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Abstract— Social image datasets have grown to dramatic size with images 

classified in vector spaces with high dimension (512-2048) and with potentially 

billions of images and corresponding classification vectors. We study the 

challenging problem of clustering such sets into millions of clusters using Iterative 

MapReduce. We introduce a new Kmeans algorithm in the Map phase which can 

tackle the challenge of large cluster and dimension size. Further we stress that the 

necessary parallelism of such data intensive problems are dominated by particular 

collective (reduction) operations which are common to MPI and MapReduce and 

study different collective implementations, which enable cloud-HPC cluster 

interoperability. Extensive performance results are presented. 
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Introduction 

The rate of data generation has now exceeded the growth of computational power 

predicted by Moore’s law. Challenges from computation are related to mining and 

analysis of these massive data sources for the translation of large-scale data into 

knowledge-based innovation. This requires innovative algorithms and core 

technologies in scalable parallel platforms. However, many existing analysis tools are 

not capable of handling such big data sets.  

Intel’s RMS (Recognition, Mining and Synthesis) taxonomy [3] identifies iterative 

solvers and basic matrix primitives as the common computing kernels for computer 

vision, rendering, physical simulation, (financial) analysis and data mining applications. 

These observations suggest that iterative MapReduce will be a runtime important to a 

spectrum of e-Science or e-Research applications as the kernel framework for large 

scale data processing. 

Classic MapReduce [1] and Hadoop [2] frameworks cannot meet the requirement 

of executing iterative algorithms due to the inefficiency of repetitive disk access for 

fetching and merging data over iterations. Several new frameworks designed for 

iterative MapReduce are proposed to solve this problem, including Twister [4] and 

HaLoop [5]. Twister, developed by our group, is an iterative MapReduce framework. 

The early version of Twister targets optimizing data flow and reducing data transfer 

between iterations by caching invariant data in the local memory of compute nodes. 



The scheduling mechanism assigns tasks to the node where corresponding invariant 

data is located. However, there are other performance issues in iterative algorithms 

execution not addressed in Twister.  Broadcasting operations to distribute shared data 

and shuffling operation to merge the shared data are involved over iterations. These 

operations could cost lots of execution time and limit the scalability of the execution.  

In this paper, we introduce a fast Kmeans algorithm that drastically reduces the 

computation time for data mining in high dimensional social image data. We propose a 

pipeline-based method with topology awareness to accelerate broadcasting and 

demonstrate that it outperforms traditional MPI methods [6]. We use local reduction 

before shuffling to improve performance, which can reduce intermediate data by 

num_nodes⁄num_maps×100%. These methods provide important capabilities to our 

new iterative MapReduce framework for data intensive applications. We evaluate our 

new methods with a real application of image clustering using K-means clustering in 

the PolarGrid [7] cluster at Indiana University.  

The rest of paper is organized as follows. Section 1 describes the image clustering 

application and the new K-means algorithm. Section 2 focuses on the design of 

broadcasting algorithm and presents the experiment results. Section 3 discusses related 

work and Section 4 contains the conclusion and future work. 

1. Clustering Application and New K-means Algorithm 

1.1. Image Clustering Application 

Billions of images from online social media produce new sources of observational data. 

Image clustering clusters these images with similar features. Since the data set is huge 

and each image is high-dimensional, the dimensionality reduction is done first and each 

image is represented in a much lower space by a set of important visual components 

which are called “features." It is analogous to how “key words” are used in a document 

retrieval system. In this application, 5 patches are selected from each image and each 

patch is represented by a HOG (Histograms of Oriented Gradients) feature vector of 

512 dimensions. The basic idea of HOG features is to characterize the local object 

appearance and shape by the distribution of local intensity gradients or edge directions 

[8] (See Figure. 1). In the application data, each HOG feature vector is presented as a 

line of text starting with picture ID, row ID and column ID, then being followed by 512 

numbers f1, f2 …and fdim. 

