
 1

QuakeSim: Web Services, Portals, and Infrastructure for
Geophysics

Marlon E. Pierce, Geoffrey C. Fox, Galip Aydin, and Zhigang Qi
Community Grids Laboratory, Indiana University

501 North Morton Street
Bloomington, IN 47404

812-856-1212
mpierce@cs.indiana.edu

Andrea Donnellan, Jay, Parker, Robert Granat

NASA Jet Propulsion Laboratory
M/S 183-335

4800 Oak Grove Drive
Pasadena, CA 90089-8099

Abstract—We discuss significant recent updates and
revisions to the QuakeSim portal and Web services, which
provide access to geophysical applications, data sets, and
real time sensor data. These new developments include a)
significant updates to the Web portal, b) a revision of Web
Services to better encapsulate applications, c) additional
services for generating Keyhole Markup Language markups
of maps, and d) support for real-time Global Positioning
Data.

TABLE OF CONTENTS

1. INTRODUCTION..1
2. QUAKESIM WEB PORTAL.......................................1
3. WEB SERVICES ..2
4. REAL-TIME SENSOR SUPPORT..............................4
5. SUMMARY AND FUTURE WORK5
REFERENCES ..6
BIOGRAPHY ..6

1. INTRODUCTION

The QuakeSim project, led by the NASA Jet Propulsion
Laboratory (JPL), researches the interactions of fault
systems that produce earthquakes. Closely related to the
geophysical research is the information technology and
distributed computing development work, which will be the
focus of this paper. In addition to JPL, QuakeSim project
includes participants from the University of Southern
California, University of California (Davis and Irvine), and
Indiana University.

QuakeSim’s distributed architecture is based upon a multi-
tiered Web portal and Web Services model, separating
functionality from the presentation layer. This approach is
typical of science gateways [1]. Web Services may be
generally categorized as providing access to information
(databases) and science applications, although from a data
flow model, this distinction is one of implementation only.
Earlier work on the QuakeSim architecture is described in
[2]. The data management and scientific goals of QuakeSim

are described in a companion paper, “QuakeSim: Efficient
Modeling of Sensor Web Data in a Web Services
Environment.”

The subject of this paper is the significant revisions to the
portal and service infrastructure that were described in [2].
For more information on the QuakeSim project, the
geophysical research work, links to the QuakeSim portal,
and links to the project’s open source code repository and
build system, see [3].

2. QUAKESIM WEB PORTAL

QuakeSim was a pioneer in the use of portlet components
for assembling portals out of reusable parts. Our earlier
work was based on the Apache Jetspeed 1 portlet container,
As described in [2], the Jetspeed portlet development model
had several undesirable features (particularly, poor support
for externally developed Web applications), which led to
our development of custom components, particularly the
WebForm Portlet. All portlets in the initial version of the
portal were extension of this component. This component
ultimately had limited scalability and performance because
of its use of network I/O for communications between the
portlet and its Jetspeed container.

The Java Specification Request (JSR) 168 standardized (and
simplified) the portlet model used by Jetspeed and other
containers, making these older containers and their
associated components obsolete. Although the Jetspeed
container served QuakeSim adequately, it required updating
to a standard-compliant container to enable interoperability
with the rest of the science gateway community. In
particular, interoperability with the closely related SCIGN
Data Portal [4] project’s GPS Explorer portal [5] is desirable
so that we can exchange user interfaces.

The QuakeSim portal’s current version has been developed
using the JSR 168-compliant GridSphere container [6]. In

 2

place of the Web Form Portlet, we have adopted the Apache
Portlet Bridges project. All portlets are now developed
initially as standalone applications using Java Server Faces
(JSF). The JSF portlet bridge can then be used to convert
these applications into portlets relatively quickly. We find
this model to be preferable to working directly with the
portlet’s programming interface. A sample screen shot of a
portlet is show in Figure 1.

Figure 1: Portlets provide browser-based user interfaces
to remote web services. The screen shot shows a Google
Map interface to real-time GPS station monitoring
services.

