
Heron that improved its performance much further.

In recent years there have been multiple e�orts to integrate
high performance interconnects with machine learning and big
data frameworks. In�niband has been integrated into Spark [24]
where the focus is on the Spark batch processing aspects rather
than the streaming aspects. Spark is not considered a native stream
processing engine and only implements streaming as an exten-
sion to its batch engine, making its latency inadequate for low
latency applications. Recently In�niband has been integrated into
Hadoop [22], along with HDFS [13] as well. Hadoop, HDFS and
Spark all use Java runtime for their implementations, hence the
RDMA was integrated using JNI wrappers to C/C++ codes that
invoke the underlying RDMA implementations. Recent work has

Figure 9: �roughput of the Topology B with 32 bolt instances and varying message sizes and spout instances. �e message
size varies from 16K to 512K bytes. �e spouts are changed from 8 to 32.

Figure 10: Percent of messages completed within a given la-
tency for the Topology A with in-�ight messages at 100 and
10 with 128K messages and 8 parallelism

Figure 11: Percent of messages completed within a given la-
tency for the Yahoo! streaming benchmark with In�niband
network. �e experiment was conducted in Haswell cluster
with 8 nodes and each stage of topologyhave 8 parallel tasks.

added RDMA support for the Tensor�ow [2] machine learning
framework.

High performance interconnects have been widely used by the
HPC community, and most MPI(Message passing Interface) im-
plementations have support for a large number of interconnects
that are available today. Some early work that describes in detail
about RDMA for MPI can be found in [20]. �ere has even been
some work to build Hadoop-like systems using the existing MPI
capabilities [23]. Photon [16] is a higher level RDMA library that
can be used as a replacement to libfabric. RoCE [5] and iWARP [25]
are protocols designed to use RDMA over Ethernet to increase the
maximum packets per second processed at a node while decreasing

Figure 12: �e total time to �nish the messages vs the total
time to serialize themessages using protobuf and Kryo. Top.
B with 8 parallelism for bolts and spouts used. Times are
for 20000 large messages and 200000 small messages. �e
experiment is conducted on Haswell cluster.

latency. Heron doesn’t take into account the network when schedul-
ing tasks into available nodes and it would be interesting to consider
network latencies as described in [14, 17] for task scheduling.

8 CONCLUSIONS & FUTUREWORK
Unlike other Big Data systems which are purely JVM-based, Heron
has a hybrid architecture where it uses both low level and high
level languages appropriately. �is architecture allows the addi-
tion of high performance enhancement such as In�niband natively
rather than going through additional layers of JNI as done in high
performance Spark and Hadoop. With In�niband and Omni-Path
integration to Heron, we have seen good performance gains both
in latency and throughput. With In�niband integration we have

seen the communication overhead is moving closer to object se-
rialization cost. �e architecture and the implementations can be
improved further to reduce the latency and increase the throughput
of the system. Even though the authors use Apache Heron in this
paper, it is possible to implement high performance interconnects to
other stream processing engines such as Apache Flink [7], Apache
Spark [31] and Apache Apex [1] using JNI wrappers.

Past research has shown that the remote memory access opera-
tions of In�niband are more e�cient than using channel semantics
for transferring large messages. A hybrid approach can be adopted
to transfer messages using both channel semantics and memory
semantics. It is evident that the CPU is a bo�leneck at the stream
managers to achieve be�er performance. �e protocol bu�er pro-
cessing along with message serialization are the dominant CPU
consumers. A more e�cient binary protocol that does not require
protocol bu�er processing at the stream manager can avoid these
overheads. Instances to stream manager communication can be
improved with a shared memory approach to avoid the TCP stack.
With such approach the In�niband can be improved to directly use
the shared memory for the bu�ers without relying on data copying.