We apply K-means Clustering [9] to cluster similar HOG feature vectors and use 

Twister to parallelize the computation. The input data is a large number of vectors each 

of which is considered a data point with 512 dimensions and presents a HOG feature. 

Because the vectors are static over iterations, we partition the vectors and cache each 

partition in memory and assign it to a Map task during the configuration. Later in each 

iteration execution, the driver broadcasts centroids to all Map tasks and then each Map 

task updates centroids through assigning points to their corresponding clusters. We use 

one or more reducers to collect partial local centroids updates from each Map task and 

calculate new centroids of the iteration. By combining these new centroids from 

Reduce tasks, the driver gets all updated centroids for the next iteration. 

A major challenge of this application is not only the large amount of image data 

(up to TB level) but also the huge size of clusters. Although we can increase the 

number of machines to reduce the task size per node, the total intermediate data size for 



broadcasting and shuffling also grows. Due to the application requirement, the number 

of centroids is very large. For example, we need to cluster 7 million of image vector 

data to 1 million clusters (centroids). The execution is conducted on 125 nodes with 

10000 Map tasks. For 7 million image data, each node only needs to cache 56K vectors 

which are approximately 30MB and each task only needs to cache 700 vectors which is 

about 358KB. However, the total size of 1 million centroids is about 512MB. The 

centroids data per task is much larger than the image feature vectors per task. As a 

consequence, the total data for broadcasting is about 64GB. In addition, each map task 

generates about 2GB intermediate data. The total intermediate data size in shuffling is 

about 20TB. This makes the computation difficult to scale.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 charts need some photo icons the process of image clustering 

1.2. Fast Kmeans Algorithm 

We are incorporating proposed K-means enhancements which can give a large speedup 

for high dimensional problems. In particular we build on work of Elkans [10] which are 

independently (and differently) extended by Drake and Hamerly [11]. We address here 

the step in K-means where points are associated with clusters which is independent of 

our discussion on reduction which occurs in the step when cluster centers are found 

from average of their associated points. We have a set of centers c= 1..C with position 

m(k, c) at iteration k and a set of fixed points x(p) p=1…N. Then Elkans algorithm uses 

two types of inequalities illustrated in Figure 2 below for two iterations k=now and the 

previous k=last with a distance metric d(a, b) between vectors a and b. 

𝑑(𝑥(𝑃), 𝑚(𝑛𝑜𝑤, 𝑐1)) ≥  𝑑(𝑥(𝑃), 𝑚(𝑙𝑎𝑠𝑡, 𝑐1)) −  𝑑(𝑚(𝑛𝑜𝑤, 𝑐1), 𝑚(𝑙𝑎𝑠𝑡, 𝑐1)) (1) 

The right side of (1) gives a lower bound on the distance of P from center 𝑐1 in 

terms of the distance in the previous iteration and the distance between the current and 

previous positions at centers. One loops through centers c in an order that (based on 

 



previous iteration) is most likely to find the center associated with point. Then the 

lower bound (1) can rule out candidate associated centers c if 

𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 = 𝑑(𝑥(𝑃), 𝑚(𝑙𝑎𝑠𝑡, 𝑐)) − 𝑑(𝑚(𝑛𝑜𝑤, 𝑐), 𝑚(𝑙𝑎𝑠𝑡, 𝑐)) ≥
𝑑(𝑥(𝑃), 𝑚(𝑙𝑎𝑠𝑡, 𝑐 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑏𝑒𝑠𝑡)) (2) 