The current set of QuakeSim portlets is listed below:

(1) Disloc: a simple Okada [7]-based application for
determining surface stress from a given fault model;

(2) Simplex: an inversion of Disloc that uses surface
deformation information to determine the best fit fault
model;

(3) GeoFEST Suite: a set of codes for modeling faults in
realistic materials with finite element meshes;

(4) RDAHMM: a data mining application that
automatically classifies modes and patterns in time
series data, such as Global Positioning System (GPS)
positions;

(5) Analyze_tseri: part of the ST-Filter suite of codes that
is used for filtering GPS signals to help identify
anomalies; and

(6) Station Monitoring: a portlet that provides access to
the latest real-time GPS data from the California Real
Time Network [8] (see also Figure 1).

These portlets correspond to horizontal tabs along the top of
Figure 1 (beneath the logo), although this particular layout
is optional. Future work will include the addition of
VirtualCalifornia (VC), which simulates large interacting
fault systems. VC, GeoFEST, Disloc, and Simplex all use a
variation of the same basic geometric model for
representing faults. We are currently working to standardize
this object representation within the portal and with the
QuakeTables fault database [9] developers.

As we discuss in Section 3, all communications between the
portal and remote services use SOAP-based Web services.
We develop these using the Java programming language,
although the interactions are programming language-
independent. Messages enclosed in the SOAP envelope are
mapped on both the portal and server side to simple
JavaBeans. These data objects are kept purposefully simple:
the beans consist of only simple types (strings, integers,
double precision numbers). Input, output, and other data
files are represented using URLs, and it is up to the
implementation to retrieve the file via HTTP GET as a
separate step; that is, we do not use SOAP attachments to
move files or encode files as XML SOAP body elements.

Most portal applications are designed to support a project
and session model: users create new projects or else load
older projects through web interfaces. These projects
maintain all metadata (parameters used, location of remote
input and output files, etc), which the user may edit or
delete. The projects are assigned unique IDs, which are
used to maintain multiple versions of the same basic project.
All beans created by the portal through interactions with
remote services are stored in an open source object
database, DB4O (see www.db4o.com). This replaces our
previous Context Manager service (see [2]) and provides
improved performance and scalability. The use of beans
also provides a useful integration with built-in Java Server
Faces functionality.

3. WEB SERVICES

The portlets listed in Section 2 are clients to one or more
supporting, remote Web Services that actually access or
generate data. Data access services include fault models
from the QuakeTables service [9] and GPS data the GRWS
service [10]. We have also, in previous work, built Web
Service versions of the Open Geospatial Consortium’s Web
Feature and Web Map services. Our focus in this section
will be on revisions to the execution services that manage
invocations of remote geophysical applications.

In the process of upgrading the portal front end, we
determined that the application services that provide access
to executables were in need of upgrading. Earlier versions
of the QuakeSim system were built around the concept of a
generic Application Web Service that could wrap any
executable. This service was built on generic Web services

 3

for running remote commands and interacting with remote
file systems. For related work in this field, see [11] and
[12].

We found ultimately that our Application Web Service
approach tied services too closely to the portal environment.
Web Services ideally should be self-contained, stateless (or
nearly so), and completely self-describing. This allows
them to bind easily to any client environments such as
workflow engines, portals, and desktop user interfaces. It
also enables other development groups to use the services
with minimal guidance from the developer: the service’s
WSDL provides sufficient information for invocation.

Our original services did not meet these criteria. Designing
for generality, we embedded too many specific steps, such
as creating application-specific input files, into the portal
instead of the service. Thus the semantics of invoking the
Disloc code, for example, were not encapsulated in a single
WSDL file but rather in Application Web Service metadata.

Our revised service interfaces have been more an effort of
code refactoring and reuse than a complete re-write. Our
core job management service, which extends Apache Ant, is
still in place but no longer exposed directly as a service.
Instead, all new versions of execution services (Disloc,
Simplex, etc) extend this parent service (in the object
oriented sense) in their implementation.

We have likewise attempted to design the WSDL for these
services to capture all information needed to invoke a
particular code. A full listing of the service WSDL
descriptions is available from the project code repository
[3], but we do not include it here since it is generally
unreadable by non-experts. Instead, we summarize the
Disloc service’s XML messages below as a simple example
(other applications follow the same general pattern):

(1) Fault Model: this provides a description of major fault
geometric and material properties, including latitude
and longitude of starting and ending points, length,
width, strike, slip, dip, and Lame parameters. As
mentioned previously, this model is reusable across
many QuakeSim applications and is being adopted by
the revised QuakeTables data service.

