
Mammoth Data in the Cloud: Clustering

Social Images

Judy Qiu Bingjing Zhang

xqiu@indiana.edu zhangbj@indiana.edu

Department of Computer Science

Indiana University Bloomington

Abstract— Social image datasets have grown to dramatic size with images

classified in vector spaces with high dimension (512-2048) and with potentially

billions of images and corresponding classification vectors. We study the

challenging problem of clustering such sets into millions of clusters using Iterative

MapReduce. We introduce a new Kmeans algorithm in the Map phase which can

tackle the challenge of large cluster and dimension size. Further we stress that the

necessary parallelism of such data intensive problems are dominated by particular

collective (reduction) operations which are common to MPI and MapReduce and

study different collective implementations, which enable cloud-HPC cluster

interoperability. Extensive performance results are presented.

KeyWords. Social Images; High Dimension; Fast Kmeans Algorithm; Collective

Communication; Iterative MapReduce

Introduction

The rate of data generation has now exceeded the growth of computational power

predicted by Moore’s law. Challenges from computation are related to mining and

analysis of these massive data sources for the translation of large-scale data into

knowledge-based innovation. This requires innovative algorithms and core

technologies in scalable parallel platforms. However, many existing analysis tools are

not capable of handling such big data sets.

Intel’s RMS (Recognition, Mining and Synthesis) taxonomy [3] identifies iterative

solvers and basic matrix primitives as the common computing kernels for computer

vision, rendering, physical simulation, (financial) analysis and data mining applications.

These observations suggest that iterative MapReduce will be a runtime important to a

spectrum of e-Science or e-Research applications as the kernel framework for large

scale data processing.

Classic MapReduce [1] and Hadoop [2] frameworks cannot meet the requirement

of executing iterative algorithms due to the inefficiency of repetitive disk access for

fetching and merging data over iterations. Several new frameworks designed for

iterative MapReduce are proposed to solve this problem, including Twister [4] and

HaLoop [5]. Twister, developed by our group, is an iterative MapReduce framework.

The early version of Twister targets optimizing data flow and reducing data transfer

between iterations by caching invariant data in the local memory of compute nodes.

The scheduling mechanism assigns tasks to the node where corresponding invariant

data is located. However, there are other performance issues in iterative algorithms

execution not addressed in Twister. Broadcasting operations to distribute shared data

and shuffling operation to merge the shared data are involved over iterations. These

operations could cost lots of execution time and limit the scalability of the execution.

In this paper, we introduce a fast Kmeans algorithm that drastically reduces the

computation time for data mining in high dimensional social image data. We propose a

pipeline-based method with topology awareness to accelerate broadcasting and

demonstrate that it outperforms traditional MPI methods [6]. We use local reduction

before shuffling to improve performance, which can reduce intermediate data by

num_nodes⁄num_maps×100%. These methods provide important capabilities to our

new iterative MapReduce framework for data intensive applications. We evaluate our

new methods with a real application of image clustering using K-means clustering in

the PolarGrid [7] cluster at Indiana University.

The rest of paper is organized as follows. Section 1 describes the image clustering

application and the new K-means algorithm. Section 2 focuses on the design of

broadcasting algorithm and presents the experiment results. Section 3 discusses related

work and Section 4 contains the conclusion and future work.

1. Clustering Application and New K-means Algorithm

1.1. Image Clustering Application

Billions of images from online social media produce new sources of observational data.

Image clustering clusters these images with similar features. Since the data set is huge

and each image is high-dimensional, the dimensionality reduction is done first and each

image is represented in a much lower space by a set of important visual components

which are called “features." It is analogous to how “key words” are used in a document

retrieval system. In this application, 5 patches are selected from each image and each

patch is represented by a HOG (Histograms of Oriented Gradients) feature vector of

512 dimensions. The basic idea of HOG features is to characterize the local object

appearance and shape by the distribution of local intensity gradients or edge directions

[8] (See Figure. 1). In the application data, each HOG feature vector is presented as a

line of text starting with picture ID, row ID and column ID, then being followed by 512

numbers f1, f2 …and fdim.

We apply K-means Clustering [9] to cluster similar HOG feature vectors and use

Twister to parallelize the computation. The input data is a large number of vectors each

of which is considered a data point with 512 dimensions and presents a HOG feature.

Because the vectors are static over iterations, we partition the vectors and cache each

partition in memory and assign it to a Map task during the configuration. Later in each

iteration execution, the driver broadcasts centroids to all Map tasks and then each Map

task updates centroids through assigning points to their corresponding clusters. We use

one or more reducers to collect partial local centroids updates from each Map task and

calculate new centroids of the iteration. By combining these new centroids from

Reduce tasks, the driver gets all updated centroids for the next iteration.