If (2) is not satisfied, one resorts to explicit calculation of d(x(P), m(now,c)) which 

takes time of O(Dimension D of space) while the test (2) is independent of D. Elkans 

also notes a second inequality 

𝑑(𝑥(𝑃), 𝑚(𝑛𝑜𝑤, 𝑐2)) ≥ 𝑑(𝑚(𝑛𝑜𝑤, 𝑐2), 𝑚(𝑛𝑜𝑤, 𝑐1))  −  𝑑(𝑥(𝑃), 𝑚(𝑛𝑜𝑤, 𝑐1) (3) 

which can be used to rule out centers c2 which are far from c-current best. For our 

data this test is not as useful as (1). One reason is the closeness of clusters in high 

dimensional space illustrated by the distances shown in Figure 3 with center-center 

distances being typically smaller than 2 d(x(P), m(now,c)) which implies that (3) is not 

effective. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Set of Cluster centers and a Point P to illustrate inequalities used 

 

Application of these inequalities drastically reduces the total number of point-

center distances needed as shown in Figure 4 where the triangles correspond to this 

basic algorithm where a lower bound is kept for every point center combination. This is 

not realistic for large problems (One cannot keep a million lower bounds for 100 

million points) and so we implemented a simple improvement. Each point only keeps 

the lower bounds for the nearest Cnear centers plus a single number that bounds the 

distances d(x(P), m(now,c)) for the remaining C- Cnear centers. Results are shown in 

Figure 4 for Cnear = 400 and 800 for the case of C=3200. The reduction in distance 

calculations is still dramatic. Implementing this idea has many subtle points which are 

still being optimized. One starts at the first iteration by calculating all the d(x(P), 

m(first iteration,c)), sorting them and keeping the lowest Cnear  values and setting the 

upper bound on the remainder as the Cnear +1’th entry. Thereafter one tracks at each 

iteration the current bound or explicit calculation used for each center c. These values 

are then resorted to produce new values for the Cnear +1 bounds. As one iterates, this 

approach accumulates (k= start to end) d(m(k,c), m(k-1,c)) which is typically larger 

than d(m(k=end,c), m(k=start,c)). This is addressed by keeping two sets of Cnear lower 

 



bounds; one calculated from centers at last iteration and other associated with a “start” 

set of centers. These are slowly updated when center position move significantly and 

are independent of point. 

Note that this algorithm only changes the “map” stage of computation and is 

perfectly parallel over points x(P) except for the center-only parts of algorithm 

(calculating d(m(now,c2), m(now,c1))  and d(m(now,c), m(last,c))  that can be 

performed once and for all independently of points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Histograms of distance distributions for 3200 clusters for 76800 points in a 2048 dimensional space. 

The distances of points to their nearest center is shown as triangles; the distance to other centers (further 

away) as crosses; the distances between centers as filled circles 

 

One reason is the closeness of clusters in high dimensional space illustrated by the 

distances shown in Figure 3 with center-center distances being typically smaller than 2 

d(x(P), m(now,c)) which implies that (3) is not effective. Note the “curse of 

dimensionality” produces non-intuitive effects. If you divide a 2D space into a million 

clusters, they naturally have linear size around 0.001 of total; if you do the same in 20-

48 dimensions the linear size of a cluster is naturally 99% (10-6to power 1/2048) of 

original. Observations like explain distance plots like that in Figure 3. Note however 

that inequality (2) is often effective as the change from iteration to iteration is a small 

fraction of the distances shown in figure. 

Each point only keeps the lower bounds for the nearest Cnear centers plus a single 

number that bounds the distances d(x(P), m(now,c)) for the remaining C - Cnearcenters. 

Results are shown in Figure 4 for Cnear = 400 and 800 for the case of C=3200. This 

shows the fraction of point-center distances calculated as a function of iteration. This 

fraction starts of course at 100% but at the largest iteration count, we are converged and 

the inequality test (1) is fully effective; one just needs to calculate the new value of the 

distance between each point and its associated center. Note that it's critical in this 

(Elkans style) algorithm to calculate distances in “optimal” order that gives best chance 

of identifying the cluster associated with each as soon as possible and at first try when 

nearly converged.  

