

A FRAMEWORK FOR SYNCHRONOUS

AND UBIQUITOUS COLLABORATION

Kangseok Kim

Submitted to the faculty of the University Graduate School

in partial fulfillment of the requirements

for the degree

Doctor of Philosophy

in the Department of Computer Science

Indiana University

November 2007

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of
the requirements for the degree of Doctor of Philosophy.

Doctoral Committee

Geoffrey Fox, Ph.D. (Principal Advisor)

Dennis Gannon, Ph.D.

Kay Connelly, Ph.D.

Sun Kim, Ph.D.

September 26, 2007

 ii

© 2007
Kangseok Kim

ALL RIGHTS RESERVED

 iii

Acknowledgements
First, I would like to thank my advisor, Dr. Geoffrey C Fox, for his guidance, insight,

support, and encouragement during my Ph.D. research. I will never forget the

encouragement he gave me. Thank you! Dr. Fox. I am grateful to Dr. Marlon Pierce

and Dr. Shrideep Pallickara for their valuable comments and help given to me during my

rehearsal Ph.D. presentations. I also want to thank my research faculty Dr. Dennis

Gannon, Dr. Kay Connelly, and Dr. Sun Kim for their valuable comments and questions.

I am indebted to Global-MMCS project team members Dr. Wenjun Wu, Dr. Ahmet Uyar,

and Dr. Hasan Bulut for their help and valuable work. I would like to thank Dr. Bryan

Carpenter and Dr. Xiaohong Qiu for their valuable work and contributions on

collaborative chess game project. I appreciate Mehmet Aktas, Mehmet Nacar, Beytullah

Yildiz, Ahmet Sayer, Ahmet Mustacoglu, Ahmet Topcu, Ali Kaplan, Galip Aydin,

Harshawardhan Gadgil, Jongyoul Choi, Seunghee Bae, and other colleagues at

Community Grids Lab for their help, comments, and discussion. I greatly enjoyed

working with you. Thank you! The computer science department and Northeast Parallel

Architectures Center (NPAC) at Syracuse University, the computer science department

and School of Computational Science and Information Technology (CSIT) at Florida

State University, and the computer science department and Community Grids Lab (CGL)

at Indiana University provided ideal collaborative work environment for conducting my

research. I will miss those places, and faculty, students, and staff alike. I also thank

TeraGrid (NCSA and SDSC) staff for providing me with the necessary computing

facilities for conducting my research. Finally, I feel great gratitude to my parents and

brothers for their devotion, love, support, and encouragement.

 iv

Abstract
With the advance of a variety of software/hardware technologies and wireless

networking, there is coming a need for ubiquitous collaboration which allows people to

access information systems independent of their access device and their physical

capabilities and to communicate with other people in anytime and anywhere. Also, with

the maturity of evolving computing paradigms and collaborative applications, a

workspace for working together is being expanded from locally collocated physical place

to geographically dispersed virtual place. Current virtual conferencing systems are not

suitable for building integrated collaboration systems to work together in the same

collaboration session. They also lack support for ubiquitous collaboration. As the

number of collaborators with a large number of disparate access devices increases, the

difficulties for protecting secured resources from unauthorized users as well as unsecured

access devices will increase since the resources can be compromised by inadequately

secured human and devices. Collaboration generally includes sharing resources.

Mechanisms for dealing with consistency in application shared among collaborators will

have to be considered in an unambiguous manner.

In this dissertation we address a number of issues related in building a framework for

synchronous and ubiquitous collaboration as well as heterogeneous community

collaboration. First, to make ubiquitous collaboration more promising, we present a

framework built on heterogeneous (wire, wireless) computing environment. Second, to

provide a generic solution for controlling sessions and participants’ presences in

heterogeneous community collaboration, we present a set of session protocols defined in

 v

 vi

XML. Third, to provide a solution for controlling accesses to resources, we present a

flexible and fine-grained access control mechanism based on Role Based Access Control

model. Fourth, to provide a solution for maintaining shared state consistency at

application level, we present a floor control mechanism which coordinates activities

occurred in synchronously cooperating applications being shared among collaborators.

The mechanism with strict conflict avoidance and non-optimistic locking strategy allows

all participants to have the same views and data at all times. Finally, we give detailed

experimental measurements to demonstrate the viability of the control mechanisms.

Table of Contents

CHAPTER 1 .. 1

INTRODUCTION ... 1

1.1 MOTIVATION ... 2

1.2 PROBLEM STATEMENT .. 4

1.3 A FRAMEWORK FOR SYNCHRONOUS AND UBIQUITOUS COLLABORATION 8

1.4 CONTRIBUTIONS ... 10

1.5 ORGANIZATION ... 13

CHAPTER 2 .. 15

COLLABORATION FRAMEWORK ARCHITECTURE AND XML BASED

GENERAL SESSION PROTOCOL (XGSP) .. 15

2.1 OVERVIEW .. 15

2.2 PROBLEM STATEMENT AND SOLUTIONS .. 22

2.3 RELATED WORK ... 25

2.4 COLLABORATION FRAMEWORK ARCHITECTURE ... 28

2.4.1 Control Manager .. 30

2.4.2 Session and Membership Control Manager ... 32

2.4.3 Access and Floor Control Manager ... 32

2.4.4 Policy Manager .. 33

2.4.5 Request and Reply Event Message Handlers... 34

2.4.6 Communication Channel ... 34

 vii

2.5 XML BASED GENERAL SESSION PROTOCOL (XGSP) .. 35

2.5.1 XGSP Conference Management .. 36

2.5.2 XGSP Session Management .. 37

2.5.3 Presence and Session Establishment .. 40

2.6 EXPERIMENTAL RESULTS .. 44

2.6.1 Baseline Performance Result ... 45

2.6.2 Performance of XGSP Query/Dissemination Mechanism 48

2.6.3 A Case Study of Shared Whiteboard Applications with Image Annotation

and Its Application Filter ... 51

2.7 SUMMARY ... 56

CHAPTER 3 .. 58

XGSP ROLE BASED ACCESS CONTROL (XGSP-RBAC) 58

3.1 OVERVIEW .. 58

3.2 PROBLEM STATEMENT AND SOLUTIONS .. 60

3.3 RELATED WORK ... 62

3.3.1 Access Control Matrix ... 62

3.3.2 RBAC (Role Based Access Control) ... 65

3.3.3 PERMIS (Privilege and Role Management Infrastructure Standard) 67

3.3.4 CAS (Community Authorization Service) ... 69

3.4 XGSP-RBAC (XGSP ROLE BASED ACCESS CONTROL) 70

3.4.1 XGSP-RBAC Policy .. 73

3.4.2 Collaboration Role and Fine-grained Action in XGSP-RBAC 75

3.4.3 Secure and Authorized End-to-End Delivery of Messages 78

 viii

3.4.4 XGSP-RBAC Architecture .. 81

3.5 PERFORMANCE AND ANALYSIS ... 86

3.5.1 Experimental Scenario ... 88

3.5.2 Overhead Timing Considerations .. 89

3.5.3 Experimental Result and Analysis ... 91

3.6 SUMMARY ... 93

CHAPTER 4 .. 95

XGSP FLOOR CONTROL (XGSP-FLOOR) ... 95

4.1 OVERVIEW .. 95

4.2 PROBLEM STATEMENT AND SOLUTIONS .. 97

4.3 RELATED WORK ... 100

4.3.1 Existing Floor Control Schemes .. 100

4.3.2 Considerations for a Selection of a Floor Control for Shared Whiteboard

Application in Heterogeneous Community Collaboration, Synchronous and

Ubiquitous Collaboration Domains ... 103

4.4 XGSP FLOOR CONTROL (XGSP-FLOOR) ... 113

4.4.1 XGSP-Floor Policy .. 113

4.4.2 XGSP-Floor Mechanism .. 116

4.4.3 Functionality of XGSP-Floor Control Tool ... 122

4.4.4 A Major Event Conflict Detection Function of XGSP-Floor Mechanism

 129

4.4.5 Locking of XGSP-Floor Mechanism ... 130

4.5 SUMMARY ... 134

 ix

CHAPTER 5 .. 136

FORMAL VERIFICATION OF CONTROL MECHANISMS BY COLORED PETRI

NET .. 136

5.1 MODELING OF CONTROL MECHANISMS (XGSP-RBAC AND XGSP-FLOOR) ... 138

5.2 INFORMAL INTRODUCTION OF CONTROL MECHANISMS MODELED BY COLORED

PETRI NETS ... 144

5.3 FORMAL DEFINITIONS AND NOTATIONS OF CONTROL MECHANISMS MODELED BY

COLORED PETRI NETS ... 151

5.3.1 Static Structure Properties of CP-nets and Representation of Control

Mechanisms by the Properties ... 151

5.3.2 Dynamic Behavioral Properties of CP-nets and Representation of Control

Mechanisms by the Properties ... 157

5.4 VERIFICATION FOR CORRECTNESS OF CONTROL MECHANISMS BASED ON STATE

SPACE ANALYSIS .. 158

5.4.1 Statistical Information of State Spaces and SCC Graph 159

5.4.2 Boundedness Properties and Mutual Exclusion of Modeled Control

Mechanisms ... 160

5.4.3 Home Properties ... 162

5.4.4 Liveness Properties of Modeled Control Mechanisms 163

5.4.5 Fairness and Starvation Properties of Modeled Control Mechanisms 165

5.5 SUMMARY ... 166

CHAPTER 6 .. 168

CONCLUSION .. 168

 x

6.1 COLLABORATION FRAMEWORK AND CONTROL MECHANISMS 169

6.1.1 Session Control .. 170

6.1.2 Access Control ... 171

6.1.3 Floor Control .. 172

6.2 COLLABORATIVE APPLICATIONS AND COMPONENTS .. 173

6.2.1 Instant Messenger and Proxy ... 173

6.2.2 Shared Whiteboard and Filter .. 174

6.2.3 Collaborative Chess Game Application ... 175

BIBLIOGRAPHY .. 176

VITA .. 188

 xi

List of Tables
TABLE 2.1: ORIGINAL SIZE VS. SHRUNK SIZE ... 54

TABLE 3.1: MEAN COMPLETION TIME OF A REQUEST VS. MEAN REQUEST INTERARRIVAL

TIME (3000 MILLISECONDS) WHERE D MEANS COLLABORATION USING ONLY

DESKTOP DEVICES (WIRED NETWORK), D + C MEANS COLLABORATION USING

DESKTOPS AND CELL PHONES TOGETHER (WIRED + WIRELESS NETWORK), AND C

MEANS COLLABORATION USING ONLY CELL PHONE DEVICES (WIRELESS NETWORK) 92

TABLE 5.1: STATISTICAL INFORMATION OF STATE SPACE AND SCC GRAPH 160

TABLE 5.2: BOUNDEDNESS PROPERTIES ... 162

TABLE 5.3: HOME PROPERTIES ... 163

TABLE 5.4: LIVENESS PROPERTIES OF MODELED CONTROL MECHANISMS 165

TABLE 5.5: LIVENESS PROPERTIES OF MODELED XGSP-RBAC MECHANISM 165

TABLE 5.6: LIVENESS PROPERTIES OF MODELED XGSP-FLOOR MECHANISM 165

TABLE 5.7: FAIRNESS PROPERTIES .. 166

 xii

List of Figures
FIGURE 2.1: A BROAD ARCHITECTURE VIEW. .. 16

FIGURE 2.2: SHARED INPUT PORT MODEL (ALSO CALLED SHARED EVENT MODEL OR

MMMV (MULTIPLE MODEL MULTIPLE VIEW) COLLABORATION MODEL). UFIO

AND SFIO ARE USER FACING AND SERVICE FACING INPUT/OUTPUT PORTS. 18

FIGURE 2.3: JABBER INSTANT MESSENGER ARCHITECTURE VIEW WITH APPLICATION

(INSTANT MESSENGER) PROXY. .. 19

FIGURE 2.4: SHARED DISPLAY COLLABORATION MODEL ... 21

FIGURE 2.5: APPLICATION (SHARED WHITEBOARD) FILTER ARCHITECTURE VIEW. 22

FIGURE 2.6: SHARED OUTPUT PORT MODEL (ALSO CALLED SMMV (SINGLE MODEL

MULTIPLE VIEW) COLLABORATION MODEL). ... 29

FIGURE 2.7: XGSP SERVICE ARCHITECTURE. ... 30

FIGURE 2.8: COLLABORATION FRAMEWORK ARCHITECTURE CONSISTS OF THREE LAYERS

(COLLABORATIVE APPLICATIONS, MANAGERS, AND COMMUNICATION SERVICE) AND

SIX MAJOR COMPONENTS. .. 31

FIGURE 2.9: GLOBALMMCS ADMIN EXAMPLE WEB PORTAL PAGE. 37

FIGURE 2.10: XML STREAM FOR CREATING AN APPLICATION SESSION. 38

FIGURE 2.11: XML STREAM FOR DESTROYING AN APPLICATION SESSION. 39

FIGURE 2.12: XML STREAM FOR JOINING A SESSION NEWAPPSESSION 39

FIGURE 2.13: XML STREAM FOR LEAVING A SESSION NEWAPPSESSION 40

FIGURE 2.14: JOIN XML STREAM OF CHAIRPERSON ON DESKTOP PC SHOWING

CONFERENCE ID, USER’S ROLE NAME, USER ID AND USER NAME 41

 xiii

FIGURE 2.15: JOIN XML STREAM OF DESKTOP USERS SHOWING CONFERENCE ID, USER’S

ROLE NAME, USER ID AND USER NAME .. 41

FIGURE 2.16: JOIN XML STREAM OF CELL PHONE USERS SHOWING CONFERENCE ID,

USER’S ROLE NAME, USER ID AND USER NAME .. 41

FIGURE 2.17: POLICY XML STREAM FROM CONFERENCE MANAGER SHOWING

CONFERENCE ID, USER ID, USER NAME, AND ACCESS / FLOOR CONTROL POLICY 42

FIGURE 2.18: PRESENCE REQUEST XML STREAM ... 42

FIGURE 2.19: SESSION REQUEST XML STREAM .. 43

FIGURE 2.20: PRESENCE REPLY XML STREAM ... 43

FIGURE 2.21: SESSION REPLY XML STREAM .. 43

FIGURE 2.22: LEAVE CONFERENCE XML STREAM .. 44

FIGURE 2.23: LATENCY IN ROUND TRIP TIME BETWEEN DESKTOP AND BROKER 46

FIGURE 2.24: LATENCY IN ROUND TRIP TIME BETWEEN CELL PHONE AND BROKER 47

FIGURE 2.25: LATENCY IN ROUND TRIP TIME BETWEEN CELL PHONE AND BROKER 47

FIGURE 2.26: LATENCY IN TIME OF XGSP REQUEST AND RESPONSE BETWEEN REQUEST

NODE (DESKTOP) AND CHAIRPERSON (RESPONSE) NODE (DESKTOP). 50

FIGURE 2.27: LATENCY IN TIME OF XGSP REQUEST AND RESPONSE BETWEEN REQUEST

NODE (CELL PHONE) AND CHAIRPERSON (RESPONSE) NODE (DESKTOP). 50

FIGURE 2.28: IMAGE FILTERING STRUCTURE .. 52

FIGURE 2.29: 800X600 JPEG IMAGE WITH 60 KB ON DESKTOP VS. 158X134 PNG IMAGE

WITH 50 KB ON CELL PHONE .. 53

FIGURE 2.30: TRANSFER TIME OF IMAGES FROM DESKTOP TO CELL PHONE 55

FIGURE 2.31: TRANSFER TIME OF DRAWING OBJECTS FROM DESKTOP TO CELL PHONE . 55

 xiv

FIGURE 3.1 ACCESS MATRIX MODEL .. 63

FIGURE 3.2: ASSIGNMENT RELATIONSHIP BETWEEN USERS, ROLES, AND PERMISSIONS IN

RBAC ... 66

FIGURE 3.3: PRIVILEGE VERIFICATION SUBSYSTEM .. 68

FIGURE 3.4: COMMUNITY AUTHORIZATION SERVICE (CAS) .. 69

FIGURE 3.5: XML STREAM BINDING A POLICY FROM CONFERENCE MANAGER SHOWING

CONFERENCE ID, USER ID, USER NAME, AND RESOURCE ACCESS POLICY (XGSP-

RBAC POLICY). .. 75

FIGURE 3.6: AN EXAMPLE OF XGSP-RBAC POLICY WITH THE ROLE NAME MOBILE-USER

AND APPLICATION NAME WHITEBOARD .. 76

FIGURE 3.7: A COLLABORATION ACTION IS REPRESENTED AS A PAIR (A, E) ∈ A X E,

WHERE A ∈ A IS AN APPLICATION AND E ∈ E IS THE AUTHORIZED SMALLEST MAJOR

EVENT DEFINED BY A, AND A IS A SET OF APPLICATIONS, E IS A SET OF THE SMALLEST

MAJOR EVENTS DEFINED BY AN APPLICATION IN A. ... 77

FIGURE 3.8: THE SECURITY FRAMEWORK CONSISTS OF FIVE MAJOR COMPONENTS:

CERTIFICATE AUTHORITY (CA), TOPIC DISCOVERY NODE (TDN), KEY

MANAGEMENT CENTER (KMC), PUBLISHER AND SUBSCRIBER 80

FIGURE 3.9: XGSP-RBAC MANAGER INTEGRATED INTO COLLABORATION FRAMEWORK IS

STRUCTURED AS FOUR MAJOR COMPONENTS: ACTIVATION/DEACTIVATION SERVICE,

ACCESS CONTROL DECISION SERVICE, LOCAL POLICY STORE, AUTHENTICATION AND

SECURE DELIVERY SERVICE. .. 83

FIGURE 3.10: ACTION REQUEST XML STREAM .. 83

FIGURE 3.11: GRANT DECISION RESPONSE XML STREAM ... 84

 xv

FIGURE 3.12: EXPERIMENTAL SCENARIO OVERVIEW .. 89

FIGURE 3.13: TOTAL LATENCY = DECISION TIME (TD) + WAITING TIME (TW) + NETWORK

TRANSIT TIME (TN = TREQ + TRES), WHERE D MEANS AN ACCESS CONTROL DECISION

SERVICE .. 89

FIGURE 3.14: MEAN COMPLETION TIME OF A REQUEST VS. MEAN REQUEST INTERARRIVAL

TIME (3000 MILLISECONDS) .. 93

FIGURE 4.1: AN EXAMPLE OF XGSP-RBAC POLICY WITH THE ROLE NAME MOBILE-USER

AND APPLICATION NAME WHITEBOARD (WB). .. 115

FIGURE 4.2: DECISION PROCEDURE OF XGSP-FLOOR MECHANISM 116

FIGURE 4.3: REQUEST-RESPONSE INTERACTION SCHEME BETWEEN A MODERATOR AND A

FLOOR REQUESTER WITH HUMAN-COMPUTER INTERACTION. 121

FIGURE 4.4: TWO-PLAYER TURN-TAKING MECHANISM FOR CHESS GAME APPLICATION

.. 122

FIGURE 4.5: NODE MANAGER FOR A MODERATOR ON DESKTOP 123

FIGURE 4.6: NODE MANAGER FOR NORMAL USERS ON DESKTOP 124

FIGURE 4.7: SET FLOOR FRAME FOR A MODERATOR VS. REQUEST FLOOR FRAME FOR A

NORMAL USER .. 124

FIGURE 4.8: NODE MANAGER FOR NORMAL USERS ON CELL PHONE 125

FIGURE 4.9: REQUEST FLOOR SCREEN ON CELL PHONE .. 127

FIGURE 4.10: POP-UP WINDOW FRAMES (FOR FLOOR REQUEST, FLOOR GRANT, FLOOR

DENY, FLOOR CONFLICT, AND FLOOR QUEUED NOTIFICATIONS RESPECTIVELY) ON

DESKTOP ... 127

 xvi

 xvii

FIGURE 4.11: SCREENS (FOR FLOOR GRANT, FLOOR DENY, AND FLOOR QUEUED

NOTIFICATIONS RESPECTIVELY) ON CELL PHONE ... 128

FIGURE 4.12: LOCKING MECHANISM OF SHARED WHITEBOARD 132

FIGURE 4.13: LOCKING MECHANISM BY LOGICAL TOKEN-PASSING IN CHESS GAME ... 132

FIGURE 4.14: MEAN COMPLETION TIME OF A REQUEST VS. MEAN REQUEST INTERARRIVAL

TIME (3000 MILLISECONDS) .. 134

FIGURE 5.1: BROAD VIEW OF THE MODELING FOR CONTROL MECHANISMS 138

FIGURE 5.2: COMMS/CPN FOR COMMUNICATION BETWEEN CONTROL MECHANISM

MODEL AND ACCESS TYPE DECISION SERVICE WHICH IS LOCATED OUTSIDE THE

MODELING AS EXTERNAL PROCESS. ... 139

FIGURE 5.3: COMMUNICATION PAGE IN CONTROL MECHANISM MODEL 141

FIGURE 5.4: SML FUNCTIONS FOR COMMUNICATION BETWEEN CONTROL MECHANISM

MODEL AND EXTERNAL PROCESS (ACCESS TYPE DECISION SERVICE) 142

FIGURE 5.5: CONTROL MECHANISMS MODELED BY CP-NETS 147

FIGURE 5.6: DECLARATIONS FOR THE CP-NETS MODEL OF CONTROL MECHANISM 156

Chapter 1

Introduction

Collaboration is about interaction among people and between people and resources.

With the advance of a variety of software/hardware technologies and wireless

networking, there is coming a need for ubiquitous collaboration and access which

allows people to access information systems independent of their access device and

their physical capabilities and to communicate with other people in anytime and

anywhere. Also, with the maturity of evolving computing paradigms and collaborative

applications, a workspace for working together is being expanded from locally

collocated physical place to geographically dispersed virtual place. Mobile computing

paradigm [91] made ubiquitous access possible with the integration of wireless

communication technology in anytime and in anywhere. With grid computing

paradigm [30, 45, 46] which is about sharing resources, resources are distributed into

workspaces and shared among geographically dispersed collaborators. With pervasive

computing paradigm [22, 82], it is becoming possible to make workspaces virtually

 1

suitable for collaborating users in the goal of all the time and everywhere instead of

accommodating collaborating users to collocated workspace. During our work, we saw

the improvement of computing performance, the increase of network bandwidth, and

the advance of wireless networking. We believe from Moore’s law [80] and our

development experience that the computing performance of mobile devices as well as

desktop computers will continue to improve and networks’ bandwidth will continue to

increase. Thus the infrastructure improvements of software, hardware, and networking

will make ubiquitous collaboration and access more prevalent and make the vision of

Mark Weiser for 21st Century Computing [82] more promising as well in the future. In

our work we have been designing and building virtual workspace on roaming cell

phones as well as traditional desktops by integrating heterogeneous collaboration

systems into a single easy-to-use collaboration system.

1.1 Motivation

The following scenario illustrates the needs of ubiquitous collaboration and access, and

motivates the research issues described in this thesis. Researchers in Community Grids

Lab (CGL) [13] at Indiana University often travel to attend offline real conference in a

shared location. Students in CGL sometimes need to discuss with researchers.

Researchers have to find a virtual conferencing system compatible with a conferencing

system in CGL to discuss with students while traveling. Further, roaming researchers

may have to find a place in which a compatible system is located. As this occurs, an

integrated collaboration system, which combines heterogeneous virtual conferencing

systems into a virtual conferencing system, will facilitate collaboration between the

 2

researchers and students. Virtual conferencing systems over Internet are rapidly

increasing. Also, with increasing mobile devices, to integrate diverse mobile devices

into a globally virtual conferencing system is becoming increasingly important.

Current virtual conferencing systems lack support for ubiquitous collaboration and

access.

Students in CGL are going to have a session for their colleague’s research presentation.

Some students join the presentation session in a shared conference room of CGL and

others join at remote locations by using CGL’s conferencing collaboration tool –

Global-MMCS system (Global Multimedia Collaboration System) [32, 37]. The

presenter starts her presentation with the conferencing collaboration tool. During her

presentation, she may use an application like shared whiteboard to discuss design issues

of the research which she is doing on grid computing. In shared workspace with the

application, people in offline shared real room see the same whiteboard canvas, while

people in online virtual room see their own canvases. Each student in the online virtual

room has their own canvas and a set of interfaces to the shared whiteboard application

but they see the same results (or views) as others do. Her advisor, researchers, and

colleagues in CGL want to make comments on her research by directly manipulating

the shared application showing the same views among participants in her research

presentation session. Thus, the presenter needs to control their accesses to the shared

application by enforcing who is allowed to access the application, and the conditions

under that the privileges for the use of the application occur to restrict unauthorized

access for the protected application.

 3

As participants in her research presentation session try to manipulate the shared

application at the same time, she has to be able to provide the right to access the shared

application for only one participant in the session at any time to ensure the consistency

of the shared application state. The shared application, that requires mutual exclusions

in real time, has to be assigned to only one participant who requests it under a set of

well-defined rules. Participants in offline session can use the rules of etiquette or social

protocols to gain the manipulation of the shared application in an order by the rules or

protocols. However, participants in online session can not use the etiquette rules or

social protocols. Therefore, she will need some rules to substitute the etiquette rules

and social protocols by defining the time and the way which a participant in

collaboration gains access to the shared application.

1.2 Problem Statement

Conference collaboration systems typically provide a group of users with a set of well-

defined interactions to access applications and resources, and communications among

them. In such collaboration systems a group of users generally work sharing

collaborative applications and resources in their workgroups (sessions). Therefore it is

necessary to maintain consistent state information among sessions and collaborating

users in a conference in a coordinated way. The state information includes managing

workgroups, presences of and connectivity among collaborators in the workgroups. To

maintain the consistent state information among users joining sessions as well as

among shared collaborative applications, a set of event messages have to be

disseminated to collaborators in a well-defined and unified manner. Also, especially in

 4

user mobility enabled collaboration, mobile hosts may be disconnected from the

conferencing collaboration for arbitrary periods of time until reconnected into the

collaboration. During the disconnected periods of time, new users may join the

collaboration or sessions in the collaboration may be destroyed from the collaboration,

and hence disconnected hosts (or users) may have inconsistent state information

different from existing other hosts connecting (or joining) to the collaboration.

Therefore, such a scheme to support operations during disconnection which is typical in

mobile computing will be inappropriate for synchronous collaboration. Thus, we use

query-dissemination interaction event messaging mechanism with publish-subscribe

messaging service provided by our messaging and service middleware –

NaradaBrokering [44, 83, 95, 96]. The mechanism provides a flexibility for adapting

dynamic changes of collaboration states (creation and destroy of workgroups, and

presences of participating users in workgroups) through the dissemination of event

messages among users joined in a collaboration. The query-dissemination interaction

serializes the procedures of the mechanism (query-update-dissemination-and same view

(information)) never resulting in inconsistent state. Thus, the interaction mechanism

can provide uniform access to collaborative applications identifying users among

corresponding workgroups.

There are some well-known A/V conferencing and data collaboration systems like

H.323 / T.120 [87], SIP (Session Initiation Protocol) [61, 65, 85], and Access Grid [1].

However, they are not suitable for building integrated conferencing and data

collaboration systems to work together in the same collaboration session. For example,

 5

SIP has limited conference control and thus needs additional conference control

mechanisms to support A/V conferencing and data collaboration. A/V conferencing in

H.323 and data collaboration in T.120 are not well integrated and are designed in a

relatively complicated OSI (Open Systems Interconnection) model. Also, these only

deal with homogeneous conferencing and thus can not connect to other heterogeneous

collaboration systems. In order to get the heterogeneous collaboration endpoints to

work together, a common conferencing signaling protocol has to be designed to support

interactions among heterogeneous collaboration endpoints. To build integrated

collaboration system in the same session, the heterogeneous signaling procedures have

to be translated into the common conferencing signaling procedures. To describe the

protocol of the common signaling procedures, XML seems like good candidate because

it makes the signaling protocol easy to read and understand and to interact with other

web based components as opposed to binary format.

Fundamentally collaboration includes sharing resources. The cooperation on the

resources shared among a group of users may hence produce new results on the shared

resources. On the contrary, security is about restricting unauthorized access to

resources and thus it is essential that security of the collaboration environments as well

as of collaborative applications running on them is ensured while providing the

openness only to users that are authorized to access them. Therefore, difficulties to

deal with the conflicting goals of allowing and restricting access for resources among a

group of users may happen in collaboration environment. In collaboration environment

collaborating users are generally assigned a role, and collaborative applications have

 6

different types of roles which are assigned to a group of users. Access control scheme

in collaboration system hence needs fine-grained access control for providing accesses

for individual users in group, and for a finer granularity of accesses on individual

resources shared in group.

In traditional face-to-face offline session, participants generally follow rules of

etiquette or social protocol when they interact with each other. For example, if all the

participants try to draw on a shared whiteboard, then the conflicts which may result in

inconsistent state can be solved by a moderator or social protocols. However, in online

session or CSCW (Computer Supported Cooperative Work), the social protocols may

not be able to be used for coordinating the interaction of participants since they are not

collocated. For example, if all the participants try to send drawing events through a

communication channel in a distributed collaboration system, then the conflicts are not

able to be solved by the social protocols used in face-to-face offline session. Therefore,

policies and mechanisms used in an offline session may need a mapping into those able

to be used in an online session with user interfaces between participants and CSCW

environment.

When users perform concurrent activities on shared synchronous resources such as

collaborative applications, floor control [17, 18] is necessary. Floor control is the

problem of coordinating activities occurred in synchronously cooperating resources

shared among participants in an online conference session. The floor control mitigates

race conditions within online sessions on who is allowed to manipulate shared data or

 7

to send synchronous events. A set of well defined policies and mechanisms are needed

for efficiently coordinating the use of resources in CSCW. The policies for floor

control typically describe how participants in CSCW request resources, and how the

resources are assigned and released when participants share a synchronous resource

such as audio-video control event in conferencing, drawing events in shared whiteboard

or moving events in chess game. Also, mechanisms including user interfaces (human-

computer interaction) between participants and CSCW environment are needed to

implement and enforce the policies. The floor control mechanisms have to be able to

provide the floor on shared resource for only one participant in a synchronous online

session at any time. No single floor control scheme is appropriate for all collaboration

applications. The simplest scheme is free-for-all (no floor control) for applications like

text chat. Therefore floor control needs to provide significant flexibility ranging from

free-for-all to application specific floor control mechanism for avoiding uncoordinated

activities to shared collaboration applications.

1.3 A Framework for Synchronous and Ubiquitous

Collaboration

For ubiquitous collaboration and access as well as heterogeneous community

collaboration, CGL has developed a virtual conferencing collaboration system –

Global-MMCS (Global Multimedia Collaboration System) [32, 37] by integrating

heterogeneous collaboration systems into a single easy-to-use collaboration system.

