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1 Introduction

This paper describes opportunities at the interface between large-scale simulations, experiment
design and control, machine learning (ML including deep learning DL) and High-Performance
Computing. We describe both the current status and possible research issues in allowing machine
learning to pervasively enhance computational science. How should one do this and where is it
valuable? We focus on research challenges on computing for science and engineering (as opposed
to commercial) use cases for both big data and big simulation problems. We summarize this long
report at [1].

The convergence of HPC and data-intensive methodologies [2] provide a promising approach to
major performance improvements. Traditional HPC simulations are reaching the limits of original
progress. The end of Dennard [3] scaling of transistor power usage and the end of Moores Law as
originally formulated has yielded fundamentally different processor architectures. The architectures
continue to evolve, resulting in highly costly if not damaging churn in scientific codes that need to
be finely tuned to extract the last iota of parallelism and performance.

In domain sciences such as biomolecular sciences, advances in statistical algorithms and runtime
systems have enabled extreme scale ensemble based applications [4] to overcome limitations of
traditional monolithic simulations. However, in spite of several orders of magnitude improvement
in efficiency from these adaptive ensemble algorithms, the complexity of phase space and dynamics
for modest physical systems, require additional orders of magnitude improvements and performance
gains.

In many application domains, integrating traditional HPC approaches with machine learning
methods arguably holds the greatest promise towards overcoming these barriers. The need for
performance increase underlies the international efforts behind the exascale supercomputing ini-
tiatives and we believe that integration of ML into large scale computations (for both simulations
and analytics) is a very promising way to get even large performance gains. Further, it can enable
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paradigms such as control or steering and provide a fundamental approach to coarse-graining which
is a difficult but essential aspect of the many multi-scale application areas. Papers at two recent
workshops BDEC2 [5, 6, 7, 8] and NeurIPS [9] confirm our point of view and our approach is syn-
ergistic with BDEC2 [10] with its emphasis on new application requirements and their implications
for future scientific computing software platforms. We would like to distinguish between traditional
performance measured by operations per second or benchmark scores and the effective performance
that one gets by combining learning with simulation and gives increased performance as seen by
the user without changing the traditional system characteristics.

Our particular interest is the cases where there is a tight coupling between the learning and
simulation components, which is seen especially in the categories in MLforHPC in section 1.1.

1.1 Different Interfaces of Machine Learning and HPC

We have identified [11, 12, 10] several important distinctly different links between machine learning
(ML) and HPC. We define two broad categories: HPCforML and MLforHPC,

• HPCforML: Using HPC to execute and enhance ML performance, or using HPC simulations
to train ML algorithms (theory guided machine learning), which are then used to understand
experimental data or simulations.

• MLforHPC: Using ML to enhance HPC applications and systems

This categorization is related to Jeff Dean’s ”Machine Learning for Systems and Systems for
Machine Learning” [13] and Satoshi Matsuoka’s convergence of AI and HPC [14]. We further
subdivide HPCforML as

• HPCrunsML: Using HPC to execute ML with high performance

• SimulationTrainedML: Using HPC simulations to train ML algorithms, which are then
used to understand experimental data or simulations.

We also subdivide MLforHPC as

• MLautotuning: Using ML to configure (autotune) ML or HPC simulations.

• MLafterHPC: ML analyzing results of HPC as in trajectory analysis and structure identi-
fication in biomolecular simulations

• MLaroundHPC: Using ML to learn from simulations and produce learned surrogates for
the simulations. The same ML wrapper can also learn configurations as well as results. This
differs from SimulationTrainedML as the latter is typically using learnt network to redict
observation (as in light source data analysis in [8]) whereas in MLaroundHPC we are using
the ML to improve the HPC performance.

• MLControl: Using simulations (with HPC) in control of experiments and in objective driven
computational campaigns [15]. Here the simulation surrogates are very valuable to allow real-
time predictions.

All 6 topics above are important and pose many research issues in computer science and cyberin-
frastructure, directly in application domains and in the integration of technology with applications.
In this report, we focus on topics in MLforHPC, with close coupling between ML, simulations, and
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HPC. We involve applications as a driver for the requirements and evaluation of the computer sci-
ence and infrastructure. In researching MLaroundHPC we will consider ML wrappers for either
HPC simulations or complex ML algorithms [16] implemented with HPC. Our focus is on how to
increase effective performance with the learning everywhere principle and how to build efficient
learning everywhere parallel systems.

1.2 Deep Learning and Machine Learning Background

This report does not cover development of new ML algorithms but rather the advancing the un-
derstanding of ML and Deep Learning (DL) in support of MLaroundHPC. Of course, the usage
experience is likely to suggest new ML approaches of value outside the MLaroundHPC arena.

If one is to use an ML to replace a simulation, then an accuracy estimate is essential and
as discussed in section 6 we intend to build on initial work on UQ with ML such as that using
dropout regularization to build ensembles for UQ. There are more sophisticated Bayesian methods
to investigate. The research must also address ergodicity, viz., have we learned across the full
phase space of initial values. Here methods taken from Monte-Carlo arena could be useful as
reliable integration over a domain is related to reliable estimates of values defined across a domain.
We will need an extensive study of Uncertainty Quantification (UQ) from learning networks and we
can expect progress of broad value as this field is still rather immature [17, 18]. Further much of our
learning is for analytic functions whereas much of the existing DL experience is for discrete-valued
classifiers of commercial importance.

1.3 Simulation Background

One can view the use of ML learned surrogates as a performance boost that can lead to huge
speedups as calculation of a prediction from a trained network, can be many orders of magnitude
faster than full execution of the simulation as shown in section 5.3. One can reach Exa or even
Zetta scale equivalent performance for simulations with existing hardware systems. These high-
performance surrogates are valuable in education and control scenarios by just speeding existing
simulations. Domain-specific expertise will be needed to understand the needed accuracy and the
number of training simulation runs needed.

Development of systematic ML-based coarse-graining techniques is a particular goal of this
study that we study in both socio-technical simulations and nano-bio(cell)- tissue layering. Simple
examples are the use of a surrogate to represent a chemistry potential or a larger grain size to
solve the diffusion equation underlying cellular and tissue level simulations. ML has been shown
to be very effective in learning sub-grid processes in climate simulations and gives around a factor
of 10 speedup [19]. UberCloud has an interesting example [20] where fluid flow around obstacles
is learnt for engineering simulations where a training set of 70,000 gives high fidelity predictions
when changing the shape of the obstacles with an inference time that is a 1000 thousand times
faster than direct simulation.

There are many groups working in MLaroundHPC but most of the work is just starting and
not built around a systematic study of research issues as we propose. There is some deep work in
building reduced dimension models to use in control scenarios. [21, 22] In sections 2-4 we look at
three distinct important areas; Networked systems with socio-technical simulations, multiscale cell
and tissue simulations and at a finer scale biomolecular and nanoscale molecular systems.

Already, autotuning with systems like ATLAS is hugely successful and gives an initial view of
MLautotuning. As well as choosing block sizes to improve cache use and vectorization, MLauto-
tuning can also be used for simulation mesh sizes [23] and in big data problems for configuring
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databases and complex systems like Hadoop and Spark [24, 25]. In fact there are striking results
[13, 26] in using learning as a surrogate for machine learning itself.

We note that biomolecular and biocomplexity areas which represent 40% of the HPC cycles
used on NSF computational resources and so this is an area that is particularly ready and valu-
able. Molecular sciences has had several successful examples of using ML for autotuning and ML
for analyzing the output of HPC simulation data. Several fields have made progress in using
MLaroundHPC, e.g., Cosmoflow [27] and CosmoGAN [28] are amongst the better known projects;
and the Materials community is actively exploring the uptake of MLControl for the design of
materials [8].

Section 5 discusses cyberinfrastructure and computer science questions, section 6 covers uncer-
tainty quantification for learnt results while section 7 the infrastructure requirements needed to
implement MLforHPC. Section 8 covers new opportunities and research issues.