 

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5

P
e

rc
e

n
ta

ge
p

e
r 

b
in

Distance/Average Width

76800 Points 3200 Centers 3200 LB's

Point -Its Center
Distance

Point - Other Centers
Distances

Center-Center
Distances



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Fraction of Point-Center Distances calculated for 3 versions of the algorithm for 76800 points and 

3200 centers in a 2048 dimensional space for three choices of lower bounds LB kept per point 

2. Broadcasting Transfers 

2.1. Twister Iterative MapReduce Framework 

Twister has several components: a single driver to drive MapReduce jobs, and daemon 

nodes to handle requests from the driver and execute iterative MapReduce jobs. These 

components are connected through messaging brokers via a publish/subscribe 

mechanism. Currently Twister supports ActiveMQ [12] and NaradaBrokering [13]. 

Twister driver program allows users to configure an iterative MapReduce job with 

static data cached in Map tasks or Reduce tasks before the start of job execution and to 

drive the job execution iteratively with a loop control. In each iteration, the driver can 

send variable data to worker nodes at the beginning and collect output back. In this 

model, fault tolerance is done through checkpointing between iterations. 

Currently there is no support for a distributed file system. Files and replicas are 

stored on local disks of compute nodes and recorded in a partition file. Twister uses 

static scheduling. The Max Flow algorithm [14] is used to balance the mapping 

between workers and the files. We are moving toward using distributed file systems 

such as HDFS [15].  

2.2. Broadcasting in Hadoop and MPI 

Hadoop system relies on HDFS to do broadcasting. A component named Distributed 

Cache is used to cache data from HDFS to local disk of compute nodes. The API 

addCacheFile and getLocalCacheFiles co-work together to finish the process of 

broadcasting.  However, there is no special optimization for the whole process. The 

data downloading speed depends on the number of replicas in HDFS [16].  
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These methods are naïve because they basically send data to all the nodes one by 

one. Although using multiple brokers or using multiple replicas in HDFS could form a 

simple 2-level broadcasting tree, they cannot fundamentally solve the problem. 

In MPI, several algorithms are used for broadcasting. MST (Minimum-spanning 

Tree) method is a typical broadcasting method used in MPI [17]. In this method, nodes 

form a minimum spanning tree and data is forwarded along the links. In this way, the 

number of nodes which have the data grows in geometric progression. Here we use 𝑝 as 

the number of daemon nodes, 𝑛 as the data size, 𝛼 as communication startup time and 

𝛽  as data transfer time per unit. The performance model can be described by the 

formula below: 

𝑇𝑀𝑆𝑇(𝑝, 𝑛) = ⌈𝑙𝑜𝑔2𝑝⌉(𝛼 + 𝑛𝛽) (4) 

Although this method is much better than the naïve broadcasting and it changes the 

factor  𝑝 to ⌈𝑙𝑜𝑔2𝑝⌉, it is still slow because (𝛼 + 𝑛𝛽) is getting large as the size of 

message increases.  

Scatter-allgather-bucket is another algorithm used in MPI for long vectors 

broadcasting which follows the style of “divide, distribute and gather” [18]. In “scatter” 

phase, it scatters the data to all the nodes using either MST algorithm or naïve 

algorithm. In “allgather” phase, it views the nodes as a chain. At each step, each node 

sends data to its right neighbor [17]. By taking advantage of the fact that messages 

traversing a link in opposite direction do not conflict, we can do “allgather” in parallel 

without any network contention. The performance model can be established as follow: 

𝑇𝑏𝑢𝑐𝑘𝑒𝑡(𝑝, 𝑛) = 𝑝(𝛼 + 𝑛𝛽 𝑝⁄ ) + (𝑝 − 1)(𝛼 + 𝑛𝛽 𝑝⁄ ) (5) 

In large data broadcasting, assuming 𝛼 is small, the broadcasting time is about 2𝑛𝛽. 

This is much better than MST method because the time looks constant. However, since 

it is not practical to set a barrier between “scatter” and “allgather” phases to enable all 

the nodes to do “allgather” at the same global time through software control, some links 

will have more load than the others which causes network contention. Here is a rough 

performance result of our implementation of this method on PolarGrid (See Table 1).  