A major challenge of this application is not only the large amount of image data

(up to TB level) but also the huge size of clusters. Although we can increase the

number of machines to reduce the task size per node, the total intermediate data size for

broadcasting and shuffling also grows. Due to the application requirement, the number

of centroids is very large. For example, we need to cluster 7 million of image vector

data to 1 million clusters (centroids). The execution is conducted on 125 nodes with

10000 Map tasks. For 7 million image data, each node only needs to cache 56K vectors

which are approximately 30MB and each task only needs to cache 700 vectors which is

about 358KB. However, the total size of 1 million centroids is about 512MB. The

centroids data per task is much larger than the image feature vectors per task. As a

consequence, the total data for broadcasting is about 64GB. In addition, each map task

generates about 2GB intermediate data. The total intermediate data size in shuffling is

about 20TB. This makes the computation difficult to scale.

Figure 1 charts need some photo icons the process of image clustering

1.2. Fast Kmeans Algorithm

We are incorporating proposed K-means enhancements which can give a large speedup

for high dimensional problems. In particular we build on work of Elkans [10] which are

independently (and differently) extended by Drake and Hamerly [11]. We address here

the step in K-means where points are associated with clusters which is independent of

our discussion on reduction which occurs in the step when cluster centers are found

from average of their associated points. We have a set of centers c= 1..C with position

m(k, c) at iteration k and a set of fixed points x(p) p=1…N. Then Elkans algorithm uses

two types of inequalities illustrated in Figure 2 below for two iterations k=now and the

previous k=last with a distance metric d(a, b) between vectors a and b.

𝑑(𝑥(𝑃), 𝑚(𝑛𝑜𝑤, 𝑐1)) ≥ 𝑑(𝑥(𝑃), 𝑚(𝑙𝑎𝑠𝑡, 𝑐1)) − 𝑑(𝑚(𝑛𝑜𝑤, 𝑐1), 𝑚(𝑙𝑎𝑠𝑡, 𝑐1)) (1)

The right side of (1) gives a lower bound on the distance of P from center 𝑐1 in

terms of the distance in the previous iteration and the distance between the current and

previous positions at centers. One loops through centers c in an order that (based on

previous iteration) is most likely to find the center associated with point. Then the

lower bound (1) can rule out candidate associated centers c if

𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑 = 𝑑(𝑥(𝑃), 𝑚(𝑙𝑎𝑠𝑡, 𝑐)) − 𝑑(𝑚(𝑛𝑜𝑤, 𝑐), 𝑚(𝑙𝑎𝑠𝑡, 𝑐)) ≥
𝑑(𝑥(𝑃), 𝑚(𝑙𝑎𝑠𝑡, 𝑐 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑏𝑒𝑠𝑡)) (2)

If (2) is not satisfied, one resorts to explicit calculation of d(x(P), m(now,c)) which

takes time of O(Dimension D of space) while the test (2) is independent of D. Elkans

also notes a second inequality

𝑑(𝑥(𝑃), 𝑚(𝑛𝑜𝑤, 𝑐2)) ≥ 𝑑(𝑚(𝑛𝑜𝑤, 𝑐2), 𝑚(𝑛𝑜𝑤, 𝑐1)) − 𝑑(𝑥(𝑃), 𝑚(𝑛𝑜𝑤, 𝑐1) (3)

which can be used to rule out centers c2 which are far from c-current best. For our

data this test is not as useful as (1). One reason is the closeness of clusters in high

dimensional space illustrated by the distances shown in Figure 3 with center-center

distances being typically smaller than 2 d(x(P), m(now,c)) which implies that (3) is not

effective.

Figure 2. Set of Cluster centers and a Point P to illustrate inequalities used

Application of these inequalities drastically reduces the total number of point-

center distances needed as shown in Figure 4 where the triangles correspond to this

basic algorithm where a lower bound is kept for every point center combination. This is

not realistic for large problems (One cannot keep a million lower bounds for 100

million points) and so we implemented a simple improvement. Each point only keeps

the lower bounds for the nearest Cnear centers plus a single number that bounds the

distances d(x(P), m(now,c)) for the remaining C- Cnear centers. Results are shown in

Figure 4 for Cnear = 400 and 800 for the case of C=3200. The reduction in distance

calculations is still dramatic. Implementing this idea has many subtle points which are

still being optimized. One starts at the first iteration by calculating all the d(x(P),

m(first iteration,c)), sorting them and keeping the lowest Cnear values and setting the

upper bound on the remainder as the Cnear +1’th entry. Thereafter one tracks at each

iteration the current bound or explicit calculation used for each center c. These values

are then resorted to produce new values for the Cnear +1 bounds. As one iterates, this

approach accumulates (k= start to end) d(m(k,c), m(k-1,c)) which is typically larger

than d(m(k=end,c), m(k=start,c)). This is addressed by keeping two sets of Cnear lower

bounds; one calculated from centers at last iteration and other associated with a “start”

set of centers. These are slowly updated when center position move significantly and

are independent of point.