The Global-MMCS provides the services of videoconferencing, instant messaging, and

streaming to various clients, and integrates different collaboration communities into a

 8

global collaboration platform. In the virtual Global-MMCS, after a conference is

activated, users can join the conference by starting their Global-MMCS client. Also, a

conference chairperson can create sessions where a conference is composed of a set of

sessions (online workgroups of collaborators working with sharing various

collaboration applications). Through Global-MMCS, roaming users with cell phone

devices as well as remote users can communicate with other users.

To handle cooperation and communication among heterogeneous communities, and to

provide collaborative applications in the heterogeneous community collaboration, we

built a framework on heterogeneous (wire, wireless) computing environment for

ubiquitous collaboration as well as heterogeneous community collaboration.

To provide various collaboration sessions in a conference for users, XGSP (XML based

General Session Protocol), which is a protocol for streaming session control messages

written in XML, is used. The XGSP accounts for policy, presence, session creation,

initiation, teardown, and so on.

To support group communications, a series of XGSP event messages are generated and

disseminated to all the participants in a conference through our message and service

middleware system – NaradaBrokering developed by CGL which supports

publish/subscribe messaging model with a dynamic collection of brokers and provides

services for TCP, UDP, Multicast, SSL, and raw RTP clients.

 9

To provide a solution for controlling accesses to resources by defining which resources

are available, who is allowed to access the resources, and the conditions under that the

privileges for the use of the resources occur, roles based on users’ privileges and

devices’ capabilities are used to allow users to manipulate the protected resources in the

collaboration – XGSP-RBAC (XGSP Role Based Access Control).

To coordinate activities to resources and maintain shared state consistency at

application level by mitigating race conditions within online sessions on who is allowed

to manipulate shared data or to send synchronous events, we used a request-response

interaction scheme between a moderator and a floor requester with human-computer

interaction. Also, we used two-player turn-taking scheme for collaborative chess game

application. To allow all participants to have the same views and data at all times for

synchronous collaboration, we used non-optimistic floor control mechanism which

strictly avoids conflicts – XGSP-Floor (XGSP Floor control).

The control mechanisms (XGSP, XGSP-RBAC, and XGSP-Floor) were integrated into

a framework for synchronous and ubiquitous collaboration.

1.4 Contributions

The main contribution of this thesis includes the following:

1. Building of a Framework for Synchronous and Ubiquitous Collaboration: This

includes another colleague’s contribution on desktop. To facilitate ubiquitous

 10

collaboration in anytime and anywhere among heterogeneous communities, we

built a collaboration framework on heterogeneous computing platforms (cell

phone and desktop).

2. Defining of XGSP (XML General Session Protocol): This includes another

colleague’s contribution. We defined a set of session protocols which control

sessions and participants’ presences in a conference. The protocols are defined

in XML. This protocol is used to provide various collaboration sessions

(heterogeneous community collaboration sessions) for participants in a

conference.

3. Designing and implementing of XGSP-RBAC (XGSP Role Based Access

Control): As an intermediate control entity between collaborators and

collaboration resources, we used the concept of the role which is based on the

users’ privileges and devices’ capabilities to manipulate protected shared

collaboration applications. For fine-grained access control for the instance of

individual resource, we defined fine-grained actions in our collaborative

applications as the smallest interactive major events (semantic events). We

designed and implemented XGSP-RBAC mechanism with the use of role,

flexible, and fine-grained controls. With our shared whiteboard applications,

we showed the performance of the XGSP-RBAC mechanism as well.

 11

4. Designing and implementing of XGSP-Floor (XGSP Floor control): We defined

a policy and implemented a mechanism for the policy for coordinating accesses

to collaborative applications, and maintaining shared state consistency at

application level. We presented the functionality of the XGSP-Floor tool that

provides a user interface (human-computer interaction) for control of floor to a

moderator and participants in a session with desktop and cell phone devices.

Also, we showed a synchronous collaboration, which means all participants in

collaboration always have the same views and data in real time, with a major

event conflict detection function and a non-optimistic locking mechanism.

5. Building of application filter for cooperation of heterogeneous types of

whiteboard applications: The application filter converts a type of representation

on one computing platform to other types of representations on other

heterogeneous computing platforms with different screen sizes and different

representation formats. The architecture is built as a derivative of shared

display model and shared event model [31, 34, 110] for image and drawing

object respectively. To demonstrate the effectiveness of the application filter,

we showed the experiment (functionality and performance) for the use of the

application filter with shared whiteboards on heterogeneous computing

platforms.

6. Building of application proxy for Instant Messenger: The proxy has

responsibility for getting responses from Jabber server [54] and performs any

 12

necessary conversions for the clients on mobile device. As an intermediary, the

proxy retains communication interfaces and thus can offload some

computational needs (parsing of XML for XMPP (Extensible Messaging and

Presence Protocol) [111] which is a presence protocol used in Jabber). The

architecture is built as a derivative of shared event model [31, 34, 110].

7. Building of collaborative applications on cell phone device: To show the

viability of our work, we built Text Chat, Instant Messenger, Java Whiteboard,

and SVG (Scalable Vector Graphics) [79] Whiteboard on cell phone device as

collaborative applications.

8. Modeling of control mechanisms (XGSP-RBAC and XGSP-Floor): To prove the

correctness of the control mechanisms, we modeled the mechanisms and

verified the modeled mechanisms by Colored Petri Nets with time [64] in terms

of mutual exclusion, dead lock, and starvation. The formal verification result

shows that the modeled mechanism ensures consistent shared state at

application level among collaborators.

1.5 Organization

The remaining chapters of this thesis are organized in the following manner:

In Chapter 2, we describe an architecture for collaboration framework built on

heterogeneous (wire, wireless) computing environment, and then present XGSP (XML

 13

 14

based General Session Protocol) for controlling sessions and participants’ presences in

a conference by defining a general protocol in XML.

In Chapter 3, we present a generic moderator-mediated interaction (request-response)

mechanism – XGSP-RBAC (XGSP Role Based Access Control) for controlling

accesses to applications and its supporting architecture integrated into collaboration

framework.

In Chapter 4, we present XGSP-Floor (XGSP Floor control) for coordinating accesses

to applications. Then we describe the functionality of an XGSP-Floor tool that

provides a user interface for control of floor to a moderator and participants in a session

with desktop and cell phone devices, a major event conflict detection function and a

non-optimistic locking mechanism.

In Chapter 5, we show modeling of control mechanisms, in this thesis referred to as

XGSP-RBAC and XGSP-Floor mechanisms. Then, we show formal verification to

prove the correctness of the modeled control mechanisms. For the abstract

representation of the modeling, we use Colored Petri Nets with time.

Finally, in Chapter 6, we conclude by summarizing main points drawn from our work

and then present future works.

Chapter 2

Collaboration Framework Architecture

and XML based General Session

Protocol (XGSP)

2.1 Overview

In this chapter we describe an architecture for collaboration framework built on

heterogeneous (wire, wireless) computing environment that handles cooperation and

communication among heterogeneous communities and provides collaborative

applications in the heterogeneous community collaboration, and overall architecture to

support it. A key function of the framework is to provide a generic solution for

controlling sessions in a conference and accesses to resources, maintaining shared state

consistency at application level and maximizing the use of various collaborative

capabilities to collaborator by defining a general protocol in XML [29]. Another

function of the framework is to provide a structure for development and deployment of

 15

collaborative applications that can be used to support asynchronous collaboration by

allowing different users of a session to access the same resource at different times, and

synchronous collaboration by enabling the users to share the same resource in real time.

Application
(Instant Messenger)

Proxy

Application
(Shared Whiteboard)

Filter

Conference Manager
(Web Server)

Message / Service Middleware (Broker)

Figure 2.1: A Broad Architecture View.

In our work we have used J2ME (Java 2 Micro Edition) [62] for our software

development in mobile (cell phone) computing environment and J2SE (Java 2 Standard

Edition) [55] for our software development in non-mobile (stationary device like

desktop PC) computing environment. For communication service, we have used

NaradaBrokering [44, 83, 95, 96] for messaging and service middleware system as

overlay built over heterogeneous networks to support group communications among

heterogeneous communities and collaborative applications. The NaradaBrokering from

Community Grids Lab (CGL) [13] is adapted as a general event brokering middleware,

 16

which supports publish/subscribe messaging model with a dynamic collection of

brokers and provides services for TCP, UDP, Multicast, SSL, and raw RTP clients.

The NaradaBrokering also provides the capability of the communication through

firewalls and proxies. It is an open source and can operate either in a client-server

mode like JMS [56] or in a completely distributed peer-to-peer mode [89, 99]. In this

thesis we use the terms “message and service middleware (or system)” and “broker”

interchangeably.

Figure 2.1 shows broad architecture view for our collaboration. In the Figure 2.1, the

application proxy is used for Instant Messenger (IM). The IM is used to send

notifications to user who is not connected or not joined in conference collaboration. IM

on cell phone interacts with the application proxy (Jabber proxy) via a broker, and then

the proxy communicates with Jabber open server [54] via socket connection. The

proxy has responsibility for getting responses from Jabber server and performs any

necessary conversions for clients on mobile devices. As an intermediary, the proxy

retains communication interfaces and thus can offload some computational needs. The

IM is an instant messaging client capable of interfacing with messenger services like

MSN and Yahoo Messenger using Jabber open server. The Jabber open server is an

instant messaging and presence managing platform based on XML, XMPP (Extensible

Messaging and Presence Protocol) [111] and open standards. The benefits of using

Jabber server include presence management, message processing based on XML,

transparent interoperability, structured information data, and open formats. With such

an approach using open or commercial technology, we can build a sustainable high

 17

functionality system taking advantage of the latest technologies and enable multiple

collaborative applications to re-use the same basic technologies in a modular fashion

with appropriate interface for collaborative applications.

Event
(Message)

Service

Web

Service

S
F
I
O

U
F
I
O

Web

Service

S
F
I
O

U
F
I
O

Web

Service

S
F
I
O

U
F
I
O

WS
Viewer

WS
Display

WS
Viewer

WS
Viewer

WS
Display

WS
Display

Master

Other Participants

Figure 2.2: Shared Input Port Model (also called Shared Event Model or MMMV
(Multiple Model Multiple View) Collaboration Model). UFIO and SFIO are User
Facing and Service Facing Input/Output Ports.

Figure 2.2 shows MMMV (Multiple Model Multiple View) collaboration model (also

called shared event model, or shared input port model) [31, 34, 110]. In the model,

each client in collaboration shares one copy of the web service with the master. Then

sharing is achieved by intercepting the pipeline before the master web service and

directing copies of the messages (events) on each input port of the master web service

to the replicated copies – shared event, where the pipeline means stage flow from one

object to transform other object. Only the user-facing ports in the model are partially

 18

shared with data from the master transmitted to each replicated web service. The

example is PowerPoint where all the clients have a copy of the application and the

presentation to be shared before joining collaboration. Then events such as slide

change can be sent to all participating clients for same view among them. Another

example is shared SVG browser [110] which uses JavaScript event model to trap user

input to a browser. The user input events playing the role of input ports are directly

sent to all participating clients. CGL has a collaborative chess game application [100,

109, 110] for desktop devices. The application uses the shared event model. Each of

players and observers in the game has their own chessboard and plays the game through

a shared major event – moving object event which results in same view among them.

The Jabber [54] can also be an instance of the model. Figure 2.3 shows the architecture

of the Jabber as a derivative of shared event model.

Jabber
Server

Jabber
Client

MSN
Transport

Yahoo
Transport

MSN
Server

Yahoo
Server

MSN
Client

Jabber
Proxy

Jabber
Client

Yahoo
Client

Figure 2.3: Jabber Instant Messenger Architecture View with Application (Instant
Messenger) Proxy.

 19

In Figure 2.1, the application filter is a kind of agent able to cooperate and to coordinate

heterogeneous types of applications on heterogeneous platforms, but is not considered

as intelligent agent. The purpose of the application filter use is to convert one type of

representation to other types of representations on heterogeneous platforms with

different screen (or canvas) sizes and different representation formats. Arriving objects

into the application filter are immediately filtered and converted to other types of

objects, and are broadcasted to all participating clients through our messaging and

service middleware. The communication channel (publish/subscribe) of the application

filter enables one type of collaborative application to exchange event objects with other

types of collaborative applications, where the event objects may be different according

to the types of applications, e.g. drawing and image sharing events in shared

whiteboard application or moving object event in chess game application. Note that the

homogeneous collaborative applications with the same type of representations can

communicate directly through the broker without the use of the application filter.

Therefore arriving messages are converted to (N-1) types of event messages where N is

the number of heterogeneous types of application supported in collaboration. In this

architecture, each application does not know how to convert its own representation into

other representations. The application filter is responsible for translating data from one

type of representation into other types of representations. In Figure 2.4, shared display

collaboration model [31, 34] shows that clients share the graphical image display and

the state is maintained (shared) between the clients by transmitting the changes in the

display through the event message service. The supporting heterogeneous clients

require that sophisticated shared display environments automatically change size and

 20

display representation formats to suit each client. The shared display model has one

key advantage – it can immediately be applied to all shared objects. But it has two

obvious disadvantages – it is rather difficult to customize and requires substantial

network bandwidth as complete graphical image display between desktop and cell

phone applications as well as among desktop applications has significant network

transit overhead.

Object
or WS

Object
or WS

Object
or WS

Object
or WS
Viewer

Object
or WS

Display

WS
Display

WS
Display

Event
(Message)

Service

Master

Other Participants

Figure 2.4: Shared Display Collaboration Model

Figure 2.5 shows an instance of the application filter obtained by applying the shared

display model. To demonstrate the effectiveness of the application filter, we show the

experimental results of the application filter with our collaborative application – shared

whiteboards on heterogeneous computing platforms (cell phone and desktop) in section

2.6.3.

 21

Broker

Filter

Graphical display data

(image or drawing
object data)

Transcoding

Display

Display

Display

Figure 2.5: Application (Shared Whiteboard) Filter Architecture View.

This chapter is organized as follows. In the remainder of this chapter, we put research

issues and our solution about them in section 2.2. Section 2.3 describes related works.

Section 2.4 presents the architecture of collaboration framework and the

implementation of it. Section 2.5 describes XML based General Session Protocol

(XGSP). Section 2.6 presents experimental results. Finally, we conclude by

summarizing main points drawn from building collaboration framework and the XML

based General Session Protocol.

2.2 Problem Statement and Solutions

Conference collaboration systems typically provide a group of users with a set of well-

defined interactions to access applications and resources, and communications among

them. In such collaboration systems a group of users generally work sharing

collaborative applications and resources in their workgroups (sessions). The

collaborative applications can be synchronous or asynchronous applications shared

 22

among users in the workgroup, and hence the sessions can be synchronous or

asynchronous workgroups according to the applications. Therefore it is necessary to

maintain consistent state information among sessions and collaborating users in the

conference in a coordinated way. The state information includes managing and

coordinating workgroups, and presences of and connectivity among collaborating users

in the workgroups. To maintain the consistent state information among users joining

sessions as well as among shared collaborative applications, a set of event messages

have to be disseminated to collaborating users in a well-defined and unified manner.

Also, especially in user mobility enabled collaboration, mobile hosts may be

disconnected from the conferencing collaboration for arbitrary periods of time until

reconnected into the collaboration. During the disconnected periods of time, new users

may join the collaboration or sessions in the collaboration may be destroyed from the

collaboration, and hence disconnected hosts (or users) may have inconsistent state

information different from existing other hosts connecting (or joining) to the

collaboration. Therefore, such a scheme to support operations during disconnection

which is typical in mobile computing will be inappropriate for synchronous

collaboration. Thus, we use query-dissemination interaction event messaging

mechanism with publish-subscribe messaging service provided by our messaging and

service middleware. The mechanism provides a flexibility for adapting dynamic

changes of collaboration states (creation and destroy of workgroups, and presences of

participating users in workgroups) through the dissemination of event messages among

participants in a collaboration. In the mechanism users only need to send a set of

queried event messages to a chairperson node on which a conference chairperson

 23

resides. After the chairperson node processes the queries and disseminates the results

of the queries to users joined (or connected) in the collaboration through the broker

which is responsible for reliable and ordered consistent delivery of messages, the users

can have the consistent collaboration state information in the collaboration. The query-

dissemination interaction serializes the procedures of the mechanism (query-update-

dissemination-and the same view (information)) never resulting in inconsistent state.

Thus, the interaction mechanism can provide uniform access to collaborative

applications identifying users among corresponding workgroups.

There are some well-known A/V conferencing and data collaboration systems like

H.323 / T.120 [52, 87], SIP (Session Initiation Protocol) [61, 65, 85] and Access Grid

[1]. However, they are not suitable for building integrated conferencing and data

collaboration systems to work together in the same collaboration session. For example,

SIP has limited conference control and thus needs additional conference control

mechanisms to support A/V conferencing and data collaboration. A/V conferencing in

H.323 and data collaboration in T.120 are not well integrated and are designed in a

relatively complicated OSI (Open Systems Interconnection) model. Also these only

deal with homogeneous conferencing and thus are not able to connect to other

heterogeneous collaboration systems. In order to get the heterogeneous collaboration

endpoints to work together, a common conferencing signaling protocol has to be

designed to support interactions among heterogeneous collaboration endpoints. To

build integrated collaboration system in the same session, the heterogeneous signaling

procedures have to be translated into the common conferencing signaling procedures.

 24

To describe the protocol of the common signaling procedures, XML seems like good

candidate because it makes the signaling protocol easy to read and understand and to

interact with other web based components as opposed to binary format.

2.3 Related Work

In this section we examine existing conferencing collaboration system. NetMeeting

[84] provides audio/video conferencing and data collaboration functions for Internet

and corporate intranet. The functional capabilities for conferencing collaboration

include sharing information, sending text messages, transferring binary file, recording

meeting notes and communicating with other people in real time through Internet

telephony audio/video conferencing. NetMeeting uses H.323 [52, 87] protocol for

audio/video conferencing and modified T.120 [103] protocol for data collaboration.

The NetMeeting was replaced by Windows Meeting Space [108] running on Windows

Vista. However, now the Window Meeting Space has just collaboration capabilities

not including conferencing capability.

GroupKit [43, 73, 74] is a Tcl/Tk (Tool Command Language / Graphical User Interface

Toolkit) [101] library to build real time groupware applications such as multi-user

drawing tools, shared text editors, and conference meeting tools. The GroupKit

presents three strategies such as run-time process and communication architecture for

creation, interconnection and management of conference sessions, overlays for easily

adding general components needed for building groupware applications, and flexible

interface and interaction policies for accommodating work styles of groups. The

 25

GroupKit toolkit provides development environments to build shared view applications

such as shared window, whiteboards, and editors.

H.323 [52, 87] developed by standardization sector of ITU-T (International

Telecommunication Union) is a series of recommendations for packet-based

multimedia group communications systems specifying the components to be used

within an H.323-based environment. It provides conference management functionality

for audio/video conferences using the call signaling (connection

establishment/teardown) functionality of H.225 [48] and the control functionality of

H.245 [50] which provides control management for exchanging terminal capabilities

and creating media channels. These protocols provide call set-up and call transfer of

real time connections to support small-scale multipoint conferences. The protocol

H.243 [49] defines some commands for system operation between the MCU

(Multipoint Control Unit) and H.320 [51] audiovisual terminals to implement audio

mixing, video switch and cascading MCU, where MCU provides support for

conferences of three or more H.323 terminals. T.120 recommendation [103] is used for

data management of a conference. This standard contains a series of communication

and application protocols and services that provide support for real time, multi-point

data communications. The multi-point facilities are important building blocks for a

whole new range of collaborative applications including desktop data conferencing,

multi-user applications and multi-player gaming. However, in H.323, T.120 is

completely independent of H.225 and H.245. In fact, A/V and data collaborations

 26

should be integrated in the same framework so that the architecture can be easily

implemented and maintained.

The Session Initiation Protocol (SIP) [61, 65, 85] developed in MMUSIC WG

(Multiparty Multimedia Session Control Working Group) of IETF (Internet

Engineering Task Force) was designed as a general session protocol for establishing,

maintaining, and tearing down Internet sessions including multimedia conferences. SIP

provides basic functions including: user location resolution, capability negotiation

(session parameter), and call management (invitation to session). All the capabilities in

SIP are basically equivalent to the service H.225 and H.245 in H.323 protocol. The

major difference is that SIP was designed in a text format and took request/response

protocol style like HTTP. But H.225 and H.245 were defined in a binary format and

kept a style of OSI (Open Systems Interconnection). Therefore, SIP has some

advantages of interaction with web protocol like HTTP. More importantly, SIP does

not define the conference control procedure like H.243 and T.120. Additional

conference control mechanisms have to be implemented on the base of SIP to support

the A/V and data collaboration.

Virtual Rooms Video Conferencing Systems (VRVS) [104] provides some kinds of

integration of different A/V endpoints. However, VRVS is not open project and thus

has few introduction documents which briefly describe its architecture and conference

control framework. From the brief introduction, VRVS builds its collaboration service

on top of pure software reflector [104] which interconnects each user to a virtual room

 27

by a permanent IP tunnel. The use of the reflector technology assures the quality

needed for videoconferences transmission (audio, video, and data flows). The VRVS is

capable of supporting MBONE [78] tools, H.323 terminal, and data sharing

collaborations, like shared web browsing and virtual network computing (VNC) for

shared view on desktop.

2.4 Collaboration Framework Architecture

Collaboration framework is a basic structure to hold consistent view or information of

users’ presence and sessions together, and to support diverse collaborative applications

to collaborators joining in a conference at remote locations. It also has a capability that

allows a user to join a conference using networked heterogeneous (wire, wireless)

computing devices anytime and anywhere and to use collaborative applications in the

conference. It is important to users joining a conference that it seems to be in offline

real conference room even when using heterogeneous computing devices at remote

locations. It is typical today and will be more typical in the future that all users can

access information independent of their access devices and physical capabilities

anytime and anywhere.

To maintain consistent information of presences and sessions in a conference, we use a

request (query) and response (dissemination) mechanism that requires a user to inquire

queries (request event messages) to a chairperson node (conference chairperson) and a

conference manager in order to engage in presence and various collaboration activities,

and the chairperson node and conference manager to disseminate the queried

 28

information to all the participants through the messaging and service middleware. A

set of protocols are defined in section 2.5 for maintaining consistent collaboration state

information among participants in conference collaboration.

WSDL

Application
or

Content
Source

Web Service

S
F
I
O

Event
(Message)

Service

WS
Viewer

WS
Viewer

WS
Viewer

WS
Display

WS
Display

WS
Display

Master

Other Participants

U
F
I
O

Figure 2.6: Shared Output Port Model (also called SMMV (Single Model Multiple
View) Collaboration Model).

Figure 2.6 shows SMMV (Single Model Multiple View) collaboration model (also

called shared output port model) [31, 34, 110]. The shared display model in Figure 2.4

is a subset of SMMV. This SMMV collaboration model can be used for collaborative

applications. Our collaboration framework follows this approach for collaborative

applications built on it with our messaging and service system. In Figure 2.7, we show

an instance obtained by applying the model, and used for session/membership data and

display of the information data in the collaboration framework.

 29

Collaborative Applications

XGSP Control Manager

Communication Service

Collaborative Applications

XGSP Control Manager

Communication Service

Collaborative Applications

XGSP Control Manager

Communication Service

Message
and

Service
Middleware

(Broker)

Collaborative Applications

XGSP Control Manager

Communication Service

Figure 2.7: XGSP Service Architecture.

As shown in Figure 2.8, the collaboration framework is structured as three layers and

six major components: control manager, session / membership control manager, access

/ floor control manager, policy manager, request and reply event message handlers, and

communication channel. We describe the components in turn.

2.4.1 Control Manager

A control manager is an interface component located between sessions and managers in

collaboration framework for providing conference management services such as

presence, session, and access and floor control managements for participants in

collaboration. Presence of participants, creation/destroy of sessions, and

activation/deactivation of actions to access resources are serviced through this manager

into each of control management services. The control manager also has factories for

all kinds of applications, and hence can create new application instances and invoke,

start, and destroy them.

 30

Figure 2.8: Collaboration framework architecture consists of three layers (collaborative
applications, managers, and communication service) and six major components.

Control Manager

Session / Membership Control Manager Access / Floor Control Manager

Policy Manager

Action Request / Reply
 Handler

SessionList
 Handler

JoinConf
 Handler

UserList
 Handler

JoinConf
XGSP

Message

UserList
XGSP

Message

SessionList
XGSP

Message

Request/Set Action
XGSP-RBAC / XGSP-Floor

Message

Session

Application Instance Application Instance Application Instance Application Instance

Communication Channel

 31

2.4.2 Session and Membership Control Manager

This manager manages information about who is currently in the conference and has

access to what applications, and which sessions are available in the conference. The

session and membership control manager has a set of control logics that are used to

manage presences of and connectivity among collaborating users in collaborating

workgroups, and organize the workgroups. The control logics communicate through a

set of predefined protocols (session control protocols) for streaming control messages

to exchange presence information of collaborating users and state information of

various collaborative sessions. The session control protocols account for policy,

presence, session creation, initiation, teardown, and so on. To describe presences,

connectivity, and states of sessions, XML is used as a protocol definition language of

the session and membership control. The XML based General Session Protocol

(XGSP) is described in section 2.5 in more detail.

2.4.3 Access and Floor Control Manager

The access and floor control manager component in collaboration framework is

responsible for handling accesses to collaborative applications through the request and

reply event message handlers which are one of components in the framework. A user

requests an access to use resources like collaborative applications to a chairperson or

moderator through a request event message handler. The chairperson or moderator

responses a decision (grant, deny, or queued) to the requesting user who wants to

access resources through a reply event message handler. The chairperson or moderator

also broadcasts the decision to make the change of access state to each resource

 32

globally visible to all the participants in a session. A GUI (Graphic User Interface) on

the framework, which is used to display access state information for resources, is used

to request accesses to resources. Within the access and floor control manager, policies

are read from a file, a request is validated through a policy manager and one of

classified access types is returned into the manager through an access type decision

service. With the returned access type, a chairperson or moderator makes a decision

and the decision is dispatched to the requesting user. Also the decision is broadcasted

into each node to update the access state information for the resource. The XGSP Role

Based Access Control mechanism (XGSP-RBAC) and the XGSP Floor control

mechanism (XGSP-Floor) are described in chapter 4 and 5 respectively in more detail.

2.4.4 Policy Manager

Access and floor control policies are written in XML and put into the conference

manager shown in Figure 2.1 for globally consistent use. When a new user joins a

conference, the conference manager pushes the policy into the node (or host) of the

new user as a stream message, and the policy is stored in local policy store (a file) of

the node during joining (connecting) in the conference. The policies describe which

roles (users in them) in collaboration are allowed to perform which actions on which

target applications. As a request event message for accessing applications arrives, the

policy manager pulls the policy from the policy store. The policy manager is

responsible for validating the request event messages based on the access and floor

control policies pulled from a local policy store.

 33

2.4.5 Request and Reply Event Message Handlers

An event message handler is a subroutine that handles request and reply event

messages. The control manager manages the associations between incoming and

outgoing event messages with each of event message handlers. According to the

associations, generated outgoing (request) event messages are first processed by the

associated request event message handlers in each node (or host). Incoming (reply or

response) event messages are also serviced by the associated reply/response event

message handlers. The messages are sent to a broker via the communication channel

shown in Figure 2.8. The broker disseminates the messages to other participants

connected to the collaborating workgroup (session).

2.4.6 Communication Channel

The communication channel is responsible for controlling interactions among

participants and communications among collaborative applications. The channel uses

topic-based publish-subscribe mechanism that defines a general API for group

communication. The API for the topic-based publish-subscribe mechanism is used as

an interface for group communication of sessions in a conference and between

collaborative applications and a broker. In the topic-based publish-subscribe

mechanism, the topic information contained within messages is used to route the

messages from publisher to subscriber. The topic information has two kinds of naming

schema: a name separated simply by slash(“/”) strings like /XGSP/Conference-

ID/Application-Session-ID can be used and another naming schema can be described

using a set of tag=value pairs, a set of properties associated with the message, verbose

 34

text, or XML. The messages containing topic information are sent to a broker through

the communication channel. And the messages are disseminated through router nodes,

referred to as brokers to subscribers which registered a subscription to the topic.

In the next section, we describe the XML based General Session protocol (XGSP)

[106] for event messages used for communication among collaborating users.

2.5 XML based General Session Protocol (XGSP)

Collaboration can be defined as interaction for cooperation on shared resources

between people working at remote locations. The interaction in collaborative

computing requires a simple and universal access means and mechanism for people to

easily access information or to conveniently communicate with other people.

Interactions and cooperation for collaboration can be generally provided through the

unit of conference and sessions. A conference is composed of a set of sessions, where a

session means online workgroup of collaborating users working with sharing various

collaborative resources. A conference needs control logic to maintain state information

among sessions and presence information among participants in a conference. The

control logic is used to manage presences of and connectivity among collaborating

users in the online workgroup (session), and organize the online workgroups (sessions

or conference). The control logic needs a protocol for streaming control messages to

exchange presence information of collaborating users and states of various

collaborative sessions. To describe control logics of presences, connectivity, and

sessions’ states, we use XML as a protocol definition language of session control. The

 35

XML based General Session Protocol (XGSP) [106] is a protocol for streaming control

messages written in XML to provide various collaboration sessions in a conference for

users according to the presences and connectivity. The session control protocol

account for policy, presence, session creation, initiation, teardown, and so on. In the

next subsections we describe conference, session, and presence management in turn

with our session control protocol - XGSP.

2.5.1 XGSP Conference Management

In Figure 2.1, the conference manager manages information related to all the

conferences. The conference manager resides on web server running on tomcat. The

manager maintains registries of all scheduled conferences, registries of collaborative

applications such as A/V, text chat, whiteboard, and chess game, user accounts and

access and floor control policy for the applications. Through a meeting calendar [2],

the conference manager provides a set of meeting lists to users. Users can make

meeting reservations via their browsers or emails. The conference manager can grant

or deny the requests of users according to the capability of conference servers. The

manager also activates or deactivates conferences at the starting and ending time of

them.

After a conference is activated, users can join the conference by starting their node

manager (or called Global-MMCS client). Then the node manager generates a series of

XGSP event messages and broadcasts them to conference manager and all the

participants in the conference. The Figure 2.9 shows the administration web portal

 36

page of the conference manager for the conference management of Global Multimedia

Collaboration System (Global-MMCS) developed by Community Grids Lab (CGL) at

Indiana University. The Global-MMCS system [32, 37] based on the collaboration

framework provides the services of videoconferencing, instant messaging, and

streaming to various clients, and integrates different collaboration communities into a

global collaboration platform.

Figure 2.9: GlobalMMCS Admin Example Web Portal Page.

2.5.2 XGSP Session Management

All the participants in a conference can join sessions predefined as a default session in

the conference or created by a conference chairperson. The predefined default session

has a default application like A/V, shared whiteboard, text chat, and instant messenger

 37

(Jabber client) if participant has an account of Jabber IM [54]. The procedures in

creating and terminating application sessions include behaviors of conference manager

and node managers. The conference manager monitors the life-cycles of the sessions.