(2) Input Parameters Model: Disloc calculates surface
displacements associated with the fault at either grid or
scatter points provided by the user, so we must send
this information as well as the fault model parameters.
The current version of the service supports the grid
input model. The input parameters model contains all
information needed to create this part of the input file.

(3) Output Model: the Disloc service creates input,
output, and standard output files. The Output Model
XML message contains the URLs for these files on the
service. In contrast to our earlier execution services,
we do not have a specific “file management” service

that manages uploads, downloads, and crossloads
between services. These are instead done with simple
HTTP GET operations.

These messages are XML encodings that correspond to
simple JavaBeans in our implementation. They may also be
bound to C structs or other simple data structures. These
messages are used to communicate the details of the desired
invocation and its results over the wire. We use Apache
Axis 1.4 for implementing our services.

All QuakeSim execution services implement blocking and
non-blocking invocations of the executable, which are
inherited from their generic parent class. As the names
imply, blocking executions keep the connection between the
client and service open until the invocation is complete.
This is useful for codes such as Disloc, Simplex,
Analyze_tseri and RDAHMM, which take typically only a
few seconds (to tens of seconds) to execute.

Longer running codes (GeoFEST and VirtualCalifornia) use
non-blocking invocations. This allows the service to return
immediately, but the application will continue to run. The
user can monitor the application by examining messages
from the output files and logs (returned as URLs to the
portal). We also provide a call-back mechanism: a simple
Event Service stores and retrieves messages. The running
application’s Ant wrapper monitors the major stages of the
application (started or complete, for example) and posts
state changes to the Event Service. Clients, such as the
portal, can query the Event Service to determine the current
state. This service is admittedly simplistic compared to
Web Service standards such as WS-Notification and WS-
Eventing, but sophistication has often proven to not be
virtue. A more serious criticism would be our lack of use of
general-purpose distributed event systems. We do make
extensive use of this in our real-time GPS system, described
in the next section.

Output files must be usually plotted to be comprehensible.
Earlier versions of the portal wrapped Generic Map Tool
(GMT) commands with the generic execution service, and
we also have implemented the Web Map Service for
creating plots. More recently, however, we have found
tools such as Google Maps and the associated Keyhole
Markup Language (KML) to be a much better mixture of
simplicity, interactivity, and power. We have developed
KML services that generate grid and arrow plots useful for
visualizing Disloc and Simplex output. These services
consume Disloc and Simplex output (which are passed to
the service via URL), although future versions of these
execution services may incorporate these internally,
providing the URL of for the generated KML as another
part of the execution services’ return message.

 4

Figure 2: QuakeSim plotting services create KML
representations of Disloc output that can be displayed in
Google Maps embedded into portlets.

The current portal includes Google Maps portlets that plot
the KML files, although these are memory limited. We use
the EGeoXML class, a small JavaScript extension to the
Google Map API for working with KML, which we have
found superior to Google Map’s GGeoXML class. We also
provide the KML files for direct download, which allows
them to be included in Google Earth. These are illustrated
in Figures 2 and 3.

Figure 3: Generated KML files can also be downloaded
and plotted with Google Earth outside the portal.

4. REAL-TIME SENSOR SUPPORT

In addition to fault models, the other major data types that
QuakeSim applications must ingest are seismic events and
GPS data. Archival GPS data services such as GRWS
provide daily position data, but there is also interest in real-
time and custom data products. The California Real Time
Network (CRTN) provides online access to GPS position
data at 1 Hz, and higher rates will be available in the future.

We have developed a system using topic-based
publish/subscribe distributed computing techniques to
manage this data. This system is described in greater detail
in [13] [14] and summarized here. The basic components
are shown in Figure 4. Raw GPS data is passed through a
number of filters, which act as subscribers to particular
input topics and publishers to output topics. An example
topic is a path-like name that is used to indicate the network
or station source and the data format. For example, the
topic name /SOPAC/GPS/PARKFIELD/ASCII is used to
publish or subscribe to the ASCII formatted data from the
Parkfield network.

The simplest filters are used to de-multiplex the incoming
binary GPS stream. The CRTN consists of eight sub-
networks, each with one or more individual GPS stations.
The de-multiplexing filters translate this binary formatted
signal and extract the individual stations’ data. The filters
than publishes the data for each GPS station to a new topic.
Downstream filters can thus receive individual station data
for further processing. See for example Figure 1. We can
also provide more sophisticated filters. For example, have
developed RDAHMM filters that perform mode
classification on the real-time positions.