2 Machine learning for Networked Systems: Inference and Fore-
casting

2.1 Introduction

Broadly, two mainstream modeling approaches are used to understand complex phenomena: Ma-
chine learning and mechanistic models. Across domains, these methods have been compared [29, 30].
Here, we explore ways to fuse these methods and thus overcome the shortcomings of each approach,
especially in scenarios where data is sparse and knowledge of underlying mechanism is inadequate.
Here, we consider a particular class of mechanistic models - network dynamical systems which
have been applied in diverse domains such as epidemiology and computational social science. We
focus on prediction and inference problems. But, the methods developed can be applied to other
topics as well (such as control). Machine learning models provide predictions on the outcomes of
complex mechanisms by utilizing copious amounts of observations for a given problem. Typically,
the approach requires choice of an algorithm which does not explicitly account for mechanisms that
govern the phenomenon. Mechanistic models (like agent-based models on networks), on the other
hand result from a bottom-up approach. They usually involve the mathematical description of the
process. Operationally, the model is broken down into subsystems which are simpler to specify and
learn through controlled experiments. The emergent behavior of the system is a result of these
interacting subsystems. These models capture causality and are explanatory, and their utility ex-
tends beyond prediction. However, they typically tend to have too many parameters, are compute
intensive, hard to calibrate, and critically depend on how well we understand the subsystems and
the interactions between them. Historically, domain expertise of physical principles has been used
to inform and improve machine learning outcomes (add citations later). In recent years, there have
been several efforts to study physical processes under the umbrella of theory-guided data science
(also called Model-based ML or Science-based ML) with focus on ANN as the primary learning
tool. [31] provide a survey of these methods and their application to hydrology, climate science,
turbulence modeling, etc. where the underlying theory can be used to reduce the variance in model
parameters by introducing constraints or priors in the model space. While, we will incorporate
these ideas, we intend to explore novel ways of interactions between the network dynamical system
and learning algorithms to develop powerful and robust modeling frameworks. To this end, we
consider the following directions:

• Learning from observational and simulation data. The goal is to develop robust and efficient
models for forecasting. We will augment observations with existing domain knowledge and
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behavior encapsulated in the agent-based model to inform the learning algorithm (consistency
and generalizability). At the same time, the machine learning surrogate replaces the compute
intensive simulation system and therefore enables efficient parameter space exploration.

• Inferring dynamical system behavior. The goal is to infer properties of the network dynamical
system from time-series observations and a learning algorithm. In particular, the focus is on
inferring local functions and two approaches will be explored: (i) We will exploit learning
algorithms capability to infer the functions from observations and network interactions; and
(ii) We will apply synthetic data generated from the learner to existing inference algorithms.

The first direction can be thought of as machine learning models being informed by network
dynamics while the second direction leverages learning algorithms to better infer the dynamical
systems. We will need a formal description for each direction.

2.2 Learning from observational and simulation data

Here, we explore ways to combine these approaches as a potential way to overcome the shortcomings
of each approach, especially in scenarios where data is sparse. We consider a particular class of
mechanistic models - network dynamical systems which have been applied in diverse domains
such as epidemiology, computational social science. A network dynamical system is composed of a
network where nodes of the network are agents (representing population, computers, etc.) and the
edges capture the interactions between them. Each node is associated with a state (say susceptible
0 or infected 1) and a local function which decides the state of the node a function of the states of its
neighbors in the network. The system behavior is represented by the vector of node states, which
evolves over time. A popular example of such systems is the SEIR model of disease spread [32]. A
networked dynamical system can be thought of as a graphical model that captures dynamics over
networks. Recently graphical models of games, inference have also been studied extensively.

Here we will focus on prediction (forecasting) problems. The methods developed can be applied
to other topics as well (such as inference or control).

In recent years, there have been several efforts to study physical processes under the umbrella
of theory-guided data science (also called Model-based ML or Science-based ML) with focus on
ANN as the primary learning tool. [31] provide an excellent survey of these methods and their
application to hydrology, climate science, turbulence modeling, etc. where the underlying theory
can be used to reduce the variance in model parameters by introducing constraints or priors in the
model space. We have independently pursued a similar line of inquiry, but focused on social and
health systems instead. The notion of theory in social and biological systems is a bit different than
its use in describing physical systems. We will study on theoretical descriptions of contagion like
processes on networks in this section.

Challenges. Data sparsity is often a challenge for applying machine learning, especially deep
learning methods to forecasting problems in socio-technical systems. One example of such problems
is to predict weekly incidence in future weeks as well as onset and peak of the season in an influenza
epidemic. An infectious disease, such as influenza, spreads in a population through a social network
via person to person interactions.

In such socio-technical systems, it is costly to collect data by surveillance or survey, and it is
difficult or impossible to generate data by controlled experiments. Usually we have only limited
observational data, e.g. weekly incidence number reported to the Centers for Disease Control and
Prevention (CDC). Such data is of low spatial temporal resolution (weekly at state level), not real
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time (at least one week delay), incomplete (reported cases are only a small fraction of actual ones),
and noisy (adjusted by CDC several times after being published).

The complexity of the dynamics in such a large scale social network, due to individual level
heterogeneity and behavior, as well as interactions among individuals, makes it difficult to train a
machine learning model that can be generalized to patterns not yet presented in historical data.
Completely data driven models cannot discover higher resolution details (e.g. county level inci-
dence) from lower resolution ground truth data (e.g. state level incidence).

Approach. A schematic of the hybrid system is shown in Figure 1. There are three modules: The
machine learning algorithm, the network dynamical system and evaluation module, which compares
the predictions and of both models and directs the exploration of the parameter space until the
quality constraints are satisfied. Initially, the network dynamical system is initialized based on
assumptions and understanding of agent properties, network structure, etc. Then, it is calibrated
using real-world observations of the phenomenon. The learning algorithm can be initially trained
using real-world observations, or these observations can be provided along with simulation data at
a later stage. After the initialization, an iterative process of interactions between these two models
via the evaluation module ensues. The parameters for the evaluation module are the guarantees
for prediction and budget constraints such as the maximum number of times the simulator can be
invoked. An essential aspect of the framework is to embed uncertainty quantification for both the
learning module [33, 34] as well as the dynamical system [35, 36] into the framework.

Evaluation
module

Guarantees
and budget

Learning
algorithm

Uncertainty
quantification

Network
dynamical

system

Uncertainty
quantification

Sample
predictions

for evaluation

High-resolution
simulation data
for training

Parameter
instances for
simulation

Sim. output
for evaluation
or training

Counterfactual
scenarios

Observations,
priors and
assumptions

Model
and data

uncertainty

Figure 1: Schematic of the hybrid system of machine learning and agent-based simulation system.

The following are some of the key advantages of using such a hybrid framework as opposed to
using only its individual components:

Consistency. The network dynamical system can be used to guide the learning algorithm so that
it conforms to the principles and accepted understanding of the phenomenon. At the same time,
the learning algorithm will facilitate model selection in a principled manner.

Generalizability. A learning algorithms performance can only be as good as the data provided
to it. Here, we will consider ways in which synthetic data goes beyond the observational data
and helps voiding overfitting. We consider two directions. Firstly, we consider dynamical systems
whose outputs are at a finer resolution than observation data [37]. Secondly, we will simulate
counter-factual scenarios for which no observation data is available. Both aspects are covered in
the example.

Efficiency. In applications such as epidemic spread, population networks tend to be large, the
dynamical process high dimensional and simulations are compute intensive. Therefore, parameter
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space exploration and calibration is a major challenge. Recently, machine learning surrogates have
been considered to efficiently explore the parameter space and use them to approximate outcomes of
the target dynamical system [38]. Some learning algorithms naturally facilitate sensitivity analysis.
Algorithms such as decision trees can potentially explain the behavior of the system as well. Much
of the work in this regard has been empirical.