Because of the single-process single-threaded approach used
by Heron processes, many core systems such as Knights Landing
cannot get optimum performance out of Heron. Having a hybrid
architecture where multiple threads are used for both communica-
tion and computation utilizing the hardware threads of the many
core systems can increase the performance of Heron in such en-
vironments. Since we are using a fabric abstraction to program
In�niband and Omni-Path with Libfabric, the same code can be
used with other potential high performance interconnects, though
it has to be evaluated in such environments to identify possible
changes. We would like to continue this work to include more high
level streaming operations such as streaming joins, reductions on
top of high performance interconnects.

ACKNOWLEDGMENT
�is work was partially supported by NSF CIF21 DIBBS 1443054
and NSF RaPyDLI 1415459. We thank Intel for their support of the
Haswell system, and extend our gratitude to the FutureSystems
team for their support with the infrastructure. We would like to
thank Heron team for their support of this work.

REFERENCES
[1] 2017. Apache Apex: Enterprise-grade uni�ed stream and batch processing engine.

(2017). h�ps://apex.apache.org/
[2] Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S Corrado, Andy Davis, Je�rey Dean, Ma�hieu Devin, and
others. 2016. Tensor�ow: Large-scale machine learning on heterogeneous dis-
tributed systems. arXiv preprint arXiv:1603.04467 (2016).

[3] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J
Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,
Eric Schmidt, and others. 2015. �e data�ow model: a practical approach to
balancing correctness, latency, and cost in massive-scale, unbounded, out-of-
order data processing. Proceedings of the VLDB Endowment 8, 12 (2015), 1792–
1803.

[4] In�niBand Trade Association and others. 2000. In�niBand Architecture Speci�ca-
tion: Release 1.0. In�niBand Trade Association.

[5] Mo�i Beck and Michael Kagan. 2011. Performance Evaluation of the RDMA
over Ethernet (RoCE) Standard in Enterprise Data Centers Infrastructure. In
Proceedings of the 3rd Workshop on Data Center - Converged and Virtual Ethernet
Switching (DC-CaVES ’11). International Teletra�c Congress, 9–15. h�p://dl.
acm.org/citation.cfm?id=2043535.2043537

[6] Mark S Birri�ella, Mark Debbage, Ram Huggahalli, James Kunz, Tom Love�,
Todd Rimmer, Keith D Underwood, and Robert C Zak. 2015. Intel® Omni-path

Architecture: Enabling Scalable, High Performance Fabrics. In High-Performance
Interconnects (HOTI), 2015 IEEE 23rd Annual Symposium on. IEEE, 1–9.

[7] Paris Carbone, Stephan Ewen, Seif Haridi, Asterios Katsifodimos, Volker Markl,
and Kostas Tzoumas. 2015. Apache �ink: Stream and batch processing in a single
engine. Data Engineering (2015), 28.

[8] Josiah L Carlson. 2013. Redis in Action. Manning Publications Co.
[9] Geo�rey Fox, Judy Qiu, Shantenu Jha, Saliya Ekanayake, and Supun Kamburuga-

muve. 2015. Big data, simulations and hpc convergence. In Workshop on Big Data
Benchmarks. Springer, 3–17.

[10] Maosong Fu, Ashvin Agrawal, Avrilia Floratou, Graham Bill, Andrew Jorgensen,
Mark Li, Neng Lu, Karthik Ramasamy, Sriram Rao, and Cong Wang. 2017. Twi�er
Heron: Towards Extensible Streaming Engines. 2017 IEEE International Confer-
ence on Data Engineering (Apr 2017). h�p://icde2017.sdsc.edu/industry-track

[11] S. Gallenmller, P. Emmerich, F. Wohlfart, D. Raumer, and G. Carle. 2015. Com-
parison of frameworks for high-performance packet IO. In 2015 ACM/IEEE Sym-
posium on Architectures for Networking and Communications Systems (ANCS).
29–38. DOI:h�p://dx.doi.org/10.1109/ANCS.2015.7110118