Figure 4: (A) QuakeSim's Sensor Grid system
successively filters the incoming, binary GPS data from
the California Real Time Network. Arrows indicate
network connections. (B) Filter chains are associated
with structured topics so that associated with specific
data products.

 5

The system is implemented using the NaradaBrokering
messaging software (www.naradabrokering.org). Extensive
network performance and scaling analyses are available
from [14]. To summarize those results, we have
demonstrated that we are able to (with simple filters) deliver
data with overhead far below the 1 Hz frequency, and our
system with a single broker scales to 1000 publishers or
subscribers. With networks of brokers the system will scale
to larger numbers. Our tests with two coupled brokers
acting as a single logical broker showed scaling to 1500
connections.

5. SUMMARY AND FUTURE WORK

In this paper, we have summarized extensive revisions and
enhancements to the QuakeSim infrastructure that supersede
the earlier work described in [2]. These include complete
revisions of the portal and the execution Web services. The
portal has been updated to meet current component
standards, and the Web Services have been revised to
provide simple, self-contained WSDL interfaces. Prominent
new capabilities include access to archival and real-time
GPS data (in collaboration with the SCIGN team [4]) and
KML generating Web services for plotting vector output.
We have two categories of future work, summarized below.

Support for Grid Computing: QuakeSim applications
typically run on small computers and clusters in which batch
scheduling and related issues are not important. This is
adequate for codes such as Disloc, RDAHMM, Simplex,
and Analyze_tseri. However, only small GeoFEST and
VirtualCalifornia simulations can be done this way. Rather
than revise our Web Services to address issues such as
interactions with scheduling and queuing systems, we are
adapting our infrastructure to work with the Globus toolkit.
Our Grid Tag Libraries and Beans project extends Java
Server Faces to provide components for invoking Grid
services. This work is part of our broader Grid portal
software efforts, the Open Grid Computing Environments
project [15].

QuakeSim Portal and Web 2.0: As described in more
detail in [16], we have analyzed the so-called Web 2.0 trend
in Web programming and have concluded it is
architecturally nearly identical to science gateways such as
QuakeSim, although implementations may be very different.
 For example, most Web 2.0 services use simple, stateless
invocations known as Representational State Transfer
(REST) instead of WSDL. Message encoding formats used
by these services include (simple) XML, RSS, ATOM, and
JSON in place of SOAP. These are notably easier to parse
and manipulate by JavaScript libraries than the more
complicated messages typically used by Web Services. The
re-emergence of JavaScript (following the standardization
of the XmlHttpRequest class in most major browsers) has
driven this simplification (if not standardization) of network
messages.

The impact of Web 2.0 on science gateways such as
QuakeSim is just beginning to be felt. The QuakeSim portal
is primarily based on server-side Web technologies (portlets
and Java Server Faces). These are compatible with some
prominent Web 2.0 examples (particularly Google Maps, as
we have shown in Figures 1 and 2). However, the more
serious incompatibility is that Web 2.0 applications use
client-side integration. See for example “Start Pages” such
as iGoogle and NetVibes, which aggregate content in a
manner superficially similar to JSR 168 portlets but which
put the user much more in control of his or her content.
This similarly simplifies the process of developing new
content when compared to the portlet model. On the server-
side, QuakeSim services will need to be reconsidered to see
if they can be made compatible with Web 2.0’s favored
message formats.

Most interesting of all is the investigation of the overlap
between Web 2.0 and Grids. We will use the QuakeSim
project as our laboratory for this research. Important areas
to be addressed include scalable event management, single-
sign on security, service interoperability, and authorization.
All of these are important to Grid computing but are
noticeably lacking in Web 2.0.

ACKNOWLEDGEMENTS

We acknowledge the collaborations of the QuakeSim team:
John Rundle (UC-Davis), Lisa Grant (UC-Irvine), and
Dennis McLeod (USC). We also thank the members of the
NASA REASoN project for assistance and collaboration
using their GPS services. The QuakeSim project is
supported by the NASA Earth Science Technology Office.