Note that this algorithm only changes the “map” stage of computation and is

perfectly parallel over points x(P) except for the center-only parts of algorithm

(calculating d(m(now,c2), m(now,c1)) and d(m(now,c), m(last,c)) that can be

performed once and for all independently of points.

Figure 3. Histograms of distance distributions for 3200 clusters for 76800 points in a 2048 dimensional space.

The distances of points to their nearest center is shown as triangles; the distance to other centers (further

away) as crosses; the distances between centers as filled circles

One reason is the closeness of clusters in high dimensional space illustrated by the

distances shown in Figure 3 with center-center distances being typically smaller than 2

d(x(P), m(now,c)) which implies that (3) is not effective. Note the “curse of

dimensionality” produces non-intuitive effects. If you divide a 2D space into a million

clusters, they naturally have linear size around 0.001 of total; if you do the same in 20-

48 dimensions the linear size of a cluster is naturally 99% (10-6to power 1/2048) of

original. Observations like explain distance plots like that in Figure 3. Note however

that inequality (2) is often effective as the change from iteration to iteration is a small

fraction of the distances shown in figure.

Each point only keeps the lower bounds for the nearest Cnear centers plus a single

number that bounds the distances d(x(P), m(now,c)) for the remaining C - Cnearcenters.

Results are shown in Figure 4 for Cnear = 400 and 800 for the case of C=3200. This

shows the fraction of point-center distances calculated as a function of iteration. This

fraction starts of course at 100% but at the largest iteration count, we are converged and

the inequality test (1) is fully effective; one just needs to calculate the new value of the

distance between each point and its associated center. Note that it's critical in this

(Elkans style) algorithm to calculate distances in “optimal” order that gives best chance

of identifying the cluster associated with each as soon as possible and at first try when

nearly converged.

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5

P
e

rc
e

n
ta

ge
p

e
r

b
in

Distance/Average Width

76800 Points 3200 Centers 3200 LB's

Point -Its Center
Distance

Point - Other Centers
Distances

Center-Center
Distances

Figure 4: Fraction of Point-Center Distances calculated for 3 versions of the algorithm for 76800 points and

3200 centers in a 2048 dimensional space for three choices of lower bounds LB kept per point

2. Broadcasting Transfers

2.1. Twister Iterative MapReduce Framework

Twister has several components: a single driver to drive MapReduce jobs, and daemon

nodes to handle requests from the driver and execute iterative MapReduce jobs. These

components are connected through messaging brokers via a publish/subscribe

mechanism. Currently Twister supports ActiveMQ [12] and NaradaBrokering [13].

Twister driver program allows users to configure an iterative MapReduce job with

static data cached in Map tasks or Reduce tasks before the start of job execution and to

drive the job execution iteratively with a loop control. In each iteration, the driver can

send variable data to worker nodes at the beginning and collect output back. In this

model, fault tolerance is done through checkpointing between iterations.

Currently there is no support for a distributed file system. Files and replicas are

stored on local disks of compute nodes and recorded in a partition file. Twister uses

static scheduling. The Max Flow algorithm [14] is used to balance the mapping

between workers and the files. We are moving toward using distributed file systems

such as HDFS [15].

2.2. Broadcasting in Hadoop and MPI

Hadoop system relies on HDFS to do broadcasting. A component named Distributed

Cache is used to cache data from HDFS to local disk of compute nodes. The API

addCacheFile and getLocalCacheFiles co-work together to finish the process of

broadcasting. However, there is no special optimization for the whole process. The

data downloading speed depends on the number of replicas in HDFS [16].

0.0001

0.001

0.01

0.1

1

0 20 40 60 80

Fr
ac

ti
o

n
 D

is
ta

n
ce

s
C

al
cu

la
te

d

Iteration Number

76800 Points 3200 Centers

3200 LB's

800 LB's

400 LB's

These methods are naïve because they basically send data to all the nodes one by

one. Although using multiple brokers or using multiple replicas in HDFS could form a

simple 2-level broadcasting tree, they cannot fundamentally solve the problem.

