
Parallel LDA Through Synchronized
Communication Optimizations

Bingjing Zhang∗, Bo Peng∗†, Judy Qiu∗
∗ School of Informatics and Computing, Indiana University, Bloomington, IN, USA

†Computer Science Department of Peking University, Beijing, China
zhangbj, pengb, xqiu@indiana.edu

Abstract—Sophisticated big data machine learning applications
are difficult to parallelize because it not only needs to process
a big training dataset, it also needs to synchronize big model
data in iterations. In parallel LDA, comparing synchronized and
asynchronous communication methods under data parallelism
and model parallelism, we note that the power-law distribution
of word counts in LDA training datasets suggests using synchro-
nized communication optimizations can improve the efficiency
of the model update to allow the model to converge faster,
shrink the model size, and further reduce the computation time
in later iterations. Therefore, we abstracted new synchronized
communication operations and developed two new parallel LDA
implementations “lda-lgs” and “lda-rtt”. We compare our new
approaches to leading implementations in the field on an Intel
Haswell cluster with 100 nodes, 4000 threads. In data parallelism,
“lda-lgs” can reach higher model likelihood with shorter or
similar execution time compared with Yahoo! LDA. In model
parallelism, when achieving similar model likelihood, “lda-rtt”
can run up to 3.9 times faster compared with Petuum LDA.

I. INTRODUCTION

One challenge of parallel machine learning applications is
while training data can be split among parallel workers, the
model data all local computations depend on is growing pro-
gressively and generates significant synchronization overhead.
Currently two types of parallelism are commonly used to solve
this problem (see Fig. 1a):

Data Parallelism While the training data are split among
parallel workers, the global model is distributed on a set of
servers or existing parallel workers. Each worker computes on
a local model and updates it with the synchronization between
local models and the global model.

Model Parallelism In addition to splitting the training data
over parallel workers, the global model data is split between
parallel workers and rotated during sampling.

Latent Dirichlet Allocation (LDA) [1] is an important ma-
chine learning technology that has been widely used in many
areas such as text mining, advertising, recommender systems,
network analysis, and genetics. Though extensive research on
this topic exists, people are endeavoring to scale it to web-scale
corpora with big models to explore more subtle semantics. We
have identified the importance of model synchronization or
update speed and observed that a fast communication method
can speed up convergence rate, subsequently reduce the model
size and shorten computation time in later iterations. Although
the proposed synchronized and asynchronous approaches in
Fig. 1b both cause the model to converge without affecting

Training Data 1

Local Model

Global Model

Training Data 2

Local Model

Training Data 3

Local Model

Training Data 4

Local Model

Worker

Training Data 1

Global Model 1

Training Data 2

Global Model 2

Training Data 3

Global Model 3

Training Data 4

Global Model 4

Data Parallelism

Worker Worker Worker

Model Parallelism

WorkerWorker Worker Worker

Model Data Update between 
Parallel Workers or Client/Server

Global Model Rotation

(a)

Sample 
a word

Sample 
a word

Send the word

Send the word

Sample words

Sample words

Update words

Update words

Sample 
a word

Sample 
a word

Send the word

Send the word

Asynchronous Communication Synchronized Communication

Time

Threading Computation Communication

Sample words

Update words

Sample 
a word

Sample 
a word

Send the word

Send the word

(b)

Fig. 1. (a) Data Parallelism vs. Model Parallelism and (b) Asynchronous
Communication vs. Synchronized Communication in LDA

the correctness of the algorithm, it is often unclear which
strategy performs better for LDA applications. Asynchronous
communication is popular because it avoids a global waiting
overhead between parallel workers as well as local waiting
between computation threads and communication threads. In
data parallelism, asynchronous communication allows local
computation to continue without waiting for the completion
of updates on the global model from all parallel workers
per iteration. In model parallelism, although model rotation
is synchronized, per word sampling and sending can overlap
without waiting on each worker, exemplified by asynchronous
communication.

After analyzing the characteristics of LDA training datasets,
it becomes clear that the counts of each word in the training
documents fall under the power-law distribution. As a result,
when data parallelism is used, many words in the global
model will display on all the workers’ local models, which
forms “one-to-all” communication patterns for synchroniza-
tion. Likewise, in model parallelism, as the size of the global
model data expands, each worker handles more data transfer.
These observations imply that routing optimized synchronized
communication operations can be used to improve LDA model
update speed.

Our synchronized communication methods utilize the model
data distribution characteristics and routing optimization in
conjunction. Furthermore, we overlapped the computation and
communication steps to reduce the overhead of global/local
waiting. These ideas are implemented in Harp [2], a col-
lective communication library on Hadoop. Harp has al-
ready integrated several collective communication patterns
in a unified abstraction. However, the current patterns can-



not abstract the local/global model synchronization in data
parallelism or the model rotation in model parallelism.
As such, we abstracted three other communication patterns
named “syncLocalWithGlobal”, “syncGlobalWithLocal”, and
“rotateGlobal”. The new patterns are generalizable and can be
applied to LDA as well as many other machine learning ap-
plications. We implemented one LDA application which uses
“syncLocalWithGlobal” and “syncGlobalWithLocal” to per-
form data parallelism and another which uses “rotateGlobal”
to perform model parallelism. We compared our implemen-
tations with a set of state-of-the-art implementations based
on asynchronous communication methods, such as Yahoo!
LDA [3] and Petuum LDA [4], on several datasets with a
total of 10 billion model parameters. We conduct extensive
performance experiments on Intel Haswell architecture up
to 100 nodes with a total of 4000 parallel threads. The
results show that synchronized communication optimizations
can significantly reduce communication overhead and improve
model convergence speed.

The following sections describe: the cost model of LDA
algorithm (Section 2), synchronized communication methods
(Section 3), implementations of Harp-LDA (Section 4), per-
formance results of our implementations (Section 5), related
work (Section 6), and conclusions (Section 7).

II. COST MODEL

A. LDA model

LDA is a generative probabilistic data modeling technique.
Training data are abstracted as a document collection where
each document is a bag of words. LDA models the data by
introducing latent topics, which tries to capture the underlining
semantic connections and structures inside the data. In LDA
model, a document is a mixture of latent topics, and each topic
is a multinomial distribution over words. In the generative
process, for document j, we first draw a topic distribution θj
from a Dirichlet with parameter α. Then for each word i in
this document, we draw a topic zij = k from the multinomial
distribution with parameter θj . Finally, word xij is drawn from
a multinomial φwk|k=zij , which also derives from a Dirichlet
with parameter β. Here, the words xij are observed variables,
θ, φ, z are latent variables, and α and β are hyper parameters.

The purpose of LDA inference is to compute the posterior
distribution of latent variables given the observed variables.
Many approximate inference algorithms exist. In a practice
on big data, Collapsed Gibbs Sampling (CGS) [5] shows high
scalability. It is a kind of Markov Chain Monte Carlo algorithm
which has three phases, the initialize, burn-in, and stationary
phase.