2.3 An Illustrative application: Simulation Guided Machine Learning for Epi-
demic Forecasting

Data sparsity is often a challenge for applying machine learning, especially deep learning methods
to forecasting problems in socio-technical systems. One example of such problems is to predict
weekly incidence in future weeks as well as onset and peak of the season in an influenza epidemic.
An infectious disease, such as influenza, spreads in a population through a social network via person
to person interactions.

In such socio-technical systems, it is costly to collect data by surveillance or survey, and it is
difficult or impossible to generate data by controlled experiments. Usually we have only limited
observational data, e.g. weekly incidence number reported to the Centers for Disease Control and
Prevention (CDC). Such data is of low spatial temporal resolution (weekly at state level), not real
time (at least one week delay), incomplete (reported cases are only a small fraction of actual ones),
and noisy (adjusted by CDC several times after being published).

The complexity of the dynamics in such a large scale social network, due to individual level
heterogeneity and behavior, as well as interactions among individuals, makes it difficult to train a
machine learning model that can be generalized to patterns not yet presented in historical data.
Completely data driven models cannot discover higher resolution details (e.g. county level inci-
dence) from lower resolution ground truth data (e.g. state level incidence).

Statistical methods for epidemic forecasting include generalized linear models (GLM), au-
toregressive integrated moving average (ARIMA), and generalized autoregressive moving average
(GARMA) [39, 40, 41]. [42] proposed a dynamic Poisson autoregressive model with exogenous in-
put variables (DPARX) for flu forecasting. [43] proposed ARGO, an autoregressive-based influenza
tracking model for nowcasting that incorporated CDC ILINet data and Google search data.

Deep learning methods based on artificial neural networks (ANN) have recently been applied
to epidemic forecasting due to their capability to model non-linear processes. Recurrent Neural
Network (RNN) has been demonstrated to be able to capture dynamic temporal behavior of a time
sequence. [44] built an LSTM model for short-term ILI forecasting using CDC ILI and twitter data.
[45] proposed LSTM based method that integrates the impacts of climatic factors and geographical
proximity to achieve better forecasting performance. [46] constructed a deep learning structure
combining RNN and convolutional neural network to fuse information from different sources.

Both statistical and deep learning methods cannot model heterogeneity at disaggregate levels
based on aggregate data, so they have difficulty producing forecasts of a higher resolution than
that of observed data. In addition, deep neural networks need large amount of training data. Thus
overfitting often happens due to availability of only small amount of historical surveillance data.

Causal methods based on mechanistic models (e.g. S-E-I-R model for influenza epidemics) are
developed for epidemic forecasting. Tuite et al. [47] estimate parameters in a compartmental model
in order to predict morbidity in pandemic H1N1. [48] apply various filter methods to model and
forecast influenza activity using an SIRS model. [49] propose an optimization approach where pa-
rameters of an agent based model are inferred from ground truth data then simulations are used
to make epidemic forecasts. [50] and [51] infer the parameters of an agent based model from social
media data for ILI forecasting. The benefit of causal methods is that the underlying mechanistic
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models allow them to handle new patterns in data; and depending on the model resolution fore-
casts can be made of various resolutions, even down to individual level in case of a detailed agent
based model. The major challenge with these causal methods is the high dimensionality of model
parameters. Again, sparse ground truth data is not enough to calibrate many parameters. Further-
more, the agent based epidemiological models are highly compute intensive, making it non-trivial
to search through the parameter space. These models usually demand high performance algorithms
to simulate.

To address the challenges posed by data sparsity, we adopt the SimulationTrainedML approach.
The idea is to use theory to guide machine learning / deep learning model training. Specifically
for epidemic forecasting problem, we take an existing epidemiological model, derive a reasonable
distribution of parameter values, sample many configurations of the model from the distribution
and run HPC based simulations, then use the synthetic data produced by simulations to train
a deep neural network, which can be used for forecasting. This approach integrates epidemiology
theory, HPC simulations, and deep learning models under the paradigm of Theory Guided Machine
Learning (TGML). It improves generalizability of machine learning models, ensures their physical
consistency with the epidemiological models, and enables high resolution forecasting. Simulations
can generate required synthetic training data for neural network models with minimal costs (mainly
HPC costs). The mechanistic model can not only generate data similar to the observed but also
produce data that has never occurred in reality, and allows the trained neural networks to model new
patterns. The TGML approach can also easily make long term forecasting of epidemic dynamics
using simulations. Furthermore, the behavior modeling in agent based models allows counter-factual
analysis and what-if forecasts.

Figure 2: Simulation trained ML

For infectious disease forecasting, we propose DEFSI (Deep Learning Based Epidemic Fore-
casting with Synthetic Information), a framework that integrates the strengths of artificial neural
networks and causal models. It consists of three components. (1) Disease model parameter space
construction: Given an existing agent based epidemic model, we estimate a marginal distribution
for each model parameter based on coarse surveillance data. (2) Synthetic training data genera-
tion: We generate a synthetic training dataset at high-resolution scale by running HPC simulations
parameterized from the parameter space. (3) Deep neural network training and forecasting: We
train a two-branch deep neural network model on the synthetic training dataset and use coarse
surveillance data as inputs to make detailed forecasts.

Why should we build a reduced order model. A natural question is the need for such
a neural network model, in other words, why cant a simulation be used directly to produce the
needed forecast. There are a number of reasons why this is useful. First and foremost, once the
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neural network model is developed real-time forecasting is possible. Second, such a model can also
be used when one uses simulations for planning and optimization problems and needs forecasted
values during the decision making phase. (Needs a bit more cleaning up)

We run experiments to evaluate DEFSI against several state-of-the-art epidemic forecasting
methods. (1) LSTM (single-layer LSTM) [52]; (2) AdapLSTM (CDC + Weather data) [45]; (3)
ARIMA (classic ARIMA) [40]; (4) ARGO (CDC + Google data) [43]; and (5) EpiFast (causal
forecasting method based on EpiFast simulations) [49]. The last method can make county level
forecasts while the others can only make state level forecasts. Experimental results show that
DEFSI performs comparably or better than the other methods for state level forecasting. For
county level forecasting, the DEFSI method significantly outperforms the EpiFast method.

Figure 3: Virginia state level forecasting, 2017-2018 (top) and New Jersey county level forecasting,
2017-2018 (bottom).