If the session has a session server, the manager commands the application session

server to work for the management of the session. How A/V application sessions are

handled is described in more detail [33]. Each node manager keeps a directory of

application sessions. When the node manager of a conference chairperson creates an

application from the application session directory, the node manager sends a XGSP

event message (“Create Application Session”) to all other node managers in the

conference. Each node manager adds the application session information in the XGSP

event message into a local application directory. When the application session is

terminated, the node manager of the conference chairperson also sends a XGSP event

message (“Destroy Application Session”) to all other node managers. They close

application instances in the session and remove the session information from their local

application session directory. An example XML stream for creating and terminating an

application session is shown in Figure 2.10 and 2.11 respectively. If a chairperson

creates a new application session, the session information is broadcasted through a

broker in the following XML stream.

<?xml version=”1.0” encoding=”UTF-8”?>
<CreateAppSession>

<ConferenceID>ourtestroom</ConferenceID>
<ApplicationID>wb</ApplicationID>
<SessionID>NewAppSession</SessionID>
<Creator>kskim</Creator>

</CreateAppSession>

Figure 2.10: XML Stream for Creating an Application Session.

 38

But if a chairperson destroys a session, the old session information is broadcasted in the

following XML stream. Thus the destroyed session is removed from session repository

and GUI (Graphic User Interface) in each node (or host).

<?xml version=”1.0” encoding=”UTF-8”?>
<DestroyAppSession>

<ConferenceID>ourtestroom</ConferenceID>
<ApplicationID>wb</ApplicationID>
<SessionID>OldAppSession</SessionID>
<Destroyer>kskim</Destroyer>

</DestroyAppSession>

Figure 2.11: XML Stream for Destroying an Application Session.

When a user wants to join an application session, the user can select a session from

session directory which is displayed as a GUI in her node manager. The application

factory in the node manager creates an application instance. During the creation of the

application instance, some parameters like a topic name which is used in a broker and

initial default action allowed for accessing the application are passed to the application

instance. An example XML stream for joining an application session is shown in

Figure 2.12. Before joining a collaborative application session, a user has to establish a

session by sending the XML stream to a chairperson node if she wants to join the

session and uses application instances in the session. Figure 2.13 shows a XML stream

instance disseminated as leaving a session.

<?xml version=”1.0” encoding=”UTF-8”?>
<JoinAppSession>

<SessionID>NewAppSession</SessionID>
<UserID>kskim</UserID>

</JoinAppSession>

Figure 2.12: XML Stream for Joining a session NewAppSession

 39

<?xml version=”1.0” encoding=”UTF-8”?>
<LeaveAppSession>

<SessionID>NewAppSession</SessionID>
<UserID>kskim</UserID>

</LeaveAppSession>

Figure 2.13: XML Stream for Leaving a session NewAppSession

2.5.3 Presence and Session Establishment

Session control based on XGSP integrated into the collaboration framework and

conference manager is implemented via a request-response (query-dissemination)

mechanism that requires a user to establish a session on a chairperson node (conference

chairperson) and conference manager in order to engage in presence and various

collaboration activities. A user needs to send a join-conference message to conference

manager before the user can establish a session on the conference manager in order to

receive policies for setting session controls and accessing to resources. Also, a user

needs to send the join-conference message to a chairperson node before the user

establish a session on the chairperson node in order to engage in presence information

of other collaborating users and existing various collaborative applications in the

session. The initial presence message, join-conference XML stream, is to signal her

availability for communications to all other participants and conference manager in

conference collaboration. An example of the initial presence stream is shown in Figure

2.14, 2.15, and 2.16.

• Before joining in a conference, a user has to send her initial presence in join-

conference XML stream to a chairperson node and conference manager. In Figure

2.14 and 2.15 we show an example join-conference XML stream for a chairperson

 40

and desktop users with role names chairperson and non-mobile user respectively. A

join-conference XML stream for mobile users is shown in Figure 2.16 with a role

name mobile-user.

<?xml version=”1.0” encoding=”UTF-8”?>
<JoinConf>

<ConferenceID>ourtestroom</ConferenceID>
<User>

<RoleName>chairperson</RoleName>
<UserID>kskim</UserID>
<UserName>kangseok-kim</UserName>

</User>
</JoinConf>

Figure 2.14: Join XML stream of Chairperson on Desktop PC showing conference ID,
user’s role name, user ID and user name

<?xml version=”1.0” encoding=”UTF-8”?>
<JoinConf>

<ConferenceID>ourtestroom</ConferenceID>
<User>

<RoleName>nonmobile-user</RoleName>
<UserID>kskim</UserID>
<UserName>kangseok-kim</UserName>

</User>
</JoinConf>

Figure 2.15: Join XML stream of Desktop users showing conference ID, user’s role
name, user ID and user name

<?xml version=”1.0” encoding=”UTF-8”?>
<JoinConf>

<ConferenceID>ourtestroom</ConferenceID>
<User>

<RoleName>mobile-user</RoleName>
<UserID>kskim</UserID>
<UserName>kangseok-kim</UserName>

</User>
</JoinConf>

Figure 2.16: Join XML stream of Cell phone users showing conference ID, user’s role
name, user ID and user name

 41

• Conference manager informs a XML stream binding policies that are used for

requests of resources. The example stream is shown in Figure 2.17.

<?xml version=”1.0” encoding=”UTF-8”?>
<ReplyPolicy>

<ConferenceID>ourtestroom</ConferenceID>
<User>

<UserID>kskim</UserID>
<UserName>kangseok-kim</UserName>

</User>
<Policy>

<XGSP-RBACPolicy>
…………………
</XGSP-RBACPolicy>

</Policy>
</ReplyPolicy>

Figure 2.17: Policy XML stream from Conference Manager showing conference ID,
user ID, user name, and access / floor control policy

Upon joining a collaboration conference, a user needs to request a presence list of

participants and existing sessions in the conference.

• A user has to send a query requesting presence and available session list to a

chairperson node. Figure 2.18 shows a presence request XML stream and Figure

2.19 shows a session request XML stream.

<?xml version=”1.0” encoding=”UTF-8”?>
<RequestUserList>

<UserID>kskim</UserID>
<ConferenceID>ourtestroom</ConferenceID>

</RequestUserList>

Figure 2.18: Presence request XML stream

 42

<?xml version=”1.0” encoding=”UTF-8”?>
<RequestSessionList>

<UserID>userID</UserID>
<ConferenceID>confID</ConferenceID>

</RequestSessionList>

Figure 2.19: Session request XML stream

• A chairperson node informs users’ presence list and an available session list.

Figure 2.20 shows a presence reply XML stream and Figure 2.21 shows a session

reply XML stream.

<?xml version=”1.0” encoding=”UTF-8”?>
<ReplyUserList>

<UserID>kskim</UserID>
<ConferenceID>ourtestroom</ConferenceID>
<UserList>

<User>
<RoleName>chairperson</RoleName>
<UserID>kskim2</UserID>
<UserName>kangseok-kim2</UserName>

</User>
 User presence list joining in conference ID ourtestroom

</UserList>
</ReplyUserList>

Figure 2.20: Presence reply XML stream

<?xml version=”1.0” encoding=”UTF-8”?>
<ReplySessionList>

<UserID>kskim</UserID>
<ConferenceID>ourtestroom</ConferenceID>
<SessionList>
 Session list in conference ID ourtestroom
</SessionList>

</ReplySessionList>

Figure 2.21: Session reply XML stream

 43

• When a participant leaves a conference, her leave-conference XGSP event message

is disseminated in the XML stream of Figure 2.22. Thus her presence is removed

from the membership directory and GUI in each node (or host) participating in

collaboration.

<?xml version=”1.0” encoding=”UTF-8”?>
<LeaveConf>

<ConferenceID>ourtestroom</ConferenceID>
<User>

<RoleName>chairperson</RoleName>
<UserID>kskim</UserID>
<UserName>kangseok-kim</UserName>

</User>
</LeaveConf>

Figure 2.22: Leave Conference XML stream

2.6 Experimental Results

In this section we show experimental results to demonstrate the viability of our

approach with a variety of performance measurements. We show network performance

between our messaging and service middleware – NaradaBrokering and collaboration

framework built on cell phone and desktop devices. We also show the performance of

XGSP event mechanism integrated into our collaboration framework. In a case study

of shared whiteboard application with image annotation and the application filter which

is one of components in our collaboration system, we show the viability of our

architectural approach to support effective collaboration between heterogeneous

collaboration applications. The main purpose is to show the effectiveness of

cooperation of collaborating users using heterogeneous collaboration applications and

our architectural approach for integration of heterogeneous collaboration applications

in heterogeneous computing and network environments.

 44

2.6.1 Baseline Performance Result

In this section we show the baseline performance results of network (wire, wireless)

used for communication between our messaging/service middleware (broker) and

collaboration framework built on cell phone and desktop devices. Note that the results

are not to show better performance enhancement but to quantify the network

performance of wireless cell phone and wired desktop devices for a variety of datasets.

The quantified results will be used as a reference of the experimental results of the

performance measurements used in the following sections. In our experiments, we

measured the round trip time involved in performing communication between

collaboration framework and a broker for a variety of datasets in heterogeneous

networked environments over a variety of locations. The experiment results were

measured from executing collaboration framework running on Palm OS 5.2.1H

Powered Treo600 [102] cell phone platform with 144 MHz ARM Processor and 32MB

RAM connected to cellular network, and running on Windows XP platform with 3.40

GHz Intel Pentium and 2 GB RAM connected to Ethernet network. The collaboration

framework on cell phone and desktop is located in Community Grids Lab at Indiana

University. The broker ran on a 2.4 GHz Linux with 2 GB RAM located in

Community Grids Lab at Indiana University, a 1.2 GHz Linux with 8 GB RAM located

in NCSA (National Center for Supercomputing Applications) at UIUC (University of

Illinois at Urbana-Champaign) and a 1.2 GHz Linux with 8 GB RAM located in SDSC

(San Diego Supercomputer Center) at UCSD (University of California at San Diego).

 45

Figure 2.23, 2.24 and 2.25 show the round trip time to transfer bytes data between

collaboration framework and a broker through wired and wireless network respectively

including the corresponding execution time of the broker. As the size of data increases,

the time for transferring the data increases as well, as shown in the figures. Note that

where the results in Figure 2.23 are in the range of only milliseconds, the results in

Figure 2.24 and Figure 2.25 are in the range of seconds. This measurement results will

be used as a baseline for the performance measurements in the following sections.

Latency in Round Trip Time
(Desktop - Broker - Desktop)

0

100

200

300

400

500

600

10 20 30 40 50 60 70 80 90 100

Data size in kilobytes

Ti
m

e
in

 m
illi

se
co

nd
s

GridFarm
NCSA
SDSC

Figure 2.23: Latency in Round Trip Time between Desktop and Broker

 46

Latency in Round Trip Time
(Cell phone - Broker - Cell phone)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 5 6 7 8 9 10

Data size in kilobytes

Ti
m

e
in

 m
illi

se
co

nd
s

GridFarm
NCSA
SDSC

Figure 2.24: Latency in Round Trip Time between Cell phone and Broker

Latency in Round Trip Time
(Cell phone - Broker - Cell phone)

0

5000

10000

15000

20000

25000

30000

10 20 30 40 50 60

Data size in kilobytes

Ti
m

e
in

 m
illi

se
co

nd
s

GridFarm
NCSA
SDSC

Figure 2.25: Latency in Round Trip Time between Cell phone and Broker

 47

2.6.2 Performance of XGSP Query/Dissemination Mechanism

In this section we show the performance of XGSP query/dissemination interaction

mechanism. The XGSP query/dissemination interaction mechanism is based on a set of

queries and responses (dissemination through our messaging and service middleware)

using session protocols written in XML. To maintain consistent session state

information among participants in conferencing collaboration, a user needs to request a

presence list of participants in the conference and a list of existing sessions in the

conference. A chairperson node (chairperson) disseminates participants’ presence

information including the presence of the requesting user and all existing session

information to all the participants in the conference through a broker. The queries and

dissemination for presences and sessions in our implementation involve the XML

stream sequences in Figure 2.18, 2.19, 2.20, and 2.21.

The primary costs to measure the performance of the query-dissemination interaction

mechanism in XGSP to maintain consistent session state information among

collaborating users are as follows.

• Transport cost: The time to transmit the request (query) and receive the response.

• Processing (or Display) cost: The time to process the response including the

display (viewing) time of session list in a request node (or host).

The lower graphs in Figure 2.26 and 2.27 show the execution time to process the

response in a request node as a function of sessions’ number. The time includes

parsing XML message replied from a chairperson node and displaying the session

 48

information in the parsed message on the device of a request node. The graphs show

the processing time increases as the number of sessions increases as expected. The

increasing time is more remarkable in the request node on cell phone platform due to

low processing performance of the platform. Note that we did not measure the time

needed to perform the XGSP query-dissemination mechanism for a presence list of

users. The XML stream structure and size of the membership data in our experiment

are almost similar to those of sessions. For brevity, we show the results needed to

perform the transfer of only session information. The upper graphs in Figure 2.26 and

2.27 show the latency of request-response transport for a variety of session sizes

including the corresponding execution time of a chairperson node. The transport cost

increases as well when the number of sessions increases as expected. It also shows the

execution overhead time incurred by a request node is a smaller part than the overhead

time incurred by the networking cost in overall time. In the previous section we

showed that the wired networking cost in Figure 2.23 are in the range of only

milliseconds and the wireless networking cost in Figure 2.24 and 2.25 are in the range

of seconds in our test bed. We note the consistency of session state information among

participants in collaboration and independence of the session state information from

heterogeneous computing devices in this experiment. The main benefit obtained by

applying query-dissemination mechanism and SMMV (Single Model Multiple View)

[31, 34, 110] collaboration model in Figure 2.6 from this experiment is consistency and

independence of which allow users on heterogeneous computing devices to share the

same workspace by disseminating session information through our message/service

event system – broker.

 49

Transit Time in Request and Reply of Sessions
(Desktop - Broker - chair node (Desktop) - Broker - Desktop)

0

20

40

60

80

100

120

140

160

180

200

10 (1.4) 20 (2.7) 30 (3.9) 40 (5.2) 50 (6.5) 60 (7.8) 70 (9.1) 80 (10.3) 90 (11.6) 100 (12.9)

Session size in number (Data size in kilobytes)

Ti
m

e
in

 m
illi

se
co

nd
s

GridFarm
GridFarm (Processing Time)
NCSA
NCSA (Processing Time)

SDSC
SDSC (Processing Time)

Figure 2.26: Latency in Time of XGSP Request and Response between Request Node
(Desktop) and Chairperson (Response) Node (Desktop).

Transit Time in Request and Reply of Sessions
(Cell phone - Broker - chair node (Desktop) - Broker - Cell phone)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10 (1.4) 20 (2.7) 30 (3.9) 40 (5.2) 50 (6.5) 60 (7.8) 70 (9.1) 80 (10.3) 90 (11.6) 100

(12.9)

Session size in number (Data size in kilobytes)

Ti
m

e
in

 m
illi

se
co

nd
s

GridFarm
GridFarm (Processing Time)
NCSA
NCSA (Processing Time)
SDSC
SDSC (Processing Time)

Figure 2.27: Latency in Time of XGSP Request and Response between Request Node
(Cell Phone) and Chairperson (Response) Node (Desktop).

 50

2.6.3 A Case Study of Shared Whiteboard Applications with Image

Annotation and Its Application Filter

In this section we present experimental results we measured to analyze the

performance of the application filter which is one of our architectural components. In

this case study we use our collaborative application – shared Java whiteboard with

image annotation.

2.6.3.1 Shared Whiteboard and Application Filter

The shared whiteboard is a collaborative enabled drawing application implemented

using J2ME on cell phone, and J2SE on desktop. The whiteboard offers a set of

drawing tools and a common canvas shared virtually among all users joined in a

session. One of the users interacts with a cell phone while another user interacts with

a desktop in our experiment. In this collaboration with heterogeneous computing

devices, the cell phone device can not directly display objects (drawings and images)

represented from the desktop device because of different canvas sizes (160x144 vs.

1024x768) and supported different image format representations (PNG vs. JPEG).

Instead, a converted object is retrieved from the application filter through which the

object can be represented into the cell phone device in accommodating the

capabilities of the device. The application filter is connected to a broker as an

application server and is located in the same place where the broker is residing to

reduce the latency of the object transfer time for filtering. The filter is implemented

with partly the functionality of XGSP integrated into our collaboration framework to

dynamically intercept the session information and all the functions in the filter are

 51

written in J2SE. To filter (convert) a large graphical image data sent from whiteboard

on desktop into a shrunk image data for cell phone, an image is created from the large

binary image data and then a BufferedImage [11] class is created, which is a subclass

of Java Image API [55] because the class provides a more structured internal design

with much greater access to the image data. The created BufferedImage is scaled

(shrunk) to the canvas size of a cell phone device and converted to PNG (Portable

Network Graphics) image file type for the cell phone. The binary data of the PNG

image is sent to a cell phone through a broker and represented into the PNG image

format on the cell phone. The image conversion (filtering) diagram is shown in

Figure 2.28. A screenshot of this case study is shown in Figure 2.29.

Transcoded
binary

image data
 binary

image data
Canvas size
(160 x 144) Canvas size

(1024 x 768)

Transcoded
binary

image data
 binary
image data

WB Filter

Create image

Create BufferedImage

Scale image

Convert to PNG

Figure 2.28: Image Filtering Structure

 52

Figure 2.29: 800x600 JPEG Image with 60 KB on Desktop vs. 158x134 PNG Image
with 50 KB on Cell phone

Figure 2.29 shows a collaboration of shared whiteboard applications on desktop and

cell phone devices. The Figure shows an 800x600 JPEG image with 60 KB sizes

loaded from the whiteboard application on desktop and a 158x134 PNG image with

50 KB sizes on cell phone transferred from the desktop after transcoded by the

application filter.

2.6.3.2 Performance and Analysis

We measured the latency incurred in transferring binary image data and drawing

objects such as line, rectangular, and oval from desktop to cell phone using shared

whiteboards and an application filter in the collaboration between desktop and cell

phone user. The performance results in time are shown in Figure 2.30 and 2.31. The

latency is divided in two components: time of network delay and processing time in

 53

the application filter. One interesting observation from these results is: improved

performance in time and increased image detail loss. The transfer time is reduced as

the size of image data increases, relatively compared to transfer time performed

without filtering. The performance enhancement in time is due to transformation

from large graphic image size to small size for adapting to the image format and

screen size of cell phone device. In our experiments, 1 MB image size is transformed

into 52 KB image size in application filter. Then the 52 KB PNG byte image is sent

to a cell phone through a broker. Note that we did not measure the latency to transfer

more than 60KB data between cell phone and broker since the cell phone device

(Treo 600) used in our experiments does not support the transfer of more than 60 KB

data size. After the JPEG image is transcoded and scaled by the application filter as

shown in Figure 2.29 and Table 2.1, much details of the original JPEG image were

lost – one of drawbacks in transcoding between desktop and cell phone. By exploring

different transcoding and scaling algorithms, the problem as well as technical

limitation occurring as porting applications from desktop computers (moderate screen

size) into mobile devices (small screen size) [71] may be able to be overcome in the

future.

 Original Size Shrunk Size Scaled
Image 1 61365 bytes

(60 KB)
(800 x 600)

50664 bytes
(158 x 134)

0.2 x 0.22

Image 2 400523 bytes
(400 KB)

(1792 x 1200)

55812 bytes
(158 x 134)

0.09 x 0.11

Image 3 1208494 bytes
(1 MB)

(1764 x 1180)

52675 bytes
(158 x 134)

0.09 x 0.11

Table 2.1: Original Size vs. Shrunk Size

 54

Transfer time of Image from Desktop to Cell phone

0

5000

10000

15000

20000

25000

GridFarm NCSA SDSC
Locations

Ti
m

e
in

 m
illi

se
co

nd
s

Filtering Time
Image Tranfer Time

Figure 2.30: Transfer time of Images from Desktop to Cell phone

Transfer time of Drawing Objects from Desktop to Cell phone

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

GridFarm NCSA SDSC

Locations

Ti
m

e
in

 m
illi

se
co

nd
s

Filtering Time

Drawing Object Transfer Time

Figure 2.31: Transfer time of Drawing Objects from Desktop to Cell phone

 55

2.7 Summary

In this chapter we presented the effectiveness of architectural functionality and

components of collaboration framework built on heterogeneous (wire, wireless)

computing environment differing by orders of magnitude in bandwidth and latency.

The framework handles cooperation and communication among heterogeneous

communities, and provides collaborative applications in the heterogeneous community

collaboration. A key function of the framework is to provide a generic solution for

controlling sessions in a conference by defining a general protocol in XML.

In our experiments with the collaboration framework, we encountered a few problems.

The first problem was found in the experiment of the XGSP query/dissemination

interaction event mechanism with cell phone device. The cell phone device needed 12

different screens to display 100 sessions used as a test bed in our experiment. It will

cause inconvenience for cell phone user to search for her preferred sessions in scrolling

the session lists down while her roaming. A mechanism to provide preferred sessions

for roaming users should be taken into consideration in future work.

The second problem was found in the experiment of the application filter with shared

whiteboard application. Much details of image displayed on a cell phone device

through transcoding of an image transferred from a desktop were lost because the

graphical image was shrunk to accommodate the screen size of cell phone. To improve

the quality of the transcoded image from desktop into cell phone, we should consider

 56

 57

different transcoding and scaling algorithms in future work for heterogeneous

collaboration applications on heterogeneous computing platforms.

The third problem occurred with a failure like network disconnection of a chairperson

or moderator node (or host). If a chairperson or moderator node fails or is

disconnected, and is not able to recover from the failure for some amount of time, one

of participants in collaboration capable of having the role capability of the chairperson

or moderator has to be elected. We tested it with an event driven message mechanism.

However, when the network connection of a chairperson or moderator node was lost, it

did not work since the event messages could not be disseminated in disconnected

network. One approach to overcome the problem by exploring different fault-tolerant

role delegation mechanism with role hierarchy policy will be presented in future work

of Chapter 6.

Chapter 3

XGSP Role Based Access Control

(XGSP-RBAC)

3.1 Overview

In the previous chapter we presented an architecture for collaboration framework built

on heterogeneous (wire, wireless) computing environment differing by orders of

magnitude in bandwidth and latency. Also we presented XML based General Session

Protocol (XGSP) for controlling sessions and participants’ presences in a conference by

defining a general protocol in XML.

In collaboration environment, applications generally have different types of roles which

are assigned to a group of users. Chess game application example includes two players,

and observer roles. Then, collaborating users can have different access rights for such

collaborative applications based on roles which are assigned to them. In this chapter,

we present a generic moderator-mediated interaction (request-response) mechanism –

 58

XGSP-RBAC (XGSP Role Based Access Control) for controlling accesses to resources

and its supporting architecture integrated into our collaboration framework. The

XGSP-RBAC uses the concept of the role [15, 16, 75, 92] as an intermediate entity

between collaborating users and collaboration resources and defines policies in XML to

describe access privileges on collaboration resources.

The following scenario illustrates the needs of access control and motivates the design

issues described in this chapter. Students in CGL at Indiana University are going to

have a session for their colleague’s research presentation. Some students join the

presentation session in a shared conference room of CGL and others join at remote

locations by using CGL’s conferencing collaboration tool – Global-MMCS system

(Global Multimedia Collaboration System) [37]. The presenter starts her presentation

with the conferencing collaboration tool. During her presentation, she may use an

application like the shared whiteboard, which was introduced in the previous chapter, to

discuss design issues of the research which she is doing on grid computing. In shared

workspace with the application, people in offline session see the same whiteboard

canvas, while people in online session see their own canvases. Each student in the

online session has their own canvas and a set of interfaces to the shared whiteboard

application but they see the same results (or views) as others do. Her advisor,

researchers, and colleagues in CGL want to make comments on her research by directly

manipulating the shared application showing the same views among participants in her

research presentation session. Thus, the presenter needs to control their accesses to the

shared application by enforcing who is allowed to access the application, and the

 59

conditions under that the privileges for the use of the application occur to restrict

unauthorized access for the protected application.

The rest of this chapter is organized as follows. We put research issues and our

solution about them in section 3.2. Section 3.3 describes related works. Section 3.4

presents the architecture of XGSP Role Based Access Control (XGSP-RBAC)

integrated into our collaboration framework and the implementation of it. Section 3.5

discusses the experimental results obtained from the practical evaluation of XGSP-

RBAC mechanism. We finally conclude by summarizing main points drawn from the

XGSP-RBAC.

3.2 Problem Statement and Solutions

Fundamentally collaboration is about interaction among people and between people and

resources. The cooperation on the resources shared among a group of users may hence

produce new results on the shared resources. On the contrary, security is about

restricting unauthorized access to resources and thus it is essential that security of the

collaboration environments as well as of collaborative applications running on them is

ensured while providing the openness only to users that are authorized to access them.

Therefore, difficulties to deal with the conflicting goals of allowing and restricting

accesses for resources among a group of users may happen in collaboration

environment. The examples of the difficulties include protecting secured computing

environments and resources from unauthorized users as well as unsecured remote

 60

devices since the environments and resources can be compromised by inadequately

secured entities – human, devices, software, data, and so on.

The activities in collaboration system include the interactions for the use of resources

as well as for cooperation among a group of users working at remote locations. The

interaction for resources involves not only the use of applications but also the use of

hardware devices, software, and data. Some resources in the interaction activities may

require authorized access, meaning the resources can be accessed by only authorized

users. For the resources an access control policy and a mechanism to enforce the policy

should be implemented defining which resources are available, who is allowed to

access the resources, and the conditions under that the privileges for the use of the

resources occur.

In traditional system such as file system, access rights in access control schemes are

usually static permissions that are permanent during the interactive activity in the

system [18]. Access control schemes need flexible access rights adapting to the state

change of collaborative resources that may be occurred from cooperation in

collaboration system. Collaboration system thus needs a scheme to enable

collaborating users or collaborative applications to control accesses during their

activities at run time.

In collaboration environment collaborating users are generally assigned a role, and

collaborative applications have different types of roles which are assigned to a group of

 61

users. Access control scheme in collaboration system hence needs fine-grained access

control for providing accesses for individual users in group, and for a finer granularity

of accesses on individual resources shared in group. In other words, an access control

scheme for collaboration environment should allow independent specification of each

access right of each user on each protected resource [94]. For example, it should allow

fine-grained drawing actions and support protection for each of them in whiteboard

application.

In this chapter we show a moderator-mediated interaction (request-response)

mechanism, which uses role entity between collaborating users and collaboration

resources for ease of administration, fine-grained access control, and flexible adaptation

of collaboration environment’s changes.

3.3 Related Work

In this section we examine existing access control schemes for collaboration system.

3.3.1 Access Control Matrix

Access control matrix is a scheme that describes current allowed accesses using a

matrix. It characterizes the access rights of each subject associated with respect to each

object in a system [7, 75]. In the scheme, the subjects, which are active protected

entities such as processes and users, operate on objects (protected entities) using a

matrix which describes the access rights of each subject over each object in a system.

Figure 3.1 shows an example access control matrix. Most of collaboration systems in

 62

which groups of users work together can have thousands of objects and thousands of

subjects. Then the storage requirements will be too much. Thus, the access control

matrix scheme can be impractical due to the storage requirements in the collaboration

system. Instead, variants of the access control matrix such as access control lists and

capabilities enable systems to use more convenient and more optimized mechanisms

which eliminate the storage problem.

 File 1 File 2 File 3
Alice Read Read, Write, Own Write
Bob Read, Write, Own Read, Write, Own

Figure 3.1 Access Matrix Model

3.3.1.1 Access Control Lists

To implement the access control matrix this mechanism stores each column with the

object which associates it with lists of a set of pairs (subjects and rights) it contains. In

this implementation, on a dynamic collaboration system with many subjects, the

storage requirement for ACLs (Access Control Lists) may still be very large in some

degree. This mechanism lack flexible ability to examine all access rights a subject has.

This need to examine the access rights of every other object with respect to a subject.

The corresponding access control lists for objects like files in Figure 3.1 are

ACL (File 1) = {(Alice, {Read}), (Bob, {Read, Write, Own})}

ACL (File 2) = {(Alice, {Read, Write, Own})}

ACL (File 3) = {(Alice, {Write}), (Bob, {Read, Write, Own})}.

 63

3.3.1.2 Capability Lists

This mechanism stores each row with the subject which associates it with lists of a set

of pairs (objects and rights) it contains. The list is known as a capability list. Likewise

this mechanism lack flexible ability to examine all subjects over an object. This needs

to examine the capability lists of all subjects. The corresponding capability lists for

subjects in Figure 3.1 are

Capability (Alice) = {(File 1, {Read}), (File 2, {Read, Write, Own}), (File 3, {Write})}

Capability (Bob) = {(File 1, {Read, Write, Own}), (File 3, {Read, Write, Own})}.

Access control matrix scheme lacks fine-grained control of access to objects, and thus

allows subjects to have more access rights than ones needed when performing an

operation to objects in a system. That is, the scheme does not follow the principle of

least privilege [75] to reduce introducing compromises. Also, collaboration includes

cooperation on objects shared among groups of users. The scheme provides access

rights for the cooperation of users in collaboration system but needs more flexible

support for a finer grained manipulation of access rights for individual users. An

example framework using ACLs is a SUITE [94] which is a multi-user editing

framework. Shen and Dewan [94] extended the conventional access matrix scheme in

several ways: the use of collaboration rights, the support of negative rights which is

explicit denial of a right, the use of inheritance rules and conflict resolution rules.

Another example is a Globus Security Infrastructure (GSI) [38] which provides a

coarse-grained access control approach and uses a mapping list. The mapping list is

used to map user’s local account name to DN (Distinguished Name) on the user’s

 64

certificate. When a user wants to use a service, the mapping list is consulted and the

access for the service is granted or denied depending on whether she or he appears on

the list with the correct credentials. An example framework using Capability is a

XPOLA (eXtensible Principle of Least Authority) [67] which provides fine-grained

authorization solution for Grid services to follow the principle of least privilege.

Another example is a Community Authorization Service (CAS) [12, 69, 70] which will

be described in section 3.3.4. The CAS implements the capability scheme using an

authorization server called CAS server.

3.3.2 RBAC (Role Based Access Control)

RBAC model [15, 16, 75, 92] is a scheme that describes access rights using the notion

of roles predefined in organizations. It characterizes the relationship between users and

access right for resources with respect to roles based on job functions in organizations.

The relationship includes permission assignment and user assignment; access rights for

resources are assigned to roles (permission assignment) and users who are authorized to

assume the associated roles are assigned to the roles (user assignment). That is, access

rights are connected not to a user but to a role which is an intermediate entity located

between users and access rights as shown in Figure 3.2. In the scheme, access for

resources is authorized to the users that have roles predefined in organizations if the

roles are allowed to access the resources.