We see that the time is stable as the number of nodes grows and about 2 times of 1 GB 

transferring time between 2 nodes. 

There exists broadcasting method based on InfiniBand multicast implementation in 

MPI [19]. Many clusters have hardware-supported multicast operation. Although 

multicast has advantage over broadcasting, it also has several problems: its 

transportation is not reliable, order is not guaranteed and the package size is limited. In 

MPI, after the first stage of multicasting, broadcasting is enhanced with a chain-like 

method in the second stage. The chain-like broadcasting is reliable by making sure 

every process has completed data receiving.   

Table 1 Scatter-allgather-bucket performance on PolarGrid with 1 GB data broadcasting 

Number of Nodes 1 25 50 75 100 125 

Time 11.4 20.57 20.62 20.68 20.79 21.2 



2.3. Broadcasting in Twister  

Broadcasting is a separate and independent operation in Twister APIs. Similar to the 

concept of Distributed Cache in Hadoop, the operation is called addToMemCache 

which means this method will cache a data object in driver node to all the worker nodes. 

However it is non-trivial to broadcast objects to remote nodes. The whole process has 3 

stages: serialization, broadcasting and de-serialization. 

Early Twister iterative MapReduce frameworks used one or multiple messaging 

brokers to conduct data broadcasting. This method has many issues. Firstly, 

unnecessary communication hops through brokers are added in data transfers between 

clients, which give poor performance for big messages as they often need significant 

time to transfer from one point to another point. Secondly, the broker network doesn’t 

provide optimal routing for data transferring between a set of brokers and clients in 

collective communication operations. Thirdly, brokers are not always reliable in 

message transmission and message loss can happen. As a result, we abandon broker 

based methods. 

2.4. Object Serialization and De-serialization 

In Twister broadcasting, data are abstracted and presented as an object in memory. So 

we need to serialize the object to byte array before broadcasting and de-serialize byte 

array back to an object after broadcasting. We manage serialization and deserialization 

inside of Twister framework and we provide interfaces to let user be able to write 

different basic types into the byte array, such as int, long, double, byte and 

String.  

It is observed that serialization and de-serialization for large-sized data object can 

take long time. Depending on the data type, the serialization speed varies. Our 

experiments show that serializing 1 GB data in double type is much faster than 

serializing 1 GB byte type data. Moreover, desterilizing 1 GB byte type data uses 

longer time than serializing it. The time it takes is in tens of seconds. Since it is a local 

operation, currently we leave them there and separate them from the core byte array 

broadcasting.  

2.5. Chain Broadcasting Algorithm 

We propose Chain method, an algorithm based on pipelined broadcasting [20]. In this 

method, compute nodes in Fat-Tree topology are treated as a linear array and data is 

forwarded from one node to its neighbor chunk by chunk. The performance is gained 

by dividing the data into many small chunks and overlapping the transmission of data 

on nodes. For example, the first node would send a data chunk to the second node. 

Then, while the second node sends the data to the third node, the first node would send 

another data chunk to the second node, and so forth [20]. This kind of pipelined data 

forwarding is called “a chain”.  

The performance of pipelined broadcasting depends on the selection of chunk size. 

In an ideal case, if every transfer can be overlapped seamlessly, the theoretical 

performance is as follows: 

𝑇𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒(𝑝, 𝑘, 𝑛) = 𝑝(𝛼 + 𝑛𝛽 𝑘⁄ ) + (𝑘 − 1)(𝛼 + 𝑛𝛽 𝑘⁄ ) (6) 