In the initialize phase, each word is assigned a random topic
denoted as zij . Then it begins to reassign topics to each word
wij according to the conditional probability of zij , which is
henceforth called sampling.

p
(
zij = k | z¬ij , x, α, β

)
∝ N¬ijwk + β∑

wN
¬ij
wk + V β

(
N¬ijkj + α

)
(1)

Here, superscript ¬ij means that the corresponding word is
excluded in the counts. V is vocabulary size. Nwk is the count
of word w assigned to topic k, and Nkj is the count of topic k
assigned in document j, which are sufficient statistics for the
latent variable θ and φ. The latent variables can be represented
by three matrices Zij , Nwk and Nkj , which are model data.
Intuitively, by equation(1), with higher probability a word will
be assigned to the topic that has been assigned to it’s co-
occurring words. Therefore, sampling by the latest model data
of co-occurring words is critical for convergence, and that is
why synchronization is so important in a parallel LDA trainer.

Hyper parameters α and β are also called concentration
parameters, which control the topic density in the final model.
The larger the α and β, the more topics can be drawn into a
document and assigned to a word, and the more non-zero cells
in each row of the Nwk and Nkj matrices. Although a useful
LDA trainer often has the feature of α and β optimization
dynamically tuned to fit the training data, in this paper, we
skip such a feature and use symmetric α and β both fixed to
a common used value 0.01 to exclude the complex effects on
performance caused by their dynamics.

Latent variables will gradually converge in the process of
iterative sampling. This is the phase where burn-in occurs and
finally reaches the stationary state. From that point, we can
draw samples from the sampling process and use them to
calculate the posterior distribution.

To evaluate the quality of the final model learned by LDA,
held-out testsets are often used, taking likelihood or perplexity
as the accuracy metrics. In this paper, we only use the
model data likelihood on the training dataset to monitor the
convergence of the LDA trainer, which is consistent with the
held-out testset results in our experiments, only much faster.

Sampling on zij in CGS is a strictly sequential process.
AD-LDA [6] is the seminal work allowing us to relax this se-
quential sampling requirement. It assumes that the dependence
between one topic assignment zij and another zij is weak
in that different words in different documents are sampled
concurrently. In AD-LDA, training data are partitioned into
n subsets, with n Gibbs Samplers running parallel on each
collection, and the samplers synchronize their model data with
others at certain time points. This parallel version produces
a useful model, establishing the foundation of large-scale
parallel CGS implementations of LDA trainers.

B. Performance Factors

Sampling Algorithm Computation complexity of a sam-
pling algorithm basically determines the overall performance.
Although there is a O(1) sampling algorithm, LightLDA [7],
proposed in the literature, we focus on SparseLDA [8], which
is an optimized CGS sampling algorithm mostly used in the
state-of-the-art LDA trainers, in order to make a broader
comparison. SparseLDA splits the equation (1) into three parts:

p (zij = k | rest) ∝
N¬ijwk (N

¬ij
kj + α) + β ∗N¬ijkj + αβ∑

wN
¬ij
wk + V β

(2)



The denominator is a constant when sampling on one word.
The third part of the numerator is also a constant; the second
part is non-zero only when Nkj is non-zero, and the first part is
non-zero only when Nwk is non-zero. In naive CGS sampling,
the conditional probability will compute K times, while in
SparseLDA, the computation can be decreased to non-zero
items number in Nwk and Nkj , which are much smaller than
K on average.

We found that in practice, the sampling performance is
more memory bounded than computation bounded, since the
computation is very simple and memory access to two large
matrices is not by its nature cache friendly. Furthermore,
CGS has a feature of exchangeability that permits the order
of word sampling to be changed. In practice, sampling can
take the order by row or column on the document-word
matrix. Equation(2) is the form optimized for row order, called
sample-by-doc. In this case, Nkj can be cached for the words
in the same row, and the computation complexity in terms of
amortized random memory access time is O(∑k 1(Nwk 6=
0)). Symmetrically, sample-by-word will have the complexity
of O(∑k 1(Nkj 6= 0)).

Parallelism Strategy Data partition on the training data,
which is a document-word matrix, can be done either in the
rows or the columns. If data are partitioned by rows, each
subset data has its local z, Nkj , Nwk model data and only Nwk
needs to be synchronized with others. In general applications,
the row number is much larger than the column number, so
partition by rows will generate a smaller model data size. We
only refer to the shared word-topic matrix as model data.

There are many possible communication strategies which
control how to do model data synchronization between parallel
workers. Modern clusters allow two levels of parallelism: inter-
node and intra-node parallelism. In this paper, we focus on
inter-node parallelism by exploring the differences between
the communication strategies.

Cluster configurations include nodes number N and network
bandwidth B, memory size M for each node, and thread
number T for each node. As many-core technology brings
forth more powerful machines to bear complicated compu-
tation applications, large-scale machine learning applications
will benefit from relatively small numbers of N with a large
number of T to achieve high scale parallelism.

Data Property Training data can be characterized by the
total numbers of tokens, denoted as W , and the number of
documents, denoted as D. The model data Nwk is a V ∗ K
matrix and Nkj is a D ∗K matrix, where V is the vocabulary
size and K is the topic number.

LDA is an iterative algorithm. It keeps sampling on the
training data and updating (synchronizing) the model data until
it converges. One iteration equals one round of sampling the
training data and in one synchronization pass all the model
data are synchronized. As we described above, both parts are
highly related to the model data size, not in terms of the matrix
dimension but instead the non-zero items count.

C. Model Data

Model Size Power law distribution is a general phe-
nomenon. It has another equal form for text data, Zipf’s law,
where the frequency of a word is proportional to the reciprocal
of its rank.

freq(i) = C ∗ i−λ (3)

Here, i is word rank, and λ is near 1.
There are a total of V unique words in the training data.

We then have:

W =

V∑
i=1

(freq(i))) =

V∑
i=1

(C ∗ i−λ)

≈ C ∗ (ln(V ) + γ +
1

2V
) (4)

If λ is 1, this is the partial sum of harmonic series which have
logarithmic growth, where γ is the EulerMascheroni constant
≈ 0.57721.

Model data, V ∗K, is a big but sparse matrix. In general,
V is 1M, K is 1K, while for big models it can even reach
1M*1M. The non-zero cell count of the matrix is the actual
model size, denoted as S, S << V ∗K.

In the initialization of CGS, word-topic count matrix is
initialized by random topic assignment for each word. So the
word i will get max(K, freq(i)) non-zero cells. If freq(J) =
K, J = C/K, we get:

Sinit =

J∑
i=1

K +

V∑
i=J+1

freq(i) =W −
J∑
i=1

freq(i) +

J∑
i=1

K

= C ∗ (lnV + lnK − lnC + 1) (5)

The actual model size Sinit is logarithmic to matrix size V ∗K.
This does not mean Sinit is small, since the constant C =
freq(1) can be very large; even C ∗ ln(V ∗K) can be huge.
An increase of dimension in the model will not increase the
model data size dramatically.

