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Abstract—We discuss significant recent updates and 
revisions to the QuakeSim portal and Web services, which 
provide access to geophysical applications, data sets, and 
real time sensor data.  These new developments include a) 
significant updates to the Web portal, b) a revision of Web 
Services to better encapsulate applications, c) additional 
services for generating Keyhole Markup Language markups 
of maps, and d) support for real-time Global Positioning 
Data.    
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1. INTRODUCTION 

The QuakeSim project, led by the NASA Jet Propulsion 
Laboratory (JPL), researches the interactions of fault 
systems that produce earthquakes.  Closely related to the 
geophysical research is the information technology and 
distributed computing development work, which will be the 
focus of this paper.  In addition to JPL, QuakeSim project 
includes participants from the University of Southern 
California, University of California (Davis and Irvine), and 
Indiana University.  

QuakeSim’s distributed architecture is based upon a multi-
tiered Web portal and Web Services model, separating 
functionality from the presentation layer.  This approach is 
typical of science gateways [1].  Web Services may be 
generally categorized as providing access to information 
(databases) and science applications, although from a data 
flow model, this distinction is one of implementation only.  
Earlier work on the QuakeSim architecture is described in 
[2].  The data management and scientific goals of QuakeSim 

are described in a companion paper, “QuakeSim: Efficient 
Modeling of Sensor Web Data in a Web Services 
Environment.” 

The subject of this paper is the significant revisions to the 
portal and service infrastructure that were described in [2]. 
For more information on the QuakeSim project, the 
geophysical research work, links to the QuakeSim portal, 
and links to the project’s open source code repository and 
build system, see [3].   

2. QUAKESIM WEB PORTAL 

QuakeSim was a pioneer in the use of portlet components 
for assembling portals out of reusable parts.  Our earlier 
work was based on the Apache Jetspeed 1 portlet container, 
As described in [2], the Jetspeed portlet development model 
had several undesirable features (particularly, poor support 
for externally developed Web applications), which led to 
our development of custom components, particularly the 
WebForm Portlet.  All portlets in the initial version of the 
portal were extension of this component.   This component 
ultimately had limited scalability and performance because 
of its use of network I/O for communications between the 
portlet and its Jetspeed container. 

The Java Specification Request (JSR) 168 standardized (and 
simplified) the portlet model used by Jetspeed and other 
containers, making these older containers and their 
associated components obsolete.  Although the Jetspeed 
container served QuakeSim adequately, it required updating 
to a standard-compliant container to enable interoperability 
with the rest of the science gateway community.  In 
particular, interoperability with the closely related SCIGN 
Data Portal [4] project’s GPS Explorer portal [5] is desirable 
so that we can exchange user interfaces.  

The QuakeSim portal’s current version has been developed 
using the JSR 168-compliant GridSphere container [6].  In 
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place of the Web Form Portlet, we have adopted the Apache 
Portlet Bridges project.  All portlets are now developed 
initially as standalone applications using Java Server Faces 
(JSF).  The JSF portlet bridge can then be used to convert 
these applications into portlets relatively quickly.  We find 
this model to be preferable to working directly with the 
portlet’s programming interface.  A sample screen shot of a 
portlet is show in Figure 1.  

 

Figure 1: Portlets provide browser-based user interfaces 
to remote web services.  The screen shot shows a Google 
Map interface to real-time GPS station monitoring 
services.   

The current set of QuakeSim portlets is listed below: 

(1) Disloc: a simple Okada [7]-based application for 
determining surface stress from a given fault model;  

(2) Simplex: an inversion of Disloc that uses surface 
deformation information to determine the best fit fault 
model; 

(3) GeoFEST Suite: a set of codes for modeling faults in 
realistic materials with finite element meshes; 

(4) RDAHMM: a data mining application that 
automatically classifies modes and patterns in time 
series data, such as Global Positioning System (GPS) 
positions;  

(5) Analyze_tseri: part of the ST-Filter suite of codes that 
is used for filtering GPS signals to help identify 
anomalies; and  

(6) Station Monitoring: a portlet that provides access to 
the latest real-time GPS data from the California Real 
Time Network [8] (see also Figure 1). 