3 Machine Learning for Virtual Tissue and Cellular Simulations

3.1 Virtual Tissue Models

Virtual Tissue (VT) simulations [53, 54] are mechanistic multiscale spatial simulations of living
tissues which address questions about how tissues develop during embryogenesis, how they main-
tain themselves in adult life, how they repair themselves after damage, and how they fail due to
internal and external perturbations. They also find application in the design of tissues (tissue
engineering) and the development of medical therapies, especially personalized therapies. Sample
application include personalized models of brain and breast cancers [55], virtual livers [56] for the
analysis of toxicant effects on the liver [57, 58], personalized virtual hearts [59] for the design of
surgical interventions, virtual lungs, virtual retinas and virtual embryos. While VT simulations
are extremely diverse, both in their level of detail, numerical methodologies and range of temporal
length scales, they share a number of features that make them appropriate targets for AI assistance.
VT simulations are computationally challenging for a number of reasons: 1) VT simulations are
agent-based, with the core agent often being biological cells. The number of cells in a real tissue is
often of the order of 108 or more. Even with coarse-graining, the number of simulated cells is large
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(105 − 107), so calculating the temporal changes of cell shape, position and internal state is time
consuming. 2) Agents are often hierarchical, with agents composed of multiple agents at smaller
scales, and are highly diverse in type. As a result VT simulations must explicitly represent a very
broad range of length and time scales (nanometers to meters and milliseconds to years). 3) Agents
within and between scales interact strongly with each other, often over significant ranges [57]. Ex-
plicit models of long range force transduction and reorganization of the complex fiber networks
[60] of extracellular matrix outside of cells and of the active cytoskeletal fiber networks inside of
cells are particularly challenging. Solid mechanics models of bulk material deformations are also
challenging. 3) Individual agents typically contain complex network sub models which control their
properties and behaviors, e.g., of cell regulation, signaling and metabolism. 4) Materials properties
may be complex, like the shear thickening or thinning or swelling or contraction of fiber networks,
which may be individually expensive to simulate. 5) Modeling transport is also challenging. Agents
exist in a complex environment, which governs the transport of multiple chemical species. In many
VT simulations, the solution of the diffusion equation (with complex rules for active and passive
boundary crossing) for many species under complex, every-changing conditions is the most com-
putationally expensive part of the simulation. In other cases, e.g. when there is significant flow of
blood or interstitial fluid, or bulk material movement, transport requires the solution of complex
advection diffusion equations.6) Models are typically stochastic, so predictivity requires execution
of many replicas under identical conditions. Importantly, this stochasticity usually does not rep-
resent error–different simulation outputs for the same parameters are both valid and the average
of two valid solutions is not generally a valid solution. E.g., a vascular growth experiment which
can generate two different random spatial vascular structures, or where two qualitatively different
results where the interest is the probability of occurrence of an outcome–e.g. Does a cancer metas-
tasize or not and if so, to what organ? 7) Simulations involve uncertainty both in model parameters
(there may be hundreds of parameters, many of them poorly quantified) [61] and in model structure
(the actual set of interaction rules and types). The former means that parameter optimization and
uncertainty quantification are hard, the latter is worse, because the combinatorics involve searches
over complex response surface spaces in which gradient methods dont work. 8) Biological and
medical time-series data for concentrations or states are often qualitative, semiquantitative or dif-
ferential, making their use in classical optimization difficult (their use requires the definition of
case-specific metrics and their weighted inclusion in the definition of residuals–outcomes are often
sensitive to this weighting and we lack formal ways to optimize these weights). 9) In many cases,
time series for validation may not be synchronized with model time points (in terms of starting
time, ending time or time rates). 10) VT models often produce movies of configurations in 2D x
time or 3D x time. In general, we lack appropriate general metrics to compare experimental movies
to VT outputs (and we have the additional issue of scaling, region of interest limitation and regis-
tration, as well as stochasticity), making feature-extraction and classical optimization problematic.
11) Finally, given the complexity of VT models and their simulation, there is the additional com-
putational challenge of simulating populations of individuals. Simulation of a population can add
several additional orders of magnitude to the computational challenge. Unsupervised learning, can,
in principle, handle stochasticity, determine appropriate weights, registration and features to allow
comparison between experiment and simulation.

In addition, VT simulations are often coupled to models at higher and lower scales, for example
to whole body models represented as Physiological Pharmacokinetics (PBPK) models, or to multiple
sub-cellular signaling or metabolic models. At each simulation scale there is often a variety of
possible representations that vary in their level of detail. As the level of detail at each scale, and
the number of couplings between scales increases, the computational complexities outlined in the
previous discussion are multiplied. As outlined in Figure 3.1, coupling multiple scales, each with

10



Figure 4: Multiscale VT simulations often include sub-models for particulate scales. For example,
the whole body is represented as a PBPK model, coupled to a VT model, with each agent (e.g.,
cell) in the VT model coupled to a subcellular model. This approach typically, and optimally, uses
different modeling modalities at each scale. Constructing a model in this manner allows simulations
to include experimental data obtained from different sources. For example, the PBPK scale is
suitable for including systemic measurables such as blood concentration versus time following a
dose of a xenobiotic. The subcellular scale can often be calibrated using measurements from cell
culture assays. There are often multiple possible models at a particular scale that differ in their
level of detail.

the possibility of varying levels of details greatly increases the level of complexity. It is possible
that ML techniques can be used to short circuit implementations at individual scales.

Perhaps surprisingly, given the above caveats, virtual tissue models can and do generate sci-
entifically and practically meaningful results in a wide variety of cases, and some are even used
clinically on a regular basis for the optimization of personalized therapies.

Secondly, a growing number of general modeling frameworks, CompuCell3D, PhysiCell [62],
Morpheus, Neuron, VirtualCell, allow the high-level specification of VT simulations of different
types. These frameworks typically share an approach to modularization, built around the definition
of object classes and their properties, behaviors and interactions. Models are increasingly structured
as pluggable components, which can be refined by inclusion of more detailed submodels or replaced
by coarse-grained approximations.

3.2 Virtual Tissue Modelling and AI

AI can directly benefit VT applications in a number of ways (and certainly in many more which
we have not yet considered):
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1. Short-circuiting: The replacement of computationally costly modules with learned analogues.
E.g. in the case of diffusive transport, we want to know the flux of a given chemical species at
a given location given the global pattern of sources and sinks of the species, without having
to solve the diffusion equations. In the case of a model of the heart we want to know the
stress distribution in the heart tissue from the unstressed geometry of the heart and its current
geometry, without having to solve the nonlinear solids equations which relate stress and strain
in this complex material. In both cases, there are proof-of-principle demonstrations that such
short-circuiting is possible and can speed up calculations by many orders of magnitude.

2. Parameter optimization in very high dimensional parameter spaces. VT models are typically
significantly overfitted (not enough validation data for the hundreds of parameters), but the
sets of parameters which lead to equally good solutions are of interest.

3. Model reduction and uncertainty quantification–the analysis of conditions under which pa-
rameters or model elements are unnecessary and can be eliminated from the simulation.

4. Encapsulation (coarse graining)–Can you take a bunch of agents, put a box around them
and simulate the input-output relations of the box? A classic example of this is the diffi-
culty of deriving meaningful bulk materials parameters from the microstructure of ECM or
cytoskeletal components. The key challenge is the lack of homogeneity in biological systems
that means that classical approaches to coarse-graining fail.

5. Approaches to treating stochasticity of results as information rather than noise.

6. In many cases the exact quantitative values of the simulation prediction are critical (the
contraction efficiency of the heart, a surgical the safety margin around an MRI image of a
tumor) and we would be using AI to interpolate between directly simulated results. In other
cases, we are primarily interested in the bifurcation structure of the model with respect to
one or more parameters (as a concentration of a chemical increases, a circuit goes from stable
to oscillatory behavior). In the latter case we want to use AI approaches to predict the range
of possible output configurations from input structures (classification) to address problems
where model structure is uncertain.

7. The design of maximally discriminatory experiments for hypothesis testing is a key application
of VT models–the use of AI to predict the (experimentally realizable) parameter sets for which
two models with different hypotheses have the most distinct results would greatly facilitate
the application of modeling to experiment.

8. A particular area of interest is the use of AI to run time backwards, to allow the design
of initial conditions which lead to desired outputs–such inverse time simulation is especially
critical to enable tissue engineering applications of VTs.

9. Another area of interest is the elimination of short time scales–in particular, the rate of
blood flow is very fast compared to other tissue-level time scales. If AI can short-circuit the
calculations of advection-diffusion transport, it would speed up typical tissue calculations by
several orders of magnitude.

10. A final area of AI, which relates to more classical AI-based image analysis is the use of AI
to generate initial conditions for VT simulations from experimental images. Of particular
interest is the question of whether AI can classify complex stochastic spatial structures (e.g.
the branching pattern airways in a human lung or the vascular structure of the liver) to
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determine if a VT simulation has generated a tissue which structurally resembles its exper-
imental counterparts. Currently, such classification is not possible using predefined feature
extractions methods.

In each of these cases, a VT model has the advantage that it can generate limitless amounts of
training data (albeit at high computational cost).

3.3 Multiscale Biological Modelling and MLandHPC

Therefore, there are several areas in multiscale biological modeling that could benefit from advances
in MLforHPC. Such as;

1. Generation of additional multiscale time series from limited experimental data (detailed time
series data is expensive to obtain). The ability to extract fundamental characteristics of
the system, without necessarily developing deep mechanistic understanding of the controlling
equations or parameters. Create ”synthetic, complex time series data” that is consistent with
the limited amount of experimental data.