[12] P. Grun, S. He�y, S. Sur, D. Goodell, R. D. Russell, H. Pritchard, and J. M. Squyres.
2015. A Brief Introduction to the OpenFabrics Interfaces - A New Network
API for Maximizing High Performance Application E�ciency. In 2015 IEEE
23rd Annual Symposium on High-Performance Interconnects. 34–39. DOI:h�p:
//dx.doi.org/10.1109/HOTI.2015.19

[13] Nusrat S Islam, MW Rahman, Jithin Jose, Raghunath Rajachandrasekar, Hao
Wang, Hari Subramoni, Chet Murthy, and Dhabaleswar K Panda. 2012. High
performance RDMA-based design of HDFS over In�niBand. In Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis. IEEE Computer Society Press, 35.

[14] Virajith Jalaparti, Peter Bodik, Ishai Menache, Sriram Rao, Konstantin
Makarychev, and Ma�hew Caesar. 2015. Network-Aware Scheduling for Data-
Parallel Jobs: Plan When You Can. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication (SIGCOMM ’15). ACM, New York,
NY, USA, 407–420. DOI:h�p://dx.doi.org/10.1145/2785956.2787488

[15] Supun Kamburugamuve, Saliya Ekanayake, Milinda Pathirage, and Geo�rey
Fox. 2016. Towards High Performance Processing of Streaming Data in Large
Data Centers. In HPBDC 2016 IEEE International Workshop on High-Performance
Big Data Computing in conjunction with �e 30th IEEE International Parallel and
Distributed Processing Symposium (IPDPS 2016), Chicago, Illinois USA.

[16] Ezra Kissel and Martin Swany. 2016. Photon: Remote memory access middleware
for high-performance runtime systems. In Parallel and Distributed Processing
Symposium Workshops, 2016 IEEE International. IEEE, 1736–1743.

[17] Adrian Klein, Fuyuki Ishikawa, and Shinichi Honiden. 2012. Towards Network-
aware Service Composition in the Cloud. In Proceedings of the 21st International
Conference on World Wide Web (WWW ’12). ACM, New York, NY, USA, 959–968.
DOI:h�p://dx.doi.org/10.1145/2187836.2187965

[18] Jay Kreps, Neha Narkhede, Jun Rao, and others. 2011. Ka�a: A distributed
messaging system for log processing. In Proceedings of the NetDB. 1–7.

[19] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher
Kellogg, Sailesh Mi�al, Jignesh M Patel, Karthik Ramasamy, and Siddarth Taneja.
2015. Twi�er heron: Stream processing at scale. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data. ACM, 239–250.

[20] Jiuxing Liu, Jiesheng Wu, Sushmitha P Kini, Pete Wycko�, and Dhabaleswar K
Panda. 2003. High performance RDMA-based MPI implementation over In�ni-
Band. In Proceedings of the 17th annual international conference on Supercomputing.
ACM, 295–304.

[21] Ruirui Lu, Gang Wu, Bin Xie, and Jingtong Hu. 2014. Stream bench: Towards
benchmarking modern distributed stream computing frameworks. In Utility and
Cloud Computing (UCC), 2014 IEEE/ACM 7th International Conference on. IEEE,
69–78.

[22] Xiaoyi Lu, Nusrat S Islam, Md Wasi-Ur-Rahman, Jithin Jose, Hari Subramoni, Hao
Wang, and Dhabaleswar K Panda. 2013. High-performance design of Hadoop RPC
with RDMA over In�niBand. In 2013 42nd International Conference on Parallel
Processing. IEEE, 641–650.

[23] Xiaoyi Lu, Fan Liang, Bing Wang, Li Zha, and Zhiwei Xu. 2014. DataMPI:
extending MPI to hadoop-like big data computing. In Parallel and Distributed
Processing Symposium, 2014 IEEE 28th International. IEEE, 829–838.

