
Improving Resource Utilization in MapReduce

Zhenhua Guo, Geoffrey Fox, and Mo Zhou

School of Informatics and Computing,
Indiana University, US

{zhguo,gcf,mozhou}@cs.indiana.edu

Abstract. MapReduce has been adopted widely in both academia and
industry to run large-scale data parallel applications. In MapReduce,
each worker node hosts a number of task slots to which tasks can be
assigned. So they limit the maximum number of tasks that can exe-
cute concurrently on each node. When all task slots of a node are not
used, the resources “reserved” for idle slots are wasted. To improve re-
source utilization, we propose resource stealing to enable running tasks to
steal resources reserved for idle slots and give them back proportionally
whenever new tasks are assigned. Resource stealing makes the other-
wise wasted resources get fully utilized without interfering with normal
job scheduling. MapReduce uses speculative execution to improve fault
tolerance. Current Hadoop implementation decides whether to run spec-
ulative tasks based on the progress rates of running tasks, which does
not take into consideration the absolute progress of each task. We pro-
pose Benefit Aware Speculative Execution which evaluates the potential
benefit of speculative tasks and eliminates the unnecessary runs. We im-
plement our proposed algorithms in Hadoop and conduct experiments
to show that our algorithms can significantly shorten job execution time
and reduce the number of non-beneficial speculative tasks.

Keywords: MapReduce, scheduling, utilization, speculative execution

1 Introduction

Data deluge has been observed in many science areas such as particle physics,
astronomy, and biology. A significant amount of computation power is demanded
to process the collected data. Message Passing Interface (MPI) [1] has been
used widely in High Performance Computing (HPC) as a programming model.
For data parallel applications, MapReduce [2] has gained popularity in both
academia and industry, and been used in bioinformatics [3], machine learning
[4], etc. Hadoop is a widely-used implementation of MapReduce and thus our
research target. Besides Hadoop, other data parallel systems including Dryad
and Sector/Sphere have been developed with different features.

In MapReduce, multiple tasks can run concurrently on each node to explore
the processing capability of modern multi-core processors. To limit the task
concurrency on each node and thus avoid intense resource contention, each node
hosts a configurable number of map and reduce slots where tasks can run. A

2 Zhenhua Guo, Geoffrey Fox, and Mo Zhou

slot gets occupied when a task is assigned to it, and gets released when the
task completes. This approach results in resource underutilization when there
are no enough tasks to fill all slots, which is mitigated by our proposed resource
stealing.

In MapReduce, speculative execution is adopted to support fault tolerance.
The master node keeps track of the progresses of all scheduled tasks. When it
finds a task that runs unusually slow compared with other tasks of the same
job, a speculative task is launched to process the same input data with the
hope that it will complete earlier than the original task. The speculative tasks,
which complete later than original tasks and do not benefit the overall job execu-
tion, are termed non-beneficial speculative tasks, the number of which should be
minimized to maximize efficiency. In Hadoop, the default mechanism incurs the
execution of many non-beneficial speculative tasks and is inefficient. We propose
Benefit Aware Speculative Execution to solve it.

The rest of this paper is organized as follows. Related work is discussed in
sector 2. The details of our proposed resource stealing algorithm and BASE are
discussed in sector 3. The experiments we have conducted and their results are
presented in sector 4. Finally we conclude in sector 5.

2 Related Work

The term speculative execution has been used in different contexts. For exam-
ple, at instruction level, branch predictors [5] guess which branch a conditional
jump will go to and speculatively execute the corresponding instructions. For
distributed systems where communication overhead is substantial, task duplica-
tion [6] redundantly executes some tasks on which other tasks critically depend.
So task duplication mitigates the penalty of data communication by running the
same task on multiple nodes. Speculative execution in MapReduce employs a
similar strategy but is mainly used for fault tolerance. To improve MapReduce
performance in heterogeneous environments, Longest Approximate Time to End
(LATE) [7] is proposed which aims to robustly perform speculative execution by
prioritizing tasks to speculate, selecting fast nodes to run on and limiting the
number of speculative tasks. Our BASE algorithm improves upon LATE to fur-
ther maximize performance.