In MPI, several algorithms are used for broadcasting. MST (Minimum-spanning

Tree) method is a typical broadcasting method used in MPI [17]. In this method, nodes

form a minimum spanning tree and data is forwarded along the links. In this way, the

number of nodes which have the data grows in geometric progression. Here we use 𝑝 as

the number of daemon nodes, 𝑛 as the data size, 𝛼 as communication startup time and

𝛽 as data transfer time per unit. The performance model can be described by the

formula below:

𝑇𝑀𝑆𝑇(𝑝, 𝑛) = ⌈𝑙𝑜𝑔2𝑝⌉(𝛼 + 𝑛𝛽) (4)

Although this method is much better than the naïve broadcasting and it changes the

factor 𝑝 to ⌈𝑙𝑜𝑔2𝑝⌉, it is still slow because (𝛼 + 𝑛𝛽) is getting large as the size of

message increases.

Scatter-allgather-bucket is another algorithm used in MPI for long vectors

broadcasting which follows the style of “divide, distribute and gather” [18]. In “scatter”

phase, it scatters the data to all the nodes using either MST algorithm or naïve

algorithm. In “allgather” phase, it views the nodes as a chain. At each step, each node

sends data to its right neighbor [17]. By taking advantage of the fact that messages

traversing a link in opposite direction do not conflict, we can do “allgather” in parallel

without any network contention. The performance model can be established as follow:

𝑇𝑏𝑢𝑐𝑘𝑒𝑡(𝑝, 𝑛) = 𝑝(𝛼 + 𝑛𝛽 𝑝⁄) + (𝑝 − 1)(𝛼 + 𝑛𝛽 𝑝⁄) (5)

In large data broadcasting, assuming 𝛼 is small, the broadcasting time is about 2𝑛𝛽.

This is much better than MST method because the time looks constant. However, since

it is not practical to set a barrier between “scatter” and “allgather” phases to enable all

the nodes to do “allgather” at the same global time through software control, some links

will have more load than the others which causes network contention. Here is a rough

performance result of our implementation of this method on PolarGrid (See Table 1).

We see that the time is stable as the number of nodes grows and about 2 times of 1 GB

transferring time between 2 nodes.

There exists broadcasting method based on InfiniBand multicast implementation in

MPI [19]. Many clusters have hardware-supported multicast operation. Although

multicast has advantage over broadcasting, it also has several problems: its

transportation is not reliable, order is not guaranteed and the package size is limited. In

MPI, after the first stage of multicasting, broadcasting is enhanced with a chain-like

method in the second stage. The chain-like broadcasting is reliable by making sure

every process has completed data receiving.

Table 1 Scatter-allgather-bucket performance on PolarGrid with 1 GB data broadcasting

Number of Nodes 1 25 50 75 100 125

Time 11.4 20.57 20.62 20.68 20.79 21.2

2.3. Broadcasting in Twister

Broadcasting is a separate and independent operation in Twister APIs. Similar to the

concept of Distributed Cache in Hadoop, the operation is called addToMemCache

which means this method will cache a data object in driver node to all the worker nodes.

However it is non-trivial to broadcast objects to remote nodes. The whole process has 3

stages: serialization, broadcasting and de-serialization.

Early Twister iterative MapReduce frameworks used one or multiple messaging

brokers to conduct data broadcasting. This method has many issues. Firstly,

unnecessary communication hops through brokers are added in data transfers between

clients, which give poor performance for big messages as they often need significant

time to transfer from one point to another point. Secondly, the broker network doesn’t

provide optimal routing for data transferring between a set of brokers and clients in

collective communication operations. Thirdly, brokers are not always reliable in

message transmission and message loss can happen. As a result, we abandon broker

based methods.

2.4. Object Serialization and De-serialization

In Twister broadcasting, data are abstracted and presented as an object in memory. So

we need to serialize the object to byte array before broadcasting and de-serialize byte

array back to an object after broadcasting. We manage serialization and deserialization

inside of Twister framework and we provide interfaces to let user be able to write

different basic types into the byte array, such as int, long, double, byte and

String.

It is observed that serialization and de-serialization for large-sized data object can

take long time. Depending on the data type, the serialization speed varies. Our

experiments show that serializing 1 GB data in double type is much faster than

serializing 1 GB byte type data. Moreover, desterilizing 1 GB byte type data uses

longer time than serializing it. The time it takes is in tens of seconds. Since it is a local

operation, currently we leave them there and separate them from the core byte array

broadcasting.

2.5. Chain Broadcasting Algorithm

We propose Chain method, an algorithm based on pipelined broadcasting [20]. In this

method, compute nodes in Fat-Tree topology are treated as a linear array and data is

forwarded from one node to its neighbor chunk by chunk. The performance is gained

by dividing the data into many small chunks and overlapping the transmission of data

on nodes. For example, the first node would send a data chunk to the second node.

Then, while the second node sends the data to the third node, the first node would send

another data chunk to the second node, and so forth [20]. This kind of pipelined data

forwarding is called “a chain”.

The performance of pipelined broadcasting depends on the selection of chunk size.

