
Managing Grid Messaging Middleware
Harshawardhan Gadgil, Geoffrey Fox, Shrideep Pallickara, Marlon Pierce

(hgadgil, gcf, spallick, marpierc) @indiana.edu
Community Grids Lab, Indiana University, Bloomington – IN, 47404

Abstract: Management in distributed systems has gained much importance in recent
years. With the increasing complexity of applications, there is a need for effective management
of components of the application. As application components span different administrative
domains, differing security policies restrict access to these components. The problem gets more
complicated in a dynamic environment where application components and the environment is in
a constant state of flux, so that failure is the norm. In this paper we explore the issues related to
management in dynamic and heterogeneous environments. We propose a scalable, fault-tolerant
Web Services - compliant management architecture that addresses these issues of management
and also illustrate the functioning of our framework with respect to the NaradaBrokering
messaging middleware.

KEYWORDS: Messaging middleware, Web Services Management, Fault tolerance

1 Introduction
Management in distributed systems has gained much importance in recent years. With the
increasing complexity of applications, there is a need for effective management of components of
the application. Management usually involves common operations such as the ability to control
the resource (e.g. start, stop), ability to configure the resource for a specific task and monitor the
status (e.g. heartbeat) of the resource. The Web Service community has recently introduced two
competing specifications, namely, WS-Management [1] and WS-Distributed Management [12] for
service-oriented management. The key idea inherent to both these specifications is modeling
manageable resources as Web Service endpoints and managing these services by sending an
appropriate message to this endpoint. In heterogeneous environment, the ability to manage a
resource is restricted by presence of network address translation devices, firewalls and restricted
transports. In this paper we address issues related to management and show how we can make
management scalable, fault-tolerant.

1.1 Scalable and Fault-tolerant Management Framework
Figure 1 shows the various components of our framework. The entity being managed is any
application specific component. We term such a resource as a manageable resource. Typically,
existing Web Services would be augmented with specific ports for enabling remote management.
A service adapter or a proxy is required when the entity being managed is not a Web Service. In
such cases, the service adapter provides a Web Service interface for such entities. Thus this
adapter is an entity specific proxy that has a Web Service interface on one end and an entity-
specific interface on the other end. The adapter serves as translator of messages to commands
specific to the entity being managed.

In our architecture, we assume there could be multiple such services that require management.
Examples of systems with large number of manageable resources are cell phone networks, large
clusters of machines or even brokers in distributed brokering systems. The scheme should be
scalable and incorporate management of a large number of manageable resources.

Since the adapter exports a Web Service interface, it is also responsible for registering its presence
in a global registry such as a Universal Description, Discovery and Integration (UDDI) registry and
renewing its existence at regular intervals. We expect such registries to be fault-tolerant by some
implicit replication scheme.

Page 1 of 13

Network

Registry

Discover

Registry Registry

ADAPTER

Entity being
managed

WS ADAPTER

Entity being
managed

WS ADAPTER

Entity being
managed

WS ADAPTER

Entity being
managed

WS ADAPTER

Entity being
managed

WS

Statically
configured
bootstrap
nodes

Register / Renew

Manager
Service

Manager
Service

Manager
Service

Manager
Service

Figure 1: A Basic Management Framework

A Manager Service is the component of management architecture responsible for actually
managing the manageable resources and usually represents the user responsible for managing
the resources. The manager service itself should be fault-tolerant. If one or more manageable
resources are unreachable (possibly because the manager and the manageable resources lie in
different administrative domains), then the manager should try alternate means of transport for
reaching the manageable resource. To achieve scalability, the system contains multiple manager
services. Assignment of manageable resources to managers can be handled using one of the
popular load balancing techniques.

The system also contains a set of statically configured bootstrap nodes which can be leveraged to
start discovering the system components and tying them together. This is akin to the DNS
(Domain Name Service) system where, if one DNS Server is unavailable, the client tries the next
DNS service to achieve fault-tolerance. Thus failure of one of these nodes does not affect the
entire management system and we expect that the failed node can be restored in finite amount of
time.

1.2 Desiderata
We now summarize the desired characteristics of the management architecture, below:

Remote Management: The management system should enable us to manage resources
irrespective of their location as long as there exists a way to access the resource.

Traverse firewalls and NAT: Application components may span administrative domains. The
presence of firewalls and network address translation further complicates management by
preventing specific transports and / or blocking access to internal machines. Frequently, by
providing correct authentication, it is possible to tunnel messages, such as over the HTTP
transport. The management architecture should work equally well in such heterogeneous
environments by leveraging available transports.

Extensible: Management interfaces are generally resource specific. As the application
infrastructure evolves, it should be possible to incorporate management of newer services with
little or no modification. We address this issue by employing service-oriented management
architecture.

Scalable: The management architecture should be administratively scalable such that, the
complexity of management does not increase when a subset of the components are distributed
over multiple administrative domains. Further, the management architecture should also be

Page 2 of 13

scalable in terms of the number of resources managed. We show how we can leverage a
distributed messaging middleware to achieve scalability.