2. Generation of multiscale time series across species. Leverage much larger data sets in ex-
perimental animals to extend the limited data in humans. E.g., map animal to human data
including stochasticity and inter-individual variation.

3. Extraction of commonalities across VT simulations. For example, multiple VT models, each
for a particular disease, share a common PBPK backbone. Use AI to extract parameters (and
parameter ranges) that are VT-model independent such as apparent tissue volumes, blood
flow rates etc.

4. Use of AI to score the ”biological possibility” of a computationally constructed representation
(e.g., a replicates) of a biological system. In particular for 2D and 3D tissue models used as
replicates in VT simulations. If an AI classifier can differentiate between real 2D/3D data
and synthetic data, then the synthetic data does not adequately represent reality.

5. Prediction of crashes in simulations. When exploring large parameter spaces it is often the
case that certain sets of parameters result in either a numerical crash of the simulation or the
simulation straying into a non-biologically possible region. MLfor HPC techniques that can
monitor a large scale simulation project and develop predictors for when particular parameter
sets may give invalid results allowing those simulations to be skipped.

Key concerns about AI replacement of model components include: 1) The accuracy of learned
interpolations within the span of the training set, 2) the range of parameters outside of the training
set span over which model prediction is qualitatively correct. 3) The efficiency of learning over
very sparse training sets. 4) The ability to train when the same input data can lead to very
different output data sets (in other words, where the inputs lead not to a single deterministic
output, but to a complex range of outputs each of which is valid in its own right). Thus, classical
back propagation algorithms may need to be rethought to handle the multivalency of outputs. 5)
Model structure inference is challenging, because there is not necessarily a differentiable way to
transition between models with different structures for gradient methods (unless we use systems
with very high combinatorial complexity–all-to-all couplings).

In many of these cases, in other contexts, AI approaches do better than one might reasonably
expect. In biology in particular, feedback systems tend to result in behaviors which are highly
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robust to stochasticity and drift of parameters (e.g., changing the concentration of a key input
chemical by a factor of ten has no measurable effect on system outputs), but failures tend to be
dramatic (e.g. the transition between a regulated stem cell state and a cancer). This robustness
makes the predictability of normal situations more credible, but also that divergences between AI
predictions and reality may be abrupt and dramatic rather than gradual.

Prior work by Karniadakis [22, 63], Kevrekidis [21] and Nemenman [64] have shown that neural
networks can effectively learn to reproduce the temporal behaviors of fairly complex biochemical
regulatory and signaling networks over a broad range of physiological conditions. This ios comple-
mented by successful applications in other domains [65]. Liang-liang [66] has shown that networks
can also learn to short-circuit nonlinear biomechanics simulations of the aorta–being able to predict
the stress and strain distribution in the human aorta from the morphology observable with MRI
or CT alone. These successes provide important proof-of-principle for the use of AI to enhance VT
simulations. However, the typical VT model is much more complex than these biological models.
VTs typically involve the change of position and state of hundreds of thousands or millions of
agents, each of which has complex internal control and complex deformable shape. In this sense,
the use of AI is more similar to the use of AI to play a very extended version of the game of Go than
to learn the behavior of a classical dynamical system. E.g. the dimensionality of the inputs for the
spatial components of a VT is very high (the 3D positions, shape and surface and volume proper-
ties of every agent in the simulation). Many of these issues represent significant computer-science
research problems.

We plan the investigate 3 separate projects which will demonstrate the utility of AI methods
in accelerating and improving VT simulations.

1. Project 1: Focus–Parameter and model structure estimation in challenging conditions. Test
the ability of various back-propagation methods to infer VT model parameters from stochastic
simulation outputs for different levels of model complexity. Study the degradation of predic-
tion as the number of parameters increases and the number of simulation replicas decreases
to determine a heuristic trade-off for model inferability. Test the ability of AI to identify
possible regulatory circuits for control of known biological systems.

2. Project 2: Focus–Short-circuiting of high dimensional models for acceleration. Develop a
short-circuit diffusion solver which takes spatial source, sink and boundary geometries and
conditions and returns the chemical concentration at a desired location and net fluxes over
all boundary surfaces. Apply this accelerator to a VT model of a vascular tumor. Study
the numerical accuracy of the field predictions and the range of situations in which the AI
approximation becomes qualitatively wrong rather than numerically inaccurate. If the base
diffusion solver works, extend to include a model of vascular transport via a capillary network.

3. Project 3–Focus–Coarse graining. Train a network on a microscopic model of fiber dynamics
and reaction-advection-diffusion interactions and their effect on cell movement and polariza-
tion under representative conditions. Attempt to predict the dynamics of cell polarization
(both mesenchymal to epithelial transition and lamellipodial polarization of fibroblasts) from
internal state and external conditions.

Even if the more ambitious aims are not realized, packaging tools that allow the optimization or
short-circuiting of well-defined submodels designed to have a clear set of inputs and outputs will
allow the acceleration of many classes of VT simulation.
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4 Machine Learning for Molecular and Nanoscale Simulations

4.1 MLaroundHPC for nanoscale simulation

4.1.1 Example

We start with a simple example to provide context and illustrate the value of MLaroundHPC in the
nanoscale simulation domain. Consider a typical coarse-grained (with implicit solvent) molecular
dynamics (MD) simulation of ions confined at the nanoscale: 1 nanosecond of dynamics (1 million
computational steps) of a system of 500 ions on one processor takes about 12 hours of runtime,
which is prohibitively large to extract converged results within reasonable time frame. Performing
the same simulation on a single node with multiple cores using OpenMP shared memory accelerates
the runtime by a factor of 10 (≈ 1 hour), enabling simulations of the same system for longer physical
times leading to more accurate results within reasonable computing time. The use MPI can dra-
matically enhance the performance of these simulations: for systems of thousands of ions, speedup
of over 100 can be achieved, enabling the generation of accurate data for evaluating ionic distri-
butions. Further, a hybrid OpenMP/MPI approach can provide even higher speedup of over 400
for similar-size systems enabling state-of-the-art research on the ionic structure in confinement via
simulations that explore the dynamics of ions with less controlled approximations, accurate poten-
tials, and for tens or hundreds of nanoseconds over a wider range of physical parameters. However,
despite the employment of the optimal parallelization model suited for the size and complexity of
the system, scientific simulations remain time consuming. In research settings, simulations can take
up to several days and it is often desirable to foresee expected overall trends in key quantities; for
example, how does the contact density vary as a function of ion concentration in the confinement.
Long-time simulations and investigations for larger system sizes become prohibitively expensive.
The situation gets increasingly worse as the models become more fine-grained. Explicit solvent
leads to a dramatic decrease in computational performance. The above example is illustrative of
the general problem in simulation of materials at the nanoscale; self-assembly phenomena associated
with capsomeres assembling into a viral capsid or with assembly of functionalized nanoparticles into
higher-order structures exhibit similar computational challenges.

4.1.2 Why MLaroundHPC and what does it enable

Given the powerful rise in ML and HPC technologies, it is not the question of if, but when, ML
can be integrated with HPC to advance simulation methods and frameworks. It is critical to
understand and develop the software frameworks to build ML layers around HPC to 1) enhance
simulation performance 2) enable real-time and anytime engagement, and 3) broaden the appli-
cability of simulations for both research and education (in-classroom) usage. Some early work in
using ML in material simulations and scientific software applications (see Sec. 4.1.3) has already
begun in this direction further inspiring the research objectives. Figure 5 shows a schematic of the
MLaroundHPC framework for a generic nanoscale simulation. The goal is typically to predict the
structure or correlation functions (outputs) characterizing the nanoscale system over a broad range
of experimental control parameters (inputs). As Figure 5 shows, MLaroundHPC can enable the
following outcomes:

1. Learn pre-identified critical features associated with the simulation output (e.g. key experimentally-
relevant quantities such as contact ionic density in the above example or nanoparticle pair
correlation functions in nanoparticle self-assembly simulations).