In an ideal case, if every transfer can be overlapped seamlessly, the theoretical

performance is as follows:

𝑇𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒(𝑝, 𝑘, 𝑛) = 𝑝(𝛼 + 𝑛𝛽 𝑘⁄) + (𝑘 − 1)(𝛼 + 𝑛𝛽 𝑘⁄) (6)

Here 𝑝 is the number of daemon nodes (each node is controlled by one daemon

process), 𝑘 is the number of data chunks, 𝑛 is the data size, 𝛼 is communication startup

time and 𝛽 is data transfer time per unit. In large data broadcasting, assuming 𝛼 is

small and 𝑘 is large, the main item of the formula is (𝑝 + 𝑘 − 1)𝑛𝛽 𝑘⁄ ≈ 𝑛𝛽 which is

close to constant. From the formula, the best number of chunks 𝑘𝑜𝑝𝑡 = √(𝑝 − 1)𝑛𝛽/𝛼

when 𝜕𝑇 𝜕𝑘⁄ = 0 [20]. However, in practice, the real chunk size per sending is decided

by the system and the speed of data transfers on each link could vary as network

congestion could happen when data is kept forwarded into the pipeline. As a result,

formula (6) cannot be applied directly to predict real performance of our chain

broadcasting implementation. The experiment results we will present later still show

that as 𝑝 grows, the broadcasting time keeps constant and close to the bandwidth

boundary.

2.6. Topology Impact

This chain method is suitable for Fat-Tree topology [21]. Since each node only has only

two links, which is less than the number of links per node in Mesh/Torus [22] topology,

chain broadcasting can maximize the utilization of the links per node. We also make

the chain be topology-aware by allocating nodes within the same rack close in the chain.

Assuming the racks are numbered as 𝑅1, 𝑅2 and 𝑅3…, the nodes in 𝑅1 are put at the

beginning of the chain, then the nodes in 𝑅2 follow the nodes in 𝑅1, and then nodes in

𝑅3 follow nodes in 𝑅2 …. Otherwise, if the nodes in 𝑅1 are intertwined with nodes in

 𝑅2 in the chain sequence, the chain flow will jump between switches, and makes the

core switch overburdened. To support topology-awareness, we define the chain

sequence based on the topology and save the information on each node. Daemons can

tell its predecessor and successor by loading the information when starting. In future,

we are also looking into supporting Automatic topology detection to replace the static

topology information loading.

2.7. Buffer Usage

Another important factor that affects broadcasting speed is the buffer usage. The cost of

buffer allocation and data copying between buffers are not presented in formula (6).

There are 2 levels of buffers used in data transmission. The first level is the system

buffer and the second level is the application buffer. System buffer is used by TCP

socket to hold the partial data transmitted from the network. The application buffer is

created by the user to integrate the data from the socket buffer. Usually the socket

buffer size is much smaller than the application buffer size. The default buffer size

setting of Java socket object in IU PolarGrid is 128KB while the application buffer is

set to the total size of the data required to be broadcasted.

We observe performance degradation caused by the socket buffer. If the buffer size

is smaller than 128 KB, the broadcasting performance slows down. The TCP window

may not open up fully, which results in throttling of the sender. Further, large user

buffer allocation during broadcasting can also slow down the overall performance.

Therefore we initialize a pool of user buffers once Twister daemon starts, instead of

allocating dynamically during broadcast communication phase.

2.8. Implementation

We implement chain broadcasting algorithm in the following way: it starts with a

request from Twister driver to the first node in the topology-aware chain sequence.

Then driver keeps sending a small portion of the data to the next node. At the

meanwhile, each node in the chain creates a connection to the successor node. Finally

each node receives a partial data from the socket stream, stores it into the application

buffer and forwards it to the next node (See Table 2).

Table 2 Broadcasting algorithm

Algorithm 1 Twister Driver side “send” method

daemonID ← 0

connection ← connectToNextDaemon(daemonID)

dout ← connection.getDataOutputStream()

bytes ← byte array serialized from the broadcasting object

totalBytes ← total size of bytes

SEND_UNIT ← 8192

start ← 0

dout.write(totalBytes)

while (start + SEND_UNIT < totalBytes)

 dout.write(bytes, start, SEND_UNIT)

 start ← start + SEND_UNIT

dout.flush()

if (start < totalBytes)

dout.write(bytes, start, totalBytes - start)

dout.flush()

waitForCompletion()

Algorithm 2 Twister Daemon side “receive” method

connection ← serverSocket.accept()

dout ← connection.getDataOutputStream()

din ← connection.getDataInputStream()

daemonID ← this.daemonID + 1

connNextD ← connectToNextDaemon(daemonID)

doutNextD ←connToNextD.getDataOutputStream()

dinNextD ← connToNextD.getDataInputStream()

totalBytes ← din.readInt()

doutNextD.writeInt(totalBytes)

doutNextD.flush()

bytesBuffer ← getFromBufferPool(totalBytes)