Fault-tolerant: The management architecture should itself be fault-tolerant. Failure of any
services or transport should automatically trigger search for next possible transport. As an
illustration, a resource may become unreachable due to various network conditions such as
blocked ports, disabled transport such as UDP or multicast and failed services. In these cases the
management adapter should try to avoid faulting by doing a best-effort-try to check for alternate
means of services and transports.

In this paper we apply the above concepts in managing a distributed messaging infrastructure.
This is particularly of interest since it employs a large number of distributed dynamic peers. We
present results on the overhead introduced by our system and present ways to improve
performance. The rest of the paper is organized as follows. We introduce NaradaBrokering and
discuss the need for management in Section 2. We describe the broker management architecture
in Section 3. Section 4 presents the resources modeled using WS-Management. We present results
obtained by testing our prototype implementation in Section 5. Section 6 is conclusion.

2 Managing the Distributed Brokering Infrastructure
Messaging based distributed brokering infrastructures have gained much popularity in recent
years in the distributed computing community. They have been instrumental in helping to
provide clear demarcation between the application logic and Quality of Service aspects such as
reliable delivery, security, persistent storage, compression / decompression and fragmentation /
de-fragmentation of messages. These brokering systems employ a large number of connected
peers called brokers which form a messaging substrate. To get the maximum benefit from the
services provided by the messaging substrate, it is required to setup these brokers and connect
them in topologies specific to the application.

Various topologies [2] on connecting these peers exist, each based on differing routing, fault-
tolerance and cost characteristics. Run-time metrics are gathered using monitoring techniques [3]
which measure various aspects of the system that enable us to understand the performance of the
system and in some cases, provide hints on improving the performance. This naturally leads to
re-deployment of the brokering network with a different configuration. To summarize, we need
an architecture that enables us to rapidly bring-up and tear down a broker network. It is also
required to set specific configuration settings for every broker and have the ability to change the
configuration on-the-fly. We term these actions collectively, as management of the brokering
infrastructure.

2.1 Example
Consider the problem of deploying a brokering network for supporting 10000 clients in a
collaborative [4] fashion. Ref. [5] shows that a single broker can support up to 1500 simultaneous
participants with audio streams with very good quality audio while about 400 participants can
simultaneously receive video with acceptable quality. For a higher number of participants, we
can employ a tree-based structure as illustrated in Figure 2. The problem lies in deploying the
brokering topology suitable for supporting multiple clients. With a growing number of clients,
one may wish to deploy a network of multiple brokers (For e.g., 10000 / 400 = 25 brokers in the
above scenario) so that all clients may receive acceptable audio / video transmission. Further, for
fault-tolerance purposes, one may also want to have multiple links between brokers such that the
failure of a subset of links may not crash the entire system

Page 3 of 13

Brokering Network

…

…

400 Participants

…

400 Participants

…

400 Participants

A single participant sends audio/video
to multiple subscribers

A teacher-student web collaboration where the teacher participant sends
audio/video to multiple students

Figure 2: Teacher - student relationship based collaborative session

2.2 NaradaBrokering
NaradaBrokering [6] - [9] is an open-source, distributed messaging infrastructure based on the
publish/subscribe paradigm. The smallest unit of this distributed messaging substrate
intelligently processes and routes messages, while working with multiple underlying
communication protocols. We refer to this unit as a broker. The broker network in
NaradaBrokering is based on hierarchical, cluster-based structure [6]. This cluster-based
architecture allows NaradaBrokering to support large heterogeneous client configurations. The
routing of events within the substrate is very efficient [9] since for every event, the associated
targeted brokers are usually the only ones involved in disseminations. Furthermore, every
broker, either targeted or en route to one, computes the shortest path to reach target destinations
while eschewing links and brokers that have failed or have been failure-suspected.

The substrate incorporates support for both JMS and the WS-Eventing specification. Work is
currently underway on incorporating support for the WS-Notification suite of specifications. The
NaradaBrokering substrate also incorporates support for WS-ReliableMessaging [10] and WS-
Reliability [11] that facilitates reliable messaging between Web Services. Subscription formats
supported within the substrate include “/” separated Strings, Integers, <tag, value> pairs,
regular expressions, XPath and SQL queries. In NaradaBrokering entities can also specify
constraints on the qualities of service (QoS) related to the delivery of events. The QoS pertain to
the reliable delivery, playbacks, order, duplicate elimination, global timing services, security and
size of the published events and their encapsulated payloads. Additional information regarding
NaradaBrokering can be found in Refs [6] - [9].

2.3 Related Work
Management of resources has been growing in importance in recent times. To make management
more general, the Grid community has been implementing support for Web Service Distributed
Management (WSDM) by treating all managed resources as a WS-Resource. WSDM [12] based
management leverages the Web Service Resource Framework [13] principles to create managed
resources with specific lifetimes. Our architecture does not specify lifetimes for created resources
(brokers) and we expect the broker resource to remain available and running until the machine
hosting the broker goes down or the broker is explicitly killed by sending an appropriate
message. The brokering network uses other mechanisms such as topic lifetime to determine the
period until when a peer may subscribe to receive specific events.