Work stealing [8] enables idle processors to steal computational tasks from
other processors and is more communication efficient than its work-sharing coun-
terparts. Our proposed resource stealing shares similar motivations. But the ex-
ecution model of MapReduce is logically independent of underlying hardware
while work stealing is closely coupled with processors. Cycle stealing [9] enables
busy nodes to take control of idle nodes, supply them with work, and receive re-
sults. The motivation is to harness the otherwise wasted resources of idle nodes.
Task splitting yields better load balancing across nodes by dynamically adjusting
task granularities [10]. Our proposed resource stealing is applied at a lower level
to the resources located on a single node. Iterative MapReduce [11] optimizes the
performance of iterative applications by aggressively caching and reusing data
across iterations.

Improving Resource Utilization in MapReduce 3

In grid systems, batch scheduling has been used extensively. When a job is
scheduled, the requested number of nodes are reserved for a specific period of
time even though the resource usage may vary across the phases of the job. Back-
filling [12] moves small jobs ahead to leapfrog big jobs in front to alleviate frag-
mentation and improve resource utilization. Backfilling does not delay the first
job or any job waiting in the queue depending on its aggressiveness. Resources
are shared among jobs in MapReduce while grid systems adopt reservation-based
resource allocation. In resource stealing, jobs are not re-ordered or moved in the
queue and stealing is done at task level without impacting job scheduling at all,
so it is a finer-grained and lower-level optimization of resource usage.

3 Our Approaches

3.1 Resource Stealing

How to tune Hadoop parameters automatically has been studied in [13, 14]. In
this paper, we assume the number of task slots are set optimally so that optimal
resource utilization is achieved when all slots are occupied. Resource utilization
is proportional to the number of occupied slots approximately. According to the
trace of production clusters [15], resource utilization is way below 100% and
varies across time periods, so mostly there exist idle slots in large systems. It
implies that the capability of resources can be further exploited to minimize
execution time. The portion of the resources that sit idle on a slave node is
termed residual resources which can be utilized without incurring severe usage
contention or degrading overall performance. We can consider that residual re-
sources are reserved for prospective tasks that will be assigned to currently idle
slots. One advantage of resource reservation is that whenever a new task is as-
signed resource availability is guaranteed. However, an obvious drawback is that
residual resources are left unused until new tasks are assigned.

We propose resource stealing to improve resource utilization. The resource
usage of running tasks (if any) on each node is dynamically expanded or shrunk
according to the availability of task slots. When there are idle slots, running
tasks temporarily steal resources reserved for prospective tasks so that resid-
ual resources are fully utilized. If a node is perfectly loaded by using resource
stealing, to assign a new task obviously will overload it and degrade the perfor-
mance of currently running tasks. Our solution is to adjust the resource usage
of running tasks by making them relinquish stolen resources proportionally. In
this way, resource stealing does not violate the assumption made by Hadoop
that resources are guaranteed for new tasks, which is critical to efficient Hadoop
scheduling. To summarize, the overall philosophy is to steal residual resources
if corresponding map/reduce slots are idle, and hand them back whenever new
tasks are launched to fill the idle slots. From the perspective of the task sched-
uler, idle slots are still idle and new tasks can be assigned to them, so resource
stealing is transparent to the task scheduler and can be used in combination
with any Hadoop scheduler directly such as fair scheduler and capability sched-
uler. Resource stealing is applied periodically with the up-to-date information
of task execution and system status. So it is adaptive in the sense that it reacts
to real-time changes of the system state.

4 Zhenhua Guo, Geoffrey Fox, and Mo Zhou

3.2 Allocation Policies of Residual Resources

Given residual resources and the number of running tasks on a node, the next
issue is how to distribute residual resources among running tasks, e.g. which
tasks should get how much. The policies can range from simple to complex in
their use of system state information. Complex policies have the potential to
take full advantage of the processing capability of each node. The disadvantages
include high overhead cost and the risk that a well tuned policy may behave
unpredictably when inaccurate state information is collected. We come up with
several policies summarized below.

Even: This policy equally divides residual resources among running tasks.
It is inherently stable because of not relying on the collection or prediction of
system state (and thus not impacted by the information inaccuracy).

First-Come-Most (FCM): This policy orders running tasks by start time.
The task with the earliest start time is given residual resources. The heuristic is
to make tasks complete in the order of job submission with best efforts.