These portlets correspond to horizontal tabs along the top of 
Figure 1 (beneath the logo), although this particular layout 
is optional.  Future work will include the addition of 
VirtualCalifornia (VC), which simulates large interacting 
fault systems. VC, GeoFEST, Disloc, and Simplex all use a 
variation of the same basic geometric model for 
representing faults.  We are currently working to standardize 
this object representation within the portal and with the 
QuakeTables fault database [9] developers. 

As we discuss in Section 3, all communications between the 
portal and remote services use SOAP-based Web services.  
We develop these using the Java programming language, 
although the interactions are programming language-
independent. Messages enclosed in the SOAP envelope are 
mapped on both the portal and server side to simple 
JavaBeans.  These data objects are kept purposefully simple: 
the beans consist of only simple types (strings, integers, 
double precision numbers). Input, output, and other data 
files are represented using URLs, and it is up to the 
implementation to retrieve the file via HTTP GET as a 
separate step; that is, we do not use SOAP attachments to 
move files or encode files as XML SOAP body elements.  

Most portal applications are designed to support a project 
and session model: users create new projects or else load 
older projects through web interfaces.  These projects 
maintain all metadata (parameters used, location of remote 
input and output files, etc), which the user may edit or 
delete.  The projects are assigned unique IDs, which are 
used to maintain multiple versions of the same basic project. 
All beans created by the portal through interactions with 
remote services are stored in an open source object 
database, DB4O (see www.db4o.com).  This replaces our 
previous Context Manager service (see [2]) and provides 
improved performance and scalability.  The use of beans 
also provides a useful integration with built-in Java Server 
Faces functionality.  

3. WEB SERVICES 

The portlets listed in Section 2 are clients to one or more 
supporting, remote Web Services that actually access or 
generate data.  Data access services include fault models 
from the QuakeTables service [9] and GPS data the GRWS 
service [10].  We have also, in previous work, built Web 
Service versions of the Open Geospatial Consortium’s Web 
Feature and Web Map services.  Our focus in this section 
will be on revisions to the execution services that manage 
invocations of remote geophysical applications. 

In the process of upgrading the portal front end, we 
determined that the application services that provide access 
to executables were in need of upgrading.  Earlier versions 
of the QuakeSim system were built around the concept of a 
generic Application Web Service that could wrap any 
executable.  This service was built on generic Web services 
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for running remote commands and interacting with remote 
file systems.  For related work in this field, see [11] and 
[12].    

We found ultimately that our Application Web Service 
approach tied services too closely to the portal environment. 
Web Services ideally should be self-contained, stateless (or 
nearly so), and completely self-describing.  This allows 
them to bind easily to any client environments such as 
workflow engines, portals, and desktop user interfaces.  It 
also enables other development groups to use the services 
with minimal guidance from the developer: the service’s 
WSDL provides sufficient information for invocation. 

Our original services did not meet these criteria.  Designing 
for generality, we embedded too many specific steps, such 
as creating application-specific input files, into the portal 
instead of the service.  Thus the semantics of invoking the 
Disloc code, for example, were not encapsulated in a single 
WSDL file but rather in Application Web Service metadata. 

Our revised service interfaces have been more an effort of 
code refactoring and reuse than a complete re-write.  Our 
core job management service, which extends Apache Ant, is 
still in place but no longer exposed directly as a service.  
Instead, all new versions of execution services (Disloc, 
Simplex, etc) extend this parent service (in the object 
oriented sense) in their implementation.    

We have likewise attempted to design the WSDL for these 
services to capture all information needed to invoke a 
particular code. A full listing of the service WSDL 
descriptions is available from the project code repository 
[3], but we do not include it here since it is generally 
unreadable by non-experts. Instead, we summarize the 
Disloc service’s XML messages below as a simple example 
(other applications follow the same general pattern): 

(1) Fault Model:  this provides a description of major fault 
geometric and material properties, including latitude 
and longitude of starting and ending points, length, 
width, strike, slip, dip, and Lame parameters. As 
mentioned previously, this model is reusable across 
many QuakeSim applications and is being adopted by 
the revised QuakeTables data service. 

(2) Input Parameters Model: Disloc calculates surface 
displacements associated with the fault at either grid or 
scatter points provided by the user, so we must send 
this information as well as the fault model parameters. 
The current version of the service supports the grid 
input model.  The input parameters model contains all 
information needed to create this part of the input file. 