 65

 66

Figure 3.2: Assignment Relationship between Users, Roles, and Permissions in RBAC

As RBAC scheme is applied to the collaboration system that can have thousands of

users, it is more scalable than the schemes using the notion of subject-object because

the number of roles is generally smaller than that of users in an organization [3]. Also

the scheme reduces the administrative overhead costs occurring with management of

users since administrator can easily assign or revoke users’ role membership from one

role to other roles without modifying access rights assigned to roles. Whereas RBAC

scheme is very effective for collaboration systems with respect to ease of

administration and scalability issues, it is not effective with relation to flexibility and

fine-grained control issues. RBAC scheme lacks fine-grained access control for

providing accesses for individual users in groups and for a finer granularity of accesses

on individual resources. In traditional system such as file system, access rights in

RBAC as well as subject-object schemes are usually static permissions that are not

changed during the interactive activity in the system. Collaboration system includes

sharing resources and cooperation on them among groups of users and thus needs a

scheme to enable users or collaborative applications to control access during their

activity at run time. To make collaboration system flexible for giving users or their

applications authorization to decide access for resources, OASIS [112] role-based

access control model addresses the issues of role activation and deactivation based on

first-order logic which specifies parameters of conditions to determine the activation-

Users Roles Permissions
User

Assignment
Permission
Assignment

deactivations. An example framework using RBAC scheme is PERMIS (Privilege and

Role Management Infrastructure Standards) [23, 24, 25, 26, 90] which will be

described in section 3.3.3.

3.3.3 PERMIS (Privilege and Role Management Infrastructure

Standard)

The Privilege and Role Management Infrastructure Standards (PERMIS) [23, 24, 25,

26, 90] is a RBAC authorization infrastructure to utilize a scalable X.509 Attribute

Certificate (AC) [53] based Privilege Management Infrastructure (PMI). The PMI uses

AC which holds a binding between a user and her privilege attributes. The ACs are

issued to users and a resource gatekeeper reads the privilege attributes in the users’ ACs

to see if they are allowed to access resources. PERMIS system uses RBAC mechanism

based on the X.509 AC for authorization infrastructure. The PERMIS RBAC

mechanism provides a set of Java API for a resource gatekeeper to inquire if access for

resources should be allowed. The PERMIS also provides XML based policies with

fine-grained control capabilities [23]. The rules in the policies specify subject policy

(defines the domains of users that may be granted roles), SOA (Source of Authority)

policy (lists the SOAs that are trusted to assign roles to subjects), role hierarchy policy

(defines the relationship of roles that has a directed graph structure) and role

assignment policy (defines which roles can be assigned to which subjects by which

SOAs), delegation policy (defines whether the assigned roles can be delegated), target

policy (defines the domains of targets), action policy (defines actions for access to a

 67

target), and target access policy (defines which roles are allowed to perform which

actions on which targets).

In the PERMIS scheme, roles are assigned to subjects with X.509 AC. And the roles

and policies are stored in one or more LDAP [68] repositories. Then a user can create a

proxy certificate with unique identifiers (the Object Identification (OID) number of the

policy in the LDAP repository and the URI of the LDAP repository) to submit an

access for resources. Through the identifiers, the PERMIS authorization service grants

or denies the access request from the user.

The privilege verification subsystem in PERMIS defines two key components to

authorize access to the target based on ACs as depicted in Figure 3.3. Access control

Enforcement Function (AEF) authenticates a user and asks Access control Decision

Function (ADF) if the user is allowed to perform the requested action on target

resource. ADF accesses LDAP to retrieve policy and role ACs for the user and make a

decision based on them.

Figure 3.3: Privilege Verification Subsystem

 AEFUser Target

ADF

Decision
Request Decision

Submit
Access
Request

Present
Access
Request

AEF = Application dependent
(Access control Enforcement Function)

ADF = Application independent

LDAP

(Access control Decision Function)

 68

3.3.4 CAS (Community Authorization Service)

Community Authorization Service (CAS) [12, 69, 70] implements the capability

scheme using an authorization server called CAS server. Resource providers establish

a trust relationship with the administrator of a community served by CAS and then

delegate a fine-grained access control policies to the administrator as depicted in Figure

3.4. A user issues a request to the CAS server in her community. The CAS server

issues a proxy credential with capabilities (access right lists granted to access

resources) to the user. Then the user uses the proxy CAS credential to access the

resources.

Delegate policies to
administrator

Figure 3.4: Community Authorization Service (CAS)

Community

User

1. issue request
2. issue CAS credential
 with capability

3. access request with issued CAS credential

Resource Resource Resource

CAS Server

4. response

User User

 69

The example resource that can be accessed through CAS is GridFTP [42, 105]. The

paper [4] implements RBAC scheme using the CAS server. Since centralized

characteristic of the CAS server, CAS service may have scalability problem in very

large VOs (virtual organizations) [46] which form a group of users and a collection of

resources shared among them, and also single point of failure problem of the CAS

server.

3.4 XGSP-RBAC (XGSP Role Based Access Control)

The basic idea behind RBAC [15, 16, 75, 92] is the notion of role used as an

intermediate entity between users and protected resources. The intermediate entity – a

role is assigned to a group of user with which collaboration is associated and is

assigned a set of access rights to perform operations on resources in the collaboration.

XGSP-RBAC uses the concept of the role as an intermediate control entity between

collaborating users and collaboration resources. The XGSP-RBAC provides

effectiveness with respect to ease of administration, flexible adaptation to the state

change of collaboration resources, and fine-grained access control. It uses XML for

policy specification as well.

 Collaboration roles in XGSP-RBAC are a representation to categorize users

joining a conference for collaboration. The roles are based on the users’

privileges and devices’ capabilities allowed to manipulate the protected

resources in the collaboration.

 70

 In XGSP-RBAC collaboration, the use of role simplifies the administrative

management of access rights for resources since a user can easily be reassigned

from one role to other roles without modifying the access control policy. Also,

the use gives an administrator flexibility adapting to the change of collaboration

environment by allowing a user to take multiple roles simultaneously, assigning

new roles to the user, or revoking roles from the user. The XGSP-RBAC

scheme provides flexibility adapting to the state change of collaborative

resources that may be occurred from cooperation among collaborators at run

time in collaboration system.

 A fine-grained access control for the instance of individual resource is used in

collaboration. For example, the actions (access rights) to perform operations on

the whiteboard which is a shared application in our collaboration are fine-

grained into line, rectangular, oval, pen (a series of contiguous lines) drawings,

and so on. Also, a fine-grained access control on individual user in a role can

be used. For example, a moderator in collaboration can give access rights for

resources to a specific user in a role (a user in a workgroup or in a session) since

XGSP-RBAC uses moderator-mediated interaction mechanism. But a

moderator needs to give a user the least of privilege needed in collaboration

session (principle of least privilege [75]) in the fine-grained access control on

individual resource.

 71

 To specify access control policies and exchange request-response messages of

access control for resources between normal user node (request node (or host))

and moderator node (response node), XML is used for streaming request-

response messages of access control for resources and for specification of

policies since it is easy to understand and use with pre-existing industry

standard parsers.

XGSP-RBAC is a role based access control mechanism mediated by a moderator in

collaboration, where policy is written in XML and stored in a local policy store – a file

residing in each node (or host). The policy is dispatched to each node from the

conference manager shown in Figure 2.1 of Chapter 2 at joining time in a conference.

The XGSP-RBAC architecture is composed of four major components:

activation/deactivation service, access control decision service, local policy store, and

authentication and secure delivery service. At request time for accessing collaboration

resources, a user sends a request message in XML stream to moderator node (or

moderator). XGSP-RBAC mechanism makes its decisions according to the policy read

from the policy store of moderator node at decision time. If the request is validated by

the access control decision service, then a moderator in collaboration grants or denies

the requesting user’s access to the collaboration resources. At decision response time, a

moderator responds a decision to the requesting user in XML stream as well.

The following subsections provide protected resource access policy, collaboration role

and fine-grained action definition, secure end-to-end delivery of messages for

 72

authentication and encryption-decryption of messages, and the architecture of XGSP-

RBAC integrated into our collaboration framework.

3.4.1 XGSP-RBAC Policy

XGSP-RBAC policy specifies which roles (users in them) in collaboration are allowed

to perform which actions on which target resources. The XGSP-RBAC policy

(resource access policy) is described in terms of roles, protected resources

(collaborative applications), and fine-grained actions permitted on the protected

resources. Also, an access type is placed on the resource access policy based on the

characteristics of collaborative applications. The access type in our collaboration

means rules categorized to access collaborative applications. The access type includes

shared, exclusive, released, and implicit types. The access type shared means the fine-

grained action in a collaborative application can be shared among collaborating users.

The access type exclusive means the fine-grained action is not able to be shared among

collaborating users. It hence means a floor control mechanism has to be able to provide

the floor for the action on the shared application for only one participant in the

synchronous online session at a time. The access type release means the action with the

type can be used for releasing the action a user holds. For example, in our whiteboard

application, the action slave has the access type released. The access type implicit

means the action with the type can be granted without the mediation of moderator

according to the resource access policy. In the whiteboard application, a moderator has

actions with the access type. The grant mechanism with this type is similar to the

capability scheme of access control matrix holding a capability token (a set of access

 73

rights). In our collaboration system, a role is a collection of representations capable to

operate on collaborative applications with heterogeneous computing devices. We used

chairperson, moderator, non-mobile users (desktop users), mobile-users (cell phone

users), and chess players (white player, black player, and observers) as a set of example

roles in our collaboration system. Actions are a set of operations permitted on the

protected resources. The type of actions is dependent on the type of resources and the

capabilities supported by heterogeneous computing devices (desktop and cell phone).

For example, the role non-mobile-user (desktop user) can have actions including

capability moving drawing objects (line, rectangular, oval, pen) in our shared

whiteboard application with image annotation while the role mobile-user (cell phone

user) is not able to have the capability moving the objects because the whiteboard

application on mobile device (cell phone) does not support the capability. Note that we

did not define the role hierarchy policy in the XGSP-RBAC policy and implement the

mechanism to enforce the policy, and hence we will design and implement it with fault-

tolerant role delegation issue as a next phase in future work. The example XGSP-

RBAC policy, used in our collaboration system, is shown in Figure 3.6.

As described in Chapter 2, a user has to join a conference by sending her initial

presence in join-conference XML stream to a moderator node and a conference

manager before the user can establish a session in the conference on the conference

manager in order to receive policies for setting session policies up and accessing to

resources. The conference manager informs a XML stream binding a policy that is

used for requests of protected resources and then she can be an active member of the

 74

predefined role assigned in the collaboration. An example of the policy binding stream

is shown in Figure 3.5.

• Conference manager informs a XML stream binding a policy that is used for

requests of resources.

<?xml version=”1.0” encoding=”UTF-8”?>
<ReplyPolicy>

<ConferenceID>ourtestroom</ConferenceID>
<User>

<UserID>kskim</UserID>
<UserName>kangseok-kim</UserName>

</User>
<Policy>

<XGSP-RBACPolicy>
…………………
</XGSP-RBACPolicy>

</Policy>
</ReplyPolicy>

Figure 3.5: XML Stream Binding a Policy from Conference Manager showing
conference ID, user ID, user name, and resource access policy (XGSP-RBAC Policy).

3.4.2 Collaboration Role and Fine-grained Action in XGSP-RBAC

Collaboration roles in XGSP-RBAC are a representation to categorize collaborating

users joining a conference session for collaboration. The roles are based on the users’

privileges and devices’ capabilities to manipulate protected shared collaborative

applications. In this section we present how collaboration roles used in XGSP-RBAC

are represented. For the representation we use functional notion to show the

relationship between roles, and action privileges.

 75

<XGSP-RBACPolicy>
 <ResourceAccesspolicy>
 <ResourceAccess>
 <RoleName>mobile-user</RoleName>
 <ApplicationRegistries>
 <ApplicationRegistry>
 <ApplicationID>wb</ApplicationID>
 <MainClass>cgl.myprofessor.whiteboard.Whiteboard</MainClass>
 <Actions>
 <Action>
 <ActionName>slave</ActionName>
 <Capabilities>read</Capabilities>
 <AccessType>released</AccessType>
 </Action>
 <Action>
 <ActionName>master</ActionName>
 <Capabilities>read+write</Capabilities>
 <AccessType>exclusive</AccessType>
 </Action>
 <Action>
 <ActionName>line</ActionName>
 <Capabilities>linedrawing</Capabilities>
 <AccessType>shared</AccessType>
 </Action>
 <Action>
 <ActionName>rect</ActionName>
 <Capabilities>rectdrawing</Capabilities>
 <AccessType>exclusive</AccessType>
 </Action>
 <Action>
 <ActionName>oval</ActionName>
 <Capabilities>ovaldrawing</Capabilities>
 <AccessType>shared</AccessType>
 </Action>
 <Action>
 <ActionName>pen</ActionName>
 <Capabilities>pendrawing</Capabilities>
 <AccessType>exclusive</AccessType>
 </Action>
 <Action>
 <ActionName>clear</ActionName>
 <Capabilities>clear</Capabilities>
 <AccessType>exclusive</AccessType>
 </Action>
 </Actions>

</ApplicationRegistry>
</ApplicationRegistries>

 </ResourceAccess>
 </ResourceAccesspolicy>
</XGSP-RBACPolicy>

Figure 3.6: An Example of XGSP-RBAC Policy with the Role Name mobile-user and
Application Name whiteboard

 76

In role abstraction domain of the function we express the collaboration roles to be

assigned to users joining sessions. In action representation domain of the function we

express actions permitted to manipulate protected collaborative applications in sessions.

The function representation is shown in Figure 3.7. The definition of the collaboration

actions depends on the type of applications. As an example we use shared whiteboard

application for the definition of actions in Backus-Naur Form (BNF) below. In BNF

we also define collaboration roles and actions as follows.

CollabApp ::= WB

CollabRole ::= Chairperson | Moderator | Non-mobile User | Mobile User

CollabAction ::= Master | Slave | Line | Rect | Oval | Pen | Eraser | Clear | Load | Move

Role Abstraction Action Representation

(a, e1)
(a, e2)

(a, e3)
(a, e4)

(a, e5)
(a, e6)

Chairperson

Moderator

Non-mobile User

.
.

Mobile User

.

.
(a, e7)

Figure 3.7: A collaboration action is represented as a pair (a, e) ∈ A x E, where a ∈ A
is an application and e ∈ E is the authorized smallest major event defined by a, and A is
a set of applications, E is a set of the smallest major events defined by an application in
A.

 77

We define fine-grained actions in our collaborative application as the smallest

interactive major events (semantic events [110]). For example, in the whiteboard

application, drawing a line includes clicking, dragging, and releasing a mouse on the

whiteboard canvas. For a user working alone with the whiteboard, user input events

(low level events such as mouse click, drag, and release) can be interactive major

events between the user and whiteboard application. For users working with others

sharing the application, the smallest major event means “drawing a line” (semantic

event) and the user input events will then be an event data (mouse click – the first point

of the line and mouse release – the second point of the line). CGL built a shared SVG

(Scalable Vector Graphics [93]) browser and a collaborative chess game application

with SVG [100, 109, 110]. In the collaborative chess game application, the smallest

major events are to click on an object, to move, and to release the object during moving

the object. After the completion of each move (as the mouse is released), the semantic

event (moving an object) is dispatched to another player as the smallest interactive

major event. Then the user input events will be an event data for moving an object in

the chess game affecting the chess board (view-sharing) of another player as well as

observers. Therefore, the major events can be different according to the types of

applications. The fine-grained action in our collaboration means an interactive smallest

major event affecting the shared view (or result) among users in collaboration.

3.4.3 Secure and Authorized End-to-End Delivery of Messages

In this section we present a security framework [97] for secure and authorized end-to-

end delivery mechanism of messages between entities (publishers and subscribers) in

 78

our messaging system based on publish-subscribe paradigm. The messages delivery for

communication between the entities is based on the knowledge of topic. Publisher

publishes messages over the topic while subscriber registers a subscription to the topic.

The capabilities for creation, advertisement, discovery, and restriction of topics are

provided by Topic Discovery Node (TDN) [96] which is regarded as a specialized node

in the system. Topic owner creates and advertises topics, and enforces constraints

related to the discovery of the topics through the TDN. The TDN advertises the signed

topic which is regarded as a secure topic in the system. Publisher encrypts the content

payload of a message with the secret key that is retrieved from Key Management

Center (KMC) [97] and signs the encrypted payload involving computing the message

digest of it and encrypting this hashed value with private personal-key. Also the

publisher signs signed-payload with a secret token that is generated from KMC. An

authorized subscriber verifies the signature to ensure the message’s integrity and

decrypts the encrypted payload with the previously distributed secret key.

As shown in Figure 3.8, the security framework is structured as five major components:

Certificate Authority (CA), Topic Discovery Node (TDN), Key Management Center

(KMC), publisher and subscriber. We describe the components in turn.

 79

Topic Discovery Node

Message / Service
Middleware

(Broker)

Publisher

Key Management Center

Subscriber

Certificate
Authority

Figure 3.8: The security framework consists of five major components: Certificate
Authority (CA), Topic Discovery Node (TDN), Key Management Center (KMC),
Publisher and Subscriber

3.4.3.1 Certificate Authority (CA)

A CA is responsible for issuing certificates to entities and managing revocation lists

pertaining to compromised entities within our messaging system. The CA notifies

brokers and KMCs within the system about any additions to the revocation lists.

3.4.3.2 Topic Discovery Node (TDN)

This node [96] provides topic discovery and creation scheme for the creation,

advertisement, and authorized discovery of topics by entities within our messaging

system. Through this node, topic creators can advertise their topics and enforce

constraints related to the discovery of the topics.

 80

3.4.3.3 Key Management Center (KMC)

A KMC [97] is a specialized node within the system which is responsible for managing

information pertaining to secure topics. The KMC generates secret symmetric key for

encrypting-decrypting the content payload of messages and security token for

establishing entity’s rights and duration of them over a secure topic. Also this

maintains the list of authorized entities and information related to the entities.

3.4.3.4 Topic Publisher

Publisher encrypts the content payload of message with the secret key that is received

from KMC. The publisher signs the encrypted message and security token together by

computing the message digest of the encrypted content payload and then encrypting

this computed message digest with its private key. After performing the procedures,

the publisher disseminates the message through our messaging system.

3.4.3.5 Subscriber

Subscriber includes the security token related to the secure topic in its subscription

request. Through verifying header and payload signatures of received message and

decrypting the message, the subscriber consumes the message.

3.4.4 XGSP-RBAC Architecture

As shown in Figure 3.9, the XGSP-RBAC manager integrated into our collaboration

framework is structured as four major components: activation/deactivation service,

 81

access control decision service, local policy store, authentication and secure delivery

service. We describe the components in turn.

3.4.4.1 Activation / Deactivation Service

When a user requests an action for accessing a protected resource in a session, the

request is transformed into a XML stream as shown in Figure 3.10 and the XML stream

is sent to a moderator node through a broker from the communication channel of the

request node. Then, the request from the request node is passed to the access control

decision service in the access/floor control manager of a moderator node through the

action request/reply handler shown in Figure 2.8 of Chapter 2 to ask if the request

action is allowed to perform an operation on the requested resource. The following two

streams show the action request and grant decision response stream between a request

node and a moderator node.

 Access Request Stream

A list of actions available for accesses of protected resources in a session is represented

with actions which other active users currently hold in the access control GUI of each

node. The GUI will be shown in Figure 4.7 and Figure 4.9 of Chapter 4. The human-

computer interaction with the GUI transforms the access request of a user to perform an

operation over a protected resource into a XML stream. The following example XML

stream in Figure 3.10 transformed from the human-computer interaction enables a user

(user id: kskim) to request an action (action: pen) over a protected resource

(application: whiteboard) in a session (application session ID: NewSession).

 82

Moderator node Request node

Decision
Response

Access
Request

Conference Manager

Message /
Service

Middleware
(Broker)

Push Policies Push Policies

KMC (Key Management Center)

 Activation /
Deactivation

Service

Access Control
Decision Service

Authentication and
Secure Delivery Service

Local Policy Store

Pull Policies

 Activation /
Deactivation

Service

Access Control
Decision Service

Authentication and
Secure Delivery Service

Local Policy Store

Pull Policies

Figure 3.9: XGSP-RBAC manager integrated into collaboration framework is
structured as four major components: activation/deactivation service, access control
decision service, local policy store, authentication and secure delivery service.

<?xml version=”1.0” encoding=”UTF-8”?>
<RequestAction>

<AppSessionID>NewSession</AppSessionID>
<UserID>kskim</UserID>
<ActionDescription> pen</ActionDescription>

</RequestAction>

Figure 3.10: Action Request XML Stream

 83

 Access Grant / Deny Stream

To check the access privilege of a user over a protected resource, 3-tuple <role name,

protected application name, request action name> is consulted in the access control

decision service of moderator node. If the role of the requester is allowed to perform

the request action according to the resource access policy in the XGSP-RBAC policy,

then the request action to access the protected application is granted. Otherwise, the

request action is denied. The XML stream in Figure 3.11 enables a user (user ID:

kskim) to execute the request action (action: pen) over a protected resource

(application: whiteboard) in a session (application session ID: NewSession). Then, the

granted action with the name of the user is represented in the access control GUI of

each node as an active action of the user in the session. The GUI will be shown in

Figure 4.7 and Figure 4.9 of Chapter 4.

<?xml version=”1.0” encoding=”UTF-8”?>
<SetAppAction>

<AppSessionID>NewSession</AppSessionID>
<UserID>kskim</UserID>
<ActionDescription> pen</ActionDescription>

</SetAppAction>

Figure 3.11: Grant Decision Response XML Stream

3.4.4.2 Access Control Decision Service

Policy manager in collaboration framework shown in Figure 2.8 of Chapter 2 reads the

XGSP-RBAC policy from a local policy store, e.g. a file. The requested action is

validated against the policies in the XGSP-RBAC policy read from the policy store.

The validation is to check if the action is allowed for the role assigned to the user and

 84

for the resources considering all the conditions specified within the resource access

policy. If the request is invalid, it is denied. If the request is valid, access type decision

service returns an access type value to the access control decision service. The access

control decision service makes a decision based on the returned access type value. The

decision from the service is passed to moderator. Then the moderator makes a decision

on the request. The decision is transformed into a XML stream as shown in Figure 3.11

and the XML stream is sent to the request node through a broker from the

communication channel of moderator node.

3.4.4.3 Local Policy Store

When a user joins a conference, the conference manager shown in Figure 3.9 sends a

XGSP-RBAC policy to the user by the XML stream as shown in Figure 3.6. The

policy is stored in a file residing in the user’s node. This ensures that the policy is up-

to-date and consistent among collaborating users. Note that our mobile device,

Treo600 [102] cell phone, does not support writing the policy into itself. The phone

then throws a security exception. Thus we held the policy as a string during an online

session.

3.4.4.4 Authentication and Secure Delivery Service

As described in section 3.4.3, this service encrypts the content payload of decision

response message with the secret key that is received from KMC. This service signs

the encrypted message and security token together by computing the message digest of

the encrypted content payload and then encrypting this computed message digest with

 85

its private key. After performing the procedures, a moderator node disseminates the

encrypted decision through a broker. The request node consumes the decision response

from moderator node through verifying header and payload signatures of received

decision response message and decrypting the message.

Note that we did not implement the encryption mechanism of messages for roaming

users with cell phone. In future work we will design and implement the authentication

service for users joining a conference during roaming with cell phone devices, and the

encryption service of messages sent to and from the cell phone devices.

3.5 Performance and Analysis

In this section, we discuss an experiment with our collaborative application built in

heterogeneous (wire and wireless) computing environment to show the viability of

XGSP-RBAC mechanism. The main purpose of the experiment is to identify key

factors that influence the performance of XGSP-RBAC mechanism comparing

overheads incurred from wired-networked environment with those incurred from

wireless-networked environment. In the experiment, we measured mean network

transit time (request-response time), mean waiting time in a queue and mean access

control decision service time in a moderator node involved in performing

communication (an access request for resources and a decision response) between the

request nodes and response node (moderator node) for mean interarrival time among

access requests in heterogeneous networked environments over a variety of locations.

 86

In the experiment, we utilized two desktop devices, one cell phone and one broker. The

collaboration framework on cell phone and desktops is located in Community Grids

Lab at Indiana University. The broker ran on a 2.4 GHz Linux with 2 GB RAM

located in Community Grids Lab at Indiana University, a 1.2 GHz Linux with 8 GB

RAM located in NCSA (National Center for Supercomputing Applications) at UIUC

(University of Illinois at Urbana-Champaign), and a 1.2 GHz Linux with 8 GB RAM

located in SDSC (San Diego Supercomputer Center) at UCSD (University of California

at San Diego). The experiment results were measured from executing collaboration

framework and the shared whiteboard application built on the framework running on

Palm OS 5.2.1H Powered Treo600 [102] cell phone platform with 144 MHz ARM

Processor and 32MB RAM connected to cellular network, and running on Windows XP

platform with 3.40 GHz Intel Pentium and 2 GB RAM and Windows XP platform with

3.40 GHz Intel Pentium and 1 GB RAM connected to Ethernet network respectively.

The application codes on the cell phones are written in J2ME (Java 2 Micro Edition)

[62] and the application codes on the desktops are written in Java 1.5 [55]. A

conference managing server (conference manager) is operated as an apache web server.

The XML activities on non-mobile (desktop) devices are parsed by and handled with

JDOM [57] that is a Java implementation of Document Object Model (DOM) [27].

The XML activities on mobile devices (cell phones) are parsed by and handled with

kXML [66] that is a J2ME implementation of DOM. The following subsections show

experimental scenario, overhead timing considerations, and analysis about the

performance measurements.

 87

3.5.1 Experimental Scenario

Our experiment is carried based on the XGSP-RBAC mechanism which is described in

section 3.4. The access request for resources from a request node and the decision

response from a moderator node in the experiment involve the XML streams in Figure

3.10 and Figure 3.11 respectively. The experiment is also carried with the simulation

program which is behaved by Coloured Petri-nets (CP-nets) [64]. The simulation

program uses the exponential function provided by the CP-nets to generate access

requests with pre-known mean interarrival time. The access request arrival times form

a Poisson process since the interarrival times of the requests are independent random

variables with exponential distribution with pre-known mean interarrival rate. In our

experiment, we suppose the requests randomly arrive with the pre-known arbitrary

mean interarrival rate. The experimental scenario overview is depicted in Figure 3.12.

Note that we did not use the decision behavior of a moderator (human) since the

behavior of a human does not reflect the consistent reaction in time that may affect the

latency of requests waiting in a queue. The decision result from the access control

decision service will thus be directly sent to request nodes without the decision

interruption of a moderator. We discuss the overhead costs in the next subsection and

how these affect XGSP-RBAC mechanism as involved with cell phone devices since

cell phone devices are sensitive to the network delay as shown in Figure 2.24 and

Figure 2.25 of Chapter 2.

 88

Figure 3.12: Experimental Scenario Overview

3.5.2 Overhead Timing Considerations

Broker

D

Moderator node Request nodes

Decision
Response

Access
Request

Td Tw Tn = Treq + Tres

Ttotal = Td + Tw + Tn

Moderator node
(Decision node)

Broker

Request nodes Access request
simulator

<SetAppAction>
<RequestAction>
Request arrivals

with exponential distribution
with mean interarrival rate

(3 seconds)

Figure 3.13: Total latency = Decision time (Td) + Waiting time (Tw) + Network transit
time (Tn = Treq + Tres), where D means an access control decision service

 89

Figure 3.13 shows a breakdown of the latency for serving a request. The cost in time

for XGSP-RBAC mechanism has three primary overheads.

• Transit cost (Tn = Treq + Tres) – The time to transmit an access request (Treq) to and

receive a decision response (Tres) from moderator node.

• Access control decision service cost (Td) – The processing time to make a decision

on an access request for resources at moderator node. This cost includes reading a

XGSP-RBAC policy from a file and validating access requests from the policy.

• Waiting cost (Tw) – The time between arriving at a queue and leaving the queue

(being served by the access control decision service) at moderator node. The queue

is implemented as FIFO (First-In, First-Out) order. The arrival of new request is

modeled as Poisson processes with arrival rate λ where the interarrival times

between interarrival requests are independent random variables with exponential

distributions with mean interarrival rate 1/λ. The arrival rate λ means the average

number of arrivals in unit time. To get independent random variables with

exponential distributions with some mean interarrival rate in terms of the arrival

time variable of new request, we simulated the exponential distribution of arrival

times with an automated simulation tool [14]. The simulation tool randomly

generates independent new access requests with an arbitrary mean interarrival rate

which is already known before the simulation of the new requests’ arrival.

Examining overhead costs and total cost, we measured the mean overhead cost for 100

access requests in heterogeneous networked environment over a variety of locations.

The results are summarized in Table 3.1 with the mean completion time of a request.

 90

3.5.3 Experimental Result and Analysis

In this section we present an experimental result we have measured to analyze the

overheads incurred from controlling fine-grained accesses in XGSP-RBAC mechanism.

The simulator generates new access requests on behalf of users on request nodes. The

access request generation process follows an exponential distribution. The generated

request events, according to the order delivered from the simulator, are stored in a

request queue. The experiment is run through the mean request interarrival time (3000

milliseconds) which is an average interarrival time between two successive requests

issued by the simulator.

Figure 3.14 depicts mean completion time of a request vs. mean request interarrival

time for three different network combinations involved in our collaboration over three

different locations: collaboration using only desktop devices (wired network),

collaboration using only cell phone devices (wireless network), collaboration using

desktops and cell phones together (wired and wireless network). The comparison

shows when cell phone devices using wireless network are involved in our

collaboration, the mean completion time of a request is increased since the wireless

network has high latency. In the case of the use of cell phone, we may need to make

the granularity of fine-grained actions larger to reduce the wireless network overhead.

The shared whiteboard application uses fine-grained actions with the smallest major

events as described in section 3.4.2. When a user requests an image loading action, it

may be natural to simultaneously request it with some drawing actions. This natural

request with larger-grained action can improve response (delay) time of a request but

 91

decrease the amount of concurrency and introduce complexity. The degree for

granularity is a balance between responsiveness and concurrency [6] and between

responsiveness and simplicity. Also, without user’s point of view [41] for the

granularity of actions, unnatural granularity may violate the principle of least privilege

because it may give a user more privilege than needed. The experimental result shows

that in future work we need to observe user’s behavior with applications in

collaboration environment considering responsiveness vs. concurrency, responsiveness

vs. simplicity, and responsiveness vs. principle of least privilege.