With the progress of iterations and algorithm convergence,
the model data size will shrink. The concentration parameters
α and β control the final sparsity of the topic distribution.
When a stationary state is reached, the average count value will
drop to a certain small constant ratio of K, with the constant
δ determined by the properties of the training data itself.

Sfinal = mean(word− topiccount) ∗ V = δ ∗K ∗ V (6)

Model Data Partition After training data is partitioned to
each node of the cluster, a local model data S′ will be built up
and used in local computation. This local model data should
synchronize with global model data S frequently to make
the training process converge. In fact, the synchronization
frequency is highly relevant to the final model accuracy.

This data partition strategy can decrease local training data
W ′ linear to node number N . Therefore, we get W ′ =W/N .
For computations proportional to the total word number W ′,
this strategy is friendly for computation, and the more nodes



100 101 102 103 104 105 106 107

Word Rank

100

101

102

103

104

105

106

107

108

109

1010
W

or
d

Fr
eq

ue
nc

y

clueweb

y = 109.9x−0.9

enwiki

y = 107.4x−0.8

(a)

100 101 102 103 104

Document Collection Partition Number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Vo
ca

bu
la

ry
Si

ze
of

Pa
rt

iti
on

(%
) clueweb

enwiki

(b)

Fig. 2. Model Size of (a) Zipf’s Law and (b) Vocabulary and Data Partition

we have, the better performance we can expect. Assuming
C ′ = C/N , the actual local model size S′init is:

S′init = C ′ ∗ (lnV ′ + lnK − lnC ′ + 1)

≤ C

N
(lnV + lnK − lnC + 1 + lnN)

≤ S

N
+
C

N
lnN (7)

In general configurations lnN is smaller than lnV + lnK −
lnC+1, so local model size S′init is no more than 2

N Sinit. The
initialized local model data size is controlled by data partitions.

When model data synchronization begins, all words in the
local vocabulary need to fetch the corresponding global model
data. The local vocabulary size V ′ will then determine both
the communication data volume and local model size in the
burn-in phase, which becomes the problem.

It is clear that when documents are partitioned to N
nodes, every word with a frequency larger than N will get
a high probability occurring on each node. If at rank L,
freq(L) = N , we get: L = W

(lnV+γ)∗N . On the “enwiki”
dataset, W=1B, V =1M, N=100, we get L = 0.69V ; on the
“clueweb” dataset, W=10B, V =1M, N=100, L > V . For a
reasonably large training dataset, L is easily larger than V ,
which means it needs to send/receive and hold almost all the
global model data locally.

In sum, because of the power-law distribution in the training
data, data parallelism can help distribute training data among
nodes and parallelize the computation tasks accordingly, but
it cannot effectively control the volume of the model data
transferred between nodes. When dealing with larger data
and larger models, simply deploying more nodes will not
prove an effective solution, for model data synchronization
will eventually become a bottleneck.

D. Experiments

We first validate Zipf’s law of word distribution on
“clueweb” and “enwiki” datasets, where the top 1M most
frequent words are selected (see Fig. 2a). They both show
considerable matching results, especially in the word region
with high frequency. In the preprocess step for the LDA trainer,
stop words and low frequency words are often removed. This
results in a flatter slope and a denser model than expected
from equation(5). In Fig. 2b, we represent the difficulty of

controlling the vocabulary size by random partition of docu-
ment collection. When 10 times more partitions are introduced,
there is only a sub-linear portion decrease of the vocabulary
size in each partition compared to the total one; e.g. on the
“clueweb” dataset, each partition gets 92.5% vocabulary size
when data is randomly distributed to 128 nodes. The “enwiki”
dataset is about 12 times smaller than “clueweb”, and it gets
90% at 8 nodes, keeping a similar ratio. This figure shows that
local models will not be of the same size as the global one,
although not much smaller.

III. SYNCHRONIZED COMMUNICATION METHODS

Past research has shown that collective communication op-
erations are indispensable in iteration-based machine learning
algorithms. Chu et al. [9] mentions that many machine learn-
ing algorithms can be implemented in MapReduce systems
[10]. The underlying principle of this conclusion is that each
iteration in the algorithm is dependent on the synchronization
of the local models computed on each worker at the last
iteration. However, MapReduce systems only provide a fixed
“shuffling” communication pattern. Thus, in Harp, a separate
collective communication abstraction layer provides a set of
data abstractions and related collective communication opera-
tion abstractions.

For LDA, both data parallelism and model parallelism ben-
efit from synchronized communication optimizations. In data
parallelism, “one-to-all” communication patterns play a crucial
role in the synchronization to enable the optimization of the
communication performance with collective communication
operations. In model parallelism, using collective communi-
cation can maximize bandwidth usage between a worker and
its neighbors and reduce network conflicts in rotating model
partitions.

A. The Abstraction Of Global/Local Data Synchronization

Considering the sparsity of the local model data distribution
on workers, collective communication optimization, and the
existing collective communication abstractions in Harp, we
added two other data abstractions and related new collective
communication operations.

The two types of data abstractions are the global table
and the local table. The concept “table” has been defined
in previous Harp collective communication abstractions [2].
Each table may contain one or more partitions, and the tables
defined on different workers are associated in order to manage
a distributed dataset. In global tables, each partition has a
unique ID and represents a part of the whole distributed
dataset; but in local tables, partitions on different workers can
share the same partition ID. Each of these partitions sharing
the same ID is considered a local version of a partition in the
full distributed dataset.

We defined three communication operations on global tables
and local tables, with the first two being paired operations.
First, “syncGlobalWithLocal” uses the data in local tables
to synchronize the data in global tables. This operation will
reduce the partitions from local tables to the global table.



Secondly, “syncLocalWithGlobal” uses the data in global
tables to synchronize local tables. Based on the needs of
partitions in local tables, this operation will redistribute the
partitions in the global table to local tables. If one partition is
required by all the workers, it will be broadcasted.

Lastly, “rotateGlobal” will consider workers in a ring topol-
ogy and shift the partitions in the global table owned by
one worker to the right neighbor worker and then receive
the partitions from the left neighbor. When the operation is
completed, the contents of the distributed dataset in the global
tables won’t change, but each worker will hold a different set
of partitions. Since each worker only talks to its neighbors,
“rotateGlobal” can transmit global data in parallel without any
network conflicts.

B. The Applicability of Synchronized Communication Methods

“syncGlobalWithLocal” and “syncLocalWithGlobal” are
abstracted from data parallelism, and “rotateGlobal” is ab-
stracted from model parallelism. As a result, they can be
applied to many other machine learning applications with big
model data.