2. Generate accurate predictions for un-simulated statepoints (by entirely bypassing simulations)
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3. Exhibit auto-tunability (with new simulation runs, the ML layer gets better at making pre-
dictions etc.)

4. Enable real-time, anytime, and anywhere access to simulation results from trained ML models.
(particularly important for education use).

5. No run is wasted. Training needs both successful and unsuccessful runs.

MLaroundHPC in Nanoscale Simulation

Critical

Features

Structure

Correlation
Nanoscale

System

Control

Parameters

Figure 5: Schematic of the MLaroundHPC framework in nanoscale simulation.

To further illustrate these goals, we discuss an application related to the example simulation
presented above in Sec. 4.1.1. The distribution of electrolyte ions near charged or neutral nano-
materials such as nanoparticles, colloids, or biological macromolecules determines their assembly
behavior. As a result, the computation of structure of ions confined by surfaces that are nanome-
ters apart has been the focus of several recent experiments and computational studies [67, 68, 69].
Simulations of such coarse-grained models have been employed by many researchers to extract the
ionic distributions confined between the interfaces for a wide range of parameters such as elec-
trolyte concentrations, ion valencies, and interfacial separations [70, 71, 68]. Simulations have been
performed using customized codes developed in individual research groups [70, 72, 68] or general
purpose software packages such as ESPRESSO [73] and LAMMPS [74].

Typically, the entire ionic distribution averaged over sufficient number of independent samples
generated during the simulation is a quantity of interest. However, in many important cases,
average values of contact density, peak density or density at the center of the slit (mid-point density)
directly relate to important physical quantities associated with the effect of ionic self-assembly on
the interaction between the surfaces [75, 76]. For example, the effective force between the two
interfaces, the osmotic pressure, or the fraction of condensed ions directly depend on the contact
density which is the density of ions at the point of closest approach of the ion to either interface
[75]. Further, often it is useful to visualize expected trends in the behavior of contact or mid-point
density as a function of solution conditions or ionic attributes, before running simulations to explore
specific system conditions. In all these cases, it is desirable that a simulation framework provides
rapid estimates of these critical output features with high accuracy. MLaroundHPC can enable
precisely this. For this example, in Figure 5 our nanoscale system is the system of confined ions,
experimental control parameters are electrolyte concentration, solvent permittivity, confinement
length, desired output is the density profile (structural information), and critical features are the
contact, peak, and mid-point ion densities. We demonstrated in our recent work [77] that an
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artificial neural network successfully learned the desired features associated with the output ionic
density profiles and rapidly generated predictions that are in excellent agreement with the results
from explicit molecular dynamics simulations.

4.1.3 Related work

Traditionally, performance enhancement of scientific applications has largely been based on improv-
ing the runtime of the simulations using parallel computing methods, including different acceleration
strategies such as OpenMP, MPI, and hybrid programming models. Recent years have seen a surge
in the use of ML to accelerate computational techniques aimed at understanding material phe-
nomena. ML has been used to predict parameters, generate configurations in material simulations,
and classify material properties [78, 79, 80, 81, 82, 83, 84, 85, 86, 87]. For example, Fu et al. [81]
employed ANN to select efficient updates for Monte Carlo simulations of classical Ising spin models
that overcome the critical slowing down issues in Monte Carlo simulations. Similarly, Botu et al.
[84] employed kernel ridge regression (KRR) to accelerate MD method for nuclei-electron systems
by learning the selection of probable configurations in MD simulations, which enabled bypassing
explicit simulations for several steps.

4.2 MLaroundHPC for biomolecular simulations

4.2.1 Current work

The use of ML and in particular DL approaches for biomolecular simulations is still in its infancy
compared to other areas such as nano-science and materials science. This might be partly due to the
large system sizes (100,000 of atoms), the importance of solvent (water, ions, lipids for membrane
proteins), the high level of heterogeneity, and possibly the importance of both short range ( 10
) and long range (electrostatic) interactions. Current work in this area originated in materials
sciences [88, 89]. One promising approach is based on work by Behler and Parrinello [90] who
devised a very efficient and accurate NN-based potential that was trained on quantum mechanical
DFT energies; their key insight was to represent the total energy as a sum of atomic contributions
and represent the chemical environment around each atom by an identically structured NN, which
takes as input appropriate symmetry functions that are rotation and translation invariant as well
as invariant to exchange of atoms but correctly reflect the local environment that determines the
energy [88]. Based on this work, Gastegger et al. [91] used ML to accelerate ab-initio MD (AIMD)
to compute accurate IR spectra for organic molecules including the biological Ala+3 tripeptide in the
gas phase. They employed Behler-Parrinello HDNNP (high-dimensional neural network potentials)
and an automated sampling scheme to converge HDNNPs but they did not perform on-the-fly
training due to the high cost of DFT energy evaluations. Interestingly, the ML model was able
to reproduce anharmonicities and incorporate proton transfer reactions between different Ala+3
tautomers without having been explicit trained on such a chemical event, highlighting the promise
of such an approach to incorporate a wide range of physically relevant effects with the right training
data. The ML model was >1000 faster than the traditional evaluation of the underlying quantum
mechanical physical equations.

Roitberg et al. [92] trained a NN on QM DFT calculations, based on modified Behler-Parrinello
symmetry functions. The resulting ANI-1 model was shown to be chemically accurate, transferrable,
and the resulting NN potential could be evaluated at a cost similar to a classical force field so that
ab-initio molecular dynamics can be performed to a fraction of the cost of solving the DFT calcu-
lations in AIMD. However, the model is built separately on a large database of single point DFT
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energy calculations without tight coupling between the training and the simulation steps. Exten-
sions of their work (improving NN generation with an active learning (AL) approach via Query by
Committee (QBC)) demonstrated that proteins in an explicit water environment can be simulated
with a NN potential at DFT accuracy [93]. The AL approach reduced the amount of required
training data to 10% of the original model [93] by iteratively adding training data calculations
for regions of chemical space where the current ML model could not make good predictions. Us-
ing transfer learning, the ANI-1 potential was extended to predict energies at the highest level of
quantum chemistry calculations (coupled cluster CCSD(T)), with speedups in the billions [94].

4.2.2 Outlook

In general the focus has been on achieving DFT-level accuracy. Speeding up classical MD sim-
ulations with empirical force fields has not been attempted, likely because the empirical energy
functions are typically simpler than the NN potentials and so the computational cost of evaluating
a NN potential is higher than or on par with evaluation of a classical empirical potential. How-
ever, replacing solvent-solvent and solvent-solute interactions, which typically make up 80%-90%
of the computational effort in a classical all-atom, explicit solvent simulation, with a NN potential
promises large performance gains at a fraction of the cost of traditional implicit solvent models
and with an accuracy comparable to the explicit simulations, as already discussed above in the
case of electrolyte solutions. Furthermore, inclusion of polarization, which is expensive (factor 3-
10 in current classical polarizable force fields) but of great interest when studying the interaction
of multivalent ions with biomolecules might be easily achievable with appropriately trained ML
potentials.

An interesting question is if ML potentials can be used to push the typical time step size in
the integration of the classical equations of motions to times beyond the 2–5 fs that are currently
feasible. Experience from heuristic coarse grained force fields [95, 96] shows that smoothing of the
energy landscape by coarse graining allows much larger time steps, e.g. 10 - 20 fs. If ML potentials
can be shown to also coarse-grain the energy landscape in a similar fashion then an enhancement
of sampling and speedup of factors of 2–5 might be possible, at effectively the same accuracy as
traditional classical all atom MD simulations. This assumes that ML potentials somehow capture
dynamics on a low-dimensional manifold on which the energies and forces vary more smoothly than
on the full 6N phase space [97].