 GridFarm at CGL NCSA at UIUC SDSC at UCSD

milliseconds

D D + C C D D + C C D D + C C

Mean
transit
time

4.29

(7.05)

2205.4

(1840.1)

4674.5

(1704.6)

39.63

(8.69)

2159.4

(1897.6)

4581.9

(1692.7)

257.64

(12.79)

2585.9

(2058.8)

4875.2

(1741.2)

Mean
waiting

time

1.09

(3.98)

1.7

(4.86)

1.74

(4.97)

1.69

(4.83)

1.42

(4.53)

1.85

(5.03)

2.06

(5.35)

2.17

(5.41)

1.74

(4.97)

Mean
decision

time

4.85

(10.1)

4.56

(10.03)

3.9

(9.76)

4.39

(8.91)

4.68

(9.04)

3.28

(9.49)

4.23

(7.98)

3.76

(8.67)

3.13

(8.29)

Mean
completion

time

10.23 2211.66 4680.14 45.71 2165.5 4587.03 263.93 2591.83 4880.07

Table 3.1: Mean completion time of a request vs. Mean request interarrival time (3000
milliseconds) where D means collaboration using only desktop devices (wired
network), D + C means collaboration using desktops and cell phones together (wired +
wireless network), and C means collaboration using only cell phone devices (wireless
network)

 92

Mean completion time of a request vs.
Mean request interarrival time (3000 milliseconds)

0

1000

2000

3000

4000

5000

6000

Desktop Desktop + Cellphone Cell phone

Mean request interarrival time in milliseconds

M
e
a
n
 c

o
m

p
le

ti
o
n
 t

im
e
 o

f
a
 r

e
q
u
e
st

in
 m

ill
is

e
co

n
d
s

GridFarm NCSA SDSC

Figure 3.14: Mean completion time of a request vs. Mean request interarrival time
(3000 milliseconds)

3.6 Summary

In this chapter, we presented the XGSP-RBAC mechanism integrated into our

collaboration framework. The XGSP-RBAC uses the notion of role as an intermediate

control entity between collaborating users and collaborative applications. The roles in

XGSP-RBAC are based on users’ privileges and devices’ capabilities to allow users to

manipulate the protected applications in the collaboration. The use of role simplifies

the administrative management of access rights for applications and gives an

administrator flexible adaptation to the changes of collaboration environment. Also,

XGSP-RBAC mechanism provides flexibility adapting to the state change of

 93

 94

collaborative applications that may be occurred from cooperation among collaborators

at run time in collaboration system. To specify access control policies and exchange

request-response messages of access control for resources, it uses XML because it is

easy to understand and use with pre-existing industry standard parsers. Also, fine-

grained access control for the instance of individual application as well as for

individual user is used.

In future work, we will design and implement the authentication service for users

joining a conference during roaming with cell phone devices, and the encryption

service of messages sent to and from the cell phone devices.

We left support of role hierarchy policy for the problem of fault-tolerant role delegation

which occurred with a failure like network disconnection of a moderator node in our

collaboration system as described in the summary of Chapter 2. If the moderator node

fails or is disconnected, and can not recover from the failure for some amount of time,

one of users capable of having the role capability of moderator has to be elected by the

role hierarchy policy.

Chapter 4

XGSP Floor control (XGSP-Floor)

4.1 Overview

In the previous chapter, we presented a moderator-mediated interaction mechanism

(XGSP-RBAC) for controlling accesses to resources in our collaboration system. The

XGSP-RBAC mechanism uses the concept of a role entity between collaborating users

and collaboration resources. Also, we showed overhead costs incurred from

performing the mechanism (request-response interaction in XML stream) with

heterogeneous networked environments over a variety of locations.

In this chapter, we present a policy and a mechanism implementing it – XGSP-Floor

(XGSP Floor control) for coordinating concurrent activities to synchronous resources

and maintaining shared state consistency at application level by defining a general

protocol in XML. Also, we describe the functionality of a XGSP-Floor tool that

provides a user interface (human-computer interaction) for control of floor to a

 95

moderator and participants in a session with desktop and cell phone devices, a major

event conflict detection function which detects whether an action in a floor request

conflicts with the action of current floor holder, and a non-optimistic locking

mechanism which is used in our synchronous collaboration from moderator’s point of

view and participant’s point of view.

The following scenario, which is continued from the previous scenario in Chapter 3,

illustrates the needs of access control at synchronous application level (floor control

[17, 18]) and motivates design issues described in this chapter. As participants in her

research presentation session try to manipulate the shared application at the same time,

she has to be able to provide the right to access the shared application for only one

participant in the session at any time to ensure the consistency of the shared application

state. The shared application, that requires mutual exclusions in real time, has to be

assigned to only one participant who requests it under a set of well-defined rules.

Participants in offline session can use the rules of etiquette or social protocols to gain

the manipulation of the shared application in an order by the rules or protocols.

However, participants in online session can not use the etiquette rules or social

protocols. Therefore, she will need some rules to substitute the etiquette rules and

social protocols by defining the time and the way which a participant in collaboration

gains access to the shared application – policy and mechanism.

This chapter describes the design and implementation of XGSP-Floor (XGSP Floor

control) for coordinating activities occurred in synchronously cooperating applications

 96

being shared among participants in an online session. The rest of this chapter is

organized as follows. We put research issues and our solution about them in section

4.2. Section 4.3 describes related works. Section 4.4 presents a policy and a

mechanism of XGSP-Floor integrated into our collaboration framework and the

functionality of an XGSP-Floor tool (floor control tool). Also, we present the conflict

detection function and the non-optimistic locking mechanisms used in the XGSP-Floor

for synchronous collaboration. Finally, we conclude by summarizing main points

drawn from the XGSP-Floor.

4.2 Problem Statement and Solutions

In traditional face-to-face offline session, participants generally follow rules of

etiquette or social protocols when they interact with each other. For example, if all the

participants try to draw on a shared whiteboard at the same time, then the conflicts

which may result in inconsistent state can be solved by a moderator or social protocols.

However, in online session or CSCW (Computer Supported Cooperative Work), the

social protocols may not be able to be used for coordinating the interaction of

participants since they are not collocated. For example, if all the participants

simultaneously try to send drawing events through a communication channel in a

distributed collaboration system, then the conflicts are not able to be solved by the

social protocols used in the face-to-face offline session. Therefore, policies and

mechanisms used in the offline session may need a mapping into those able to be used

in the online session with user interfaces between participants and CSCW environment.

 97

Users working with synchronous collaboration applications in CSCW environment

usually interact with each other using computer-mediated policies with computer-

mediated tools which make collaborative works conveniently among them. Such

computer-mediated policies in CSCW are generally called floor control [17, 18]. Floor

control is the problem of coordinating activities occurred in synchronously cooperating

resources shared among participants in an online conference session. The floor control

mitigates race conditions within online sessions on who is allowed to manipulate shared

data or to send synchronous events.

A set of well defined policies and mechanisms are needed for efficiently coordinating

the use of resources in CSCW. The policies for floor control typically describe how

participants in CSCW request resources, and how the resources are assigned and

released when participants share a synchronous resource such as audio-video control

event in conferencing, drawing events in shared whiteboard or moving events in

collaborative chess game. Also, mechanisms including user interfaces (human-

computer interaction) between participants and CSCW environment are needed to

implement and enforce the policies. The floor control mechanisms have to be able to

provide the floor on shared resource for only one participant in a synchronous online

session at any time.

When users perform concurrent activities on shared synchronous resources such as

collaborative applications, floor control is necessary. No single floor control scheme is

appropriate for all collaboration applications. The simplest scheme is free-for-all (no

 98

floor control) for applications like text chat. The XGSP-Floor integrated into our

collaboration framework provides significant flexibility ranging from free-for-all to

application specific floor control mechanism for avoiding uncoordinated activities to

shared collaboration applications. The moderator (moderator node) is responsible for

maintaining the consistent state of applications in our collaboration system. An access

conflict detection function detects whether an action in a floor request conflicts with the

action of current floor holder. The avoidance of the conflicts ensures applications are

maintaining consistent states. When a participant in collaboration requests a floor to

access a shared application to a moderator node (moderator), the moderator makes a

decision with the decision value validated by and returned from access-floor control

decision service. The request floor is then granted or denied according to the decision.

Also, by the dissemination of the decision event message through our message and

service middleware - broker, all the participants in the collaboration maintain the same

shared state information which results in consistent state. The conflict detections

depend not only on the applications but also on fine-grained actions (major events)

involved in manipulating shared application. For example, our shared whiteboard

detects conflicts by fine-grained actions involved in the application. As another

example, a collaborative chess game [100, 109, 110] detects conflicts by the application

itself. The chess game is a collaborative game application developed by CGL. We

show a mechanism for coordinating the conflicts in this chapter and show formal

verification by Coloured Petri-Nets [64] to prove the correctness of our modeled

consistency mechanism in Chapter 5 in terms of mutual exclusion, deadlock, and

starvation.

 99

4.3 Related Work

The coordinated use of resources within conferencing and collaboration system is

fundamental to increasing synchronous collaborative applications. In this section we

examine existing floor control schemes for collaboration system. Also, we examine

considerations for a selection of mechanisms for dealing with consistency in the use of

shared whiteboard application among collaborators in our collaboration domains –

heterogeneous community collaboration, synchronous and ubiquitous collaboration.

4.3.1 Existing Floor Control Schemes

Dommel [18, 19] classified floor control schemes into two known paradigms, random-

access (contention-based) and scheduled-access (token passing-based) floor controls.

• The random-access based floor control scheme includes sensing availability of a

resource by users or system, or mediation by social protocols. The sensing floor

scheme example is Activity Sensing Floor Control (ASFC [63]). The ASFC

provides a mechanism based on sensing activities on a distributed shared

resource. By sensing activities on the shared resource, decisions for floor

control are autonomously made without the mediation (intervention) of

moderator. If the requests are collided, they are backed off until the floor

holding the resource is released. The example protocol schemes by mediation

are Conference Control Channel Protocol (CCCP [76]) and floor control

protocol built on MBone seminars [72]. The CCCP provides moderator-

controlled interaction floor control in conference collaboration where a

 100

designated moderator gives access rights to a participant who wants to access a

shared resource. The MBone videoconferencing system uses centralized

moderator-controlled floor control mechanism in question board which is a tool

to enable participants to ask questions in large-scale loosely-coupled MBone

seminars (sessions). It also enforced the floor control mechanism using the

conference bus mechanism developed at LBL (Lawrence Berkely Laboratory).

The conference bus is a multicast mechanism which is used for communication

between tools provided in a session.

• The scheduled-access based floor control scheme includes autonomous token

passing interaction floor control scheme where the token is used to request,

grant, deny, or release a floor.

Boyd [8] classified the floor control schemes according to design dimensions such as

degree of interaction and granularity of control for floor control policies in multi-user

applications. He introduced an interactive and fine-grained policy with user interface

for floor control, called fair dragging which can be used in multi-user applications. The

policy means that a user has control of an object during only short-term dragging,

where dragging means pressing a button over an object which he wants to use and

releasing the button when he relinquishes the use of the object. Greenberg [39, 40]

classified the floor control schemes for turn-taking between participants with view-

sharing applications. He discussed some floor control mechanisms implemented in the

view-sharing applications and showed as an example that explicitly managing (or

 101

designing) turn-taking floor control with view-sharing (of full screen) applications in a

windowed environment is difficult without disturbing the shared view to explicitly

activate floor control from user’s perspective because there is no room to display

information about current state of the floor in the shared full screen. Also, GroupKit

[40, 73] provides participants in collaboration with flexible floor control mechanisms –

preemptive floor control scheme and ring-passing scheme. The preemptive floor

control scheme means that a user can immediately grab the floor from the current floor

holder. The ring-passing floor control scheme means that a user can seize the floor if

the floor is free. Microsoft’s NetMeeting [84] uses locking mechanism for the floor

control of the shared whiteboard application provided in it.

Dommel [20] presented the theoretical evaluation for a comparative analysis among

floor control protocols (uncoordinated social mediation, social mediation with

feedback, activity sensing, direct coordination, ring-based coordination, and tree-based

coordination). The evaluation showed the efficacy of the floor control protocols in

considering point-to-point communication and broadcast communication with the

parameters for control state management by assuming the existence of the broadcast

communication. The experimental evaluation of activity sensing protocols for small

group sizes is presented in Activity Sensing Floor Control (ASFC [63]). McKinlay

[77] evaluated the performance (usability and effectiveness) of four different policies

for the management of the turn-taking performed in a computer supported online

meeting in comparing with the performance of face-to-face meeting. The used four

policies are face-to-face, free-for-all, request-and-grant, and request-and-capture (where

 102

the capture means anyone can take a turn at any time). Myers [10] created more

comprehensive classification of floor control policies with three independent primitive

dimensions: request, acquire, and release control. By combining the primitives, he

showed the use of the floor control with puzzle control program in Pebbles project [9]

which studies the use of PDAs (Personal Digital Assistants) simultaneously with a

desktop PC.

4.3.2 Considerations for a Selection of a Floor Control for Shared

Whiteboard Application in Heterogeneous Community

Collaboration, Synchronous and Ubiquitous Collaboration

Domains

Mechanisms for dealing with consistency in the use of application shared among

collaborators in collaboration system will have to be considered in an unambiguous

manner according to increasing heterogeneous collaboration applications. When

collaborators perform concurrent activities on shared synchronous collaboration

application, floor control is necessary. No single floor control mechanism is

appropriate for all collaboration applications. There are many different mechanisms for

floor control as shown in section 4.3.1, and hence many different mechanisms for floor

control of a collaborative application can be considered according to the size of group

in the number of participants, individual preferences of participants in group,

collaboration style (presentation, brainstorming, design meeting, and so on) or some

other reasons. Also, the intrinsic latency occurred due to the increase of interactive

distance, relatively to the latency occurred in collocated place, may affect on the choice

 103

of the mechanism for shared state consistency of application. By combining different

parameters (group size, human considerations, technical implementation

considerations, and so on) with our shared whiteboard application, many different floor

control mechanisms can be considered. A few example scenarios are:

• Floor control mechanism in small group size. When participants want to send

drawing event messages in a distributed collaboration system, to do so may be

satisfactory in small group size since the possibility of direct conflicts occurred

from manipulating shared synchronous collaboration application may be rare [41,

88]. If there are conflicts that may introduce inconsistency in small group size, the

conflicts can be solved by the participants themselves who coordinate the

concurrent conflicts by social protocols. If computer-mediated floor control is

used, the conflicts can be avoided or resolved by synchronizing them through the

computer-mediated consistency mechanism. Then the computer-mediated floor

control can be strict or relaxed mechanism according to the degree of the mitigation

of race conditions to ensure consistent state to participants, where the strict or non-

optimistic floor control mechanism means to avoid conflicts and the relaxed or

optimistic floor control mechanism means to allow updates by any host (or

participant) on any object (or data) and to resolve the uncoordinated updates [18].

An example is Tivoli 1.0 which is shared whiteboard system designed for

supporting small group size meetings in collocated place [88]. All the participants

in the meeting with Tivoli 1.0 can have access to the shared whiteboard without

official moderator. The Tivoli 1.0 does not provide a computer-mediated

 104

consistency mechanism for coordinating activities among participants. The

computer-mediated consistency mechanism for coordinating activities among

geographically-separated multiple users is implemented in Tivoli 2.0 with the

human and technical considerations in disseminating a new shared object so that

each host can have consistent shared object and each user can work on the

disseminated object copy [81].

• Floor control mechanism in large group size. In small group size, to achieve the

agreement of social protocols among participants may be not difficult. Free-for-all

which allows participants to send drawing event messages in a distributed

collaboration system when they wish may be satisfactory in small group sizes by

following social protocols. In large group size, to achieve the agreement of social

protocols among participants may be difficult when hosts are heterogeneous,

network has high latency, shared tools are more complex, or social protocols are

misunderstood among participants [21]. In these cases, if all participants send

drawing event messages at the same time, the event messages may race, leading to

inconsistent state to participants. Gray [59] in a modeled system showed that as a

system scales up in the number of hosts (or participants), the system that performs

well on a few hosts with simple transactions may become unstable since the number

of conflicts in an optimistic mechanism grows quadratic with the number of hosts

and transactions in the system. Therefore, to solve the conflict problems in a

distributed collaboration system of large group size may be inefficient without

computer-mediated floor control. Due to more conflicts of drawing event messages

 105

from different participants in large group size than those in the small group size,

some form of floor controls in large group size have to be used to ensure consistent

state among hosts (or participants) if inconsistency matters. Then, the choice of a

floor control mechanism for the conflict management can depend on human

considerations since the interactions for shared synchronous collaboration

applications include people as well as computers, and technical implementation

considerations [41]. In the human considerations, individual preferences of the

participants in group for choosing floor control mechanisms may have to be

considered even though people’s preferences often do not match with performance

[10]. Also, locking, serialization, and the latency of interactions over networks for

the selection of a floor control may have to be considered according to people’s

preferences in group [41]. In the technical implementation considerations, the

complexity for implementing optimistic locking and serialization, and network

transactions (undo/redo) may have to be considered since optimistic mechanism is

more difficult to implement than non-optimistic mechanism [41]. Also, the

overheads incurred from the computational complexity of some optimistic schemes

may have to be considered [41]. For example, many different floor control

mechanisms for shared whiteboard application in large group size can be

considered using the mechanisms recommended by Dommel [18] – negotiation,

token passing, token asking, time stamping, two-phase locking, blocking, activity

sensing, reservation, and dependency detection.

 106

Our collaboration framework is designed to support the construction of heterogeneous

collaboration applications on our collaboration domains – heterogeneous community

collaboration as well as synchronous and ubiquitous collaboration. The choice of a

floor control mechanism for coordinating concurrent activities among participants on

shared whiteboard application built on the collaboration framework can be considered

from the three different collaboration domains.

4.3.2.1 Considerations for a Selection of a Floor Control in Heterogeneous

Community Collaboration Domain

The heterogeneous community collaboration means to integrate different collaboration

communities into a global collaboration community. Our hypothesis for the number of

participants in the heterogeneous community collaboration is that there may be a

number of participants linked together for collaboration among heterogeneous

communities as compared with small number of participants linked together in a

community. In the hypothesis with the heterogeneous community collaboration

domain, if the possibility of concurrent activities occurred from manipulating shared

whiteboard application among a number of participants linked together for the purpose

of collaboration is small or rare, the floor control mechanism for their concurrent

activities may be relaxed. Otherwise, the floor control may have to be a strict

mechanism due to the increase of the complexity and overheads incurred from the

concurrency management. As Gray [59] predicted through a modeled system, if the

number of hosts or participants in a collaboration system with a relaxed or lazy

(optimistic) consistency control scheme increases, the scaled system may have

 107

consistency problems due to the occurrence of more concurrent activities which may

introduce the increase of transaction operations. Master copy replication (primary

copy) scheme can reduce the problems as a system scales up [59]. For example, this

scheme means the master of shared whiteboard application is responsible for

maintaining the consistent state information of the application in collaboration. If

concurrent activities are detected at the master, the reconciliations for concurrency are

disseminated to the other hosts. But this may also introduce the complexity for the

reconciliations and the propagation delay of the reconciliations for consistency among

hosts or participants, violating the characteristics of synchronous collaboration if

specifically the concurrent activities increase. Therefore, for a selection of a floor

control for shared whiteboard application in the heterogeneous community

collaboration which may be increasingly scaled up, we will need to consider the

possibility of concurrent activities, the complexity for managing them, and the

overheads incurred from them with the growing number of hosts or participants in the

heterogeneous communities.

4.3.2.2 Considerations for a Selection of a Floor Control in Ubiquitous

Collaboration Domain

The ubiquitous collaboration means capability of multiple users to link together with

disparate access devices in anytime and anywhere. The relaxed or strict floor control

mechanism for shared whiteboard application in the ubiquitous collaboration domain

can be considered differently according to network latency. Since the wireless cellular

network has high latency as shown in section 2.6.1, the selection of a floor control

 108

mechanism in the collaboration linked with cell phone devices has to consider

overheads – the network transactions for undo/redo operations in optimistic mechanism

and the waiting time for turn-taking among participants in non-optimistic mechanism.

If concurrent activities among participants increase or are not small in optimistic

mechanism, then the number of the network transactions (undo/redo) will increase,

leading to the increase of complexity for managing the transactions and transformations

of objects on shared whiteboard, and the increase of overhead time for processing them

in specifically cell phone devices which have low computing performance. In non-

optimistic mechanism, the turn-waiting time to provide a turn for only one participant

at a time may increase. If concurrent activities are small, the number of network

transactions for undo/reo operations will be small in optimistic mechanism and the

waiting time for turn-taking may decrease in non-optimistic mechanism.

Therefore, for the selection of a floor control for shared whiteboard application run on

wireless cell phone devices which have high latency and low computing performance in

ubiquitous collaboration domain, we will need to consider the effects of network

transactions in optimistic mechanism vs. the waiting time for turn-taking among

participants in non-optimistic mechanism according to the occurrence of the increasing

or decreasing number of concurrent conflicts.

4.3.2.3 Considerations for a Selection of a Floor Control in Synchronous

Collaboration Domain

 109

The synchronous collaboration means to allow all participants in collaboration to have

the same views and data at all times in real time. The relaxed or strict floor control

mechanism in the synchronous collaboration domain may have to be considered

differently according to intermittent network disconnection of mobile devices as well.

Mobile hosts may be disconnected from collaboration for arbitrary periods of time until

reconnected into the collaboration. During the disconnected periods of time, connected

users might generate new objects on the shared whiteboard, or some objects on the

whiteboard might be removed or transformed, and hence disconnected hosts (or

participants) may have inconsistent state information different from other hosts

connecting (or joining) to the collaboration. Therefore, we need a scheme to provide

consistent state information to disconnected users as reconnected – for example, when a

disconnected host (or participant) joins a collaboration session, a moderator or an agent

who is responsible for maintaining the consistent state information of shared

whiteboard application in collaboration needs to send the host all up-to-date updates

since the host was disconnected.

Also, in optimistic mechanism, as a disconnected host is reconnected while the

moderator or agent manages redo/undo operations for consistency, the reconnected host

may have an inconsistent view with the need of the additional computation for the

operations and transformations, leading to the increase of computational complexity for

managing them, and the degradation of computing performance on cell phone device as

well. In non-optimistic mechanism, a disconnected user may also have an inconsistent

view with some degree of delay as reconnected while a connected single host does

 110

actions for update, but with less complexity and computations than those in the

optimistic mechanism.

Therefore, for the selection of a floor control for shared whiteboard application in

synchronous collaboration domain, we will need to consider intermittent network

disconnection of cell phone devices with the effects of network transactions and the

computational complexity for managing them on cell phone devices in optimistic

mechanism as well as non-optimistic mechanism.

The two distinct relaxed and strict floor control mechanisms exemplified with our

collaboration domains how the decision for the selection of a floor control mechanism

with shared whiteboard application can be made with the following considerations:

• the possibility of concurrent activities, the complexity for managing them, and

the overheads incurred from them with the growing number of hosts or

participants linked together for collaboration among heterogeneous

communities in heterogeneous community collaboration domain

• the effects of network transactions in optimistic mechanism vs. the waiting time

for turn-taking among participants in non-optimistic mechanism according to

the occurrence of the increasing or decreasing number of concurrent activities in

ubiquitous collaboration domain

 111

• the intermittent network disconnection of cell phone devices with the effects of

network transactions and the computational complexity for managing them on

cell phone devices in optimistic mechanism as well as non-optimistic

mechanism in synchronous collaboration domain

In this thesis we focus on moderator-mediated floor control with non-optimistic

mechanism using conflict detection function and non-optimistic locking for

coordinating concurrent activities on shared whiteboard application in our collaboration

domain of large group size with a number of participants. The moderator mediates

concurrent activities on shared whiteboard application among participants, and sends

disconnected or newly joining hosts (or users) all up-to-date updates when the

disconnected or new hosts join a collaboration session. The non-optimistic floor

control mechanism is used for reducing the number of network transactions and the

complexity of operations occurred from network transactions in our collaboration

involved with cell phone devices which use slow wireless network and have low

computing performance. But, the non-optimistic mechanism in our collaboration may

increase the waiting time for turn-taking among a number of participants if the number

of concurrent activities increases. In future work we will apply the moderator-mediated

floor control mechanism to synchronous media applications such as audio and video

applications, and consider different floor control mechanisms with different parameters

for floor control of the shared whiteboard application in our collaboration domains –

heterogeneous community collaboration as well as synchronous and ubiquitous

collaboration.

 112

4.4 XGSP Floor Control (XGSP-Floor)

This section describes a floor control policy, a floor control mechanism (XGSP-Floor)

implementing the floor control policy, and the functionality of a XGSP-Floor control

tool to provide participants in collaboration with human-computer interaction for

control of a floor, where the human-computer interaction means user interfaces

between participants and CSCW environment. We also describe a conflict detection

function and a non-optimistic locking mechanism used in the XGSP-Floor.

4.4.1 XGSP-Floor Policy

This section describes an XGSP-Floor policy (floor control policy) that defines how the

participants in synchronous collaboration session request a floor for the use of a

collaborative application, and how the floor for the use of the application is assigned

and released when the participants share the synchronous collaboration application.

The XGSP-Floor policy is written in XML as shown in Figure 3.6 in Chapter 3. An

example policy from the Figure 3.6 is shown in Figure 4.1. The element access type in

the example policy describes whether a fine-grained action of an application can be

shared among participants. If a fine-grained action is not able to be shared among

participants, a floor control mechanism has to be able to provide a floor for the action

on a shared application for only one participant in a synchronous collaboration session

at a time. We define a set of predicate rules (policies) used as determinants in decision

procedure of a moderator node in terms of the following three types of predicate

statements (request, response, release) to provide a floor for only one participant at a

time:

 113

1. Participants in a synchronous collaboration session can request a floor for the

use of a shared application in the session using the XGSP-Floor control tool

described in section 4.4.3, or a moderator in the session can directly assign a

floor to participants. This case, which is a mapping from offline request-

response social protocol into online human-computer interaction, is for the

shared whiteboard in our collaboration (moderator-mediated request-response

interaction scheme). The text chat application does not need the floor request

for free conversations among participants (no floor control scheme). The

collaborative chess game application [100, 109, 110] uses different floor control

scheme which alternates a floor in turn between the two players using the roles

white-player and black-player in our collaboration role term (two-player turn-

taking scheme or token-passing scheme).

2. When a participant requests a floor on an application being shared among

participants, after the floor request is validated by the access and floor control

decision service of a moderator node,

If the floor is available, a moderator assigns the floor to the floor

requester. Otherwise, the floor request is queued into a floor waiting

queue or can be denied.

3. When a current floor holder releases a floor control or after a prefixed amount

of time, the floor is assigned to a requester waiting in a floor waiting queue in

FIFO order or the floor can also be directly released from a moderator.

 114

The floor control policy is written with the XGSP-RBAC policy described in Chapter 3

and is implemented by the XGSP-Floor mechanism which is described in next section

4.4.2.

<XGSP-RBACPolicy>
 <ResourceAccesspolicy>
 <ResourceAccess>
 <RoleName>mobile-user</RoleName>
 <ApplicationRegistries>
 <ApplicationRegistry>
 <ApplicationID>wb</ApplicationID>
 <MainClass>cgl.myprofessor.whiteboard.Whiteboard</MainClass>
 <Actions>
 <Action>
 <ActionName>slave</ActionName>
 <Capabilities>read</Capabilities>
 <AccessType>released</AccessType>
 </Action>
 <Action>
 <ActionName>line</ActionName>
 <Capabilities>linedrawing</Capabilities>
 <AccessType>shared</AccessType>
 </Action>
 <Action>
 <ActionName>oval</ActionName>
 <Capabilities>ovaldrawing</Capabilities>
 <AccessType>exclusive</AccessType>
 </Action>
 <Action>
 <ActionName>pen</ActionName>
 <Capabilities>freedrawing</Capabilities>
 <AccessType>exclusive</AccessType>
 </Action>
 </Actions>

</ApplicationRegistry>
</ApplicationRegistries>

 </ResourceAccess>
 </ResourceAccesspolicy>
</XGSP-RBACPolicy>

Figure 4.1: An Example of XGSP-RBAC Policy with the Role Name mobile-user and
Application Name whiteboard (wb).

 115

4.4.2 XGSP-Floor Mechanism

A floor control mechanism (XGSP-Floor mechanism) is a means to implement the floor

control policy described in the previous section. An XGSP-Floor mechanism regulates

floors among all the participants in collaboration. In this section we present decision

procedures implemented in a moderator node (which is a decision node to control

accesses for applications in our collaboration system) to determine grant or deny of

participants’ floor requests to access applications in moderator-mediated interaction

mechanism. The decision procedures follow the following five different types of

stages. The broad view of the moderator-mediated interaction mechanism is depicted

in Figure 4.2. Also, we show a request-response interaction scheme between a

moderator and a floor requester with human-computer interaction in Figure 4.3.

4.4.2.1 Decision Procedures of XGSP-Floor Mechanism

Floor
Request
Queue

Floor

Decision

Access Type
Decision Service

Policy
Store

Current Floor State
Information Table

Access and Floor Control
Decision Service

Waiting
Queue

Floor Requesters Moderator

Access / Floor Control Manager

Figure 4.2: Decision Procedure of XGSP-Floor Mechanism

 116

First, a moderator node has a single queue for storing floor requests from participants.

The queue is implemented in FIFO (First-In, First-Out) order for mitigating race

conditions of floor requests to applications and thus enforces mutual exclusion among

applications. The first request in the queue is validated by policy manager and is sent

to the access type decision service located in the access and floor control manager of

the moderator node. Then, the first request is removed from the queue. During the

activity, new floor requests are stored in the floor request queue waiting for next

service.

Second, the access type decision service returns a classified access type value among

Invalid, Implicit, Exclusive, Shared, or Released into the access and floor control

decision service in access and floor control manager.

Third, decision activities are behaved with the same type value returned from the access

type decision service. The decision activities are also classified (or branched) into the

same access type activities as the returned value mentioned in the second stage. Each

decision activity returns one of decision values (grant, deny, or queued) to the

moderator. Then, the moderator can make a decision according to the decision values.

In this stage, we present a set of predicate rules used as determinants in decision

procedures of a moderator node in terms of the following two types of predicate

statements:

 117

１ Determination of types classified to access applications.

a) If the role name, application ID, and request action of a floor requester is

validated by a policy manager then an access type value (among Implicit,

Exclusive, Shared, or Released) by access type decision service is returned into

the access and floor control decision service. In the elements, the role name

means the name of role assigned to participants in our collaboration system, the

application ID means an application identifier existing in application registries

of our collaboration system, and the request action means the name of a fine-

grained action in which participants can manipulate applications.

i. If the return type is “Implicit”, then the request is granted.

ii. If the return type is “Exclusive”, then the request is granted or queued.

iii. If the return type is “Shared”, then the request is granted or denied.

iv. If the return type is “Released”, then the request is granted.

b) If one of the elements does not exist in policy, then a type “Invalid” is returned

into a moderator and the request is denied.