Shortest-Time-Left-Most (STLM): Firstly, the remaining execution time
of tasks is estimated, where different mechanisms can be plugged in. Here we
adopt the same mechanism used in [7] which assumes each task progresses at a
constant rate across time and predicts the time left based on progress rate and
current progress. The task with the shortest time left is given residual resources.
The heuristic is to make close-to-completion tasks complete as soon as possible
to make way for long-running tasks.

Longest-Time-Left-Most (LTLM): This policy is the same as STLM ex-
cept that the task with the longest time left is given residual resources.

Speculative-Task-Most (STM): Speculative execution in MapReduce aims
to mitigate the impact of slow tasks by duplicate their processing on multiple
nodes. The basic idea of STM policy is that speculative tasks are given more
resources than regular tasks with the hope that they will not hurt the job ex-
ecution time. Because speculative tasks are given more resources, they can run
faster and will not be stragglers any longer hopefully. If there are no speculative
tasks on a node, it falls back to the regular case and other policies can be applied.
If there are multiple speculative tasks running on a node, residual resources are
allocated to them evenly.

Laggard-Task-Most(LTM): In this approach, we do not distinguish be-
tween regular tasks and speculative tasks. Instead, for each job we use the es-
timated remaining execution time of all its scheduled tasks (both regular and
speculative tasks) to calculate the fastness of a running task T using (1). Fast-
ness reflects the expected order of task completion for each job; and a task with
small fastness will complete later than a task with large fastness.

The fastness of a task cannot be computed locally by a slave node because
it requires the information of all other tasks belonging to the same job. The
master node maintains the statues of all tasks so that it is the ideal component
to compute fastness. Each slave node reports the statuses (e.g. progress, failure)
of its running tasks to the master node in heartbeat messages. After collecting
the information of all tasks, the master node calculates the fastness of each

Improving Resource Utilization in MapReduce 5

task and returns it to the corresponding slave node. Upon receiving fastness
information, slave nodes order tasks by fastness. The tasks whose fastness is
smaller than threshold SlowTaskThreshold (a user configurable parameter) are
called laggards and given residual resources. If there are multiple laggards on a
node, residual resources are evenly allocated to them.

fastness(T) =
of tasks that will complete later than T

of running tasks
(1)

As we discussed, the motivation of speculative execution is to improve per-
formance by running duplicate processing. There are several drawbacks. Firstly,
if speculative execution is triggered, the completion of any task renders the work
done by other duplicate tasks to be wasted. Secondly, if the slowness of tasks
is caused by intermittent and temporary resource contention, it is highly likely
that they do not lag much behind and still complete earlier than their spec-
ulative tasks, which subverts the motivation of speculative execution. Thirdly,
sometimes speculative execution deteriorates performance rather than improve
it [7]. LTM reduces the invocations of speculative execution by proactively allo-
cating more resources to laggards whenever possible and thus accelerating their
execution. Fourthly, the tasks of a job may be heterogeneous intrinsically in that
their execution time varies greatly depending upon both data size and the con-
tent of the data. For example, easy and difficult Sudoku puzzles have similar
input sizes (9 x 9 grids) but require dramatically different amounts of computa-
tion. Speculative execution is not helpful because the efficiency variation is not
mainly caused by extrinsic factors (e.g. faulty nodes) and the execution time
will not be reduced significantly no matter how many speculative tasks are run.
In that case, the tasks demanding the most computation progress slower than
other tasks and thus are the laggards with small fastness. LTM speeds up their
execution by assigning more resources. By balancing the workload within each
job, LTM reduces both job execution time and the number of speculative tasks.
Assignments of new tasks decrease the amount of residual resources while the
completion of running tasks increases the amount of residual resources. They
both trigger the re-allocation of residual resources.