5 Cyberinfrastructure and Computer Science Background for the
Integration of Machine Learning and HPC

5.1 HPC for Machine Learning

There has been substantial community progress here with the Industry supported MLPerf [98]
machine learning benchmark activity and Ubers Horovod Open Source Distributed Deep Learning
Framework for TensorFlow [99]. We have studied [100] different parallel patterns (kernels) of ma-
chine learning applications, looking in particular at Gibbs Sampling [101], Stochastic Gradient De-
scent (SGD) [102], Cyclic Coordinate Descent (CCD) [103] and K-means clustering [104, 105, 106].
These algorithms are fundamental for large-scale data analysis and cover several important cate-
gories: Markov Chain Monte Carlo (MCMC), Gradient Descent and Expectation and Maximization
(EM). We show that parallel iterative algorithms can be categorized into four types of computation
models (a) Locking, (b) Rotation, (c) Allreduce, (d) Asynchronous, based on the synchronization
patterns and the effectiveness of the model parameter update. A major challenge of scaling is
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owing to the fact that computation is irregular and the model size can be huge. At the meantime,
parallel workers need to synchronize the model continually. By investigating collective vs. asyn-
chronous methods of the model synchronization mechanisms, we discover that optimized collective
communication can improve the model update speed, thus allowing the model to converge faster.
The performance improvement derives not only from accelerated communication but also from re-
duced iteration computation time as the model size may change during the model convergence. To
foster faster model convergence, we need to design new collective communication abstractions. We
identify all 5 classes of data-intensive computation[2], from pleasingly parallel to machine learning
and simulations. To re-design a modular software stack with native kernels to effectively utilize
scale-up servers for machine learning and data analytics applications. We are investigating how
simulations and Big Data can use common programming environments with a runtime based on a
rich set of collectives and libraries for a model-centric approach [107, 108].

5.2 Parallel Computing

We know that heterogeneity can lead to difficulty in parallel computing. This is extreme for
MLaroundHPC as the ML learnt result can be huge factors (105 in our initial example[77]) faster
than simulated answers. Further learning can be dynamic within a job and within different runs
of a given job. One can address by load balancing the unlearnt and learnt separately but this can
lead to geometric issues as quite likely that ML learning works more efficiently (for more potential
simulations) in particular regions of phase space.

5.3 Scaling of Effective Performance

An initial approach to estimate speedup in a hybrid MLaroundHPC situation is given in [77] for a
nano simulation. One can estimate the speedup in terms in terms of four times Tseq the sequential
execution time of simulation; Ttrain the time for the parallel execution of simulation to give training
data; Tlearn is the time per sample to train the learning networkl; and Tlookup is the inference time
to predict the results of the simulation by using the trained network. In the formula below, Nlookup

is the number of trained neural net inferences and Ntrain the number of parallel simulations used
in training.

Effective Speedup S =
Tseq(Nlookup + Ntrain)

TlookupNlookup + (Ttrain + Tlearn)Ntrain

This formula reduces to the classic simple
Tseq

Ttrain
when there is no machine learning and in the limit

of large
Nlookup

Ntrain
becomes

Tseq

Tlookup
which can be huge!

There are many caveats and assumptions here. We are considering a simple case where one
runs the Ntrain simulations, followed by the learning and then all the Nlookup inferences. Further
we assume the training simulations are useful results and not just overhead. We also have not
properly considered how to build in the likelihood that training, learning and lookup phases are
probably using different hardware configurations with different node counts.

6 Uncertainty Quantification for Deep Learning

An important aspect of the use of a learning ANN is that one must learn not just the result of a
simulation but also the uncertainty e.g. is the learned result at all valid and is accuracy sufficient to
be used. Here there are clear strategies such as if calculating X-Y and X similar in size to Y, then
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can only learn X-Y NOT X and Y separately. Further, use of reduced precision in DL networks
needs to be re-examined for our application.

The bias-variance trade-off is a well-studied concept in statistical learning that can provide a
principled way to design a machine learning model concerning its complexity given the optimization
problem and the dataset [109]. It is based on the decomposition of the expected error that a model
can make into two parts: variance and bias. The variance part explains the uncertainty of a model
due to the randomness in the training algorithms (e.g. random initialization of parameters or a
different choice of hyperparameters) or the lack of representativeness of the subsampled training set
used in training. One can reduce the variance of the expected error by introducing a regularization
scheme during the optimization process so that the model complexity is in control and can result
in a smoother model. However, the regularization approach comes at the cost of an increased
amount bias, which is another term in the expected error decomposition that explains the fitness
of the model to the currently available dataset. By reducing the flexibility of the model using a
regularization scheme, the training algorithm can only do a limited effort to minimize the training
error. On the contrary, an unregularized model with a higher model complexity than necessary can
also result in a minimal training error in that training session, while it suffers from high variance
or uncertainty in its prediction.

Ideally, the bias-variance trade-off can be resolved to some degree by averaging the trained
instances of a complex model. As the variance term explains the statistical deviations of the
different model predictions from their expected value, one can reduce it by training many model
instances and average out their variations. Once these model instances are complex enough to fit
the training dataset, we can use the averaged predictions as the output of the model. However,
averaging many different model instances implies a practical difficulty that one has to conduct
multiple optimization tasks to come up with a statistically meaningful sample distribution of the
predictions. Given the assumption that the model might as well be a complex one to minimize
the bias component (e.g. a deep neural network), model averaging is computationally challenging.
Also, for a real-world problem that needs as much labeled dataset as possible, subsampling might
not be the best way to make use of the data.

Dropout has been extensively used in deep learning as a regularization technique [110, 111, 112,
113], but recent researches revisit it as an uncertainty quantification (UQ) tool as well [114, 33].
The use of dropout as a tool for acquiring the sample distribution of predictions can be justified by
the fact that the dropout procedure on a deep neural network (DNN) can be seen as an efficient way
to maintain a pool of multiple network instances for the same optimization task. The efficiency of
the procedure comes from the fact that the dropout technique applies a Bernoulli mask to the layer-
wise feature vector, a stochastic structure alteration process, to each of the feedforward routines
under the stochastic gradient descent training framework. Thus, the training process has the same
effect as if it is exposed to many network instances although training is on only one instance.
Dropout has shown promising performances in many deep learning benchmarks especially thanks
to its ability to prevent overfitting. Although the original usage of dropout has been limited to
the regularization during training, recent researches suggest its use during the test time as well.
As the network trained with the dropout technique is robust to the structural variation, during
the test time one can use the same masking strategy to come up with a set of differently thinned
versions of the network, which can form a sample distribution of predictions. Hence, the access to
the distribution of the predictions enables one to use it as a UQ metric of the trained deep learning
system.

The dropout-based UQ scheme can provide an opportunity for the MLaroundHPC simulation
experiments. As deep learning is to train a model in a data-driven fashion, it is obvious that a better
ML surrogate can be found once the training routine sees more examples. Usually, the craving for
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more data in large-scale machine learning tasks causes a lack of data, as the ML applications that
try to catch up human perception in classification tasks, e.g. visual object recognition, require the
data examples to be labeled by humans. Crowdsourcing can reduce the cost of generating such a
labeled dataset [115]. However, as for modeling the large-scale simulation results, the ML model
has to see more examples generated from the HPC simulation, which is a conflicting requirement
as the purpose of training ML is to avoid such computation. The UQ scheme can play a role here
to provide the training routine with a way to quantify the uncertainty in the prediction—once it is
low enough, the training routine might less likely need more data.

7 Machine Learning Requirements for MLforHPC

Here we review the nature of the Machine Learning needed for MLforHPC in different application
domains. The Machine Learning (ML) load depends on 1) Time interval between its invocations,
which will translate into the number of training samples S and 2) size D of data set specifying each
sample. This size could be as large as the number of degrees of freedom in simulation or could be
(much) smaller if just a few parameters are needed to define simulation. We note two general issues

• There can very important data transfer and storage issues in linking the Simulations and
Machine Learning parts of system. This could need carefully designed architectures for both
hardware and software.
• The Simulations and Machine Learning subsystems are likely to require different node opti-

mizations as in different types and uses of accelerators.