Here we simply discuss the applicability of these methods
based on the computation dependency in the applications.
We draw a matrix to describe each worker’s requirements
on the global model data in the parallel computation per
iteration. In this matrix, each row represents a worker, each
column represents a global data partition, and each element
shows the requirements of the partition in the local compu-
tation. Based on the density of this matrix, we can choose
proper operations in different applications. If the matrix is
dense, we suggest using the “rotateGlobal” operation. Using
k-means clustering as an example, the global model data
are the centroids, and the local computation needs all the
centroids data. Thus “rotateGlobal” allows each worker to
access all the centroids data efficiently. If the matrix is sparse,
using “syncGlobalWithLocal” and “syncLocalWithGlobal” is
a superior solution. For example, in graph algorithms such
as PageRank, the global model data are the vertices’ page-
rank values and counts of out-edges. The local computa-
tion goes through edges and calculates the partial result of
the new page-rank values. Then “syncGlobalWithLocal” and
“syncLocalWithGlobal” can be used to synchronize global
page-rank values.

IV. HARP-LDA IMPLEMENTATION

A. Training Data Partitioning and Model Data Initialization

For the training data, we split the documents into files
evenly. For the model data, since words with high frequency
can dominate the computation and communication, we parti-
tion the global model based on the frequency of words in the
training dataset. During the preprocessing of the training data,
each word is given an ID based on their frequency starting
from 0. The lower the occurrence of the word, the higher the
ID. Then we partition the words’ topic counts using range-
based partitioning. Assuming each partition contains m words,
Partition 0 contains words with IDs from 0 to m − 1, and

Training Data

1 Load

WorkerWorkerWorker

Sync

4

Global 
Model 2

Compute

2

Global 
Model 3

Compute

2

Global 
Model 1

Compute

2

33 SyncSync3

Iteration

Local 
Model

Local 
Model

Local 
Model

WorkerWorkerWorker

Rotate

Global 
Model 2

Compute

2

Global 
Model 3

Compute

2

Global 
Model 1

Compute

2

33 RotateRotate3

lda-lgs
(use syncLocalWithGlobal
& syncGlobalWithLocal)

lda-rtt
(use rotateGlobal)

Fig. 3. Inter-node Parallelism (data loading 〈step 1〉 and iteration 〈step 4〉
are common procedures for both implementations)

Partition 1 contains words with IDs from m to 2m − 1, and
so on. As a result, the partitions with low IDs contain the
words with the highest frequency. The initial global model
is generated by randomly assigning each token to a topic
and aggregated through “syncGlobalWithLocal”. The mapping
between partition IDs and worker IDs is calculated based on
the modulo operation. Assuming there is a worker with ID w
among a total of N workers, the partitions contained on this
worker are Partition w, Partition w+N , Partition w+2N , and
so on. In this way, each worker contains a number of words
whose frequencies rank from high to low.

B. Inter-node Parallelism

During iterations of the sampling, we use two different
approaches to update the global model which results in two im-
plementations (See Fig. 3). One implementation, named “lda-
lgs”, follows data parallelism and uses “syncGlobalWithLocal”
paired with “syncLocalWithGlobal” operations. The other im-
plementation, named “lda-rtt”, follows model parallelism and
uses “rotateGlobal” operation.

During the sampling of “lda-lgs”, each worker updates the
local model and tracks the difference generated in another
table. Once the sampling is done, “syncGlobalWithLocal”
operation is used to update the global model with the changes
of the local model. “syncLocalWithGlobal” operation is then
used to download new local model data from the updated
global table. At the end of the iteration, the sum of word counts
for each topic is calculated with an “allreduce” operation [11].

In “lda-rtt”, each worker will first conduct sampling with
the global model partitions owned by itself and update them
directly. Then it will call “rotateGlobal” operation to send the
updated model data to the right neighbor and receive model
partitions from the left neighbor. Once all partitions of the
global model are received and processed, the sampling of
one iteration is completed. Similar to “lda-lgs”, “allreduce”
operation is used at the end of the iteration to update the
global sum of word counts on all topics.



C. Overlap Communication with Computation

Synchronized communication is commonly criticized for
generating much overhead and making all workers wait for the
completion of synchronization. We approached this problem
in three steps. The first step is to balance the communication
load on each worker through partitioning the global model
based on word frequencies. The second step is to improve
the speed with optimized collective communication. Here we
discuss the third step, which is overlapping computation and
communication in execution.

In “lda-rtt”, we slice the global model partitions held on
each worker into two sets. Slicing is conducted by first sorting
the partition IDs in ascending order and then assigning the
partitions to the two slices in alternate order. As a result, each
slice will contain words with both high and low frequencies.
During the sampling, when a worker finishes processing the
first slice, it uses another thread to rotate this slice and
simultaneously continues processing the second slice. Once
the second slice is processed, the first slice may be ready
for further processing. After both slices have finished a round
of rotation, the sampling of an iteration is completed. The
overlapping between computation and communication occurs
when the worker processes one slice and rotates another slice
at the same time.

In “lda-lgs”, we split the local data table into two slices.
During the sampling, when each worker samples a slice,
it requests another thread to synchronize the other slice
through “syncLocalWithGlobal” and “syncGlobalWithLocal”
operations. We map partitions based on their IDs into slices
so that local partitions with the same IDs are guaranteed to be
synchronized in iterations.

D. Intra-node Parallelism

In Harp-LDA, we use the “Computation” component to
manage multi-threading sampling within one worker. The
sampling process follows a SparseLDA algorithm and can be
performed in two ways. One approach is to go through each
document and sample the topics of every token. The other
approach is to go through each word and sample the topics
for word occurrences in each document. To keep the sam-
pling order consistent between implementations for unbiased
performance comparisons in future experiments, we sample
topics by documents in “lda-lgs” as Yahoo! LDA and sample
topics by words in “lda-rtt” as Petuum LDA. Note that when
sampling topics by words, we balance the computation load
by assigning words to threads based on their frequencies.

The local model is shared between threads. When sampling
topics by documents, the word-topic model is required to
access with locks. Symmetrically, when sampling topics by
words, the document-topic model is required to access with
locks. We provide a read lock and a write lock on each
document/word’s topic count map. Before sampling, a token’s
document/word topic counts are read out, and after sampling,
the updates are written back. If the next token for sampling is
the same word, the sampling thread will keep using the thread
local cached topic counts to avoid repeating fetching the shared

data. During the update, we separate “updating an existing
topic entry” and “adding a count to a new topic entry”. In
“updating an existing topic entry”, because the map structure
is not altered during updating and reading a primitive integer
is an atomic operation in modern x86 architecture, it is safe
to execute “read” and “update” concurrently with a shared
read lock. However, in order to ensure the correctness of the
topic count values, “update” operations are still required to be
exclusive. In the operation of “adding a count to a new topic
entry”, since the map structure is modified, we have to use a
write lock.

Though the concurrency is greatly improved, our current
implementation is still slower compared with Yahoo! LDA and
Petuum in the first iteration of sampling. This could be caused
by the difference in the implementation language (Java/C++)
and the performance of the data structure (primitive int based
hashmap [12]/primitive int array). As many-core architecture
is becoming more common, high performance concurrent sam-
pling with many-threads is a challenge to all implementations.
However, in this paper our aim is not to provide the fastest
LDA implementation but to show the advantages of using
synchronized communication methods in LDA model conver-
gence compared with asynchronous communication methods.