3.3 The BASE Scheduler

Speculative execution is not a simple matter of running redundant tasks for
sufficiently slow tasks. To make it effective, two issues need to be addressed: i)
detect slow tasks; ii) choose the tasks to speculate. Hadoop identifies the tasks
whose progress rates are one standard deviation lower than the mean of all tasks
as slow tasks. Then it chooses the task with the longest remaining execution
time to speculate. It does not take into consideration whether speculative tasks
will complete before the original tasks. Assume a job has two tasks A and B;
task A is 90% done but progresses slowly with rate 1; and task B progresses fast
with rate 5. Because task A progresses slow, the master node decides to start a
speculative task A′ for A which progresses with rate 5. By doing a little math,
we can easily figure out that task A will complete earlier than A′ although A
progresses slowly. The reason is that task A is close to completion when A′ is

6 Zhenhua Guo, Geoffrey Fox, and Mo Zhou

launched. This inefficiency was observed in our tests, where a large portion of
speculative tasks were killed before their completion because the original tasks
completed earlier. Those speculative tasks were not beneficial at all and their
execution resulted in the waste of resources. To overcome the issue, we propose
Benefit Aware Speculative Execution (BASE) in which speculative tasks are
launched only when they are expected to complete earlier than the original
tasks. The estimation of the remaining execution time of a running task has
been discussed above. We propose a mechanism to estimate the execution time
of prospective speculative tasks. It depends upon two factors: 1) the progress
rates of other tasks of the same job; 2) the node where the speculative task
will run. The key is to estimate the progress rate which can be directly used to
calculate run time. Slow tasks can be identified using the mechanism described
in [7]. Given a slow task T of job J and a slave node Ni, following algorithm
solves the problem whether a speculative task T ′ should be launched on Ni for
T .

1. If some tasks belonging to J are running or have run on node Ni, the mean
of their progress rates is calculated and used as the progress rate of T ′.

2. Otherwise, progress rates of all scheduled tasks of job J are gathered and nor-
malized against the reference baseline. The normalization of progress rates,
computed based on hardware processing power (e.g. weighted sum of the ca-
pabilities of processors, disks and network interface cards), is needed when
nodes are heterogeneous. Then the mean of normalized progress rates is cal-
culated. Because the mean is against the reference baseline, we de-normalize
it against the specification of node Ni to compute the expected progress rate
of T ′ on Ni. We assume the scheduling order of tasks is stochastic approxi-
mately and thus the mean of scheduled tasks reflects the expectation of real
progress rate, which is reasonable given Hadoop scheduling strategy.

3. No matter which of 1) and 2) is applied, the estimated progress rate of T ′ has
been calculated so far. The execution time is 1/progress rate. If it is shorter
than the remaining execution time of T , T ′ is launched on Ni. Otherwise,
do not run T ′ on Ni.

To predict the run time of T ′ via the mean of progress rates actually is
equivalent to the harmonic mean of the run time of scheduled tasks.

3.4 Implementation

Our implementation in Hadoop is optimized for compute-intensive applications
and thus processors and cores are the critical resources. Multithreading tech-
nique is adopted to explore the parallel processing capability of modern servers.
In Hadoop, each task is run in a separate process to isolate its execution envi-
ronment. Within each task process, one thread is started to process data. Fig.
1 shows an example. There are two slave nodes each of which has 5 cores. Each
node has 4 slots among which 2 slots are idle. For node A, Slots A1 and A2

are busy; and slots A3 and A4 are idle. In Hadoop, each task process only runs
one thread even if there are lightly-utilized cores (shown in Fig. 1(a)). Resource
stealing starts multiple threads within a task process that concurrently process

Improving Resource Utilization in MapReduce 7

input data (shown in Fig. 1(b)). One extra thread is created for both A1 and
A2, and each of the four threads can be scheduled to an individual core. For
each task, task manager periodically adjusts the number of threads dynamically
based on the latest system status.

Resource stealing and BASE are transparent to end users. Regular MapRe-
duce applications can be run directly without any modification. Additional con-
figuration parameters are added to allow administrators to tune various aspects
of our improvements. For example, administrators can enable/disable resource
stealing and/or BASE, and change the allocation policy of residual resources.