RECV_UNIT ← 8192

recvLen ← 0

while ((len ← din.read(bytesBuffer, recvLen, RECV_UNIT)) > 0)

doutNextD.write(bytesBuffer, recvLen, len)

doutNextD.flush()

 recvLen ← recvLen + len;

if (recvLen = totalBytes) break

notifyForCompletion()

2.9. Experiments

To evaluate the performance of the proposed broadcasting method, we conduct

experiments on IU PolarGrid cluster. IU PolarGrid cluster uses a Fat-Tree topology to

connect compute nodes. The nodes are split into sections of 42 nodes which are then

tied together with 10 GigE to a Cisco Nexus core switch. For each section, nodes are

connected with 1 GigE to an IBM System Networking Rack Switch G8000. This forms

a 2-level Fat-Tree structure with the first level of 10 GigE connection and the second

level of 1 GigE connection. For computing capacity, each compute node in PolarGrid

uses a 4-core 8-thread Intel Xeon CPU E5410 2.33 GHz processor. Each compute node

has 16 GB total memory.

We test four broadcasting methods: chain method in Twister, MPI_BCAST in

Open MPI [23], and broadcasting method in MPJ Express [24], and chain method in

Twister without topology awareness. We measure the time from the start of calling the

broadcasting method, to the end of return of the calling. Broadcasting is measured from

small to medium large scale.

Figure 5. Performance Comparison of Twister Chain method and MPI_Bcast

Figure 5 shows that the new chain method produces stable performance results

with increasing number of processes, which is explained in Section 2.3. The new

method achieves slightly better performance than MPI_BCAST in Open MPI and the

time cost is reduced by 20%. However, if the chain sequence is randomly generated

without topology-awareness, the performance degrades as the scale increases.

Table 4 compares Twister Chain, MPJ and the naïve method. As exceptions occur

in MPJ when broadcasting 2 GB of data, we use 500MB and 1 GB data in broadcasting

experiments. The MPJ broadcasting method is a factor of 4 slower than Twister chain

method.

Table 4 Performance Comparison of Twister Chain method and MPJ and naïve broadcasting

 Twister Chain MPJ Naïve Broadcasting

 500 MB 1 GB 2 GB 500 MB 1 GB 2 GB 500 MB 1 GB 2 GB

1 4.04 8.09 16.17 4.3 8.9 × 4.04 8.08 16.16

0

5

10

15

20

25

1 25 50 75 100 125 150

B
ca

st
 T

im
e

 (
Se

co
n

d
s)

Number of Nodes

Twister Bcast 500MB MPI Bcast 500MB

Twister Bcast 1GB MPI Bcast 1GB

Twister Bcast 2GB MPI Bcast 2GB

25 4.13 8.22 16.4 17.5 35 × 101 202 441.64

50 4.15 8.24 16.42 17.6 35 × 202.01 404.04 882.63

75 4.16 8.28 16.43 17.4 35 × 303.04 606.09 1325.63

100 4.18 8.28 16.44 17.5 35 × 404.08 808.21 1765.46

125 4.2 8.29 16.46 17.4 35 × 505.14 1010.71 2021.3

150 4.23 8.30 16.48 17.4 35 × 606.14 1212.21 2648.6

The impact of socket buffer size is given in Table 5 and discussed in Section 2.5.

Although broadcasting includes serialization and deserialization, we measure

serialization and de-serialization separately from the communication part of

broadcasting in experiments. Figure 6 shows high serialization and de-serialization cost.

Note that for the same-sized of data, “byte” type uses more time than “double” type in

serialization and de-serialization.

Table 5 Twister chain broadcasting time of 1GB data on 125 nodes with different socket buffer size

Buffer Size (KB) 8 16 32 64 128 256 512 1024

Time (s) 65.5 45.46 17.77 10.8 8.29 8.27 8.27 8.27

Figure 6. Serialization, Broadcasting and De-serialization

3. Related Work

Collective communication algorithms are well studied in MPI runtime. Each

communication operation has several different algorithms based on message size and

network topology such as linear array, mesh and hypercube [17]. Basic algorithms are

pipeline broadcast method [20], minimum-spanning tree method, bidirectional

exchange algorithm, and bucket algorithm [17]. Since these algorithms have different

advantages, algorithm combination is widely used to improve the communication

performance [17]. And some solution also provides auto algorithm selection [25].