V. EXPERIMENTS

A. Experiment Settings

Experiments were done on the Juliet Intel Haswell cluster
[13], which contains 32 18-core 72-thread nodes and 96 24-
core 48-thread nodes. All the nodes have 128GB memory and
are connected with two types of networks: 1Gbps Ethernet
(eth) and Infiniband (ib). For testing, we use 31 18-core nodes
and 69 24-core nodes to form a cluster of 100 nodes with
40 threads each for computation. Most tests are done with
Infiniband through IPoIB support unless otherwise specified.

Several datasets are used (see Table I). The total number
of model parameters is kept as 10 billion on all datasets. α
and β are both fixed at 0.01. We test several implementations
(see Table II) on these datasets. We compare synchronized
communication methods with asynchronous communication
methods on both model parallelism and data parallelism.
By studying the convergence speed and execution time, we
learned how the difference in communication methods affects
the performance of LDA.

B. Convergence Speed Per Iteration

First, we compare the convergence speed of the LDA word-
topic model on iterations by analyzing model results learned
on iterations 1, 10, 20, 30... 200. It is fair to use iterations
to measure the performance of model convergence because it
does not consider the performance difference in execution.

On the “clueweb” dataset (see Fig. 4a), Petuum has the
highest model likelihood on all iterations. Though “rtt” also
uses model parallelism, due to its preference of using the
thread-local data and not the up-to-date local shared model,
the convergence speed is slower. “rtt” and “lgs-opt” have
similar convergence speeds, and their lines on the chart are



TABLE I
TRAINING DATA SETTINGS USED IN THE EXPERIMENTS

Dataset enwiki clueweb bi-gram gutenberg
Num. of Docs 3.8M 50.5M 3.9M 26.2K
Num. of Tokens 1.1B 12.4B 1.7B 836.8M
Vocabulary 1M 1M 20M 1M
Doc Len.
AVG/STD 293/523 224/352 434/776 31879/42147

Lowest Word
Freq. 7 285 6 2

Num. of Topics 10K 10K 500 10K
Init. Model Size 2.0GB 14.7GB 5.9GB 1.7GB
Note: Both “enwiki” and “bi-gram” are English articles from
Wikipedia [14]. “clueweb” is a 10% dataset from ClueWeb09, which
is a collection of English web pages [15]. “gutenberg” is comprised
of English books from Project GutenBurg [16].

TABLE II
LDA IMPLEMENTATIONS USED IN THE EXPERIMENTS

DATA PARALLELISM

lgs - “lda-lgs” impl. with no routing optimization
- Slower than “lgs-opt”

lgs-opt
- “lgs” with routing optimization
- Faster than Yahoo! LDA on “enwiki” with higher
model likelihood

lgs-opt-4s

- “lgs-opt” with 4 rounds of model synchronization
per iteration; each round uses 1/4 of the training data
- Performance comparable to Yahoo! LDA on
“clueweb” with higher model likelihood

Yahoo!
LDA - Master branch on GitHub [3]

MODEL PARALLELISM

rtt

- “lda-rtt” impl.
- Speed comparable with Petuum on “clueweb” but
3.9 times faster on “bi-gram” and 5.4 times faster on
“gutenbuerg”

Petuum - Version 1.1 [4]
Note: Our implementations are indicated in bold.

overlapped. In contrast to “lgs-opt”, the convergence speed of
“lgs-opt-4s” is as high as Petuum. This shows that increasing
the rounds of model synchronization thereby increases the
convergence speed. Yahoo! LDA has the slowest convergence
speed because asynchronous communication does not guar-
antee a full model synchronization in an iteration. On the
“enwiki” dataset (see Fig. 4b), as before, Petuum achieved
the highest accuracy out of all iterations. “rtt” converges to the
same model likelihood level as Petuum at iteration 200. “lgs-
opt” demonstrates slower convergence speed but still achieved
high model likelihood, while Yahoo! LDA has both the slowest
convergence speed and lowest model likelihood at iteration
200.

All these results show that when the model update rate
is increased (either using the model parallelism or multiple-
rounds model synchronization in data parallelism), the model
converges faster.

C. Performance Analysis on Data Parallelism

We compare the model convergence speed on “lgs” and
Yahoo! LDA by injecting the real execution time on iterations.
On the “clueweb” dataset, we first show the convergence speed
based on elapsed execution time (see Fig. 5a). Yahoo! LDA

0 50 100 150 200

Iteration Number

−1.4

−1.3

−1.2

−1.1

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

M
od

el
L

ik
el

ih
oo

d

×1011

lgs-opt
Yahoo!LDA
rtt
Petuum
lgs-opt-4s

(a)

0 50 100 150 200

Iteration Number

−1.3

−1.2

−1.1

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

M
od

el
L

ik
el

ih
oo

d

×1010

lgs-opt
Yahoo!LDA
rtt
Petuum

(b)

Fig. 4. Model Convergence of (a) “clueweb” And (b) “enwiki” On Iterations

needs more time to obtain the model result of iteration 1 due
to its slow model initialization. Since model initialization is
mainly communication rather than computation and cannot be
overlapped with sampling, Yahoo! LDA has a sizable overhead
on the communication end. In later iterations, though “lgs”
converges faster, Yahoo! LDA catches up after 30 iterations.
This observation can be explained by our slower concurrent
sampling speed and the fact that we only allow one round
of model synchronization per iteration, while Yahoo! LDA
does not have this restriction and allows multiple instances
of synchronization whenever possible. Our computation takes
quite long and the network is often in an idle state, therefore,
we can increase the rounds of model synchronization per
iteration. Although the execution time of 200 iterations for
“lgs-opt-4s” is still slightly longer than Yahoo! LDA, it obtains
higher model likelihood and maintains faster convergence
speed in the whole execution.

Due to the slowness of the local concurrent sampling, our
implementations show much higher iteration execution time at
the first iteration compared with Yahoo! LDA (see Fig. 5b).
However, with synchronized communication optimizations, we
quickly shrank the model size and reduced the difference
in execution time compared with Yahoo! LDA. While with
asynchronous communication methods, Yahoo! LDA does not
have any extra overhead other than computation per iteration,
its iteration execution time reduces slowly because it keeps
computing with a stale model. Similar results are also shown
on the “enwiki” dataset. “lgs-opt” not only achieves higher
model likelihood but also has faster model convergence speed
throughout the whole execution (see Fig. 5e). Though our
execution time at iteration 1 is twice as slow as Yahoo! LDA,
later on it takes less execution time per iteration than Yahoo!
LDA (see Fig. 5f). Yahoo! LDA only exceeds “lgs-opt” when
both models converge to a similar likelihood level.