(3) Output Model:  the Disloc service creates input, 
output, and standard output files.  The Output Model 
XML message contains the URLs for these files on the 
service.  In contrast to our earlier execution services, 
we do not have a specific “file management” service 

that manages uploads, downloads, and crossloads 
between services.  These are instead done with simple 
HTTP GET operations.  

These messages are XML encodings that correspond to 
simple JavaBeans in our implementation.  They may also be 
bound to C structs or other simple data structures. These 
messages are used to communicate the details of the desired 
invocation and its results over the wire.  We use Apache 
Axis 1.4 for implementing our services. 

All QuakeSim execution services implement blocking and 
non-blocking invocations of the executable, which are 
inherited from their generic parent class.  As the names 
imply, blocking executions keep the connection between the 
client and service open until the invocation is complete.  
This is useful for codes such as Disloc, Simplex, 
Analyze_tseri and RDAHMM, which take typically only a 
few seconds (to tens of seconds) to execute.   

Longer running codes (GeoFEST and VirtualCalifornia) use 
non-blocking invocations.  This allows the service to return 
immediately, but the application will continue to run.  The 
user can monitor the application by examining messages 
from the output files and logs (returned as URLs to the 
portal).  We also provide a call-back mechanism: a simple 
Event Service stores and retrieves messages.  The running 
application’s Ant wrapper monitors the major stages of the 
application (started or complete, for example) and posts 
state changes to the Event Service.  Clients, such as the 
portal, can query the Event Service to determine the current 
state.  This service is admittedly simplistic compared to 
Web Service standards such as WS-Notification and WS-
Eventing, but sophistication has often proven to not be 
virtue.  A more serious criticism would be our lack of use of 
general-purpose distributed event systems.  We do make 
extensive use of this in our real-time GPS system, described 
in the next section.  

Output files must be usually plotted to be comprehensible.  
Earlier versions of the portal wrapped Generic Map Tool 
(GMT) commands with the generic execution service, and 
we also have implemented the Web Map Service for 
creating plots.  More recently, however, we have found 
tools such as Google Maps and the associated Keyhole 
Markup Language (KML) to be a much better mixture of 
simplicity, interactivity, and power.   We have developed 
KML services that generate grid and arrow plots useful for 
visualizing Disloc and Simplex output.  These services 
consume Disloc and Simplex output (which are passed to 
the service via URL), although future versions of these 
execution services may incorporate these internally, 
providing the URL of for the generated KML as another 
part of the execution services’ return message. 
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Figure 2: QuakeSim plotting services create KML 
representations of Disloc output that can be displayed in 
Google Maps embedded into portlets. 

The current portal includes Google Maps portlets that plot 
the KML files, although these are memory limited.  We use 
the EGeoXML class, a small JavaScript extension to the 
Google Map API for working with KML, which we have 
found superior to Google Map’s GGeoXML class. We also 
provide the KML files for direct download, which allows 
them to be included in Google Earth.  These are illustrated 
in Figures 2 and 3.  

 

Figure 3: Generated KML files can also be downloaded 
and plotted with Google Earth outside the portal. 

4.  REAL-TIME SENSOR SUPPORT 

In addition to fault models, the other major data types that 
QuakeSim applications must ingest are seismic events and 
GPS data.   Archival GPS data services such as GRWS 
provide daily position data, but there is also interest in real-
time and custom data products.  The California Real Time 
Network (CRTN) provides online access to GPS position 
data at 1 Hz, and higher rates will be available in the future. 

We have developed a system using topic-based 
publish/subscribe distributed computing techniques to 
manage this data.  This system is described in greater detail 
in [13] [14] and summarized here.  The basic components 
are shown in Figure 4. Raw GPS data is passed through a 
number of filters, which act as subscribers to particular 
input topics and publishers to output topics.  An example 
topic is a path-like name that is used to indicate the network 
or station source and the data format.  For example, the 
topic name /SOPAC/GPS/PARKFIELD/ASCII is used to 
publish or subscribe to the ASCII formatted data from the 
Parkfield network.  