Here 𝑝 is the number of daemon nodes (each node is controlled by one daemon 

process), 𝑘 is the number of data chunks, 𝑛 is the data size, 𝛼 is communication startup 

time and 𝛽  is data transfer time per unit. In large data broadcasting, assuming 𝛼  is 

small and 𝑘 is large, the main item of the formula is (𝑝 + 𝑘 − 1)𝑛𝛽 𝑘⁄ ≈ 𝑛𝛽 which is 

close to constant. From the formula, the best number of chunks 𝑘𝑜𝑝𝑡 = √(𝑝 − 1)𝑛𝛽/𝛼 

when 𝜕𝑇 𝜕𝑘⁄ = 0 [20]. However, in practice, the real chunk size per sending is decided 

by the system and the speed of data transfers on each link could vary as network 

congestion could happen when data is kept forwarded into the pipeline. As a result, 

formula (6) cannot be applied directly to predict real performance of our chain 

broadcasting implementation. The experiment results we will present later still show 

that as 𝑝  grows, the broadcasting time keeps constant and close to the bandwidth 

boundary.  

2.6. Topology Impact 

This chain method is suitable for Fat-Tree topology [21]. Since each node only has only 

two links, which is less than the number of links per node in Mesh/Torus [22] topology, 

chain broadcasting can maximize the utilization of the links per node. We also make 

the chain be topology-aware by allocating nodes within the same rack close in the chain. 

Assuming the racks are numbered as 𝑅1, 𝑅2 and 𝑅3…, the nodes in 𝑅1 are put at the 

beginning of the chain, then the nodes in 𝑅2 follow the nodes in 𝑅1, and then nodes in 

𝑅3 follow nodes in 𝑅2 …. Otherwise, if the nodes in  𝑅1 are intertwined with nodes in 

 𝑅2 in the chain sequence, the chain flow will jump between switches, and makes the 

core switch overburdened. To support topology-awareness, we define the chain 

sequence based on the topology and save the information on each node. Daemons can 

tell its predecessor and successor by loading the information when starting. In future, 

we are also looking into supporting Automatic topology detection to replace the static 

topology information loading. 

2.7. Buffer Usage 

Another important factor that affects broadcasting speed is the buffer usage. The cost of 

buffer allocation and data copying between buffers are not presented in formula (6). 

There are 2 levels of buffers used in data transmission. The first level is the system 

buffer and the second level is the application buffer. System buffer is used by TCP 

socket to hold the partial data transmitted from the network. The application buffer is 

created by the user to integrate the data from the socket buffer.  Usually the socket 

buffer size is much smaller than the application buffer size. The default buffer size 

setting of Java socket object in IU PolarGrid is 128KB while the application buffer is 

set to the total size of the data required to be broadcasted. 

We observe performance degradation caused by the socket buffer. If the buffer size 

is smaller than 128 KB, the broadcasting performance slows down. The TCP window 

may not open up fully, which results in throttling of the sender. Further, large user 

buffer allocation during broadcasting can also slow down the overall performance. 

Therefore we initialize a pool of user buffers once Twister daemon starts, instead of 

allocating dynamically during broadcast communication phase. 



2.8. Implementation 

We implement chain broadcasting algorithm in the following way: it starts with a 

request from Twister driver to the first node in the topology-aware chain sequence. 

Then driver keeps sending a small portion of the data to the next node. At the 

meanwhile, each node in the chain creates a connection to the successor node. Finally 

each node receives a partial data from the socket stream, stores it into the application 

buffer and forwards it to the next node (See Table 2). 

Table 2 Broadcasting algorithm 

Algorithm 1 Twister Driver side “send” method 

daemonID ← 0 

connection ← connectToNextDaemon(daemonID) 

dout ← connection.getDataOutputStream() 

bytes ← byte array serialized from the broadcasting object 

totalBytes ← total size of bytes 

SEND_UNIT ← 8192  

start ← 0 

 

dout.write(totalBytes) 

while (start +  SEND_UNIT <  totalBytes) 

    dout.write(bytes, start, SEND_UNIT) 

    start ← start + SEND_UNIT  

dout.flush() 

if (start < totalBytes) 

dout.write(bytes, start, totalBytes - start) 

dout.flush() 

waitForCompletion() 