２ Determination of whether an action in a request exists in current floor state

information table, in other words, a request action conflicts with the action of

current floor holder.

i. If the return type from access type decision service is “Exclusive” and the

request action exists in the floor state information table of a moderator node,

then the request is queued. Otherwise, the request is granted.

 118

ii. If the return type is “Released” and a floor waiting queue is not empty, then the

request is granted and the first request in the waiting queue is granted and

removed from the queue.

iii. If the return type is “Released” and a floor waiting queue is empty, then the

request is granted.

Next stage is to update current floor state information table. To maintain consistent

shared state at application level among collaborating participants, we need to maintain

the current floor state information. This floor state information is updated to reflect an

action in a request whenever the request is granted.

Finally, all the requests stored in a floor waiting queue for the use of shared

applications are serviced in prefixed amount of time to avoid starvation. The floor

requests to shared applications are stored in a single queue which is implemented in

FIFO order. The first request in the queue is serviced when the floor of current floor

holder is released or after a prefixed appropriate amount of time. Then, the request is

removed from the queue and the current floor state information table is updated with

the removed request. Note that when the floor of current floor holder is released after

an appropriate amount of time, the mechanism uses the acknowledgement (reply

message) from the revoked node. The acknowledgement prevents the floor of current

floor holder from assigned to another participant before the floor of the floor holder is

revoked.

 119

4.4.2.2 Request-Response Interaction Scheme between a Moderator and a

Floor Requester with Human-Computer Interaction

The moderator in our collaboration system is responsible for passing floor control to

and from participants in XGSP-Floor mechanism. The moderator grants a floor either

by clicking on a button on pop-up window representing a participant’s request or by

selecting an entry from the action list allowed for the participant displayed on a frame

window invoked from a moderator node manager. The communication channel in a

moderator node (on which a moderator resides) shown in Figure 2.8 of Chapter 2

disseminates the floor to all the participants in a session through a broker including a

decision (grant) for the floor requester (a participant who wants to have the right for

manipulating the application being shared). The granted floor event message

autonomously activates the fine-grained request action of the application which the

requester wants to manipulate. Other nodes, on which other participants reside, are

updated to reflect the current floor holder in the session. This mechanism shows a

mapping instance of a universal social protocol (request-response) from an offline

session to an online session with a set of user interfaces between a participant in a

session and a collaboration environment as shown in Figure 4.3. In our collaborative

applications, whiteboard application uses this mechanism. Note that audio/video

applications can use this request-response interaction scheme with the application

specific locking mechanism as we integrate the scheme into the applications as a next

phase in future work.

 120

B
R
O
K
E
R

Access /
Floor

Control
Manager

Request Floor

Set Floor

Request Floor Decision

Set Floor

Decision

(grant, deny, release,
queued)

Moderator
Node Manager

Set
Floor

Set
Floor

Figure 4.3: Request-Response Interaction Scheme between a Moderator and a Floor
Requester with Human-Computer Interaction.

Chess game application uses different floor control mechanism able to be behaved

without the mediation of the moderator like turn-taking mechanism. Thus, if one

player in the chess game releases a floor or the prefixed playing time of a player is

expired, then the floor is autonomously given to another player. In the two player

game, the floor holder (one player in the game) directly passes the floor to another

player through a broker. Other participants are regarded as an observer role which can

not have a floor to play but share playing-view in the chess game. Figure 4.4 depicts

the instance of the two-player turn-taking mechanism for the collaborative chess game

application used in our collaboration.

 121

 Major Events
(Moving objects)

 Major Events
(Moving objects)

 Broker

 Observer

 Major Events
(Moving objects)

Black Player White Player

Figure 4.4: Two-player Turn-taking Mechanism for Chess Game Application

4.4.3 Functionality of XGSP-Floor Control Tool

This section describes the functionality of a floor control tool (XGSP-Floor tool

interfaces) that provides a user interface (human-computer interaction) for control of

floors to a moderator and participants in a session with desktop and cell phone devices.

A moderator can give decisions (grant, deny, release (or revoke), and queued) for a

floor to participants and the participants can request a floor to manipulate the

application being shared in a session via the XGSP-Floor tool.

Figure 4.5 shows a node manager of a moderator on desktop. Figure 4.6 shows a node

manager of participants (normal users) on desktop. The two node managers are almost

similar except that the moderator node manager has a button able to control a floor and

the normal user node manager has a button able to request a floor. Therefore,

participants (not moderator) are not able to control the floor to give the right for

 122

manipulating the application being shared to other participants. The left display panel

in the node managers shows a list of participants joined in the conference. The right

display panel shows a list of sessions available in the conference. Each entry in a list of

sessions has a session ID and three buttons (Join, Set Floor, and Request Floor).

Participants in a conference can join a session by clicking on the “Join” button. A

moderator can control floors in the window frame invoked by clicking on the “Set

Floor” button in Figure 4.5. The pop-up window frame is shown in the left figure of

Figure 4.7. Participants can request floors in the window frame invoked by clicking on

the “Request Floor” button in Figure 4.6. The pop-up window frame for the request

floor is shown in the right figure of Figure 4.7. A moderator can control floors of all

the participants joined in a session via the window frame shown in the left figure of

Figure 4.7 while participants can request only their own floors via the window frame

shown in the right figure of Figure 4.7 but see current floor states of other participants.

Figure 4.5: Node Manager for a Moderator on Desktop

 123

Figure 4.6: Node Manager for Normal Users on Desktop

Figure 4.7: Set Floor Frame for a Moderator vs. Request Floor Frame for a Normal
User

 124

Figure 4.8: Node Manager for Normal Users on Cell Phone

Figure 4.8 shows a node manager of normal users (nomadic users) on cell phone. The

functionality of the node manager on cell phone is similar to that of the node manager

on desktop except that the node manager on cell phone uses two different screens for

the presence membership of participants and a list of sessions existing in a conference.

The left figure in Figure 4.8 shows a list of participants joined in the conference. The

right figure shows a list of sessions available in the conference. Note that the cell

phone uses the term screen instead of the term window or frame used in desktop. The

application model for pervasive computing [5] requires creating a task-based model and

 125

a navigation model for program structure at design time. This means the task-based

structure needs to generate device specific “presentation units” – screen and to specify

the flow of the presentation units. Therefore, an application has to be depicted into

tasks, subtasks of the tasks, and subtasks of the subtasks, and so on. On the modest-

size window like desktop, the tasks (displays of participants’ presence panel, session

panel, floor set window frame, floor request window frame, and so on) in node

manager can be presented on the same screen, whereas on the small-size screen like

cell phone, the displays of the tasks have to be presented on separate screens including

easy-to-use interfaces and a set of well-defined navigation to subtasks from the tasks.

Figure 4.9 shows the request screen for a floor. The screen is displayed from selecting

the “Request Floor” button shown in the right figure of Figure 4.8. Figure 4.10 shows

pop-up window frames (floor request, floor grant, floor deny, floor conflict, and floor

queued notifications respectively) occurred as the request-response interaction

mechanism between a moderator node and a requester node on desktop is used.

Figure 4.11 shows the screens (floor grant, floor deny, and floor queued notifications

respectively) occurred as the request-response interaction mechanism between a

moderator node and a requester node on cell phone is used. Then the screen in cell

phone is often called an alert screen that shows a message to the user for a certain

period of time.

 126

Figure 4.9: Request Floor Screen on Cell Phone

Figure 4.10: Pop-up Window Frames (for Floor Request, Floor Grant, Floor Deny,
Floor Conflict, and Floor Queued Notifications respectively) on Desktop

 127

Figure 4.11: Screens (for Floor Grant, Floor Deny, and Floor Queued Notifications
respectively) on Cell Phone

In this section we showed the current implementation of an XGSP-Floor tool. It shows

a simple interface between participants and collaboration environment for floor request,

response, release (or revoke), and queued interaction with the synchronous

collaborative application – shared whiteboard used in our collaboration. We need to

further implement the XGSP-Floor tool with more detailed functionalities for

synchronous collaborative media applications such as audio and video applications in

future work.

 128

4.4.4 A Major Event Conflict Detection Function of XGSP-Floor

Mechanism

This section describes a major event conflict detection function that determines whether

an action in a floor request conflicts with the action of current floor holder. When a

floor is requested at the application being shared among participants, it consults with

the current floor state information table in the access and floor control manager shown

in Figure 4.2 to avoid the collision with current floor holder. If a request action exists

in the current floor state information table, then the request is queued. Otherwise, the

request is granted. The floor state information is updated to reflect an action in a floor

request whenever the request is granted.

Participants maintained in the floor state information table have to assume at least one

action but can not assume both actions at the same time even though the participants

can assume different actions at the different time in our current floor mechanism.

Participants in passive state may assume the action “slave” in our collaboration. The

action “slave” means participants are in state joined in a session and in view-sharing

state of the application being shared with other participants for WYSIWIS (What You

See Is What I See) [98] which is an inclusion of collaboration. Also, the action can be

used as a major event for releasing a floor which a participant is currently holding. The

strict conflict avoidance [28] like our floor control mechanism allows all participants to

have the same views and data at all times. Pessimistic (or non-optimistic) floor control

follows the strict conflict avoidance strategy whereas optimistic floor control strategy

allows conflicts and resolves them [18].

 129

4.4.5 Locking of XGSP-Floor Mechanism

Locking [41] is a method of gaining privileged access to shared resource for some

amounts of duration. In this section we show non-optimistic locking mechanism [41]

used in our synchronous collaboration from two different viewpoints, moderator’s point

of view (system’s point of view) and participant’s point of view (application’s point of

view), where the non-optimistic locking mechanism means a request node (or a

requesting participant) has to wait until the floor request gets granted from the

moderator. This non-optimistic locking mechanism ensures that all the participants

always have consistent views and data.

From moderator’s point of view or system’s point of view, the floor request queue in a

moderator node is locked until the moderator node (or moderator) makes a decision on

a floor request and dispatches the decision to the request node. During the lock, the

floor state information table is updated. After the lock of the floor request queue is

released, the next request in the queue is serviced if the queue is not empty. This

locking mechanism guarantees the mitigation of race conditions of floor requests to

shared application and thus enforces mutual exclusion in the shared application.

Therefore, participants can access a shared application with a granted fine-grained

action one participant at a time.

From participant’s point of view or application’s point of view, we used an application

specific locking mechanism. According to shared applications, different fine-grained

locks are used to allow more concurrent activity among participants and to follow the

 130

principle of least privilege [75], where the fine-grained lock means the locking of the

major event described in Chapter 3. Also, a coarse-grained lock can be used to allow a

participant to make more activities at a time. In our whiteboard application example, as

a fine-grained request action (major event) is granted from a moderator and the granted

message arrives at the requester node, the lock for the use of the requesting action is

released as depicted in Figure 4.12. The coarse-grained action “master” in the

application can be used to allow a participant to assume many different fine-grained

actions at a time. This locking mechanism guarantees that the consistent state at

application level is maintained among participants. In our chess game application

example, if an action (a major event moving a object) of a player is a legal move

validated by the chess game rule as the user input event (releasing the object – mouse

release) of the player is occurred, then the user input event (mouse click) of the player

is locked and the lock (mouse click) of another player is released in turn by passing a

logical token as depicted in Figure 4.13.

In our first implementation, we used a mechanism: it does not use a reply message from

a requester node for a lock release of the floor request queue in a moderator node (no

acknowledgement) and the action, which the requester is currently holding, is not

blocked (non-blocking). This means the requester can manipulate shared application

with a holding action until a grant message for new floor arrives at the requester node.

Then, we identified the mechanism results in inconsistency. The inconsistency comes

from: before the floor of current floor holder for shared application is revoked, the

floor can be reassigned to another participant.

 131

B
R
O
K
E
R

2. Request Floor

5. Grant 6. Grant (Unlock)

Request
Floor

Set
Floor

1. Lock

Access / Floor
Control Manager

3. Request Floor

4. Decision

Figure 4.12: Locking Mechanism of Shared Whiteboard

Playing

Locked
(Interrupted)

Locking

Locking

Token

.

.

Released
(wake-up)

Playing

Figure 4.13: Locking Mechanism by Logical Token-passing in Chess Game

 132

In our second implementation, we used an acknowledgement (reply message) from a

requester node after a request-response interaction for a floor between a request node

and a moderator node. The implementation with the acknowledgement from the

requester node ensures that the floor of current floor holder for shared application is

revoked before the floor is reassigned to another participant and thus previous floor

holder no longer holds the floor of newly reassigned current floor holder. Also, a floor

requester is assigned a floor after current floor state information of the requester is

updated. The acknowledgement enforces mutual exclusion in shared application and

thus ensures consistency. But it resulted in response overhead as shown in Figure 4.14,

especially with cell phone device involved in collaboration since the wireless network

transit time is in the range of seconds as shown in Figure 2.24 and Figure 2.25.

Another encountered problem was deadlock occurred from the loss of the

acknowledgement (lock release of a moderator node), especially with cell phone

disconnected. We could resolve the problem by a moderator directed-floor-assignment

or communication among participants through text chat using no floor control

mechanism. Then the lock for mitigating floor requests in a moderator node is released

and the next request can be served.

Our current floor control mechanism implements no acknowledgement and blocking

mechanism where blocking means the action, which a floor requester is currently

holding when she makes a request for a floor, is blocked if she holds a floor. But, the

mechanism uses the acknowledgement (reply message) from revoked node to prevent

 133

the floor of current floor holder from assigned to another participant before the floor of

the floor holder is revoked.

Mean completion time of a request vs.
Mean request interarrival time (3000 milliseconds)

0

5000

10000

15000

20000

25000

30000

35000

40000

Desktop Desktop + Cellphone Cell phone

Mean request interarrival time in milliseconds

M
e
a
n
 c

o
m

p
le

ti
o
n
 t

im
e
 o

f
a
 r

e
q
u
e
st

in
 m

ill
is

e
co

n
d
s

GridFarm NCSA SDSC

Figure 4.14: Mean completion time of a request vs. Mean request interarrival time
(3000 milliseconds)

4.5 Summary

In this chapter, we presented a policy and a mechanism implementing it – XGSP-Floor

(XGSP Floor control) for coordinating concurrent activities to synchronous

collaborative applications and maintaining shared state consistency at application level.

The XGSP-Floor mechanism uses moderator-mediated interaction with a major event

conflict detection function and non-optimistic locking mechanism.

 134

 135

The XGSP-Floor integrated into our collaboration framework provides significant

flexibility, ranging from free-for-all (no floor) to application specific floor control

mechanism for avoiding uncoordinated activities to shared collaboration applications.

A moderator (moderator node) is responsible for maintaining the consistent state of

applications in our collaboration system. Even though our underlying floor control

scheme is a moderator-mediated interaction mechanism, a floor can automatically be

assigned to a floor requester without the mediation of the moderator according to the

policy.

We showed with example applications – shared whiteboard and collaborative chess

game that social protocols used in a face-to-face offline session can be mapped to

mechanisms able to be used in an online session with user interfaces between

participants and CSCW environment. The XGSP-Floor control tool provides human-

computer interaction for control of floor for roaming participants with cell phone as

well as desktop participants in collaboration.

We left support for floor control of synchronous collaborative media applications such

as audio and video applications in future work. In the future work, we also need to

further implement XGSP-Floor tool with more detailed functionalities for the

synchronous collaborative media applications.

Chapter 5

Formal Verification of Control

Mechanisms by Colored Petri Net

This chapter shows modeling of XGSP based control mechanisms, in this thesis

referred to as XGSP-RBAC (XGSP Role Based Access Control) and XGSP-Floor

(XGSP Floor control) mechanisms which are integrated into our collaboration

framework for building collaborative applications in heterogeneous (wire and wireless)

computing environment. We also show formal verification to prove the correctness of

the modeled XGSP based control mechanisms in terms of mutual exclusion, dead lock,

and starvation. The key part for the modeling and formal verification of the modeled

control mechanisms is to show consistent shared state at application level to

collaborating users by mitigating race conditions for shared resources and thus to attain

mutual exclusion among resources. For the abstract modeling representation of the

control mechanisms, we used Colored Petri Nets (CP-nets or CPNs) with time [64].

One of the main reasons for using the CP-nets is the fact that it allows each activity in

 136

modeling to have a number of different types of occurrences by using different types of

token colors, and thus reduces a large number of places (states), transitions (activities),

and arcs (expressions), and makes modeling and verification of a system much easier

than classical Petri net (place/transition net) [60]. The CP-nets provides a formal

simulation tool [14] to model a system. In our modeling, the simulation involves

programming the model of the control mechanisms. Data structures in the simulation

represent the major components of the control mechanisms. The CP-nets also provides

analysis functions using state spaces (also called occurrence graphs) to prove the

correctness of a system based on mathematical methods. As the simulation executes,

the simulation tool (simulator) updates the simulation state to reflect the activities of

the modeled control mechanisms and a set of statistical data are gathered and used to

prove the correctness of the modeled mechanisms by the analysis functions provided by

the CP-nets. This chapter is organized as follows. Section 5.1 provides a general

modeling description of our XGSP based control mechanisms and presents the

procedural behaviors of the mechanisms in terms of decision procedures, predicate

rules for subsequent procedures and current status for actions of which collaborating

users in a session are holding to access resources. Translating terms used in section 5.1

into terms of CP-nets, Section 5.2 provides a modeling of the XGSP based control

mechanisms built by the CP-nets and informal introduction for the modeled control

mechanisms. Section 5.3 presents a formal definition of static structure and dynamic

behavioral properties which CP-nets has in a modeling, and an adaptation of the formal

definition to the XGSP based control mechanisms. In section 5.4, we verify the

correctness of the modeled control mechanisms based on state space analysis provided

 137

by CP-nets. Finally, we conclude by summarizing main points drawn from proving the

correctness of the modeled XGSP based control mechanisms.

5.1 Modeling of Control Mechanisms (XGSP-RBAC and

XGSP-Floor)

In this section we present decision procedures behaved in a moderator node (which is a

decision node to control accesses for resources in our collaboration system) to

determine grant or deny of collaborating users’ requests to access resources in our

XGSP based control mechanisms. The decision procedures of the moderator node (or

by a moderator in our collaboration system) are modeled in terms of the following five

different types of stages. The broad view of the modeling for the XGSP based control

mechanisms is shown in Figure 5.1.

Decision

Access / Floor
Control Decision

Service

Request
Queue

Generation
of Access
Requests

Access Type
Decision
Service

Waiting
List

Queue

Figure 5.1: Broad View of the Modeling for Control Mechanisms

 138

First, the modeling randomly generates access requests to resources by the simulation

on behalf of collaborating users in a collaboration session and has a single queue

(request queue) for storing access requests from the simulated users. The queue is

implemented in FIFO (First-In, First-Out) order for mitigating race conditions of access

requests to resources and thus enforces mutual exclusion among resources. The first

request in the queue is sent to the access type decision service located in external

process module for parsing the requests written in XML and returning a type value into

the modeling. Then, the first request is removed from the queue. During the activity,

new access requests are generated and stored in the request queue waiting for next

service.

XGSP based Control
Mechanism Model

Access Type
 Decision Service

Comms/CPN Send

Comms/CPN Receive

ConnManagementLayer.send("Conn","<RoleName>"^roleName^"</RoleName><AppID>"^
appID^"</AppID><Action>"^action^"</Action>", stringEncode);

ConnManagementLayer.receive("Conn", integerDecode);

Figure 5.2: Comms/CPN for Communication between Control Mechanism Model and
Access Type Decision Service which is located outside the modeling as external
process.

Second stage is a communication activity for accessing the access type decision

service, mentioned above, which is located in external process module outside the

XGSP based control mechanism model. For the communication activity, CP-nets

provides Comms/CPN [35, 36] which is a library for communication service between

 139

CP-nets models and external processes. The Comms/CPN library allows CP-nets

models to interact with the external environments via TCP/IP. Using the library, the

control mechanism model connects to the access type decision service which is a

module written in Java 1.5 and which is practically used in XGSP based control

mechanisms (XGSP-RBAC and XGSP-Floor) integrated into our collaboration

framework. The service parses XML requests sent from the control mechanism model

and returns a type value among Invalid, Implicit, Exclusive, Shared, or Released into

the model as practically does the access type decision service module in our

collaboration framework. Figure 5.2 shows the communication between the control

mechanism model and the access type decision service, Figure 5.3 shows a

communication page used in the modeling and Figure 5.4 shows SML (Standard Meta

Language) functions [58] for the communication used in our modeling. In Figure 5.2,

the Comms/CPN send function is used to send access requests written in XML to the

external type decision service and the Comms/CPN receive function is used to receive

the response from the external service.

Third, decision activities in the modeling are behaved with a type value returned from

the access type decision service. The decision activities are also classified (or

branched) into the same access type activities with a returned value as mentioned in the

second stage. Each decision activity simulates decision behaviors (grant, deny,

released or queued) of a moderator in collaboration by randomly generating access

decisions for requests in the modeling.

 140

ConnManagementLayer.openConnection(“Conn”, “balkan.ucs.indiana.edu”, 5678);
ConnManagementLayer.closeConnection(“Conn”);

Start
Busy

output(proctime);
action
expTime(90);

lock

newReq::newReqs

newReqs (lock, newReq)
@+proctime

IntInf.toInt (time())

Next
Request

Request
Queue

Time

Figure 5.3: Communication Page in Control Mechanism Model

Next stage is to update a state information table of a requesting user with simulated

decision behaviors. Some requests are denied without need for updating current action

state information of the requesting users, some requests are granted with need for

updating the current action state of users, or others are stored in a queue (waiting list

queue for access to shared resources) different from the request queue storing access

requests to resources.

Finally, all the requests stored in a queue for the use of resources are serviced in

prefixed amount of time to avoid starvation. The access requests to shared resources

are stored in a single queue which is implemented in FIFO (First-In, First-Out) order

which has a fair characteristic. The first request in the queue is serviced when a floor

holding a shared resource is released or after an appropriate amount of time. Then, the

request is removed from the queue and the current state information table is updated

with the removed request action.

 141

fun init () =
 if !connected = true
 then (ConnManagementLayer.closeConnection("Conn"); connected := false)
 else ()

fun pred (bindelem) =
let

 fun predBindElem (ModeratorNode'Start (1, {newReq,newReqs,proctime})) = true
 | predBindElem _ = false
in

 predBindElem bindelem
end

fun obs (bindelem) =

let
 fun obsBindElem(ModeratorNode'Start(1,{newReq,newReqs,proctime})) =

(RoleName.mkstr(#roleName newReq), AppID.mkstr(#appID newReq),
 Action.mkstr(#actions newReq)) | obsBindElem _ = ("", "", "")

in
 obsBindElem bindelem
end

fun action (s1, s2, s3) =
 (if not(!connected)
 then (ConnManagementLayer.openConnection("Conn", "balkan.ucs.indiana.edu",

5678); connected:=true)
 else ();
 send_to_decisionService(s1, s2, s3); response:=get_from_externalProcess(); ())

fun stop () =
if !connected = true
then (ConnManagementLayer.closeConnection("Conn"); connected := false)
else ()

fun send_to_decisionService(roleName, appID, action) =
 ConnManagementLayer.send("Conn",

"<RoleName>"^roleName^"</RoleName><AppID>"^appID^"</AppID><Action>"
^
action^"</Action>", stringEncode);

fun get_from_externalProcess() =

ConnManagementLayer.receive("Conn", integerDecode);

Figure 5.4: SML functions for communication between Control Mechanism Model and
External Process (Access Type Decision Service)

 142

Also, we define a set of predicate rules used as determinants in decision procedures of a

moderator node in terms of the following two types of predicate statements:

１ Determination of types classified to access resources.

A. If each element of an access request which is composed of 4-tuple (userID,

roleName, applicationID, action) exists in the policy which is accessed by the

access type decision service located outside modeling, then an access type value

allowed for the resource based on the policy is returned into the model. In the

4-tuple, userID means an identifier of a user joined in a session, roleName

means the name of roles assigned to users in our collaboration system,

applicationID means an application identifier existing in application registries of

our collaboration system, and action means the name of a means which users

access resources. Note that 2-tuple (userID, action) for requesting the use of a

resource is used in our practical mechanism.

I. If the return type is “Implicit”, then the request is granted.

II. If the return type is “Exclusive”, then the request is granted or queued.

III. If the return type is “Shared”, then the request is granted or denied.

IV. If the return type is “Released”, then the request is granted.

B. If one of elements in the 4-tuple does not exist, then a type “Invalid” is returned

into the modeling and the request is denied.

２ Determination of whether an action in a request exists in state information table, in

other words, a request action conflicts with the action of current floor holder.

 143

A. If the return type from the access type decision service is “Exclusive” and

action name in the fourth element of the 4-tuple exists in the state information

table of a moderator node, then the request is queued. Otherwise, the request is

granted.

B. If the return type is “Released” and a floor waiting queue is not empty, then the

request is granted and the first request in the queue is granted and removed

from the queue.

C. If the return type is “Released” and a floor waiting queue is empty, then the

request is granted.

To maintain consistent shared state at application level among collaborating users, we

need to maintain current state information table. This action state information in the

table is updated to reflect an action in a request whenever the request is granted. The

state is represented in a list having request records as elements in the modeling.

5.2 Informal Introduction of Control Mechanisms Modeled

by Colored Petri Nets

In this section, we informally show how CP-nets with time is able to be used to model

our XGSP based control mechanisms. The basic idea for modeling of the XGSP based

control mechanisms using CP-nets with time is to describe a method for mitigating race

conditions of access requests to resources, and thus ensuring shared state consistency at

application level by attaining mutual exclusion among resources. The CP-nets model

with time of the XGSP based control mechanisms is depicted in Figure 5.5. The XGSP

 144

based control mechanisms are modeled by means of states (often referred to as places

in CP-nets), actions (often referred to as transitions), and expressions (often referred to

as arc expressions which is inscribed on the arc) between the states and the actions. We

present an informal introduction of the modeled mechanisms in terms of places,

transitions, and arc expressions. Also we show the correctness of the modeled XGSP

based control mechanisms with the informal definition in terms of mutual exclusion

and starvation.

Each place in the model has a color set (interchangeably often referred to as a data

type). The color set determines a kind of data type which places can have. A value of

a color set is called a token color in CP-nets as an element of a data type in high-level

programming language is called a value of the type. From Figure 5.5, it can be seen

that the places Simulation-Start and Request-Nodes have a color set COUNT and the

places Time and Waiting-Time have a color set INT. The place Request-Queue has a

color set NewReqs, the place State-Information-Table has a color set OldReqs, and the

place Waiting-List-Queue has a color set SharedReqs. Also, the places Busy, Invalid,

Implicit, Shared, Exclusive, and Released have a color set LockxNewReq. The places

Next-Request, L, and GiveFloor have a color set Lock. The place U has a color set

LockxGrantDeny. The place TimeOver has a color set BOOL. Other places have a

color set LockxGrantDenyxNewReq. For example, the place Z is used to send a

decision on an access request to a request node. Then the place Z in our modeling can

have values which are composed of a value from Lock color set, a value from

GrantDeny color set, and a value from NewReq color set where the color set Lock is a

 145

data type used to unlock decision procedures, the color set GrantDeny is a data type

which can have a value from {grant, deny, queued, released, give}, and the color set

NewReq is a data type of new request which the place can have. The informal

descriptive definitions of the color sets in the modeling of the XGSP based control

mechanisms are as follows.

COUNT = {0@time, 1@time, 2@time...} where @time means some model time.

INT = {0, 1, 2, 3 ...}

smallINT = {0, 1, 2, 3, 4}

BOOL = {true, false}

UserID = {A, B… J}

RoleName = {nonmobile_user, mobile_user}

AppID = {wb}

Action = {master, slave, line, rect, oval, pen, eraser, move, load, clear}

NewReq = {(i, j, k, l, m) | i ∈ UserID and j ∈ RoleName and k ∈ AppID and l ∈

Action and m ∈ BOOL}

OldReq and SharedReq = same as NewReq

NewReqs = [{(i, j, k, l, m) | i ∈ UserID and j ∈ RoleName and k ∈ AppID and l ∈

Action and m ∈ BOOL}, {…..}, {…..}, ...]