0

10

20

30

40

50

60

70

80

90

500MB Byte
Data

1 GB Byte
Data

500MB
Double Data

1 GB Double
Data

Se
ri

al
iz

at
io

n
 a

n
d

 B
ro

ad
ca

st
in

g
Ti

m
e

(S

e
co

n
d

s)

Serialization Time Broacasting Time De-serialization Time

However, many solutions have a different focus from our work. Some of them only

study small data transfers up to megabytes level [17][26]. Some solution relies on

special hardware support [19]. The data type is typically vectors and arrays whereas we

are considering objects. Many algorithms such as “allgather” have the assumption that

each node has the same amount of data [17][18], which is not common in MapReduce

computation model. As a result, though shuffling can be viewed as a Reduce-Scatter

operation, its algorithm cannot be applied directly on shuffling because the data amount

generated by each Map task is unbalanced in most MapReduce applications.

There are several solutions to improve the performance of data transfers in

MapReduce. Orchestra [16] is such a global control service and architecture to manage

intra and inter-transfer activities on Spark [27]. It not only provides control, scheduling

and monitoring on data transfers, but also provides optimization on broadcasting and

shuffling. For broadcasting, it uses an optimized BitTorrent [28] like protocol called

Cornet, augmented by topology detection. Although this method achieves similar

performance as our Multi-Chain method, it is still unclear in its internal design and

details of communication graph formed in data transfer. For shuffling, it uses weighted

shuffle Scheduling (WSS) to set the weight of the flow to be proportional to the data

size.

Hadoop-A [29] provides a pipeline to overlap the shuffle, merge and reduce phases

and uses an alternative Infiniband RDMA [30] based protocol to leverage RDMA inter-

connects for fast data shuffling. MATE-EC2 [31] is a MapReduce-like framework for

EC2 [32] and S3 [33]. For shuffling, it uses local reduction and global reduction. The

strategy is similar to what we did in Twister but as it focuses on EC2 cloud

environment, the design and implementation are totally different. iMapReduce [34] and

iHadoop [35] are iterative Mapreduce frameworks that optimize the data transfers

between iterations asynchronously, where there’s no barrier between two iterations.

However, this design doesn’t work for applications which need broadcast data in every

iteration because all the outputs from Reduce tasks are needed for every Map task.

4. Conclusion

We have illustrated the challenges of big data through a social image feature

clustering problem and shown the value of a new algorithm that tackles simultaneously

the high dimension (reduce number of scalar products calculated) and large cluster

count (minimize amount of information needed for each cluster-point combination).

This algorithm can be used for other applications and other clustering methods like

deterministic annealing. We have also pointed out the new challenges in collective

communications which need to be optimized for new regimes. In particular we have

demonstrated performance improvement of big data transfers in Twister iterative

MapReduce framework enabling data intensive applications. We replace broker-based

methods and design and implement a new topology-aware chain broadcasting

algorithm. The new algorithm reduces the time cost of broadcasting by 20% of the MPI

methods.

There are a number of directions for future work. We will apply the new Twister

framework to other iterative applications [36]. We will integrate Twister with

Infiniband RDMA based protocol and compare various communication scenarios. The

initial observation suggests a different performance profile from that of Ethernet.

Further we will integrate topology and link speed detection services and utilize services

such as ZooKeeper [37] to provide coordination and fault detection.

Acknowledgement

The authors would like to thank Prof. David Crandall at Indiana University for

providing the social image data. This work is in part supported by National Science

Foundation Grant OCI-1149432.

References

[1] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. Sixth Symp. on

Operating System Design and Implementation, pp. 137–150, December 2004.

[2] Apache Hadoop. http://hadoop.apache.org.

[3] Dubey, Pradeep. A Platform 2015 Model: Recognition, Mining and Synthesis Moves Computers to the

Era of Tera. Compute-Intensive, Highly Parallel Applications and Uses. Volume 09 Issue 02. ISSN

1535-864X. February 2005.

[4] J.Ekanayake et al., Twister: A Runtime for iterative MapReduce, in Proceedings of the First International

Workshop on MapReduce and its Applications of ACM HPDC 2010 conference June 20-25, 2010.

2010, ACM: Chicago, Illinois.

[5] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst. Haloop: Efficient Iterative Data

Processing on Large Clusters. Proceedings of the VLDB Endowment, 3, September 2010.

[6] MPI Forum, “MPI: A Message Passing Interface,” in Proceedings of Supercomputing, 1993.

[7] PolarGrid. http://polargrid.org/polargrid.