On “clueweb”, Fig. 5c show that Yahoo! LDA only performs
a few synchronization passes on 200 iterations and each pass
takes at least twice as long as “lgs-opt” and “lgs”. This
shows how we get opportunities to increase the number of
synchronization passes per iteration in “lgs-opt-4s”. “lgs-opt”
is obviously faster than “lgs” on Ethernet (see Fig. 5d); with
Infiniband, due to its high bandwidth, the performance is very
close to each other. Fig. 5g and Fig. 5h show similar results
on “enwiki”.



D. Performance Analysis on Model Parallelism

Here we compare “rtt” and Petuum on 3 different datasets:
“clueweb”, “bi-gram”, and “gutenburg”. Since both implemen-
tations use model parallelism, the performance difference is
caused by the execution speed per iteration.

On the “clueweb” dataset, the execution times after 200
iterations were similar between both implementations, and
they achieved similar model likelihood (see Fig. 6a). Both
implementations are around 2.7 times faster than the results
in data parallelism on the same dataset (see Fig. 5a) because
sampling by words leads to less lock contention on the shared
local model, and the routing in model rotation has less network
conflicts than local/global model synchronization. The first 10
iterations show that “rtt” has high computation time compared
with Petuum (see Fig. 6b). However, the additional overhead
per iteration caused by communication becomes lower than
Petuum. When the execution arrives at the final 10 iterations,
while computation time per iteration in “rtt” is still higher, the
whole execution time per iteration is now lower (see Fig. 6c).
The trend of the iteration execution time on 200 iterations is
shown in Fig 6d.

Unlike our “rotateGlobal” operation which batches trans-
mission of model data partitions, Petuum sends model data
word by word asynchronously, causing high communication
overhead. On the “bi-gram” dataset, the results show that
Petuum cannot perform well when the number of words in
the model increases. The high overhead in communication
causes the convergence speed to be very slow, and Petuum
cannot even continue executing after 60 iterations due to a
memory outage (see Fig. 6e). Fig. 6f and Fig. 6g show that
in the first/final 10 iterations, Petuum consistently has higher
execution time per iteration compared with “rtt”. The trend of
the iteration execution time on 200 iterations also shows this
phenomenon (see Fig. 6h).

Though the data size of “gutenburg” is similar to “enwiki”,
it is clear that there is a difference in execution speed per iter-
ation (see Fig. 6i). High standard deviation indicates that the
iteration execution time per worker varies significantly. Unlike
the results on “bi-gram” where Petuum’s performance suffers
from the communication overhead, here it suffers from waiting
for the slowest worker. The high iteration execution time may
be explained by “gutenburg” containing many long documents
and thereby resulting in unbalanced training data distribution
on the workers. In addition, when sampling by words, frequent
access to the shared huge doc-topic model leads to inefficient
concurrent sampling. “rtt” is not much affected because it
prefers using thread-local data in concurrent sampling and
balances per-thread computation through assigning words to
threads based on the frequencies. Fig. 6j, Fig. 6k, and Fig.
6l display that the unbalanced computation in Petuum results
in high overhead per iteration. In model parallelism, model
rotation is a synchronized operation; therefore, this experiment
demonstrates that unbalanced computation on workers causes
huge overhead in global waiting and results in high iteration
execution time. In sum, when applying synchronized commu-

TABLE III
LDA WORK USING CGS ALGORITHM

App. Name Algorithm Parallelism Comm.

PLDA CGS (sample by docs) D. P. allreduce
(sync)

Dato CGS (sample by doc-
word edge) D. P. GAS

(sync)

Yahoo! LDA CGS (SparseLDA &
sample by docs) D. P.

client-
server
(async)

Peacock CGS (SparseLDA &
sample by words)

D. P. (M. P. in
local)

client-
server
(async)

Parameter
Server

CGS (combined with
other methods) D. P.

client-
server
(async)

Petuum 0.93 CGS (SparseLDA &
sample by docs) D. P.

client-
server
(async)

Petuum 1.1 CGS (SparseLDA &
sample by words)

M. P. (include
D. P.)

ring/star
topology
(async)

Note: “D. P.” refers to Data Parallelism. “M. P.” refers to Model
Parallelism.

nication methods, the computation load should be carefully
balanced.

VI. RELATED WORK

Prior research has studied LDA algorithm parallelization
extensively. Some studies focused on using the Collapsed
Variational Bayes (CVB) algorithm [1], which is adapted
by both Mahout LDA [17] and Spark LDA [18]. However,
research also showed that this approach leads to high memory
consumption and slow convergence speed [6][19].

Other studies used the CGS algorithm (see Table III). PLDA
[20] is an implementation of this algorithm. Two versions
of PLDA exist, one based on MPI [21] using “allreduce”
operation [11] and the other based on MapReduce[10][22]
using “shuffle” operation.

Yahoo! LDA [23][24] uses the CGS algorithm with
SparseLDA optimization and client-server architecture. Local
models are distributed in the star model and accessed with
optimized locking mechanisms. The model synchronization is
done through asynchronous delta aggregation.

Dato [25] uses the GAS model [26] to implement the
LDA algorithm [27]. Currently, it uses a CGS algorithm
without SparseLDA optimization. GAS model’s edge-based
computation pattern causes the training data to be partitioned
based on document-word pairs instead of documents. During
the sampling process, the topic counts of both words and
documents have to be gathered and updated, resulting in
additional communication costs in synchronization.

Peacock [19] uses a hierarchical distributed architecture
to organize LDA computation. The first layer uses the
SparseLDA algorithm with a lock-free parallel strategy to ex-
ploit local model parallelism. The design of this layer mimics
“rotateGlobal” but differs by sending documents to where the
model is located rather than rotating model partitions between



0 5000 10000 15000 20000 25000

Execution Time (s)

−1.4

−1.3

−1.2

−1.1

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5
M

od
el

L
ik

el
ih

oo
d

×1011

lgs-opt
Yahoo!LDA
lgs-opt-4s

(a)

0 5000 10000 15000 20000 25000

Execution Time (s)

0

100

200

300

400

500

600

700

800

E
xe

cu
tio

nT
im

e
Pe

rI
te

ra
tio

n
(s

) lgs-opt-iter
Yahoo!LDA-iter
lgs-opt-4s-iter

(b)

0 50 100 150 200

Num. of Synchronization Passes

0

100

200

300

400

500

600

700

800

E
xe

cu
tio

nT
im

e
Pe

rS
yn

cP
as

s
(s

) lgs-opt-comm
Yahoo!LDA-comm
lgs-comm

(c)

0 50 100 150 200

Num. of Synchronization Passes

0

100

200

300

400

500

600

700

800

E
xe

cu
tio

nT
im

e
Pe

rS
yn

cP
as

s
(s

) lgs-opt-comm
Yahoo!LDA-comm
lgs-comm

(d)

0 500 1000 1500 2000 2500 3000 3500

Execution Time (s)