OldReqs and SharedReqs = same as NewReqs

Lock = {lock@time where lock is a variable used to lock decision procedure and

@time means some model time}

LockxNewReq = {(i, j) | i ∈ Lock and j ∈ NewReq}

GrantDeny = {grant, deny, queued, released, give}

GrantDeny2 = {grant, deny}

LockxGrantDenyxNewReq = {(i, j, k) | i ∈ Lock and j ∈ GrantDeny and k ∈

NewReq}

LockxGrantDeny = {(i, j) | i ∈ Lock and j ∈ GrantDeny}

 146

Figure 5.5: Control Mechanisms Modeled by CP-nets

if b
ool

s
the

n 1
`(I

ntI
nf.

toI
nt

(tim
e()

))
els

e e
mp

ty

if s
har

edR
eqs

 <>
 []

the

n s
etF

als
eA

ctio
n(s

har
edR

eqs
)

els
e s

har
edR

eqs

old
Re

qs

if g
ran

tDe
ny

= g
ive

 or
els

e g
ran

tDe
ny

= r
ele

ase
d

the
n (

sor
t O

ldR
eq.

lt t
mp

Re
qs)

els
e o

ldR
eqs

(lo
ck,

gra
ntD

eny
,ne

wR
eq)

(lo
ck,

gra
ntD

eny
,ne

wR
eq)

(lo
ck,

gra
ntD

eny
,ne

wR
eq)

old
Re

qs
if g

ran
tDe

ny
= g

ran
t

the
n (

sor
t O

ldR
eq.

lt t
mp

Re
qs)

els
e o

ldR
eqs

if g
ran

tDe
ny

 =
giv

e
the

n 1
`lo

ck
els

e e
mp

ty

loc
k

if g
ran

tDe
ny

<>
rel

eas
ed

and
als

o g
ran

tDe
ny

<>
 gi

ve
the

n 1
`lo

ck
els

e e
mp

ty

if b
ool

s a
nd

als
o s

har
edR

eqs
 <>

 []
the

n t
ime

Ov
erA

ctio
n(s

har
edR

eqs
)

els
e s

har
edR

eqs

sha
red

Re
qs

old
Re

qs

sha
red

Re
qs

sha
red

Re
qs

if s
har

edR
eqs

 =
[]

the
n s

har
edR

eqs
els

e r
m

(hd
 sh

are
dR

eqs
) s

har
edR

eqs
if s

har
edR

eqs
 <>

 []
the

n 1
`(l

ock
, g

ran
tDe

ny,
 hd

 sh
are

dR
eqs

)
els

e e
mp

ty

loc
k

if g
ran

tDe
ny

= r
ele

ase
d

the
n 1

`lo
ck

els
e e

mp
ty

(lo
ck,

gra
ntD

eny
)

(lo
ck,

gra
ntD

eny
)

loc
k

sha
red

Re
qs

sha
red

Re
qs

boo
ls

sha
red

Re
qs

if e
xis

tAc
tio

n(n
ew

Re
q,

old
Re

qs)
the

n (
sha

red
Re

qs^
^[

new
Re

q])
els

e s
har

edR
eqs

(lo
ck,

gra
ntD

eny
,ne

wR
eq)

(lo
ck,

gra
ntD

eny
,ne

wR
eq)

(lo
ck,

gra
ntD

eny
,ne

wR
eq)

(lo
ck,

gra
ntD

eny
,ne

wR
eq)

if g
ran

tDe
ny

= r
ele

ase
d o

rel
se

gra
ntD

eny
 =

giv
e

the
n 1

`(l
ock

,gr
ant

De
ny,

new
Re

q)
els

e e
mp

ty

No
des Loc

kxG
ran

tDe
nyx

Ne
wR

eq

(lo
ck,

gra
ntD

eny
,ne

wR
eq)

(lo
ck,

gra
ntD

eny
,ne

wR
eq)

(lo
ck,

gra
ntD

eny
,ne

wR
eq)

nn@
+e

xpT
ime

(10
0)

n
if n

=k
the

n e
mp

ty
els

e 1
`((

n+
1)@

+e
xpT

ime
(10

0))

if s
har

edR
eqs

 =
[]

ore
lse

 tim
eC

hec
kA

ctio
n(h

d s
har

edR
eqs

)
the

n n
ew

Re
qs^

^[
new

Re
qu

est
()]

els
e

[ol
dR

equ
est

(hd
 sh

are
dR

eqs
)]^

^n
ew

Re
qs

new
Re

qs

pro
ctim

e

if G
T(p

roc
tim

e,
rel

eas
edt

ime
) a

nd
als

o s
har

edR
eqs

 <>
 []

the
n t

rue
els

e f
als

e

if G
T(p

roc
tim

e,
rel

eas
edt

ime
)

the
n 1

`p
roc

tim
e

els
e 1

`re
lea

sed
tim

e

rel
eas

edt
ime

rel
eas

edt
ime

pro
ctim

e

Int
Inf

.to
Int

 (ti
me

())

loc
k

if s
har

edR
eqs

 <>
 []

 an
dal

so
old

Re
qs

<>
 []

the
n (

loc
k,g

ran
tDe

ny,
fin

dA
ctio

n(h
d s

har
edR

eqs
, o

ldR
eqs

))
els

e (
loc

k,g
ran

tDe
ny,

new
Re

q)

(lo
ck,

gra
ntD

eny
,ne

wR
eq)

(lo
ck,

gra
ntD

eny
,ne

wR
eq)

(lo
ck,

gra
ntD

eny
,ne

wR
eq)

old
Re

qs

(lo
ck,

gra
ntD

eny
,ne

wR
eq)

(lo
ck,

new
Re

q)

(lo
ck,

new
Re

q)

if !
res

pon
se

= 4
the

n 1
`(l

ock
,ne

wR
eq)

els
e e

mp
ty

if !
res

pon
se

= 3
the

n 1
`(l

ock
,ne

wR
eq)

els
e e

mp
ty

(lo
ck,

gra
ntD

eny
,ne

wR
eq)

(lo
ck,

gra
ntD

eny
,ne

wR
eq)

(lo
ck,

new
Re

q)

(lo
ck,

new
Re

q)

if !
res

pon
se

= 2
the

n 1
`(l

ock
,ne

wR
eq)

els
e e

mp
ty

if !
res

pon
se

= 1
the

n 1
`(l

ock
,ne

wR
eq)

els
e e

mp
ty

(lo
ck,

gra
ntD

eny
,ne

wR
eq)

(lo
ck,

new
Re

q)

if !
res

pon
se

= 0
the

n 1
`(l

ock
,ne

wR
eq)

els
e e

mp
ty

new
Re

q::
new

Re
qs

new
Re

qs
(lo

ck,
 ne

wR
eq)

@+
pro

ctim
e

(lo
ck,

new
Re

q)

Up
dat

e
Tab

le

inp
ut

(ne
wR

eq,
 old

Re
qs)

;
out

pu
t (t

mp
Re

qs)
;

act
ion

cha
ng

edA
ctio

n(n
ew

Re
q,

old
Re

qs,
 old

Re
qs)

;

Giv
eFl

oor
out

pu
t (g

ran
tDe

ny)
;

act
ion

dec
isio

nG
ive

();

GIV
Eor

Un
loc

k

Un
loc

k

Tim
eO

ver

Tra
nsm

it
Re

ply

Re
cei

ve
De

cis
ion

Re
cei

ve
Re

ply

inp
ut

(ne
wR

eq,
 old

Re
qs)

;
out

pu
t (t

mp
Re

qs)
;

act
ion

cha
ng

edA
ctio

n(n
ew

Re
q,

old
Re

qs,
 old

Re
qs)

;

C

Loc
kxG

ran
tDe

nyx
Ne

wR
eq

Se
nd

Re
ply

Ini
t

Arr
iva

l

Pol
ling

Tra
nsm

it
De

cis
ion

D4

inp
ut

(ne
wR

eq,
 old

Re
qs)

;
out

pu
t (g

ran
tDe

ny)
;

act
ion

if e
xis

tAc
tio

n(n
ew

Re
q,

old
Re

qs)
the

n d
eci

sio
nQ

ueu
ed(

)
els

e d
eci

sio
nG

ran
t()

D5

inp
ut

(sh
are

dR
eqs

);
out

pu
t (g

ran
tDe

ny,
 re

lea
sed

tim
e);

act
ion

if s
har

edR
eqs

 =
[]

the
n d

eci
sio

nG
R()

els
e d

eci
sio

nG
T()

D3

out
pu

t (g
ran

tDe
ny)

;
act

ion
dec

isio
nG

D()
;

D2

out
pu

t (g
ran

tDe
ny)

;
act

ion
dec

isio
nG

ran
t()

;

Se
nd

De
cis

ion

D1

out
pu

t (g
ran

tDe
ny)

;
act

ion
dec

isio
nD

eny
();

Sto
p

Sta
rt

out
pu

t (p
roc

tim
e);

act
ion

exp
Tim

e(9
0);

Z

Loc
kxG

ran
tDe

nyx
Ne

wR
eq

L

Loc
k

Giv
eFl

oor

Loc
k

U

Loc
kxG

ran
tDe

ny

Wa
itin

g
Lis

t
Qu

eue

1`
[]

Sh
are

dR
eqs

E

Loc
kxG

ran
tDe

nyx
Ne

wR
eq

D

Loc
kxG

ran
tDe

nyx
Ne

wR
eq

B

Loc
kxG

ran
tDe

nyx
Ne

wR
eq

A

Loc
kxG

ran
tDe

nyx
Ne

wR
eq

Sim
ula

tio
n

Sta
rt

1`
1

CO
UN

T

Re
qu

est
No

des

CO
UN

T

Tim
eO

ver

BO
OL

Wa
itin

g
Tim

e

1`
0

INT

Tim
e

INT

Sta
te

Inf
orm

ati
on

Tab
le

1`
[]

Old
Re

qs

Re
lea

sed

Loc
kxN

ew
Re

q

Exc
lus

ive

Loc
kxN

ew
Re

q

Sh
are

d

Loc
kxN

ew
Re

q

Im
plic

it

Loc
kxN

ew
Re

q

De
cis

ion
Do

ne
Loc

kxG
ran

tDe
nyx

Ne
wR

eq

Inv
alid

Loc
kxN

ew
Re

q

Re
qu

est
Qu

eue

1`
[] Ne
wR

eqs

Ne
xt

Re
qu

est

loc
k

Loc
k

Bu
sy

Loc
kxN

ew
Re

q

1`
[]

1

1
1`

1@
0

11
`0

1`
[]

1

1`
loc

k@
0

1

1`
[]

1

 147

A state (often referred to as marking in CP-nets) of a place represents current state of

token colors of color sets which the place has. For example, the current and initial

marking of the place Simulation-Start in Figure 5.5 is COUNT. This means the place

can have token colors from arbitrary natural numbers beginning with 1. The current

value of the place is used as initial value (or token color) to count the number of

requests for accessing resources from simulated users. The initial markings of places

Request-Queue, Next-Request, Waiting-Time, Waiting-List-Queue, and State-

Information-Table from Figure 5.5 represent initial token value of the color sets which

the places have. The place Next-Request has an initial token color lock with timed type

and the place Waiting-Time has an initial token color 0 (zero) with integer type. The

initial markings of the places Waiting-List-Queue and State-Information-Table have a

token color with empty list which means the number of elements in the list is zero

respectively. All other places initially have empty which means the places have no

token colors.

Token removed from incoming places are transferred to outgoing places by evaluating

arc expressions occurred by the transition connected to the places. For example, in

Figure 5.5, the transition Init has one incoming arc and one outgoing arc. The arc

expression of incoming arc into the transition is n where n is a variable of a color set

COUNT in the place Simulation-Start. The value of the CP-nets variable n is 1 since

the token value which the place Simulation-Start has is 1. And the arc expression of

outgoing arc from the transition Init is a variable n and function expTime (100) where n

is also a CP-nets variable and has the same value 1 as the value of the color set COUNT

 148

transferred into the transition, and expTime (100) is a function to exponentially

calculate some delay time in the interarrival requests and is used to simulate the

requests as if collaborating users practically behave to request accesses to resources.

The interarrival requests’ times are exponentially distributed with a mean of 100 time

units between two successive requests issued by the simulation tool. So the delay time

has no any meaning and just is used to randomly generate independent requests. The

enabled transitions are usually occurred by evaluating outgoing arcs as a previous

instance. Then, a binding element, which is composed of an enabled transition and a

binding of outgoing arcs, has to be considered to evaluate the outgoing arcs connected

from the transition. Also, as another instance in Figure 5.5, each of the transitions D1,

D2, and D3 has one incoming arc and one outgoing arc. The arc expression of the

incoming arc is (lock, newReq) where lock is a variable of color set Lock and newReq

is a variable of color set NewReq. And the arc expression of outgoing arc is (lock,

grantDeny, newReq) where lock is a variable of color set Lock, grantDeny is a variable

of color set GrantDeny and newReq is a variable of color set NewReq. Assume that a

global variable - response has now a value 2. Then the place Shared has a token value

(lock, newReq) and the transition D3 is enabled. With a decision value returned from

the function decisionGD(), the transition D3 binds the expression (lock, grantDeny,

newReq) of the outgoing arc to (lock, grant or deny, newReq). Therefore, the place has

a token value which is composed of a value of lock variable, a value of grantDeny

variable, and a value of newReq variable. Thus, in such sequences of occurrences, the

occurrence of a transition simulates decision procedures of the control mechanisms.

 149

All other transitions in the model of the control mechanisms are enabled and occurred

in such a similar way.

To show the correctness of the modeled mechanisms in terms of mutual exclusion, we

consider the places Request-Queue and Next-Request, and the transition Start. A

request token from the place Request-Queue and a lock token from the place Next-

Request enable the transition Start. When the transition is occurred, the two tokens are

added to the place Busy by evaluating the arc expression between the transition Start

and the place Busy, and the tokens (a request token and a lock token) are removed from

the places Request-Queue and Next-Request. The transition Start then will be not

enabled until the place Next-Request has a new token value lock, where the token value

lock is generated after the state information table is updated and a decision on a request

is sent to a request node. Therefore, the following requests are not able to enter the

decision procedures which are regarded as a critical section in the modeling until the

place Next-Request has a new token. This means at most one request is processed in

the decision procedural stage and thus indicates the modeled control mechanisms are

ensuring mutual exclusion for the decision procedural stage to avoid race condition

among requests issued by the simulation tool on behalf of users.

Next, we consider the transitions Start, Polling, and TimeOver to show that there is no

starvation among requests issued in the modeling. When the transition Start is

occurred, the transitions Polling and TimeOver check the time duration of the requests

waiting for floors in the place Waiting-List-Queue. If the waiting time duration of a

 150

request is over the prefixed amount of time, then the request is serviced. Thus, the

requests waiting for floors in the place Waiting-List-Queue will never be starved.

5.3 Formal Definitions and Notations of Control

Mechanisms Modeled by Colored Petri Nets

In this section we present a formal definition of static structure and dynamic behavioral

properties that CP-nets has, and the representation of the static properties and the

example representation of the dynamic behavioral properties for the CP-nets model of

our XGSP based control mechanisms.

5.3.1 Static Structure Properties of CP-nets and Representation of

Control Mechanisms by the Properties

The static structure is basically composed of building blocks (places, transitions, and

arcs), the connection points through which data flow into and out of the building

blocks, and the connection paths along which data flow between the building blocks.

The static properties of the CP-nets [64] are represented as a 9-tuple (∑, P, T, A, N, C,

G, E, I) where

1. ∑ is a finite set of types (also, called color sets).

2. P is a finite set of places.

3. T is a finite set of transitions.

4. A is a finite set of arcs such that P∩T = P∩A = T∩A = ∅.

 151

5. N is a node function: A → (P � T) � (T �P).

6. C is a color function: P → ∑.

7. G is a guard function such that �t ∈ T [Type(G(t)) = Bool ∧ Type(Var(G(t)))

⊆∑] where Type(G(t)) denotes the type of G(t), Bool denotes {true, false} and

Var(G(t)) denotes the set of variables in G(t).

8. E is an arc expression function such that

�a ∈ A [Type(E(a)) = C(p(a))MS ∧ Type(Var(E(a))) ⊆∑]

where p(a) is the place of N(a), Type(E(a)) denotes the type of E(a), C(p(a))MS

denotes the set of multisets over a set C(p(a)), and Var(E(a)) denotes the set of

variables in E(a).

9. I is an initialization function such that �p ∈ P [Type(I(p)) = C(p)MS]

where Type(I(p)) denotes the type of I(p) and C(p)MS denotes the set of

multisets over a set C(p).

From the set of color sets expressed ∑ in above 9-tuple, the XGSP based control

mechanisms have the set of color sets as follows.

∑ = {COUNT, INT, UNIT, BOOL, smallINT, Lock, GrantDeny, GrantDeny2,

UserID, RoleName, AppID, Action, NewReq, OldReq, SharedReq, NewReqs,

OldReqs, SharedReqs, LockxNewReq, LockxGrantDenyxNewReq,

LockxGrantDeny}

The elements P, T, and A in the 9-tuple are a set of places, transitions, and arcs

respectively. The N means no arc may connect twp places or two transitions. In the

CP-nets model of XGSP based control mechanisms, the color function C maps the

places Simulation-Start and Request-Nodes into COUNT, the place Request-Queue into

 152

NewReqs, the places Time and Waiting-Time into INT, the place State-Information-

Table into OldReqs, the place Waiting-List-Queue into SharedReqs, the places Busy,

Invalid, Implicit, Shared, Exclusive, and Released into LockxNewReq, the places Next-

Request, L, and GiveFloor into Lock, the place U into LockxGrantDeny, the place

TimeOver into BOOL, and all other places into LockxGrantDenyxNewReq. Item7, the

guard function is an expression which evaluate to Boolean (true or false). The arc

expression function and initialization function are also an expression which evaluate to

valid type value. The declarations for the CP-nets model of XGSP based control

mechanisms are represented using the CP-nets ML (an extension of the functional

programming language SML (Standard Meta Language)) [58] in Figure 5.6.

Declaration of Variables

val k = 1000;

val queuedTime = 100;

var bools : BOOL;

var n : COUNT;

var decisionNum : smallINT;

var proctime : INT;

var releasedtime : INT;

var newReq : NewReq;

var oldReq : OldReq;

var sharedReq : SharedReq;

var newReqs : NewReqs;

var oldReqs : OldReqs;

var tmpReqs : OldReqs;

var sharedReqs : SharedReqs;

var grantDeny : GrantDeny;

 153

var grantDeny2 : GrantDeny;

globref connected = false;

globref response = 0 : smallINT;

Declaration of Color sets

colset BOOL= bool;

colset COUNT = int timed;

colset UNIT = unit timed;

colset INT = int;

colset smallINT = int with 0..4;

colset Lock = with lock timed;

colset UserID = with A | B | C | D | E | F | G | H | I | J;

colset RoleName = with nonmobile_user | mobile_user;

colset AppID = with wb;

colset Action = with master | slave | line| rect | oval | pen | eraser | move | load | clear;

colset NewReq = record userID : UserID * roleName : RoleName * appID : AppID *

 actions : Action * AT : BOOL;

colset OldReq = record userID : UserID * roleName : RoleName * appID : AppID *

 actions : Action * AT : BOOL;

colset SharedReq = record userID : UserID * roleName : RoleName *

appID : AppID * actions : Action * AT : BOOL;

colset NewReqs = list NewReq;

colset OldReqs= list OldReq;

colset SharedReqs = list SharedReq;

colset LockxNewReq = product Lock * NewReq timed;

colset GrantDeny = with grant | deny | queued | released | give;

colset GrantDeny2 = subset GrantDeny with [grant , deny];

colset LockxGrantDenyxNewReq = product Lock * GrantDeny * NewReq;

colset LockxGrantDeny = product Lock * GrantDeny;

 154

Functions

fun decisionGrant() = grant;

fun decisionDeny() = deny;

fun decisionQueued() = queued;

fun decisionGD() = GrantDeny2.ran();

fun decisionGT() =(released, IntInf.toInt (time()));

fun decisionGR() = (grant, IntInf.toInt (time()));

fun decisionGive() = give;

fun intTime() = IntInf.toInt (time());

fun GT(a:int, b:int) = ((a-b) > queuedTime);

fun changedAction(newReq:NewReq, tmpReqs:OldReqs, oldReqs:OldReqs) =

(if length oldReqs = 0 orelse length tmpReqs = 0

 then oldReqs^^[newReq]

 else (if (#userID newReq) = (#userID (hd tmpReqs))

 then (rm (hd tmpReqs) oldReqs)^^[newReq]

 else changedAction(newReq, tl tmpReqs, oldReqs)))

fun existAction(newReq:NewReq, oldReqs:OldReqs) =

(if length oldReqs = 0

 then false

 else (if (#actions newReq) = (#actions (hd oldReqs))

 then true

else existAction(newReq, tl oldReqs)))

fun findAction(sharedReq:SharedReq, tmpReqs:OldReqs) =

(if length tmpReqs = 0

 then sharedReq

 else (if (#actions sharedReq) = (#actions (hd tmpReqs))

 then {userID = #userID (hd tmpReqs), roleName = #roleName (hd tmpReqs),

 appID = #appID (hd tmpReqs), actions = slave, AT = #AT (hd tmpReqs)}

 else findAction(sharedReq, tl tmpReqs)))

fun timeCheckAction(sharedReq:SharedReq) =

 155

(if (#AT sharedReq) then false else true)

fun timeOverAction(sharedReqs:SharedReqs) =

([{userID = #userID (hd sharedReqs), roleName = #roleName (hd sharedReqs),

 appID = #appID (hd sharedReqs), actions = #actions (hd sharedReqs),

 AT = true}]^^rm (hd sharedReqs) sharedReqs)

fun setFalseAction(sharedReqs:SharedReqs) =

([{userID = #userID (hd sharedReqs), roleName = #roleName (hd sharedReqs),

 appID = #appID (hd sharedReqs), actions = #actions (hd sharedReqs),

 AT = false}]^^rm (hd sharedReqs) sharedReqs)

fun expTime (mean: int) =

 let

 val realMean = Real.fromInt mean

 val rv = exponential((1.0/realMean))

 in

 floor (rv+0.5)

end;

fun newRequest() =

{userID = UserID.ran(), roleName = RoleName.ran(),

 appID = AppID.ran(), actions = Action.ran(), AT = false}

fun oldRequest(sharedReq:SharedReq) =

{userID = #userID sharedReq, roleName = #roleName sharedReq,

 appID = #appID sharedReq, actions = slave, AT = #AT sharedReq}

fun get_from_externalProcess() =

 ConnManagementLayer.receive("Conn", integerDecode);

fun send_to_decisionService(roleName, appID, action) =

ConnManagementLayer.send("Conn",

"<RoleName>"^roleName^"</RoleName><AppID>"^appID^"</AppID>

<Action>"^action^"</Action>", stringEncode);

Figure 5.6: Declarations for the CP-nets model of Control Mechanism

 156

5.3.2 Dynamic Behavioral Properties of CP-nets and Representation

of Control Mechanisms by the Properties

The dynamic behavior of CP-nets is a data transformation between the occurring

transition and the occurred transition with a time delay of some small magnitude. In

this section, we present the dynamic behavioral properties of CP-nets [64] about

binding, marking, enabling, and occurrence, and the example representation of them in

the modeled XGSP based control mechanisms.

• Binding – this means to bind correct token values to the variable of the token

type. For example, in our modeling, the transition Start may have the binding

element such as <Start, (lock, {userID = kakim, roleName = mobile-user, appID

= wb, action = pen, AT = false})@777> which is composed of a transition and a

binding.

• Marking – a set of multisets over the set of tokens positioned on the individual

places. For example, the places Request-Queue, Waiting-List-Queue, and

State-Information-Table have an empty list token as an initial marking

respectively.

• Enabling – when tokens from all the input places of a transition are evaluated by

the arc expressions between the input places and the transition and before the

tokens are added to the output places of the transition, the transition is called

enabled with a set of binding elements.

• Occurrence – after the transition is enabled and by removing token from the

input places and adding the tokens to the output places of the transition, the

transition is called occurred and then the occurrence sequence is composed of a

 157

sequence of reachable markings and occurring steps. For example, when the

transition Start occurs, one specified token will be removed from the input

places Request-Queue and Next-Request. At the same time, three tokens will

be added to the output places. The place Request-Queue will get a token with a

list type as a token color set, the place Busy will get a token with a value (lock,

{userID = kakim, roleName = mobile-user, appID = wb, action = pen, AT =

false})@777, and the place Time will get a token with the value of current

modeling time.

5.4 Verification for Correctness of Control Mechanisms

based on State Space Analysis

In this section, we verify the correctness of the XGSP based control mechanism

modeled by the CP-nets from the previous sections with a means of simulations and

state spaces (which are also called occurrence graphs) [64]. The CP-nets provides a

simulation tool [14] that simulates a system by nondeterministic distributing color

tokens into a model, and a state space generation tool [14] that generates a report for a

sequence of occurrence states. To construct state spaces means to generate all the

possible occurrence graphs that are composed of nodes and arcs. Nodes in state spaces

are generated for each reachable markings, and arcs in the state spaces are generated for

each occurring binding elements. The report generated from the state space generation

tool is used for verifying the correctness of a model. In the next five subsections, we

analyze the simulation behaviors and the occurrence state information generated from

the state space generation tool.

 158

5.4.1 Statistical Information of State Spaces and SCC Graph

The state spaces report has the following five parts. The first part, statistical

information report of state spaces and SCC (strongly connected components) graph

[64], is shown in Table 5.1. The statistical report contains information about the size of

nodes and arcs, and time and calculation status took for generating state spaces and

SCC graphs. In the case of 4133 which the number of requests is, the state space has

52643 nodes and 79809 arcs in partially calculated graphs, and this took 300 seconds

for generating the state space which is composed of the nodes and the arcs. Also, the

report shows information of SCC graph that is identical to the information of the state

space except for time taken for generating the components. The strongly connected

components are a maximal subgraph to find a path from any one node to any other

node. In the report, the number of strongly connected components in the modeled

control mechanisms is equal to the number of state space nodes. This implies that the

modeled control mechanisms have strongly connected components with just one node.

Therefore, the modeled mechanisms have no infinite occurrence sequences. This

means the simulation of the modeled mechanisms terminates after processing some

number of requests if we put the stop criteria such as limiting the number of requests

into the model. In other words it shows the modeled mechanisms are working as we

expect to achieve termination normally in forcibly limiting the number of requests.

This report shows statistical information about sizes of state spaces and strongly

connected components of the state spaces generated from the tools of CP-nets.

Therefore, diverse properties generated from state spaces and the strongly connected

graphs of the state spaces can be used to get important and useful information such as

 159

mutual exclusion, deadlock, and starvation about the modeled XGSP control

mechanisms.

Statistics
of Requests = 4133

 State Space SCC Graph
Nodes 52643 52643
Arcs 79809 79809

Seconds 300 16
Status Partial

Table 5.1: Statistical Information of State Space and Scc Graph

5.4.2 Boundedness Properties and Mutual Exclusion of Modeled Control

Mechanisms

The second part shows boundedness properties of the state spaces report in Table 5.2.

The properties express the upper integer bounds which is the maximal number of

tokens and the lower integer bounds which is the minimal number of tokens that the

places in a modeling may have. In the integer bounded information of the modeled

mechanisms, the places Busy, Decision-Done, Exclusive, Implicit, Invalid, Next-

Request, Released, Shared, L, and Z have one token in upper bound and zero token in

lower bound. These are places in decision procedural stage of a moderator node that is

a critical section for mutual exclusion. Note that the upper integer bound of the places

Busy and Next-Request is 1. This implies if 1 is upper integer bound for the places,

then at most one request is processed in the decision procedural stage (critical section)

at any time. As a contradiction, if the upper integer bound of the place Busy is more

than two, then the upper bound of the place Next-Request has to be at least more than

 160

two at any time in any reachable markings. But we see the upper bound of the place

Next-Request is 1 and thus the place Busy is not able to contain more than two token at

any time in each reachable marking. This indicates the modeled control mechanisms

are ensuring mutual exclusion for the decision procedural stage to avoid race condition

among requests.

Also, we need to show all the requests that wish to enter a critical section have to be

serviced and only one request must enter the critical section. In other words, all the

requests have to be serviced and thus not starved for getting the service. To show this

property, we consider the transitions Arrival and Start, and the integer bounds of the

places Request-Queue and Next-Request in Figure 5.5. The occurring transition

Arrival puts new requests into the place Request-Queue and then the first request in the

queue enters the decision procedural stage (critical section) through the occurrence of

the transition Start. As shown in Table 5.5, the place Request-Queue has exactly one

token at any time during the execution of the modeling, and the place Next-Request has

one token as upper integer bound. This means the transition Start will be enabled at

any time during the execution of the modeling, and hence one request will enter the

decision procedural stage. Thus, the requests will be serviced one by one as we expect.

This report also tells us that the places State-Information-Table, and Waiting-List-

Queue as well as the place Request-Queue in each reachable marking have exactly one

token in upper and lower integer bounds. This means the places have one list token

each used as a queue and the modeled mechanism in Figure 5.5 is also working as

expected.

 161

Boundedness Properties
Best Integer Bounds Upper Lower

A 2 0
B 3 0

Busy 1 0
C 1 0
D 1 0

Decision_Done 1 0
E 1 0

Exclusive 1 0
GiveFloor 1 0
Implicit 1 0
Invalid 1 0

L 1 0
Next_Request 1 0

Nodes 14 0
Released 1 0

Request_Nodes 1 0
Request_Queue 1 1

Shared 1 0
Simulation_Start 1 0

State_Information_Table 1 1
Time 3 0

TimeOver 3 0
U 1 0

Waiting_List_Queue 1 1
Waiting_Time 1 1

Z 1 0

Table 5.2: Boundedness Properties

5.4.3 Home Properties

The third part of the report provides information about home properties. The home

markings in the home properties mean markings which can always be reached from all

reachable markings [64]. The property in Table 5.3 shows that the initial marking of

the modeled control mechanisms in Figure 5.5 is not a home marking because the

initial marking is a marking for starting just the modeled mechanisms by substituting a

 162

integer value one for the transition Init as a binding element of the transition, and hence

any subsequent markings never return to the initial marking. Table 5.7 shows the

fairness property of the state spaces report. It also provides information about how

often different binding elements occur in each markings of the modeled mechanisms.

The property shows that the modeled mechanisms have no infinite occurrence

sequences. In other words, the modeled mechanisms have no infinitely many different

binding elements. These properties imply any subsequent markings are not able to

reach the initial marking and the initial marking has no many different binding

elements in the modeling. Therefore, these properties show that the modeled

mechanisms in Figure 5.5 are working as expected.

Home Properties
Home Markings Initial Marking is not a home marking

Table 5.3: Home Properties

5.4.4 Liveness Properties of Modeled Control Mechanisms

The fourth part of the report provides information about liveness properties. The dead

transition instances in the properties of the report mean some transition instances which

are never enabled in all reachable markings. Also, the live transition instances in the

properties mean transition instances which can always be enabled at least once more in

all reachable markings. The report in Table 5.4 shows the modeled control

mechanisms have no dead transition instances, and no live transition instances. This

implies that each transition in the modeled mechanisms is enabled in at least one

 163

marking among all reachable markings. This also tells us that there are no transition

instances which can always be enabled at least once more in all reachable markings of

the modeled mechanisms.

To show that the modeled mechanisms are working as expected and the correctness of

the external process (Access Type Decision Service), we consider two more reports

about the liveness properties. Table 5.5 and 5.6 show the liveness properties of the

modeled access control mechanism and floor control mechanism respectively separated

from the modeled control mechanisms. In Table 5.5, the report shows there are two

dead transition instances. This means the transitions D4 and D5 in Figure 5.5 are never

enabled in all reachable markings. This implies the access type decision service is

correctly working as expected because the two transitions are never used to process

requests in the modeled XGSP-RBAC mechanism. There are two dead transition

instances as shown in Table 5.6. This also means the transitions D2 and D3 are never

enabled in all reachable markings. Therefore, the access type decision service is

correctly working as expected because the two transitions are never used in the

modeled XGSP-Floor mechanism. Thus, the reports in Table 5.4, 5.5, and 5.6 show the

modeled mechanisms and the access type decision service are correctly working as

expected, and from the timed CP-nets and the properties of previous sections, new

requests in exponentially distributed arbitrary interval are generated and thus no dead

lock situation in which all the requests may be blocked is occurred.

 164

Liveness Properties
Dead Transition Instances None
Live Transition Instances None

Table 5.4: Liveness Properties of Modeled Control Mechanisms

Liveness Properties
Dead Transition Instances D4 and D5
Live Transition Instances None

Table 5.5: Liveness Properties of Modeled XGSP-RBAC Mechanism

Liveness Properties
Dead Transition Instances D2 and D3
Live Transition Instances None

Table 5.6: Liveness Properties of Modeled XGSP-Floor Mechanism

5.4.5 Fairness and Starvation Properties of Modeled Control Mechanisms

The fifth part of the report provides information about fairness properties. The

information tells us how often the different binding elements of each transition in a

modeling can occur [64]. The report in Table 5.7 shows there are no infinite

occurrence sequences in the modeled mechanisms. But the modeled mechanisms may

have infinite occurrence sequences in the transition Arrival of the modeling that has

some binding elements (Arrival, NewReqs) which are repeated indefinitely where

NewReqs is a type of color set with list type. The CP-nets does not consider such

 165

binding elements as making sense. Thus, the report shows the modeled mechanisms

have no infinite occurrence sequences. The trivial infinite occurrence sequences

occurred in the transition Arrival also show if the transition ceases to occur, the

simulation of the modeled mechanisms must terminate. The transition generates new

requests until some prefixed number of requests. Therefore, the properties also show

the modeled mechanisms are correctly working satisfying stop criteria to terminate the

simulation as expected because there are no enabled transitions in the modeling after

the transition Arrival generates some prefixed number of requests, i.e. there are no

more enabling and occurrence in the transition Arrival. In addition to the expectation,

the modeled mechanisms are fair. Any requests may never be starved since there are

no infinite occurrence sequences which may starve the requests forever. Also, the

requests waiting for floors in the place Waiting-List-Queue in Figure 5.5 will never be

starved. Thus, it shows there is no starvation in the modeled control mechanisms.