Algorithm 2 Twister Daemon side “receive” method 

connection ← serverSocket.accept() 

dout ← connection.getDataOutputStream() 

din ← connection.getDataInputStream() 

daemonID ← this.daemonID + 1 

connNextD ← connectToNextDaemon(daemonID) 

doutNextD ←connToNextD.getDataOutputStream() 

dinNextD ← connToNextD.getDataInputStream() 

 

totalBytes ← din.readInt() 

doutNextD.writeInt(totalBytes) 

doutNextD.flush() 

bytesBuffer ← getFromBufferPool(totalBytes) 

RECV_UNIT ← 8192  

recvLen ← 0 

while ((len ← din.read(bytesBuffer, recvLen, RECV_UNIT)) > 0)  

doutNextD.write(bytesBuffer, recvLen, len) 

doutNextD.flush() 

    recvLen ← recvLen + len; 

if (recvLen = totalBytes) break 

notifyForCompletion() 

2.9. Experiments 

To evaluate the performance of the proposed broadcasting method, we conduct 

experiments on IU PolarGrid cluster. IU PolarGrid cluster uses a Fat-Tree topology to 

connect compute nodes. The nodes are split into sections of 42 nodes which are then 

tied together with 10 GigE to a Cisco Nexus core switch.  For each section, nodes are 



connected with 1 GigE to an IBM System Networking Rack Switch G8000. This forms 

a 2-level Fat-Tree structure with the first level of 10 GigE connection and the second 

level of 1 GigE connection. For computing capacity, each compute node in PolarGrid 

uses a 4-core 8-thread Intel Xeon CPU E5410 2.33 GHz processor. Each compute node 

has 16 GB total memory.   

We test four broadcasting methods: chain method in Twister, MPI_BCAST in 

Open MPI [23], and broadcasting method in MPJ Express [24], and chain method in 

Twister without topology awareness. We measure the time from the start of calling the 

broadcasting method, to the end of return of the calling. Broadcasting is measured from 

small to medium large scale.  

Figure 5. Performance Comparison of Twister Chain method and MPI_Bcast 

Figure 5 shows that the new chain method produces stable performance results 

with increasing number of processes, which is explained in Section 2.3. The new 

method achieves slightly better performance than MPI_BCAST in Open MPI and the 

time cost is reduced by 20%. However, if the chain sequence is randomly generated 

without topology-awareness, the performance degrades as the scale increases.  

 

Table 4 compares Twister Chain, MPJ and the naïve method. As exceptions occur 

in MPJ when broadcasting 2 GB of data, we use 500MB and 1 GB data in broadcasting 

experiments. The MPJ broadcasting method is a factor of 4 slower than Twister chain 

method. 

Table 4 Performance Comparison of Twister Chain method and MPJ and naïve broadcasting 

 Twister Chain MPJ Naïve Broadcasting 

 500 MB 1 GB 2 GB 500 MB 1 GB 2 GB 500 MB 1 GB 2 GB 

1 4.04 8.09 16.17 4.3 8.9 × 4.04 8.08 16.16 
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25 4.13 8.22 16.4 17.5 35 × 101 202 441.64 

50 4.15 8.24 16.42 17.6 35 × 202.01 404.04 882.63 

75 4.16 8.28 16.43 17.4 35 × 303.04 606.09 1325.63 

100 4.18 8.28 16.44 17.5 35 × 404.08 808.21 1765.46 

125 4.2 8.29 16.46 17.4 35 × 505.14 1010.71 2021.3 

150 4.23 8.30 16.48 17.4 35 × 606.14 1212.21 2648.6 

 

The impact of socket buffer size is given in Table 5 and discussed in Section 2.5. 

Although broadcasting includes serialization and deserialization, we measure 

serialization and de-serialization separately from the communication part of 

broadcasting in experiments. Figure 6 shows high serialization and de-serialization cost. 

Note that for the same-sized of data, “byte” type uses more time than “double” type in 

serialization and de-serialization.  