7.1 Nanosimulations

In each of two cases below, one is using scikit-learn, Tensorflow and the Keras wrapper for Tensor-
flow, as the ML subsystem. The papers [77, 116] are using ML to learn results (ionic density at a
given location) of a complete simulation

• D=5 with the five specifying features as connement length h, positive valency zp, negative
valency zn, salt concentration c, and the diameter of the ions d.
• S= 4805 which 70% of total 6864 runs with 30% of the total runs used for testing.

In [23], one is not asking ML to predict a result as in [77],but rather training an Artificial Neural
Net (ANN) to ensure that the simulation runs at its optimal speed (using for example, the lowest
allowable timestep dt and ”good” simulation control parameters for high efficiency) while retaining
the accuracy of the final result (e.g. density profile of ions). For this particular application, we
could get away by dividing a 10 million time-step run ( 10 nanoseconds that is a typical timescale
to reach equilibrium and get data in such systems) into 10 separate runs.

• Input data size D= 6 (1 input uses 64 bits floats and 5 inputs use 32 bits integers - total 224
bits)
• Input number of samples (S) = 15640 (70% training 30% test)
• Hidden layer 1 = 30
• Hidden layer 1 = 48
• Output variables = 3

Creation of the training dataset took = 64 cores * 80 hrs * 5400 simulation runs = 28160000
or 28 million CPU hours on Indiana University’s BigRed2 GPU compute nodes. Each run is 10

21



million steps long, and you use/learn/train ML every 1 million steps (so block size is a million),
yielding 10 times more samples than runs.

Generalizing this, the hardware needs will depend on how often you block, to stop and train the
network, and then either on-the-fly or post-simulation, use that training to accelerate simulation or
evaluate structure respectively. Blocking every timestep will not improve the training as typically,
it won’t produce a statistically independent data point to evaluate any structure you desire. So
you want to block at a timescale that is at least greater than the autocorrelation time dc; this is, of
course, dependent on example you are looking at – and so your blocking and learning will depend
on the application. In [77], it is small and dc is 3-5 dt; in glasses, it can be huge as the viscosity is
high; and in biomolecular simulations, it will also depend on the level of coarse-graining and will
be different in fully atomistic or very coarse-grained systems.

The training effort will also depend on the input data size D, and the complexity of the rela-
tionship you are trying to learn which change the number of hidden layers and nodes per layer.
For example, suppose you are tracking a particle (a side atom on a molecule in a typical nanoscale
simulation), in order to come up with a metric (e.g. distance between two side atoms on different
molecules) to track the diversity of clusters of particles during the self-assembly process. This comes
from expectation that correlations between side atoms may be critical to a macroscopic property
(such as formation of these particles into a FCC crystal). In this case your D is huge, and your
ML objectives may be looking for a deep relationship, and you may have to invoke an ensemble of
ANN’s and this will change hardware needs.

8 New Opportunities and Research Issues

8.1 Broken Abstractions, New Abstractions:

In traditional HPC the prevailing orthodoxy is Faster is Better which has driven the quest for
abstractions of hierarchical parallelism to speeding up single units of works. However the new
paradigm in HPC — Learning Everywhere, implies new performance, scaling and execution ap-
proaches. In this new paradigm, multiple, concurrent heterogeneous units of work replace single
large units of works, which thus require both hierarchical (vertical) parallelism as well horizontal
parallelism Relinquishing the orthodoxy based upon hierarchical (vertical) parallelism as the only
route to performance is necessary while supporting the scaling requirements of ”Learning Every-
where”. Our distinction between traditional performance and the effective performance achieved
by using learnt results is important here.

8.2 Research Issues in MLforHPC

Research issues reflect the multiple interdisciplinary activities linked in our study of MLforHPC.

• MLforHPC Cyberinfrastructure
• ML and Deep Learning
• Uncertainty Quantification
• Multiple application domains described in sections 2, 3, 4.1 and 4.2
• Coarse graining studied in our case for network science and nano-bio areas

We have identified the following research areas.

1. Where can application domains use MLaroundHPC and MLautotuning effectively and what
science is enabled by this
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2. Which ML and DL approaches are most relevant and how can they be set up to enable broad
user-friendly MLaroundHPC and MLautotuning in domain science

3. How can Uncertainty Quantification be enabled and separately study ergodicity (bias) and
accuracy issues?

4. Is there new area of algorithmic research focusing on finding algorithms that can be most
effectively learnt?

5. Is there a general multiscale approach using MLaroundHPC.

6. What are appropriate systems frameworks for MLaroundHPC and MLautotuning. For exam-
ple, should we wrap microservices invoked by a Function as a Service environment? Where
and how should we enable learning systems? Is Dataflow useful?

7. The different characters of surrogate and real executions produce system challenges as surro-
gate execution is much faster and invokes distinct software and hardware. This heterogeneity
gives challenges for parallel computing, workload management and resource scheduling (het-
erogeneous and dynamic workflows). The implication for performance is briefly discussed in
sections 5.2 and 5.3.

8. Scaling applications that are composed of multiple heterogeneous computational (execution)
units, and have distinct forms of parallelism that need balanced performance. Consider a
workload comprised of NL learning units, NS simulations units. The relative number of
learning units to simulation units will vary with application and problem type. The relative
values will even vary over execution time of the application, as the amount of data generated
as a ratio of training data will vary. This requires runtime systems that are capable of
real-time performance tuning and adaptive execution for workloads comprised of multiple
heterogeneous tasks.

9. The application of these ideas to statistical physics problems may need different techniques
than those used in deterministic time evolutions.

10. The existing UQ frameworks based on the dropout technique can provide the level of certainty
as a probabilistic distribution in the prediction space. However, it does not always mean that
the quality of the distribution is dependent on the quality/quantity of data. For example,
two models with different dropout rates can produce different UQ results. If the goal of UQ
in MLaroundHPC context is to supply only an adequate amount of data, we need a more
reliable UQ method tailored for this purpose rather than the dropout technique that tends
to manipulate the architecture of the model.

11. Application agnostic description and defintion of effective performance enhancement.

12. Sean Blanchard [117] has emphasized the potential value of learnt information in fault toler-
ance where for example learnt results could be used to restart a crashed compute node.

The above Research Areas can be categorized into Algorithms and Methods (1-5), Applied
Math (10), Software Systems (6,7), Performance Measurment and Engineering (8,11),
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8.3 Possible Dataflow MLforHPC System Architecture

We have advocated in [118] a prototype system approach to MLforHPC that is based on the dataflow
representation of the simulation or ML problem where the idea is to support ML wrapping of any
dataflow node. This dataflow representation is seen in Big Data systems such as Storm, Heron,
Spark, and Flink. We will allow coarse-grain dataflow with dataflow nodes at the job level; this is
familiar from workflow systems such as Kepler, Pegasus, and NiFi and illustrated by Persona’s [119]
integration of Tensorflow into bioinformatics pipelines. We will also allow finer grain size dataflow
as seen in modern big data systems and Function as a Service architectures and provide a cleaner
architecture with a single approach to ML integration at all granularity’s. In this discussion,
dataflow can be also be considered as a task graph. The chemistry potential example shows a
case where the surrogate replaces a fine grain node. The Indiana University Twister2 system
[120, 121, 122] supports such a hybrid coarse/fine grain dataflow graph specifying a problem. We
intend the same architecture to support both MLaroundHPC and MLautotuning. As emphasized
by Sharma [123], one should explore a range of synchronization and data consistency techniques
[124] that have been proposed for distributed ML training. These techniques differ from BSP
and strong-consistency, and offer a more relaxed consistency model by exploiting and tolerating
staleness. We can explore the appropriate consistency model for integrating ML with conventional
HPC applications. Examples have been shown [125, 126, 127] of the successful use of relaxed
consistency for certain HPC applications including our Harp project [107, 108] where the trade-off
of the staleness of the model versus synchronization cost was explored.
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