Fairness Properties
No infinite occurrence sequences

Table 5.7: Fairness Properties

5.5 Summary

In this chapter we modeled the XGSP based control mechanisms (XGSP-RBAC and

XGSP-Floor) by CP-nets with time which is practically integrated into our

collaboration framework. Also we presented informal introductions and formal

definitions for the modeled control mechanisms. The key reason why we modeled the

 166

 167

mechanisms was to prove the correctness of the mechanisms by means of simulations

and state spaces (also called occurrence graphs). The formal verification was done with

a state space report which contains useful information about some dynamic properties

of state space graphs and SCC graphs generated by CP-nets tool. The modeled control

mechanisms are working as expected through the analysis of the state space report in

terms of mutual exclusion, dead lock and starvation. Thus, the main contribution of

this chapter is a formal verification by CP-nets for the correctness of the modeled

control mechanisms to show consistent shared state at application level among

collaborating users by mitigating race conditions to shared resources.

Chapter 6

Conclusion

In this thesis we have attempted to provide a virtual workspace for not only remotely

dispersed users but also roaming users with cell phone devices. This attempt has been

driven by building integrated collaboration system including cell phone devices. We

have also attempted to provide the virtual workspace with control capabilities and

collaborative applications for synchronous and ubiquitous collaboration. As ubiquitous

collaboration and access becomes more prevalent in the future, it will become more

important to provide a virtual workspace in which geographically dispersed users can

work together. But, as the number of users with a large number of disparate access

devices increases, the difficulties for protecting secured computing environments and

resources from unauthorized users as well as unsecured access devices will increase

since computing environments and resources can be compromised by inadequately

secured entities – human, devices, software, data, and so on. The ubiquitous

collaboration includes sharing applications in anytime and anywhere. Mechanisms for

 168

dealing with consistency in the use of application shared among collaborators will have

to be considered in an unambiguous manner according to increasing heterogeneous

collaboration applications. Also, the intrinsic latency occurred due to the increase of

interactive distance, relatively to the latency occurred in collocated place, may affect on

the choice of the mechanism for shared state consistency of application.

The following sections discuss the current status of collaboration framework, problems

encountered during the development of the framework, and future works. These

sections are categorized with control and collaborative application / component issues.

6.1 Collaboration Framework and Control Mechanisms

We built a collaboration framework on heterogeneous (wire, wireless) computing

environment for synchronous and ubiquitous collaboration as well as heterogeneous

community collaboration. A key function of the framework is to provide a generic

solution for controlling sessions in a conference, accesses to resources, and maintaining

shared state consistency at application level by defining a general protocol in XML.

Also, the framework provides a structure for development and deployment of

collaborative applications that can be used to support asynchronous collaboration by

allowing different users of a session to access the same resource at different times, and

synchronous collaboration by enabling different users of a session to share the same

resource in real time (at the same time).

 169

 Future work

Fault-tolerant role delegation mechanism with role hierarchy policy: During our

experiments with the collaboration framework, one of problems encountered was a

failure like network disconnection of a moderator or chairperson node. If a moderator

or chairperson node fails or is disconnected, and is not able to recover from the failure

for some amount of time, one of participants in collaboration capable of having the role

capability of the moderator or chairperson has to be elected. We tested it with an event

driven message mechanism. But, when the network connection of a moderator or

chairperson node was lost, it did not work since the event messages could not be

disseminated in disconnected network. One approach to overcome the problem by

exploring different fault-tolerant role delegation mechanism (for example, polling

mechanism by heart-beat message between a moderator node and a conference

manager) with role hierarchy policy will be considered in future work. We also left in

future work support of the role hierarchy policy with the fault-tolerant role delegation

mechanism issue.

6.1.1 Session Control

We presented a generic solution for controlling sessions in a single easy-to-use

integrated collaboration system. The solution provided fundamental control logics to

manage presences of and connectivity among collaborating users in an online session,

and organize online sessions or a conference. To describe control logics of presences,

connectivity, and sessions’ states, we used XML as a protocol definition language of

session control. The XML based General Session Protocol (XGSP) is a protocol for

 170

streaming control messages written in XML to provide various collaboration sessions

(heterogeneous community collaboration sessions) in a conference for users. The

session control protocol account for policy, presence, session creation, initiation,

teardown, and so on.

6.1.2 Access Control

We presented a solution for controlling accesses to applications with the notion of role

as an intermediate control entity between collaborating users and collaborative

applications. The roles are based on users’ privileges and devices’ capabilities to allow

users to manipulate protected applications in the collaboration – XGSP-RBAC (XGSP

Role Based Access Control). The use of role simplifies the administrative management

of access rights for applications and gives an administrator flexible adaptation to the

changes of collaboration environment. To specify access control policies and exchange

request-response messages of access control for applications, XML was used because it

is easy to understand and use with pre-existing industry standard parsers. The XGSP-

RBAC mechanism provides flexibility adapting to the state change of collaborative

applications that may be occurred from cooperation among collaborators at run time in

collaboration system. Also, fine-grained access control for the instance of individual

resource as well as for individual user was used.

 Future work

 We left in future work support of role assignment policy for assigning roles to

users.

 171

 In future work, we will design and implement the authentication service for

users joining a session during roaming with cell phone devices, and the

encryption service for messages sent to and from the cell phone devices.

6.1.3 Floor Control

We presented a policy and a mechanism implementing it – XGSP-Floor (XGSP Floor

control) for coordinating accesses to applications and maintaining shared state

consistency at application level. The XGSP-Floor provides significant flexibility,

ranging from free-for-all (no floor) to application specific floor mechanisms for

avoiding uncoordinated accesses to shared collaboration applications. A moderator is

responsible for maintaining the consistent state of applications in our collaboration

system. Even though our underlying floor control scheme is a moderator-mediated

interaction mechanism, a floor can automatically be assigned to a floor requester

without the mediation of the moderator according to the policy. We showed with

example applications – shared whiteboard and collaborative chess game that social

protocols used in a face-to-face offline session can be mapped to mechanisms able to be

used in an online session with user interfaces between participants and CSCW

environment. XGSP-Floor control tool provides human-computer interaction for

control of floor for roaming participants with cell phone as well as desktop participants

in collaboration. Also, we showed a synchronous collaboration, which means all

participants in collaboration always have the same views and data in real time, with a

major event conflict detection function and a non-optimistic locking mechanism used in

our collaboration.

 172

 Future work

In future work we left support for floor control of synchronous collaboration media

applications such as audio and video applications. We will apply the moderator-

mediated floor control mechanism to the synchronous collaboration media applications

and consider different floor control mechanisms with different parameters for floor

control of the shared whiteboard application in our collaboration domains –

heterogeneous community collaboration as well as synchronous and ubiquitous

collaboration. In the future work, we also need to further implement XGSP-Floor tool

with more detailed functionalities for the synchronous collaboration media applications.

6.2 Collaborative Applications and Components

6.2.1 Instant Messenger and Proxy

We designed and implemented an application proxy used for Instant Messenger (IM).

The proxy has responsibility for getting responses from Jabber server and performs any

necessary conversions for clients on mobile device. As an intermediary, the proxy

retains communication interfaces and thus can offload some computational needs. The

benefits of using Jabber server include presence management, message processing

based on XML, transparent interoperability, structured information data, and open

formats. With such an approach using open or commercial technology, in a modular

fashion, with appropriate interface for collaborative applications, we can build a

sustainable high functionality system taking advantage of the latest technologies and

enable multiple collaborative applications to re-use the same basic technologies. We

showed the architecture of Jabber with the proxy as a derivative of shared event model.

 173

In the architecture, all the clients have a copy of the application before joining

collaboration. Then events such as presence are sent to all participating clients.

6.2.2 Shared Whiteboard and Filter

We designed and implemented an application filter able to cooperate and to coordinate

heterogeneous types of applications on heterogeneous platforms. The purpose of the

application filtering is to convert one type of representation to other types of

representations on heterogeneous platforms with different screen (or canvas) sizes and

different representation formats. We used shared event model for drawing objects and

shared display model for graphical image display. In the shared display collaboration

model, clients share the graphical image display and the state is maintained (shared)

among clients by transmitting the changes in the display through our message and

service middleware. The supporting heterogeneous clients require that sophisticated

shared display environments automatically change size and display representation

formats to suit each client. The application filter is used for synchronizing views (or

results) shared among heterogeneous collaborative applications and thus maintaining

consistent shared state across the applications.

 Future work

Much of image detail losses were found in the experiment of the application filter with

shared whiteboard application. Much details of image displayed on cell phone device

through transcoding of a image transferred from desktop were lost because the

graphical image was shrunk to accommodate the screen size of cell phone. To improve

 174

the quality of the transcoded image from desktop into cell phone, we should consider

different transcoding and scaling algorithm in future work for heterogeneous

collaborative applications on heterogeneous computing platforms. Another interesting

issue is the magnification from cell phone to desktop. We tested this with Nokia phone

[86] which allows application developers to control media like cell phone camera. The

test experiment is as follows: Nokia phone user takes a picture with built-in camera.

The picture is displayed on the shared whiteboard canvas in Nokia phone, and then the

byte message of the picture is sent into the whiteboard application filter and the

magnified byte image through transcoding in the application filter is disseminated into

a desktop through a broker. Here we encountered the scaling (magnification) problem

as well. Therefore we also should consider this case in future work.

6.2.3 Collaborative Chess Game Application

 Future work

CGL has an interactive two-player collaboration chess game for desktop devices. We

did not implement the chess game on cell phone. In future work, we will consider the

design and implementation of the chess game with shared event model on Wi-Fi

(wireless fidelity) [107] phone, to reduce latency and to improve computing capability.

Also we will consider the extension of our work (collaboration framework and other

collaborative applications as well as the collaborative chess game) to new generation of

cell phone such as iPhone [47] which is multimedia and Internet-enabled mobile phone.

 175

Bibliography

[1] Access Grid (2003), http://www.accessgrid.org

[2] Ahmet Fatih Mustacoglu, Wenjun Wu, and Geoffrey Fox. Internet Calendaring and

Scheduling Core Object Specification (iCalendar) Compatible Collaborative

Calendar-Server (CCS) Web Services Proceedings of IEEE 2006 International

Symposium on Collaborative Technologies and Systems CTS 2006 Conference Las

Vegas May 14-17 2006.

[3] Andreas Schaad, Jonathan Moffett, and Jeremy Jacob. The Role-Based Access

Control System of a European Bank: A Case Study and Discussion. SACMAT: 6th

ACM Symposium on Access Control Models and Technologies, ACM. Chantilly,

VA.

[4] Anil L. Pereira, Vineela Muppavarapu, and Soon M. Chung. Role-Based Access

Control for Grid Database Services Using the Community Authorization Service.

IEEE Transactions on Dependable and Secure Computing, vol. 3, no. 2, April-June

2006.

[5] Banavar, G., Beck, J., Gluzberg, E., Munson, J., Sussman, J., Zukowski, D.,

“Challenges: An Application Model for Pervasive Computing”, To appear in the

proceedings of the Sixth Annual ACM/IEEE International Conference on Mobile

Computing and Networking, Mobicom 2000.

[6] Bernstein, P., Goodman, N. and Hadzilacos, V. (1987) Concurrency control and

recovery in database systems, Addison-Wesley.

 176

http://www.accessgrid.org/

[7] B. Lampson, “Protection,” Proceedings of the Fifth Princeton Symposium of

Information Science and Systems, pp. 437-443 (Mar. 1971); reprinted in Operating

Systems Review 8(1), pp. 18-24 (Jan. 1974).

[8] Boyd J., ”Floor control policies in multi-user applications”, in INTERACT ’93 and

CHI ’93 Conference on Human Factors in Computing Systems, ACM Press, p.

107–108, 1993.

[9] Brad A. Myers, et al. “Using Hand-Held Devices and PCs Together”. ACM

Communications, 2001. To appear.

[10] Brad A. Myers, Yu Shan A. Chuang, Marsha Tjandra, Mon-chu Chen, and

Chun-Kwok Lee. "Floor Control in a Highly Collaborative Co-Located Task".

[11] BufferedImage (Java 2 Platform SE

5.0). http://java.sun.com/j2se/1.5.0/docs/api/java/awt/image/BufferedImage.html

as.html

[12] Community Authorization Server

(CAS). http://www.lesc.ic.ac.uk/projects/c

[13] Community Grids Lab (CGL), http://communitygrids.iu.edu

[14] CPN Tools. CPN Tools Homepage. http://wiki.daimi.au.dk/cpntools/

[15] David F. Ferraiolo and Richard Kuhn. “Role-Based Access Control”,

Proceedings of the 15th NIST-NSA National Computer Security Conference,

Baltimore, MD, 13-16 October 1992.

[16] D.F. Ferraiolo, J. Cugini, D.R. Kuhn (1995) "Role Based Access Control:

Features and Motivations", Computer Security Applications Conference - extends

the 1992 model.

 177

http://java.sun.com/j2se/1.5.0/docs/api/java/awt/image/BufferedImage.html
http://www.lesc.ic.ac.uk/projects/cas.html
http://communitygrids.iu.edu/
http://wiki.daimi.au.dk/cpntools/

[17] Dommel H.P. and J.J. Garcia-Luna-Aceves, “Design issues for floor control

protocols”, In Proceedings of SPIE Multimedia and Networking, (San Jose, CA,

USA), pp. 305–16, Feburary 1995.

[18] Dommel H.P. and J.J. Garcia-Luna-Aceves, “Floor Control for Multimedia

Conferencing and Collaboration”, ACM Multimedia Systems, Vol. 5, No. 1,

January 1997.

[19] Dommel H.P. and J.J. Garcia-Luna-Aceves, “Comparison of floor control

protocols for collaborative multimedia environments,” In Proceedings of SPIE

Symposium on Voice, Video, and Data Communications, (Boston, MA), November

1998.

[20] Dommel H.P. and J.J. Garcia-Luna-Aceves, “Efficacy of floor control protocols

in distributed multimedia collaboration”, Cluster Computing, Vol. 2, No. 1, pp. 17-

33, 1999.

[21] Dommel H.P. and J.J. Garcia-Luna-Aceves, “Group Coordination Support for

Synchronous Internet Collaboration.” IEEE Internet Computing, pp. 74-80,

Mar/Apr. 1999.

[22] D. Saha and A. Mukherjee. Pervasive Computing: A Paradigm for the 21st

Century. Published by the IEEE Computer Society, Vol. 36, No. 3. pp. 25-31

March 2003.

[23] D. W. Chadwick, and A. Otenko. RBAC policies in XML for X.509 Based

Privilege Management. SEC 2002, Egypt, May 2002.

 178

[24] D. W. Chadwick, and A. Otenko. The PERMIS X.509 Role Based Privilege

Management Infrastructure. 7th ACM Symposium on Access Control Models and

Technologies, 2002.

[25] D. W. Chadwick and A. Otenko. The PERMIS X.509 Role Based Privilege

Management Infrastructure. Future Generation Computing Systems, 2003.

[26] D. W. Chadwick, A. Otenko, and E. Ball. Role-based Access Control with

X.509 Attribute Certificates. IEEE Internet Computing, March-April 2003, pp. 62-

69

[27] DOM. http://www.w3.org/DOM/

[28] Edwards, W.K. “Flexible Conflict Detection and Management in Collaborative

Applications,” in Proceedings UIST’97: ACM SIGGRAPH Symposium on User

Interface Software and Technology. 1997. Banff, Alberta, Canada: pp. 139-148.

[29] Extensible Markup Language (XML) 1.0, W3C REC-xml, October 2000.

[30] F. Berman, G. Fox, and A. Hey, editors. Grid Computing: Making the Global

Infrastructure a Reality, John Wiley & Sons, 2003.

[31] Geoffrey Fox, Hasan Bulut, Kangseok Kim, Sung-Hoon Ko, Sangmi Lee,

Sangyoon Oh, Shrideep Pallickara, Xiaohong Qiu, Ahmet Uyar, Minjun Wang,

Wenjun Wu. Collaborative Web Services and Peer-to-Peer Grids or in sxw

presented at 2003 Collaborative Technologies Symposium (CTS'03).

[32] Geoffrey Fox, Wenjun Wu, Ahmet Uyar, Hasan Bulut, Shrideep Pallickara.

Global Multimedia Collaboration System in Proceedings of the 1st International

Workshop on Middleware for Grid Computing co-located with Middleware 2003,

June 17, 2003 Rio de Janeiro, Brazil.

 179

http://www.w3.org/DOM/

[33] Geoffrey C. Fox, Wenjun Wu, Ahmet Uyar Hasan Bulut. Design and

Implementation of Audio/Video Collaboration System Based on Publish/subscribe

Event Middleware Proceedings of CTS04 San Diego January 2004.

[34] Geoffrey Fox. Collaboration and Community Grids Special Session VI:

Collaboration and Community Grids Proceedings of IEEE 2006 International

Symposium on Collaborative Technologies and Systems CTS 2006 conference Las

Vegas May 14-17 2006; IEEE Computer Society, Ed: Smari, Waleed & McQuay,

William, pp 419-428. ISBN 0-9785699-0-3 DOI.

[35] G. Gallasch and L. M. Kristensen. Comms/CPN

library. http://wiki.daimi.au.dk/cpntools/

mcs.org

[36] G. Gallasch and L. M. Kristensen. Comms/CPN: A Communication

Infrastructure for External Communication with Design/CPN. Proceedings of the

CPN’2001 Workshop.

[37] Global-MMCS (Global Multimedia Collaboration

System). http://www.globalm

ecurity

[38] Globus Grid Security Infrastructure

(GSI). http://www.globus.org/toolkit/docs/4.0/s

[39] Greenberg, S. “Sharing views and interactions with single-user applications,”

Proceedings of the ACM/IEEE Conference on Office Information Systems. 1990.

Cambridge, MA: pp. 227-237.

[40] Greenberg, S. “Personalizable groupware: Accommodating individual roles and

group differences,” In Proceedings of the ECSCW `91 European Conference of

 180

http://wiki.daimi.au.dk/cpntools/designCPN/libs/commscpn/
http://www.globalmmcs.org/
http://www.globus.org/toolkit/docs/4.0/security

Computer Supported Cooperative Work. 1991. Amsterdam: Kluwer Academic

Press. pp. 17-32.

[41] Greenberg, S. and Marwood, D. “Real time groupware as a distributed system:

Concurrency control and its effect on the interface,” Proceedings of the ACM

CSCW Conference on Computer Supported Cooperative Work, October 22-26,

1994. North Carolina, ACM Press.

[42] GridFTP: Universal Data Transfer for the

Grid http://www.globus.org/datagrid/gridftp.html

[43] GroupKit. http://www.groupkit.org

[44] Hasan Bulut, Shrideep Pallickara and Geoffrey Fox. Implementing a NTP-

Based Time Service within a Distributed Brokering System ACM International

Conference on the Principles and Practice of Programming in Java, June 16-18, Las

Vegas, NV.

[45] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing

Infrastructure, Morgan-Kaufman, 1998.

[46] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling

Scalable Virtual Organizations. International Journal of High Performance

Computing Applications, 2001. 15(3): p. 200-222.

[47] iPhone. http://en.wikipedia.org/wiki/IPhone

[48] ITU. Recommendation H.225 (2000), Calling Signaling Protocols and Media

Stream Packetization for Packet-based Multimedia Communication Systems.

[49] ITU. Recommendation H.243 (2000), Terminal for low bit-rate multimedia

communication.

 181

http://www.globus.org/datagrid/gridftp.html
http://www.groupkit.org/
http://en.wikipedia.org/wiki/IPhone

[50] ITU. Recommendation H.245 (2000), Control Protocols for Multimedia

Communication.

[51] ITU-T Recommendation H.320, Narrowband Visual Telephone Systems and

Terminal Equipment. 1993.

[52] ITU. Recommendation H.323 (1999), Packet-based multimedia communication

systems.

[53] ITU-T Recommendation X.509 (2001). The Directory: Authentication

Framework.

[54] Jabber Instant Messenger, http://jabber.org

[55] Java. http://java.sun.com/

[56] Java Message Service (JMS), http://java.sun.com/products/jms

[57] JDOM. http://www.jdom.org/

[58] J.D. Ullman, Elements of ML Programming. Prentice-Hall, 1993.

[59] J. Gray, P. Helland, P. O’Neil, and D. Shasha, “The dangers of replication and a

solution,” in To appear in Proc. of the 1996 SIGMOD Conference, June 1996.

[60] J. Peterson, Petri Net Theory and the Modeling System. Englewood Cliffs, NJ:

Prentice-Hall, 1981

[61] J. Rosenberg et al. (2002) “SIP: Session Initiation Protocol”, RFC 3261,

Internet Engineering Task Force, http://www.ietf.org/rfc/rfc3261.txt

[62] J2ME. http://java.sun.com/javame/index.jsp

[63] Katrinis K., Parissidis G., and Plattner B., “Activity Sensing Floor Control in

Multimedia Collaborative Applications”, 10th International Conference on

Distributed Multimedia Systems (DMS 2004).

 182

http://jabber.org/
http://java.sun.com/
http://java.sun.com/products/jms
http://www.jdom.org/
http://www.ietf.org/rfc/rfc3261.txt
http://java.sun.com/javame/index.jsp

[64] K. Jensen, Coloured Petri Nets. Basic Concepts, Analysis Methods and

Practical Use, vol. 1, Basic Concepts. Monographs in Theoretical Computer

Sciences. Springer-Verlag, 1997.

[65] Koskelainen P., Schulzrinne H. and Wu X.(2002), A SIP-based Conference

Control Framework, NOSSDAV’02, May 12-14, 2002, Miami Beach, Florida,

USA.

[66] kXML. http://kxml.objectweb.org/

[67] Liang Fang, Dennis Gannon, and Frank Siebenlist. XPOLA: An Extensible

Capability-based Authorization Infrastructure for Grids. In 4th Annual PKI R&D

Workshop, April 2005.

[68] Lightweight Directory Access Protocol (LDAP). www.openldap.org

[69] L. Pearlman, et al., A Community Authorization Service for Group

Collaboration. In Proceedings of the IEEE 3rd International Workshop on Policies

for Distributed Systems and Networks. 2002.

[70] L. Pearlman, et al., The Community Authorization Service: Status and Future.

CHEP03, March 24-28, 2003, La Jolla, California.

[71] Luca Chittaro. Visualizing Information on Mobile Devices. IEEE Computer

Magazine. March 2006 (Vol. 39, No. 3) pp. 40-45.

[72] Malpani Radhika and Lawrence A. Rowe, ”Floor control for large-scale MBone

seminars”, in Proceedings of the Fifth ACM International Conference on

Multimedia, ACM Press, p. 155-163, 1997.

 183

http://kxml.objectweb.org/
http://www.openldap.org/

[73] Mark Roseman, Saul Greenberg. GROUPKIT: a groupware toolkit for building

real-time conferencing applications. Proceedings of the 1992 ACM conference on

Computer-supported cooperative work. Toronto, Ontario, Canada. 1992.

[74] Mark Roseman, Saul Greenberg. Building real-time groupware with GroupKit,

a groupware toolkit. ACM TOCHI Trans on Comp Human Internet 3(1), pp 66-

106, March 1995.

[75] Matt Bishop. Introduction to Computer Security. Addison Wesley.

[76] M. Handley, I. Wakeman, and J. Crowcroft, “CCCP: Conference Control

Channel Protocol: A Scalable Base for Building Conference Control Applications,”

in ACM Conf. SIGCOMM., August 1995.

[77] McKinlay A., R. Procter, et al., “A study of turn-taking in a computer-supported

group task”, appeared in People and Computers VII: Proceedings of HCI ’93, 1993.

[78] Mike Macedonia and Don Brutzman. MBONE, the Multicast Backbone, to be

published in IEEE Computer. http://www.best.com~prince/techinfo/mbone.html

[79] Mobile SVG Profiles: SVG Tiny and

Basic. http://www.w3.org/TR/SVGMobile/

[80] Moore’s Law. http://en.wikipedia.org/wiki/Moore’s_Law

[81] Moran, T., McCall, K., van Melle, B., Pedersen, E. and Halasz, F. (in press)

“Design principles for sharing in Tivoli, a whiteboard meeting-support tool.” In

Designing Groupware for Real Time Drawing, S. Greenberg, S. Hayne & R. Rada

ed. McGraw Hill.

[82] M. Weiser. “The Computer for the Twenty-First Century,” Scientific

American, September 1991.

 184

http://www.best.com%7Eprince/techinfo/mbone.html
http://www.w3.org/TR/SVGMobile/
http://en.wikipedia.org/wiki/Moore's_Law

[83] NaradaBrokering, http://www.naradabrokering.org

[84] NetMeeting, http://www.microsoft.com/windows/netmeeting

[85] NIST SIP (2001), http://snad.ncsl.nist.gov/proj/iptel

[86] Nokia 3650. http://europe.nokia.com/A4143688

[87] OpenH323 Project (2001), http://www.openh323.org

[88] Pederson, E., et al. “Tivoli: An Electronic Whiteboard for Informal Workgroup

Meetings,” in Proceedings INTERCHI'93: Human Factors in Computing Systems.

1993. Amsterdam, The Netherlands: pp. 391-398.

[89] “Peer-To-Peer: Harnessing the Benefits of a Disruptive Technology”, edited by

Andy Oram, O’Reilly Press March 2001.

[90] Privilege and Role Management Infrastructure Standards (PERMIS)

project. http://www.openpermis.org

[91] R, B’Far. Mobile Computing Principles: Designing and Developing Mobile

Applications with UML and XML, Cambridge University Press 2005.

[92] Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman, C. E. Role-Based

Access Control Models. IEEE Computer 29, 2 (Feb. 1996), pp. 38-47.

[93] Scalable Vector Graphics (SVG). http://www.w3.org/Graphics/SVG/

[94] Shen, H, and Dewan, P. Access Control for Collaborative Environments. In

ACM Conference on Computer-Supported Cooperative Work. 1992, p. 51-58.

[95] Shrideep Pallickara and Geoffrey Fox. NaradaBrokering: A Middleware

Framework and Architecture for Enabling Durable Peer-to-Peer Grids. Proceedings

of the ACM/IFIP/USENIX Middleware Conference. 2003. pp 41-61.

 185

http://www.naradabrokering.org/
http://www.microsoft.com/windows/netmeeting
http://snad.ncsl.nist.gov/proj/iptel
http://europe.nokia.com/A4143688
http://www.openh323.org/
http://www.openpermis.org/
http://www.w3.org/Graphics/SVG/

[96] Shrideep Pallickara, Harshawardhan Gadgil and Geoffrey Fox. On the

Discovery of Topics in Distributed Publish/Subscribe systems Proceedings of the

IEEE/ACM GRID 2005 Workshop, pp 25-32. November 13-14 2005 Seattle, WA.

[97] Shrideep Pallickara, Marlon Pierce, Harshawardhan Gadgil, Geoffrey Fox, Yan

Yan, Yi Huang. A Framework for Secure End-to-End Delivery of Messages in

Publish/Subscribe Systems. Proceedings of the 7th IEEE/ACM International

Conference on Grid Computing (GRID 2006). Barcelona, Spain, 28-29 September

2006.

[98] Stefik, M., Bobrow, D.G., Foster, G., Lanning, S. and Tatar, D. (1987)

“WYSIWIS revised: Early experiences with multiuser interfaces.” ACM

Transactions on Office Information Systems, 5(2), pp. 147-167, April.

[99] Sun Microsystems JXTA Peer to Peer Technology. http://www.jxta.org

[100] SVGArena. http://www.svgarena.org/

[101] Tcl/Tk (Tool Command Language / Graphical User Interface

Toolkit). http://www.tcl.tk

[102] Treo 600. http://en.wikipedia.org/wiki/Treo_600

[103] T.120 Standards for Audiographic Teleconferencing.

[104] Virtual Rooms Video Conferencing systems (2003), http://www.vrvs.org

[105] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, and S. Tuecke,

GridFTP: Protocol Extensions to FTP for the Grid, Argonne National Laboratory,

April 2002.

[106] Wenjun Wu, Geoffrey Fox, Hasan Bulut, Ahmet Uyar, Harun Altay. “Design

and Implementation of a collaboration Web-services system”, Special issue on Grid

 186

http://www.jxta.org/
http://www.svgarena.org/
http://www.tcl.tk/
http://en.wikipedia.org/wiki/Treo_600
http://www.vrvs.org/

 187

computing in Journal of Neural Parallel and Scientific Computations (NPSC),

Volume 12, pages 391-408 (2004).

[107] Wi-Fi (wireless fidelity). http://en.wikipedia.org/wiki/Wi-Fi

[108] Window Meeting Space. http://en.wikipedia.org/wiki/Windows_Meeting_Space

[109] Xiaohong Qiu, Bryan Carpenter, Geoffrey Fox, Collaborative SVG as a Web

Service, SVG Open 2003 Conference and Exhibition, Vancouver, Canada, July

2003.

[110] Xiaohong Qiu. “Message-based MVC Architecture for Distributed and Desktop

Applications” Syracuse University PhD March 2 2005.

[111] XMPP (Extensible Messaging and Presence Protocol). http://www.xmpp.org

[112] Yao, W., Moody, K., and Bacon, J. A Model of Oasis Role-Based Access

Control and Its Support for Active Security. In ACM Symposium on Access

Control Model and Technology, ACM. Chantilly, VA.

http://en.wikipedia.org/wiki/Wi-Fi
http://en.wikipedia.org/wiki/Windows_Meeting_Space
http://www.xmpp.org/

Vita

Name of Author: Kangseok Kim

Place of Birth: Seoul, KOREA

Degrees Awarded:

November 2007 Ph.D. in Computer Science

Indiana University,

Bloomington, IN, U.S.A.

June 1998 M.S. in Computer Engineering

Syracuse University,

Syracuse, NY, U.S.A.

February 1989 B.S. in Mathematics

Kyungwon University,

Sungnam, KOREA

Experience:

AUGUST 2001 – September 2007 Graduate Research Assistant

Community Grids Lab (CGL),

 Indiana University,

 Bloomington, IN, U.S.A.

May 2000 – AUGUST 2001 Graduate Research Assistant

School of Computational Science & Information

Technology (CSIT),

Florida State University,

Tallahassee, FL, U.S.A.

AUGUST 1998 – May 2000 Graduate Research Assistant

 Northeast Parallel Architectures Center (NPAC),

 Syracuse University,

 Syracuse, NY, U.S.A.