 

Table 5 Twister chain broadcasting time of 1GB data on 125 nodes with different socket buffer size 

Buffer Size (KB) 8 16 32 64 128 256 512 1024 

Time (s) 65.5 45.46 17.77 10.8 8.29 8.27 8.27 8.27 

 

 

 
Figure 6. Serialization, Broadcasting and De-serialization 

3. Related Work 

Collective communication algorithms are well studied in MPI runtime. Each 

communication operation has several different algorithms based on message size and 

network topology such as linear array, mesh and hypercube [17]. Basic algorithms are 

pipeline broadcast method [20], minimum-spanning tree method, bidirectional 

exchange algorithm, and bucket algorithm [17]. Since these algorithms have different 

advantages, algorithm combination is widely used to improve the communication 

performance [17]. And some solution also provides auto algorithm selection [25].  
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However, many solutions have a different focus from our work. Some of them only 

study small data transfers up to megabytes level [17][26]. Some solution relies on 

special hardware support [19]. The data type is typically vectors and arrays whereas we 

are considering objects. Many algorithms such as “allgather” have the assumption that 

each node has the same amount of data [17][18], which is not common in MapReduce 

computation model. As a result, though shuffling can be viewed as a Reduce-Scatter 

operation, its algorithm cannot be applied directly on shuffling because the data amount 

generated by each Map task is unbalanced in most MapReduce applications.  

There are several solutions to improve the performance of data transfers in 

MapReduce. Orchestra [16] is such a global control service and architecture to manage 

intra and inter-transfer activities on Spark [27]. It not only provides control, scheduling 

and monitoring on data transfers, but also provides optimization on broadcasting and 

shuffling. For broadcasting, it uses an optimized BitTorrent [28] like protocol called 

Cornet, augmented by topology detection. Although this method achieves similar 

performance as our Multi-Chain method, it is still unclear in its internal design and 

details of communication graph formed in data transfer.  For shuffling, it uses weighted 

shuffle Scheduling (WSS) to set the weight of the flow to be proportional to the data 

size.  

Hadoop-A [29] provides a pipeline to overlap the shuffle, merge and reduce phases 

and uses an alternative Infiniband RDMA [30] based protocol to leverage RDMA inter-

connects for fast data shuffling. MATE-EC2 [31] is a MapReduce-like framework for 

EC2 [32] and S3 [33]. For shuffling, it uses local reduction and global reduction. The 

strategy is similar to what we did in Twister but as it focuses on EC2 cloud 

environment, the design and implementation are totally different. iMapReduce [34] and 

iHadoop [35] are iterative Mapreduce frameworks that optimize the data transfers 

between iterations asynchronously, where there’s no barrier between two iterations. 

However, this design doesn’t work for applications which need broadcast data in every 

iteration because all the outputs from Reduce tasks are needed for every Map task.  

4. Conclusion 

We have illustrated the challenges of big data through a social image feature 

clustering problem and shown the value of a new algorithm that tackles simultaneously 

the high dimension (reduce number of scalar products calculated) and large cluster 

count (minimize amount of information needed for each cluster-point combination). 

This algorithm can be used for other applications and other clustering methods like 

deterministic annealing. We have also pointed out the new challenges in collective 

communications which need to be optimized for new regimes. In particular we have 

demonstrated performance improvement of big data transfers in Twister iterative 

MapReduce framework enabling data intensive applications. We replace broker-based 

methods and design and implement a new topology-aware chain broadcasting 

algorithm. The new algorithm reduces the time cost of broadcasting by 20% of the MPI 

methods. 

There are a number of directions for future work. We will apply the new Twister 

framework to other iterative applications [36]. We will integrate Twister with 

Infiniband RDMA based protocol and compare various communication scenarios. The 

initial observation suggests a different performance profile from that of Ethernet. 



Further we will integrate topology and link speed detection services and utilize services 

such as ZooKeeper [37] to provide coordination and fault detection. 
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