[8] N. Dalal, B. Triggs. Histograms of Oriented Gradients for Human Detection. CVPR. 2005

[9] J. B. MacQueen, Some Methods for Classification and Analysis of MultiVariate Observations, in Proc.

of the fifth Berkeley Symposium on Mathematical Statistics and Probability. vol. 1, L. M. L. Cam and

J. Neyman, Eds., ed: University of California Press, 1967.

[10] Charles Elkan, Using the triangle inequality to accelerate k-means, in TWENTIETH INTERNATIONAL

CONFERENCE ON MACHINE LEARNING, Tom Fawcett and Nina Mishra, Editors. August 21-24,

2003. Washington DC. pages. 147-153.

[11] Jonathan Drake and Greg Hamerly, Accelerated k-means with adaptive distance bounds, in 5th NIPS

Workshop on Optimization for Machine Learning. Dec 8th, 2012. Lake Tahoe, Nevada, USA,.

[12] ActiveMQ. http://activemq.apache.org/

[13] S. Pallickara, G. Fox, NaradaBrokering: A Distributed Middleware Framework and Architecture for

Enabling Durable Peer to-Peer Grids, Middleware 2003, 2003.

[14] Ford L.R. Jr., Fulkerson D.R., Maximal Flow through a Network, Canadian Journal of Mathematics ,

1956, pp.399-404.

[15] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, The Hadoop Distributed File System. IEEE 26th

Symposium on Mass Storage Systems and Technologies (MSST), 2010

[16] Mosharaf Chowdhury et al. Managing Data Transfers in Computer Clusters with Orchestra,

Proceedings of the ACM SIGCOMM 2011 conference, 2011

[17] E. Chan, M. Heimlich, A. Purkayastha, and R. A. van de Geijn. Collective communication: theory,

practice, and experience. Concurrency and Computation: Practice and Experience, 2007, vol 19, pp.

1749–1783.

[18] Nikhil Jain, Yogish Sabharwal, Optimal Bucket Algorithms for Large MPI Collectives on Torus

Interconnects, ICS '10 Proceedings of the 24th ACM International Conference on Supercomputing,

2010

[19] T. Hoefler, C. Siebert, and W. Rehm. Infiniband Multicast A practically constant-time MPI Broadcast

Algorithm for large-scale InfiniBand Clusters with Multicast. Proceedings of the 21st IEEE

International Parallel & Distributed Processing Symposium. 2007

[20] Watts J, van de Geijn R. A pipelined broadcast for multidimensional meshes. Parallel Processing

Letters, 1995, vol.5, pp. 281–292.

[21] Charles E. Leiserson, Fat-trees: universal networks for hardware efficient supercomputing, IEEE

Transactions on Computers, vol. 34 , no. 10, Oct. 1985, pp. 892-901.

[22] S. Kumar, Y. Sabharwal, R. Garg, P. Heidelberger, Optimization of All-to-all Communication on the

Blue Gene/L Supercomputer, 37th International Conference on Parallel Processing, 2008

[23] Open MPI, http://www.open-mpi.org

[24] MPJ Express, http://mpj-express.org/

[25] H. Mamadou T. Nanri, and K. Murakami. A Robust Dynamic Optimization for MPI AlltoAll Operation,

IPDPS’09 Proceedings of IEEE International Symposium on Parallel & Distributed Processing, 2009

[26] P. Balaji, A. Chan, R. Thakur, W. Gropp, and E. Lusk. Toward message passing for a million

processes: Characterizing MPI on a massive scale Blue Gene/P. Computer Science - Research and

Development, vol. 24, pp. 11-19, 2009.

[27] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Cluster Computing with

Working Sets. In HotCloud, 2010.

[28] BitTorrent. http://www.bittorrent.com.

[29] Yangdong Wang et al. Hadoop Acceleration Through Network Levitated Merge, International

Conference for High Performance Computing, Networking, Storage and Analysis (SC'11), 2011

[30] Infiniband Trade Association. http://www.infinibandta.org.

[31] T. Bicer, D. Chiu, and G. Agrawal. MATE-EC2: A Middleware for Processing Data with AWS,

Proceedings of the 2011 ACM international workshop on Many task computing on grids and

supercomputers, 2011

[32] EC2. http://aws.amazon.com/ec2/.

[33] S3. http://aws.amazon.com/s3/.

[34] Y. Zhang, Q. Gao, L. Gao, and C. Wang. imapreduce: A distributed computing framework for iterative

computation. In DataCloud '11, 2011.

[35] E. Elnikety, T. Elsayed, and H. Ramadan. iHadoop: Asynchronous Iterations for MapReduce,

Proceedings of the 3rd IEE International conference on Cloud Computing Technology and Science

(CloudCom), 2011

[36] B. Zhang et al. Applying Twister to Scientific Applications, Proceedings of the 2nd IEE International

conference on Cloud Computing Technology and Science (CloudCom), 2010

[37] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, ZooKeeper: wait-free coordination for internet-scale

systems, in USENIXATC’10: USENIX conference on USENIX annual technical conference, 2010, pp.

11–11.