−1.3

−1.2

−1.1

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

M
od

el
L

ik
el

ih
oo

d

×1010

lgs-opt
Yahoo!LDA

(e)

0 500 1000 1500 2000 2500 3000 3500

Execution Time (s)

0

10

20

30

40

50

60

70

80

E
xe

cu
tio

nT
im

e
Pe

rI
te

ra
tio

n
(s

) lgs-opt-iter
Yahoo!LDA-iter

(f)

0 50 100 150 200

Num. of Synchronization Passes

0

20

40

60

80

100

120

140

160

E
xe

cu
tio

nT
im

e
Pe

rS
yn

cP
as

s
(s

) lgs-opt-comm
Yahoo!LDA-comm
lgs-comm

(g)

0 50 100 150 200

Num. of Synchronization Passes

0

20

40

60

80

100

120

140

160

E
xe

cu
tio

nT
im

e
Pe

rS
yn

cP
as

s
(s

) lgs-opt-comm
Yahoo!LDA-comm
lgs-comm

(h)

Fig. 5. Performance comparison on data parallelism between “lgs” and Yahoo! LDA (a) Elapsed Execution Time vs. Model Likelihood on “clueweb” (b)
Elapsed Execution Time vs. Iteration Execution Time on “clueweb” (c) Num. of Sync. Passes vs. Sync. Time per Pass on “clueweb” with ib (d) Num. of
Sync. Passes vs. Sync. Time per Pass on “clueweb” with eth (e) Elapsed Execution Time vs. Model Likelihood on “enwiki” (f) Elapsed Execution Time vs.
Iteration Execution Time on “enwiki” (g) Num. of Sync. Passes vs. Sync. Time per Pass on “enwiki” with ib (h) Num. of Sync. Passes vs. Sync. Time per
Pass on “enwiki” with eth

0 1000 2000 3000 4000 5000 6000 7000 8000

Execution Time (s)

−1.4

−1.3

−1.2

−1.1

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

M
od

el
L

ik
el

ih
oo

d

×1011

rtt
Petuum

(a)

1 2 3 4 5 6 7 8 9 10

Iteration

0

50

100

150

200

250

300

E
xe

cu
tio

nT
im

e
Pe

rI
te

ra
tio

n
(s

)

181

131
121 116 112

106
100

92
85

80

57

23
21

18 19
18

17
18

16
15

59 54 52 50 48 44 42 39 36 35

33
30 28 32

29 29 31
29 30 26

rtt-compute
rtt-overhead
Petuum-compute
Petuum-overhead

(b)

191 192 193 194 195 196 197 198 199 200

Iteration

0

5

10

15

20

25

30

35

E
xe

cu
tio

nT
im

e
Pe

rI
te

ra
tio

n
(s

)

23 23 23 23 23 23 23 23 23 23

3
3 3

2
3 3 3

2 3
3

19 19 19 19
19 19 19 19 19 19

10
10

10
11

9 10 9 9 10 10

rtt-compute
rtt-overhead
Petuum-compute
Petuum-overhead

(c)

0 1000 2000 3000 4000 5000 6000 7000

Execution Time (s)

0

50

100

150

200

250

E
xe

cu
tio

nT
im

e
Pe

rI
te

ra
tio

n
(s

) rtt-compute
rtt-iter
Petuum-compute
Petuum-iter

(d)

0 1000 2000 3000 4000 5000 6000

Execution Time (s)

−2.4

−2.3

−2.2

−2.1

−2.0

−1.9

−1.8

−1.7

M
od

el
L

ik
el

ih
oo

d

×1010

rtt
Petuum

(e)

1 2 3 4 5 6 7 8 9 10

Iteration

0

20

40

60

80

100

120

E
xe

cu
tio

nT
im

e
Pe

rI
te

ra
tio

n
(s

)

28

16
12 11 10 9 8 7 7 6

71

38

31
29

36 36

27
25 25 25

7 7 7 7 6 6 6 6 6 6

110

87
84

82 81
86 86 85

102

84

rtt-compute
rtt-overhead
Petuum-compute
Petuum-overhead

(f)

53 54 55 56 57 58 59 60 61 62

Iteration

0

20

40

60

80

100

E
xe

cu
tio

nT
im

e
Pe

rI
te

ra
tio

n
(s

)

4 4 4 4 4 4 4 4 4 4

19 20 21 21 19 19 19 19 19 20

6 6 6 6 6 6 6 6 6 6

82
86 86

84
86

81

86 87
83

88

rtt-compute
rtt-overhead
Petuum-compute
Petuum-overhead

(g)

0 1000 2000 3000 4000 5000 6000

Execution Time (s)

0

20

40

60

80

100

120

E
xe

cu
tio

nT
im

e
Pe

rI
te

ra
tio

n
(s

)

rtt-compute
rtt-iter
Petuum-compute
Petuum-iter

(h)

0 500 1000 1500 2000 2500

Execution Time (s)

−8.0

−7.5

−7.0

−6.5

−6.0

−5.5

M
od

el
L

ik
el

ih
oo

d

×109

rtt
Petuum

(i)

1 2 3 4 5 6 7 8 9 10

Iteration

0

20

40

60

80

100

120

140

E
xe

cu
tio

nT
im

e
Pe

rI
te

ra
tio

n
(s

)

36

24
20

16 14 12 10 8 7 5

15

9

8
8

8 8 8
7 7 7

19
17 15 14 12 11 10 9 8 8

108

90

85

73 75

65
61

57
54

49

rtt-compute
rtt-overhead
Petuum-compute
Petuum-overhead

(j)

91 92 93 94 95 96 97 98 99 100

Iteration

0

2

4

6

8

10

12

14

E
xe

cu
tio

nT
im

e
Pe

rI
te

ra
tio

n
(s

)

1 1 1 1 1 1 1 1 1 1

3 3
3

3 3 3 3 3 3 3

6 6 6 6 6
6

5
5

6 6

5 5
5 5

6
5 5 6

5 5

rtt-compute
rtt-overhead
Petuum-compute
Petuum-overhead

(k)

0 500 1000 1500 2000 2500

Execution Time (s)

0

20

40

60

80

100

120

140

E
xe

cu
tio

nT
im

e
Pe

rI
te

ra
tio

n
(s

) rtt-compute
rtt-iter
Petuum-compute
Petuum-iter

(l)

Fig. 6. Performance comparison on model parallelism between “rtt” and Petuum (a) Elapsed Execution Time vs. Model Likelihood on “clueweb” (b) First
10 Iteration Execution Times on “clueweb” (c) Final 10 Iteration Execution Times on “clueweb” (d) Elapsed Execution Time vs. Iteration Execution Time
on “clueweb” (e) Elapsed Execution Time vs. Model Likelihood on “bi-gram” (f) First 10 Iteration Execution Times on “bi-gram” (g) Final 10 Iteration
Execution Times on “bi-gram” (h) Elapsed Execution Time vs. Iteration Execution Time on “bi-gram” (i) Elapsed Execution Time vs. Model Likelihood on
“gutenburg” (j) First 10 Iteration Execution Times on “gutenburg” (k) Final 10 Iteration Execution Times on “gutenburg” (l) Elapsed Execution Time vs.
Iteration Execution Time on “gutenburg”



documents. The second layer uses client-server architecture
with asynchronous communication.