Although our implementation is based on Hadoop, our algorithms are not
specific to Hadoop and can be applied to other systems as well such as Twister
and HaLoop that adopt resource “partition”/reservation and speculative execu-
tion.

task slot

slave node A

Job

Tracker

master node slave node B

task

B1

B2

B3

B4

A1

A2

A3

A4

task slot

slave node A

Job

Tracker

master node slave node B

task B1

B2

B3

B4

A1

A2

A3

A4

TM

TM

TM

TM

TM task

manager

TM

TM

TM

TM

(a) Native Hadoop

task slot

slave node A

Job

Tracker

master node slave node B

task

B1

B2

B3

B4

A1

A2

A3

A4

task slot

slave node A

Job

Tracker

master node slave node B

task B1

B2

B3

B4

A1

A2

A3

A4

TM

TM

TM

TM

TM task

manager

TM

TM

TM

TM

(b) Resource stealing

Fig. 1: Scheduling with native Hadoop and resource stealing

4 Experiment

We conducted extensive experiments to evaluate our proposed algorithms. In-
stead of directly measuring resource utilization (e.g. CPU usage), we measure
user-perceivable job execution time which indirectly reflects the improvement or
deterioration of resource utilization. Many MapReduce applications have been
developed for different purposes. Instead of experimenting with an arbitrary
number of common applications one by one, sufficiently representative compute-
intensive, IO-intensive and network-intensive data parallel applications (e.g. rep-
grep, wordcount, web crawler) are picked and used in our tests below, whose
results are applied to not only those tested applications per se but also other
applications of the same types. So we believe our findings are applicable to ap-
plications of the types under our consideration.

4.1 Scheduling of Map-only Jobs

On FutureGrid Hotel cluster, we deployed Hadoop which comprised one master
node and twenty slave nodes that were homogeneous in both hardware and
software. Each node had 20GB memory and 8 cores one of which was reserved
for HDFS and MapReduce daemons. According to the best practice that the
number of slots should be between 1x and 2x the number of cores, each node
was configured to host 7 map slots and 7 reduce slots. So there were 140 map
slots and 140 reduce slots total. Block size of HDFS was set to 128MB.

We ran grep without reduce phase to eliminate the impact of shuffling and
merging and exactly measure the effectiveness of resource stealing for map-only
jobs. A large portion of MapReduce jobs (over 70%) are map-only jobs[16]. In

8 Zhenhua Guo, Geoffrey Fox, and Mo Zhou

our tests, each map task processed 128MB text data and was tuned to run
approximately for 5 minutes by repeating regular expression matching in map
operations to simulate the interactive job types in MapReduce [2]. To avoid
confusion, we name it rep-grep. Please note that grep is IO intensive while rep-
grep is compute intensive. Multiple rep-grep jobs were run with the number of
map tasks varied. We set the number of map tasks to 35, 70, 105 and 126 which
yield system workload 25%, 50%, 75% and 90%.

Rep-grep without BASE We ran rep-grep without BASE and show job
execution time in Fig. 2(a). Execution time is not significantly influenced by
workload for native Hadoop, which means that processing 4.375GB, 8.75GB,
13.125GB, and 15.75GB data takes similar amounts of time. The reason is re-
source usage is proportional to the number of tasks and residual resources are not
utilized at all. Resource stealing shortens run time by 64%, 32%, 13%, and 6% re-
spectively for policy Even. The lower the workload is, the more resource stealing
outperforms native Hadoop. So the performance benefit of resource stealing is
negatively related to system workload, which matches our expectation well. We
also calculated the average processing time per GB data by dividing job execu-
tion time by data size. Increasing workload can drastically improve the efficiency
for native Hadoop, while it approximately keeps invariant for resource stealing.
Different allocation policies exhibit different performance. Overall, STLM and
LTLM perform the worst and LTM performs well for all tests. It implies that it
is inefficient to blindly allocate residual resources evenly or simply enforce FIFO
order. When the workload gets relative high (e.g. 75%, 90%), the performance
difference becomes smaller.

In our setup, all nodes were on the same rack and blocks were randomly
placed on nodes by HDFS with its default block placement strategy. Data locality
aware scheduling in Hadoop co-locates compute and data with best efforts. As a
result, map tasks were evenly distributed among all slave nodes approximately
so that each node ran a similar number of tasks. This is beneficial to resource
stealing because its gain is not substantial if the resources of a node are fully
loaded already.

Rep-grep with BASE We ran the same tests as above except BASE was
enabled and present results in Fig. 2(b). The plot has similar characteristics
to Fig. 2(a) in that native Hadoop performs the worst and the performance
superiority of resource stealing decreases with the increased sytem workload. By
comparing 2(b) and 2(a), we observe that BASE slightly shortens execution time
and the improvement is increased as system workload is also increased.