[24] Xiaoyi Lu, Md Wasi Ur Rahman, Nusrat Islam, Dipti Shankar, and Dhabaleswar K
Panda. 2014. Accelerating spark with RDMA for big data processing: Early
experiences. In High-performance interconnects (HOTI), 2014 IEEE 22nd annual
symposium on. IEEE, 9–16.

[25] M. J. Rashti and A. Afsahi. 2007. 10-Gigabit iWARP Ethernet: Compara-
tive Performance Analysis with In�niBand and Myrinet-10G. In 2007 IEEE
International Parallel and Distributed Processing Symposium. 1–8. DOI:h�p:
//dx.doi.org/10.1109/IPDPS.2007.370480

[26] Luigi Rizzo. 2012. Netmap: a novel framework for fast packet I/O. In 21st USENIX
Security Symposium (USENIX Security 12). 101–112.

[27] A. Sodani. 2015. Knights landing (KNL): 2nd Generation Intel xAE; Xeon Phi
processor. In 2015 IEEE Hot Chips 27 Symposium (HCS). 1–24. DOI:h�p://dx.doi.

https://apex.apache.org/
http://dl.acm.org/citation.cfm?id=2043535.2043537
http://dl.acm.org/citation.cfm?id=2043535.2043537
http://icde2017.sdsc.edu/industry-track
http://dx.doi.org/10.1109/ANCS.2015.7110118
http://dx.doi.org/10.1109/HOTI.2015.19
http://dx.doi.org/10.1109/HOTI.2015.19
http://dx.doi.org/10.1145/2785956.2787488
http://dx.doi.org/10.1145/2187836.2187965
http://dx.doi.org/10.1109/IPDPS.2007.370480
http://dx.doi.org/10.1109/IPDPS.2007.370480
http://dx.doi.org/10.1109/HOTCHIPS.2015.7477467
http://dx.doi.org/10.1109/HOTCHIPS.2015.7477467

org/10.1109/HOTCHIPS.2015.7477467
[28] Brian Tierney, Ezra Kissel, Martin Swany, and Eric Pouyoul. 2012. E�cient data

transfer protocols for big data. In E-Science (e-Science), 2012 IEEE 8th International
Conference on. IEEE, 1–9.

[29] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M
Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham,
and others. 2014. Storm@ twi�er. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data. ACM, 147–156.

[30] Kenton Varda. 2008. Protocol bu�ers: Google�s data interchange format. Google
Open Source Blog, Available at least as early as Jul (2008).

[31] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J Franklin, Sco� Shenker, and Ion Stoica. 2012.

Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation. USENIX Association, 2–2.

[32] Matei Zaharia, Tathagata Das, Haoyuan Li, Sco� Shenker, and Ion Stoica. 2012.
Discretized streams: an e�cient and fault-tolerant model for stream processing
on large clusters. In Presented as part of the.

[33] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion Control for Large-Scale RDMA Deployments.
In Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication (SIGCOMM ’15). ACM, New York, NY, USA, 523–536. DOI:
h�p://dx.doi.org/10.1145/2785956.2787484

http://dx.doi.org/10.1109/HOTCHIPS.2015.7477467
http://dx.doi.org/10.1145/2785956.2787484

	Abstract
	1 Introduction
	2 Background
	2.1 Infiniband
	2.2 Intel Omni-Path
	2.3 Channel & Memory Semantics
	2.4 Openfabrics API
	2.5 TCP & High performance Interconnects

	3 Apache Heron
	3.1 Heron Data Model
	3.2 Heron Architecture
	3.3 Heron Stream Manager

	4 Implementation
	4.1 Bootstrapping
	4.2 Buffer management
	4.3 Flow control at communication level
	4.4 Interconnects

	5 Experiments
	5.1 Experiment Topologies
	5.2 Yahoo streaming benchmark

	6 Results & Discussion
	7 Related Work
	8 Conclusions & Future Work
	References