The simplest filters are used to de-multiplex the incoming 
binary GPS stream.  The CRTN consists of eight sub-
networks, each with one or more individual GPS stations.  
The de-multiplexing filters translate this binary formatted 
signal and extract the individual stations’ data.  The filters 
than publishes the data for each GPS station to a new topic.  
Downstream filters can thus receive individual station data 
for further processing.  See for example Figure 1.  We can 
also provide more sophisticated filters.  For example, have 
developed RDAHMM filters that perform mode 
classification on the real-time positions.  

 

 

Figure 4: (A) QuakeSim's Sensor Grid system 
successively filters the incoming, binary GPS data from 
the California Real Time Network.  Arrows indicate 
network connections.  (B) Filter chains are associated 
with structured topics so that associated with specific 
data products.   
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The system is implemented using the NaradaBrokering 
messaging software (www.naradabrokering.org).  Extensive 
network performance and scaling analyses are available 
from [14]. To summarize those results, we have 
demonstrated that we are able to (with simple filters) deliver 
data with overhead far below the 1 Hz frequency, and our 
system with a single broker scales to 1000 publishers or 
subscribers.  With networks of brokers the system will scale 
to larger numbers.  Our tests with two coupled brokers 
acting as a single logical broker showed scaling to 1500 
connections.  

5. SUMMARY AND FUTURE WORK 

In this paper, we have summarized extensive revisions and 
enhancements to the QuakeSim infrastructure that supersede 
the earlier work described in [2].  These include complete 
revisions of the portal and the execution Web services.  The 
portal has been updated to meet current component 
standards, and the Web Services have been revised to 
provide simple, self-contained WSDL interfaces.  Prominent 
new capabilities include access to archival and real-time 
GPS data (in collaboration with the SCIGN team [4]) and 
KML generating Web services for plotting vector output.  
We have two categories of future work, summarized below. 

Support for Grid Computing: QuakeSim applications 
typically run on small computers and clusters in which batch 
scheduling and related issues are not important.  This is 
adequate for codes such as Disloc, RDAHMM, Simplex, 
and Analyze_tseri.  However, only small GeoFEST and 
VirtualCalifornia simulations can be done this way.  Rather 
than revise our Web Services to address issues such as 
interactions with scheduling and queuing systems, we are 
adapting our infrastructure to work with the Globus toolkit.  
Our Grid Tag Libraries and Beans project extends Java 
Server Faces to provide components for invoking Grid 
services.  This work is part of our broader Grid portal 
software efforts, the Open Grid Computing Environments 
project [15].  

QuakeSim Portal and Web 2.0: As described in more 
detail in [16], we have analyzed the so-called Web 2.0 trend 
in Web programming and have concluded it is 
architecturally nearly identical to science gateways such as 
QuakeSim, although implementations may be very different. 
 For example, most Web 2.0 services use simple, stateless 
invocations known as Representational State Transfer 
(REST) instead of WSDL.  Message encoding formats used 
by these services include (simple) XML, RSS, ATOM, and 
JSON in place of SOAP.  These are notably easier to parse 
and manipulate by JavaScript libraries than the more 
complicated messages typically used by Web Services.  The 
re-emergence of JavaScript (following the standardization 
of the XmlHttpRequest class in most major browsers) has 
driven this simplification (if not standardization) of network 
messages. 

The impact of Web 2.0 on science gateways such as 
QuakeSim is just beginning to be felt.  The QuakeSim portal 
is primarily based on server-side Web technologies (portlets 
and Java Server Faces).  These are compatible with some 
prominent Web 2.0 examples (particularly Google Maps, as 
we have shown in Figures 1 and 2). However, the more 
serious incompatibility is that Web 2.0 applications use 
client-side integration.  See for example “Start Pages” such 
as iGoogle and NetVibes, which aggregate content in a 
manner superficially similar to JSR 168 portlets but which 
put the user much more in control of his or her content.  
This similarly simplifies the process of developing new 
content when compared to the portlet model.  On the server-
side, QuakeSim services will need to be reconsidered to see 
if they can be made compatible with Web 2.0’s favored 
message formats. 

Most interesting of all is the investigation of the overlap 
between Web 2.0 and Grids.  We will use the QuakeSim 
project as our laboratory for this research.  Important areas 
to be addressed include scalable event management, single-
sign on security, service interoperability, and authorization.  
All of these are important to Grid computing but are 
noticeably lacking in Web 2.0.    
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