For the cases where BASE is disabled and enabled, we counted the number of
non-beneficial speculative tasks and computed the difference shown in Fig. 2(c).
BASE drastically eliminates the launches of non-beneficial speculative tasks. For
workload 75% and 90%, almost all unneeded speculative tasks are removed.

We conclude that BASE reduces the number of non-beneficial speculative
tasks significantly without sacrificing run time. Because a fewer number of spec-
ulative tasks are launched, the saved resources can be allocated to regular tasks
to speed up their execution. It also indicates that the estimation of execution
time is approximately accurate so that BASE rarely removes the runs of bene-
ficial speculative tasks.

Improving Resource Utilization in MapReduce 9

0

100

200

300

400

0.25 0.5 0.75 0.9

se
co

n
d

s

Util. ratio of map slots
native w/ LTLM w/ STLM w/ FCM

w/ Even w/ STM w/ LTM

(a) Runtime w/o BASE

0

100

200

300

400

0.25 0.5 0.75 0.9

S
ec

o
n

d
s

Util. ratio of map slots
native w/ LTLM w/ STLM w/ FCM

w/ Even w/ STM w/ LTM

(b) Runtime w/ BASE

0

20

40

60

80

100

0.25 0.5 0.75 0.9

Util. ratio of map slots
native w/ LTLM w/ STLM w/ FCM

w/ Even w/ STM w/ LTM

(c) Reduction of non-beneficial
spec. tasks w/ BASE(%)

Fig. 2: Run map-only rep-grep in a homogeneous environment

4.2 Scheduling of Map-only Jobs with Straggler Nodes

In this experiment, background load is generated to slow down some nodes and
simulate stragglers. We wrote a load generator that can generate user-specified
load of computation, network and disk IO. We ran two CPU-hogging threads per
core which resulted in nearly 100% core utilization, and one IO-intensive thread
reading/writing data continuously from/to disks. The background load signifi-
cantly slowed down the nodes without rendering them thoroughly unresponsive.
We ran rep-grep jobs that utilize 75% of all map slots and thus 8.75GB data
was processed total in each run.

Firstly, two slave nodes were slowed down. Job execution time is shown in
Fig. 3(a). Again resource stealing improves performance over native Hadoop
significantly no matter which resource allocation policy is used. LTM performs
well stably for the cases with and without BASE. Fig. 3(b) shows BASE can save
runs of nearly all unnecessary speculative tasks, which implies the estimation of
execution time is accurate when only a small number of nodes are stragglers.

Secondly, four slave nodes were slowed down. Fig. 3(c) shows execution time.
The jobs ran longer compared with the previous test because more map tasks
were slowed down. Resource stealing is still effective to speed up job execu-
tion. The performance disparity of different resource allocation policies becomes
marginal and they perform equally well approximately. Fig. 3(d) shows BASE
can eliminate 20% - 50% of non-beneficial speculative tasks. Compared with the
previous case, BASE becomes less effective. It indicates our estimation of execu-
tion time gets inaccurate as more straggler nodes incur larger variation of task
execution. In addition, resource stealing aggravates the situation because of the
dynamic nature of the (re-)allocation of residual resources.

4.3 Scheduling of Reduce-mostly Jobs

In this test, we ran reduce-mostly jobs and used modified grep (not rep-grep)
as the test application. Operations in the reduce phase of grep were run repeat-
edly to make reduce phase dominate overall execution. Each job comprised 10
reduce tasks and 70 map tasks each of which processed 128MB data, and ran
for 5 minutes approximately. This setup matches the fact that most MapReduce
jobs tend to have significantly lesser reduce tasks than map tasks. For resource
stealing, only policy Even is compared below because it is simple and performs
among the best based on the results above.

