

A Scheme for Reliable Delivery of Events in Distributed Middleware Systems

Shrideep Pallickara and Geoffrey Fox
Community Grids Lab, Indiana University

(spallick,gcf)@indiana.edu

Abstract

Increasingly interactions that services and entities have
with each other, and among themselves, are network
bound. These interactions can be encapsulated in events.
We describe a scheme for the reliable delivery of events
in the presence of link and node failures.

1. Introduction

Events can encapsulate, among other things,
information pertaining to transactions, data interchange,
system conditions and finally the search, discovery and
subsequent sharing of resources. The routing of these
events is generally managed by a middleware. In this
paper we describe our scheme for the reliable delivery of
events within NaradaBrokering [1, 2], which is a
distributed messaging middleware supporting a variety of
event driven interactions – from P2P interactions to
audio-video conferencing applications. This reliable
delivery guarantee holds true in the presence of four
conditions.
1. Broker and Link Failures: The delivery guarantees

are satisfied in the presence of individual or multiple
broker and link failures. The entire broker network
may fail. Guarantees are met once the broker
network (possibly a single broker node) recovers.

2. Prolonged Entity disconnects: After disconnects an
entity can retrieve events missed in the interim.

3. Stable Storage Failures: The delivery guarantees
must be satisfied once the storage recovers.

4. Unpredictable Links: Events can be lost, duplicated
or re-ordered in transit over individual links.
The remainder of this paper is organized as follows.

Section 2 describes the reliable delivery scheme with
section 3 outlining our augmentation to GridFTP. We
include experimental results in section 4. Finally in
section 5 we outline our conclusions and future work.

2. The reliable delivery scheme

To ensure the reliable delivery of events (conforming
to a specific template) to registered entities three distinct
issues need to be addressed. First, there should be exactly

one Reliable Delivery Service (RDS) node that is
responsible for providing reliable delivery for a specific
event template. Second, entities need to make sure that
their subscriptions are registered with RDS. Finally, a
publisher needs to ensure that any given event that it
issues is archived at the relevant RDS. In our scheme we
make use of both positive (ACK) and negative (NAK)
acknowledgements. We may enumerate the objectives of
our scheme below.
• Storage type: Underlying storages could be based on

flat files or relational/XML databases.
• RDS instances: There could be multiple RDS

instances. A given RDS instance can manage reliable
delivery for one or more templates.

• Autonomy: Individual entities can manage their own
event templates. This would involve provisioning of
stable storage and authorization of entity constraints.

• Location independence: A RDS node can be present
anywhere within the system.

• Fast Recovery schemes: The recovery scheme needs
to efficiently route missed events to entities.

2.1. The Reliable Delivery Service (RDS)

RDS can be looked upon as providing a service to
facilitate reliable delivery for events conforming to any
one of its managed templates. To accomplish this RDS
provides four very important functions. First, RDS
archives all published events that conform to any one of
its managed templates.

Second, for every managed template, RDS also
maintains a list of entities for which it facilitates reliable
delivery. RDS may also maintain information regarding
access controls, authorizations and credentials of entities
that generate or consume events targeted to this managed
template. Entity registrations could either be user
controlled or automated.

Third, RDS also facilitates calculation of valid
destinations for a given template event. This is necessary
since it is possible that for two events conforming to the
same template, the set of valid destinations may be
different. RDS maintains a list of the profiles and the
encapsulated constraints (subscriptions) specified by each
of the registered entities. For each managed template the
service also hosts the relevant matching engines, which

computes entity destinations from a template event’s
synopsis (content descriptors).
 Finally, RDS keeps track not only of the entities that
are supposed to receive a given template event, but also
those entities that have not explicitly acknowledged
receipt of these events.

RDS also archives information pertaining to the
addition, removal and update of constraints specified by
registered entities. For every archived event or entity
profile related operations, RDS assigns monotonically
increasing sequence numbers. These sequence numbers
play a crucial role in error detection and correction, while
also serving to provide audit trails.