Parameter Server [28] and Petuum [29] provide a framework
in client-server architecture to allow users to program ma-
chine learning algorithms with “push” and “pull” operations.
Parameter Server puts the global model on servers and uses
range-based “push” and “pull” operations for synchronization.
These operations allow workers to update a row or segment of
parameters directly and enables batching the communication
of model updates. The computation of Parameter Server’s LDA
implementation uses a combination of stochastic variational
methods, collapsed Gibbs sampling, and distributed gradient
descent. Another operation of Petuum, “schedule”, allows
model parallelism through scheduling model partitions to
workers. Lee et al. [30] describes that the communication to
fetch model data goes between clients and servers, but in the
real code on GitHub [4], workers are directly sending data to
neighbors with optimized routing.

VII. CONCLUSION

Through experiments on several datasets, we showed that
synchronized communication methods perform better than
asynchronous methods on both data parallelism and model
parallelism. In data parallelism, our implementation resulted
in faster model convergence and higher model likelihood at
iteration 200 compared to Yahoo! LDA using asynchronous
communication methods. In model parallelism, our implemen-
tation also showed significantly lower overhead than Petuum
LDA. On “bi-gram” dataset, the total execution time of “rtt” is
3.9 times faster. Even though the computation speed of the first
iteration is 2- to 3-fold slower on “clueweb” dataset, the total
execution time remains similar. These results prove that with
synchronized communication optimizations, we can increase
the model update rate, which allows the model to converge
faster, shrinks the model size, and reduces the computation
time in later iterations.

Despite the implementation differences between “rtt”, “lgs”,
Yahoo! LDA, and Petuum LDA, the advantages of synchro-
nized communication methods can be understood. Compared
with asynchronous communication methods, synchronized
communication methods can optimize routing between a set
of parallel workers and maximize bandwidth utilization in
point-to-point communication. Though synchronized commu-
nication methods will result in global/local waiting, balancing
the computation on all parallel workers is feasible since the
word frequencies in the LDA training data are under the
power-law distribution and a considerable amount of words
have high frequencies. Thus, the overhead of waiting is not as
high as speculated. The chain reaction set off by improving
the LDA model update speed amplifies the benefit of using
synchronized communication methods.

In future work, we will focus on improving intra-node
model synchronization speed in many-core systems to provide
a high performance LDA implementation, understanding the
performance impact when applying data parallelism or model
parallelism in LDA, and applying our model synchronization

strategies to other machine learning algorithms facing difficul-
ties in synchronizing big model data.

ACKNOWLEDGMENT

We gratefully acknowledge support from Intel Parallel Com-
puting Center (IPCC) Grant, NSF 1443054 CIF21 DIBBs
1443054 Grant, and NSF OCI 1149432 CAREER Grant. We
appreciate the system support offered by FutureSystems.

REFERENCES

[1] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
The Journal of Machine Learning Research, vol. 3, pp. 993–102, 2003.

[2] B. Zhang, Y. Ruan, and J. Qiu, “Harp: collective communication on
hadoop,” in IC2E, 2015.

[3] “Yahoo! LDA.” [Online]. Available: https://github.com/sudar/Yahoo
LDA

[4] “Petuum LDA.” [Online]. Available: https://github.com/petuum/bosen/
wiki/Latent-Dirichlet-Allocation

[5] P. Resnik and E. Hardist, “Gibbs sampling for the uninitiated,” Univer-
sity of Maryland, Tech. Rep., 2010.

[6] D. Newman et al., “Distributed algorithms for topic models,” The
Journal of Machine Learning Research, vol. 10, pp. 1801–1828, 2009.

[7] J. Yuan et al., “LightLDA: big topic models on modest computer
clusters,” in WWW, 2015, pp. 1351–1361.

[8] L. Yao, D. Mimno, and A. McCallum, “Efficient methods for topic
model inference on streaming document collections,” in KDD, 2009,
pp. 937–946.

[9] C.-T. Chu et al., “Map-reduce for machine learning on multicore,” in
NIPS, vol. 19, 2007, p. 281.

[10] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[11] E. Chan et al., “Collective communication: theory, practice, and experi-
ence,” Concurrency and Computation: Practice and Experience, vol. 19,
no. 13, pp. 1749–1783, 2007.

[12] “fastutil.” [Online]. Available: http://fastutil.di.unimi.it
[13] “FutureSystems.” [Online]. Available: https://portal.futuresystems.org
[14] “wikipedia.” [Online]. Available: https://www.wikipedia.org
[15] “clueweb.” [Online]. Available: http://boston.lti.cs.cmu.edu/clueweb09/

wiki/tiki-index.php?page=Dataset+Information
[16] “gutenburg.” [Online]. Available: https://www.gutenberg.org
[17] “Mahout LDA.” [Online]. Available: https://mahout.apache.org/users/

clustering/latent-dirichlet-allocation.html
[18] “Spark LDA.” [Online]. Available: http://spark.apache.org/docs/latest/

mllib-clustering.html
[19] Y. Wang et al., “Peacock: learning long-tail topic features for industrial

applications,” ACM Transactions on Intelligent Systems and Technology,
vol. 6, no. 4, 2015.

[20] Y. Wang et al., “PLDA: parallel latent dirichlet allocation for large-scale
applications,” Algorithmic Aspects in Information and Management, pp.
301–314, 2009.

[21] D. W. Walker and J. J. Dongarra, “MPI: a standard message passing
interface,” in Supercomputer, vol. 12, 1996, pp. 56–68.

[22] “Hadoop.” [Online]. Available: http://hadoop.apache.org
[23] A. Smola and S. Narayanamurthy, “An architecture for parallel topic

models,” in VLDB, vol. 3, no. 1-2, 2010, pp. 703–710.
[24] A. Ahmed et al., “Scalable inference in latent variable models,” in

WSDM, 2012, pp. 123–132.
[25] “Dato.” [Online]. Available: https://dato.com
[26] J. E. Gonzalez et al., “PowerGraph: distributed graph-parallel computa-

tion on natural graphs,” in OSDI, vol. 12, 2012, p. 2.
[27] “Dato LDA.” [Online]. Available: https://github.com/dato-code/

PowerGraph/blob/master/toolkits/topic modeling/topic modeling.dox
[28] M. Li et al., “Scaling distributed machine learning with the parameter

server,” in OSDI, 2014, pp. 583–598.
[29] E. P. Xing et al., “Petuum: a new platform for distributed machine

learning on big data,” in KDD, 2013.
[30] S. Lee et al., “On model parallelization and scheduling strategies for

distributed machine learning,” in NIPS, 2014, pp. 2834–2842.