10 Zhenhua Guo, Geoffrey Fox, and Mo Zhou

Job execution time and the number of non-beneficial speculative tasks are
shown in Fig. 4(a) and Fig. 4(b) respectively. BASE reduces job execution time
marginally, but reduces the number of non-beneficial speculative tasks by 90%
(from 10 to 1) compard with native Hadoop. Because of the drastic reduction of
resource waste, more useful tasks can be run concurrently and thus the efficiency
of resource usage is improved. This demonstrates the effectiveness of BASE. Fig.
4(b) shows resource stealing thoroughly eliminated non-beneficial speculative
tasks, and Fig. 4(a) shows resource stealing substantially shortens job execution
time by 70% - 80%. There are many more nodes than reduce tasks which are
well spread out so that each node runs one reduce task at most on average.
For each reduce task, resource stealing creates 6 new reduce tasks (remember
the number of reduce slots is 7 on each node) to run in parallel, which should
yield 7x speedup optimally. In reality, we only got 4x–5x speedup because of
additional overhead. Reduce threads compete for the same input stream and only
one thread can read from the stream at any time. To alleviate the contention, in
our implementation each thread locks the input stream, copies next (key, values)
tuple to its local buffer, unlocks the input stream and processes the data in local
buffer without interfering with other threads. But this approach incurs extra
memory copies. In addition, reduce threads belonging to the same task contend
for the same output stream as well. To investigate advanced mechanisms to
mitigate contention further is among future work.

Fig. 3: Run map-only rep-grep with straggler nodes. There are two straggler
nodes for (a) and (b), and four straggler nodes for (c) and (d)

4.4 Experiments with Other Workload

Besides compute-intensive applications. We also ran jobs of other types to com-
prehensively evaluate our approaches.

Network-Intensive Workload: We wrote a distributed web crawler mr-
wc. Its input is a set of URLs of the webpages to download. Mr-wc does not have
reduce phase; and its map tasks download web pages and save them into HDFS.
Network is the most critical resource for mr-wc. Lemur project published a data
set of unique URLs [17]. We use a small portion of it as the input of mr-wc. The
same testbed as above was used. In our tests, each map task downloaded 400 web
pages and the number of map tasks was set to 35, 70, 105 and 126 for different
runs, so the system workload was 25%, 50%, 75% and 90% respectively. Fig. 5(a)
shows the execution time. For native Hadoop, the execution time of mr-wc is not
significantly impacted by the workload, which implies spare resources cannot be
utilized. In contrast, resource stealing expands the usable resources of running
tasks by creating more threads to concurrently download webpages. Execution
time is shortened drastically by 61%, 45%, 21% and 23% respectively.

Improving Resource Utilization in MapReduce 11

For above tests, speculative execution was disabled because our additional
tests showed it deteriorates performance mostly. The efficiency of webpage crawl-
ing depends heavily on the response time of the servers where webpages are
hosted, which ranges from milliseconds to seconds. Under this circumstance,
running speculative tasks is not helpful because the efficiency variation of tasks
is not caused by the system itself.

IO-Intensive Workload: Wordcount, which counts the number of word oc-
currences, is a typical IO-intensive application and used in this set of tests where
each map task processed 128MB text and the number of map tasks was varied.
Fig. 5(b) shows the result. As the number of map tasks increases, job execution
time increases as well and the processing throughput (the amount of processed
data per unit of time) is improved. Resource stealing slightly degrades rather
than improves performance, which is caused by Hadoop implementation. In map
tasks, each map operation processes one line of text and is invoked repeatedly.
Although resource stealing enables Hadoop to start multiple threads to run map
operations in parallel, these threads share the same underlying input reader
and output writer (to comply with Hadoop design). This incurs substantial con-
tention among threads because the computation time of each map operation
is short and synchronization is the performance barrier. As a result, the over-
head outweighs the benefit of higher concurrency brought by resource stealing.
This inefficiency is not intrinsic and pertains to Hadoop design more than our
algorithm. Theoretically moderate increase of I/O parallelism can exploit the
interleaving of computation and data I/O and thus improve I/O throughput.