 6

REFERENCES

[1] Nancy Wilkins-Diehr, “Special Issue: Science Gateways -
Common Community Interfaces to Grid Resources,”
Concurrency and Computation: Practice and Experience
Volume 19, Issue 6, Date: 25 April 2007, Pages: 743-749

[2] Marlon E. Pierce, Geoffrey C. Fox, Mehmet S. Aktas,
Galip Aydin, Harshawardhan Gadgil, Zhigang Qi, and
Ahmet Sayar, “The Solid Earth Research Virtual
Observatory: Web Services for Managing Geophysical
Data and Applications,” accepted for publication in
PAGEOPH Special Issue for 5th ACES International
Workshop. Available from
http://grids.ucs.indiana.edu/ptliupages/publications/SERV
OAces2006.pdf.

[3] QuakeSim Web Site: http://www.quakesim.org;
QuakeSim at SourceForge:
http://sourceforge.net/projects/crisisgrid.

[4] SCIGN Data Portal:
http://reason.scign.org/scignDataPortal/

[5] GPS Explorer: http://geodemo-
c.ucsd.edu/gridsphere/gridsphere.

[6] Jason Novotny, Michael Russell, Oliver Wehrens:
GridSphere: a portal framework for building
collaborations. Concurrency - Practice and Experience
16(5): 503-513 (2004).

[7] Yoshimitsu Okada, “Surface Deformation Due to Shear
and Tensile Faults in a Half-Space,” 1985, BSSA, vol 75,
no. 4, pp 1135-1154.

[8] California Real Time Network:
http://sopac.ucsd.edu/projects/realtime/.

[9] Chen, A., Donnellan, A., McLeod, D., Fox, G., Parker, J.,
Rundle, J., Grant, L., Pierce, M., Gould, M., Chung, S.,
and Gao, S., Interoperability and Semantics for
Heterogeneous Earthquake Science Data, International
Workshop on Semantic Web Technologies for Searching
and Retrieving Scientific Data, Sanibel Island, FL,
October 2003.

[10] Geophysical Resource Web Services (GRWS):
http://reason.scign.org/scignDataPortal/grwsSummary.jsp.

[11] Gopi Kandaswamy, Dennis Gannon: A Mechanism for
Creating Scientific Application Services On-demand from
Workflows. ICPP Workshops 2006: 25-32.

[12] Sriram Krishnan, Brent Stearn, Karan Bhatia, Kim
Baldridge, Wilfred W. Li, Peter W. Arzberger: Opal:
SimpleWeb Services Wrappers for Scientific
Applications. ICWS 2006: 823-832.

[13] Galip Aydin, Zhigang Qi, Marlon E. Pierce, Yehuda
Bock, and Geoffrey C. Fox Building a Sensor Grid for
Real Time Global Positioning System Data Proceedings
of Workshop on Principles of Pervasive Information
Systems Design Sunday, May 13, 2007 In conjunction
with Pervasive 2007, Toronto, Ontario, Canada.

[14] Galip Aydin, Zhigang Qi, Marlon E. Pierce, Geoffrey C.
Fox, Yehuda Bock, “Architecture, Performance, and
Scalability of a Real-Time Global Positioning System
Data Grid,” Special issue on Computational Challenges in
Geosciences in PEPI Physics of the Earth and Planetary
Interiors.

[15] Jay Alameda, Marcus Christie, Geoffrey Fox, Joe
Futrelle, Dennis Gannon, Mihael Hategan, Gopi
Kandaswamy, Gregor von Laszewski, Mehmet A. Nacar,
Marlon Pierce, Eric Roberts, Charles Severance, Mary
Thomas, “ The Open Grid Computing Environments
collaboration: portlets and services for science gateways,”
Concurrency and Computation: Practice and Experience
Volume 19, Issue 6, Date: 25 April 2007, Pages: 921-942.

[16] Marlon E. Pierce, Geoffrey Fox, Huapeng Yuan, and Yu
Deng, “Cyberinfrastructure and Web 2.0,” Proceedings of
HPC2006, July 4 2006 Cetraro Italy. Available from
http://grids.ucs.indiana.edu/ptliupages/publications/Web2
0ChapterFinal.pdf.

BIOGRAPHY

Marlon Pierce is assistant director of the Community Grids
Laboratory at Indiana University and leads the portal and
services development for the QuakeSim project. His
research interests include the application of service-oriented
architectures and other distributed systems to problems in
applied science. Pierce has a Ph. D. in computational
condensed matter physics from Florida State University
(1998).

 7