Publishing entities make use of companion events and
a series of negotiations to ensure delivery of published
events to the relevant RDS. Publishing entities need
information regarding generation of companion events.
This information is maintained both at the publishing
entity and RDS. During recovery this information can be
retrieved from RDS.

Entities within the system use invoice events (which
can encapsulate both ACKs and NAKs) to detect and fix
errors in delivery sequences. Associated with every entity
within the system is an epoch. This epoch is advanced by
RDS and corresponds to the point up until which that
entity has received events. Since the epoch can be used to
determine order and duplicate detection it is easy to
ensure guaranteed exactly once delivery of events.

3. Applications

We have augmented (details in Ref [3]) GridFTP to
exploit this scheme. Here, we had a proxy collocated with
the GridFTP client and the GridFTP server. This proxy, a
NaradaBrokering entity, utilizes NaradaBrokering’s
fragmentation service to fragment large payloads (> 1
GB) into smaller fragments and publish fragmented
events. Upon reliable delivery at the server-proxy,
NaradaBrokering reconstructs the original payload from
the fragments and delivers it to the GridFTP server.

4. Experimental Results

Our experiments involved 3 brokers (see Figure 1).
We compared the performance of NaradaBrokering’s
reliable delivery algorithms with its best effort approach.
For best effort, all entities/brokers within the system
communicate using TCP, while in the reliable delivery
approach we setup communications to be based on UDP.
The publishing/subscribing entities, brokers and RDS are
all hosted on separate machines (1GHz, 256MB RAM)
with each process running in a JRE-1.4 Sun VM.
Currently, RDS supports flat-file and SQL based
archival. The results reported here correspond to RDS
utilizing MySQL–4.0 for storage operations. We found

that archival overheads were between 4-6 milliseconds
for payloads varying from 100b–10 KB. We have
computed the delays associated with the delivery of
events in the best-effort and reliable delivery schemes.

0

2

4

6

8

10

12

14

16

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ti
m

e
(M

ill
is

ec
on

ds
)

Content Payload Size in Bytes

 Transit delays/Standard deviations in a 3 broker network.
NB-BestEffort(BE)(TCP) Vs NB-ReliableDelivery(RD)(UDP)

 Mean delay (NBRD-UDP)
 Mean delay (NBBE-TCP)

 Std Dev (NBRD-UDP)
 Std Dev (NBBE-TCP)

Figure 1: Experimental Setups

 Figure 1 depicts our results. In the reliable delivery
case there is an overhead of 4-6 milliseconds (depending
on payload size) associated with the archival of the event,
with an additional variable delay of 0-2 milliseconds due
to wait()-notify() statements in the thread which triggers
archival. These factors, in addition to retransmissions
triggered by the subscribing entity, due to lost packets,
contributed to higher delays in the reliable delivery case.
Note that we can have an optimistic delivery scheme
which does not wait for archival notifications prior to
delivery; this would be even faster.

5. Conclusions & Future Work

In this paper we described our scheme for the
reliable delivery of events. We are currently
incorporating support for WS-ReliableMessaging [4]
within NaradaBrokering.

6. References

[1] NaradaBrokering Project http://www.naradabrokering.org

[2] Shrideep Pallickara and Geoffrey Fox. NaradaBrokering:

A Middleware Framework and Architecture for Enabling
Durable Peer-to-Peer Grids. Proceedings of ACM/IFIP/
USENIX International Middleware Conference. 2003.

[3] G. Fox, S. Lim, S. Pallickara and M. Pierce. Message-

Based Cellular Peer-to-Peer Grids: Foundations for Secure
Federation and Autonomic Services. (To appear) Journal
of Future Generation Computer Systems.

[4] Web Services Reliable Messaging Protocol. March 2003.

From IBM, Microsoft.

http://www.naradabrokering.org/

	1. Introduction
	2. The reliable delivery scheme
	2.1. The Reliable Delivery Service (RDS)

	3. Applications
	4. Experimental Results
	5. Conclusions & Future Work
	6. References