0

100

200

300

400

S
ec

o
n
d
s

native w/ BASE w/ RS

(a) Job execution time

10

1
0

0

5

10

native w/ BASE w/ RS

(b) Num. of non-
beneficial spec. tasks

Fig. 4: Reduce-mostly modified grep

0

200

400

600

0.25 0.5 0.75 0.9

S
ec

o
n
d

s

Util. ratio of map slots

native w/ RS

(a) mr-wc

0

50

100

150

0.25 0.5 0.75 0.9

S
ec

o
n
d

s

Util. ratio of map slots

native w/ RS

(b) wordcount

Fig. 5: Experiment with other workload

5 Conclusion

The goal of our work is to improve resource utilization in MapReduce. We present
resource stealing to dynamically re-allocate idle resources to running tasks with
the promise that they will be handed back whenever they are required by newly
assigned tasks. It can be applied in conjunction with existing job schedulers
smoothly because of its transparency to central task scheduling. In addition, we
have analyzed the mechanism adopted by Hadoop to trigger speculative execu-
tion, discussed its inefficiency and proposed Benefit Aware Speculative Execution
which starts speculative tasks based on the estimated benefit. Our conducted
experiments demonstrate their effectiveness. Resource stealing yields dramatic
performance improvement for compute-intensive and network-intensive applica-
tions and BASE effectively eliminates a large portion of unnecessary runs of
speculative tasks. For IO-intensive applications, we observed slight performance

12 Zhenhua Guo, Geoffrey Fox, and Mo Zhou

degradation caused by intensive contention in Hadoop framework. In future,
we will investigate lock-free data structures to make resource stealing benefit
IO-intensive applications as well in Hadoop.

Acknowledgments This material is based upon work supported in part by the
National Science Foundation under Grant No. 0910812.

References

1. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: portable parallel programming
with the message-passing interface. MIT Press, Cambridge, MA, USA (1994)

2. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. In: Proc. of OSDI’04. (2004) 137–150

3. Qiu, X., Ekanayake, J., Beason, S., Gunarathne, T., Fox, G., Barga, R., Gannon,
D.: Cloud technologies for bioinformatics applications. In: Proc. of MTAGS’09,
New York, NY, USA, ACM (2009)

4. Chu, C.T., Kim, S.K., Lin, Y.A., Yu, Y.Y., Bradski, G., Ng, A.Y., Olukotun, K.
Map-reduce for machine learning on multicore. In: Proc. of NIPS’06 (2006)

5. Gwennap, L.: New algorithm improves branch prediction. Microprocessor Report
9(4) (1995) 17–21

6. Ahmad, I., Kwok, Y.K. A New Approach to Scheduling Parallel Programs Using
Task Duplication. In: Proc. of ICPP’94, Washington, DC, USA

7. Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R., Stoica, I.: Improving MapRe-
duce performance in heterogeneous environments. In: Proc. of OSDI’08, Berkeley,
CA, USA (2008) 29–42

8. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. In: Proc. of FOCS’94, Washington, DC, USA (1994) 356–368

9. Bhatt, S.N., Chung, F.R.K., Leighton, F.T., Rosenberg, A.L.: On Optimal Strate-
gies for Cycle-Stealing in Networks of Workstations. IEEE Trans. Comput. 46
(May 1997) 545–557

10. Guo, Z., Pierce, M., Fox, G., Zhou, M.: Automatic Task Re-organization in MapRe-
duce. In: Proc. of CLUSTR’11, Washington, DC, USA (2011) 335–343

11. Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S.H., Qiu, J., Fox, G.:
Twister: a runtime for iterative MapReduce. In: Proc. of HPDC’10 810–818

12. Mu’alem, A.W., Feitelson, D.G.: Utilization, Predictability, Workloads, and User
Runtime Estimates in Scheduling the IBM SP2 with Backfilling. IEEE Trans.
Parallel Distrib. Syst. 12(6) (June 2001) 529–543

13. Kambatla, K., Pathak, A., Pucha, H.: Towards optimizing hadoop provisioning in
the cloud. In: Proc. of HotCloud’09, Berkeley, CA, USA (2009)

14. Herodotou, H., Lim, H., Luo, G., Borisov, N., Dong, L., Cetin, F., Babu, S.:
Starfish: A self-tuning system for big data analytics. In: Proc. of CIDR’11, Asilo-
mar, California, USA. (2011)

15. Barroso, L.A., Hölzle, U.: The Case for Energy-Proportional Computing. Com-
puter 40 (December 2007) 33–37

16. Kavulya, S., Tan, J., Gandhi, R., Narasimhan, P.: An Analysis of Traces from a
Production MapReduce Cluster. In: Proc. of CCGRID’10, Washington, DC, USA
(May 2010) 94–103

17. Clueweb09: http://lemurproject.org/clueweb09.php/