TreeP [14] uses a B+-Tree based topology for range querying. Baton [15] is a Peer-to-Peer (P2P)
network based on balanced tree structure useful for exact and range queries. Both the systems

Page 4 of 13

use a fixed tree structure topology to connect individual peers. P2P systems based on distributed
hash table such as Chord [16] use a bootstrap node to get a node address. Future additions
automatically get address from one or more previously initialized nodes when they join the
network. CAN [17] uses a similar approach where an incoming node contacts a bootstrap node to
retrieve a set of randomly chosen nodes. The new node then connects to a randomly chosen node
from the retrieved set. However, CAN and Chord do not take network distances in to account
when creating the routing table. This may result in certain lookups resulting in overlay hops
spanning the entire diameter of the network. Tapestry [18] and Pastry [19] construct and
maintain locally optimal routing tables at initialization that helps reduce routing stretch.

3 Architecture
We now describe the application of the management framework from the broker management
point of view. The architecture consists of two main components, the Broker Service Adapter
(henceforth, BSA) for configuring and initializing brokers and the Broker Network Manager
(henceforth BNM) that functions as a client to the BSA and helps deploy specific topologies. A
BSA is required because NaradaBrokering brokers are not Web Services.

We have modeled the most commonly used management actions on brokers using simple GET,
PUT, CREATE and DELETE verbs from the WS – Transfer [20] specification of WS-Management.
Since the broker does not create extensive log of activities, we do not require support for WS –
Enumeration [21] in the BSA. A broker however may wish to send notifications on events such as
broker liveness (heartbeat) and link failure which may help the BNM take decisions at runtime.

3.1 Broker Service Adapter (BSA)
The Broker Service Adapter (shown in Figure 3) is the component that wraps a broker and is
responsible for invoking management related commands on the broker. Specifically, the Broker is
the managed entity and the BSA functions as the adapter. For purposes of or architecture, we
assume that the BSA instantiates a broker (when it receives a CREATE message) in the same JVM
as the BSA. The BSA models various properties of the Broker as resources as specified by WS
Management.

Specifically, we model the following characteristics of the Broker interface, namely, Broker,
Link and Configuration. Additional resources that have been modeled is the
NetworkAddress and GatewayAddress that are required whenever a broker which does not
have a network address connects to a broker which has a network address.

The event delivery is handled by the SOAPTransport interface that can either use a direct HTTP
connection for sending and receiving SOAP messages or use the brokering infrastructure to
deliver SOAP messages wrapped as NaradaBrokering events. The response can be sent to a
specific endpoint by inspecting the ReplyTo field in the endpoint reference. Sometimes, a direct
connection between the service and client is not possible, in which case responses to requested
operations may not be delivered directly. In such cases, the responses are buffered by the
ResponseBufferService. This approach is similar to the one illustrated in [22] and [23]. These
responses can then be retrieved from the buffering service by a separate call to the service.

An advantage of using NaradaBrokering wrapped transport for delivering SOAP messages is
that it allows the managed entities to scale in number. Further, NaradaBrokering supports a
variety of transports for event delivery such as TCP, UDP, NIOTCP, HTTP, SSL and
MULTICAST. On initialization, the BSA cycles through a list of all possible transports and
connects via the first available transport. This provides fault-tolerance against unavailable
network protocols.

Page 5 of 13

.

Broker Service Adapter

Modeled Resources
• Broker
• Link
• Configuration
• …

Web-Service
Management Interface
• Multiple transport

interfaces possible

Response Buffer Service Broker

WS-Management
Interface
SOAPTransport
• HTTP
• NaradaBrokering

Figure 3: Broker Service Adapter Architecture manages NaradaBrokering brokers

3.2 Broker Network Manager (BNM)
A broker network manager (Refer Figure 4) functions as a client to the BSA. This component
essentially provides 2 services, (1) provide a function interface to manipulate various resources
managed by the BSA and (2) provide an interface to deploy arbitrary topologies. The
TopologyGenerator, allows users to create application specific topologies given a set of BSA
endpoints. This topology is then translated to appropriate commands by the broker network
manager. In case a certain action cannot be carried out, the broker network manager throws an
exception and allows the user to take corrective action.

Broker Network
Manager

• WS –
Management
Client

• Request
Response
Client

• Topology
Generator

NaradaBrokering
Events wrapped
Transport

Direct HTTP
Connection
Transport

Allows users to define specific
topologies (E.g. A linear connection,
tree-based connection, hypercube

If a timeout occurs, tries
to retrieve the response
from the buffering service

Provides basic functionality such as
Create/Delete Broker(), Create/Delete
Link(), Get/Set ConfigProperties()

Figure 4: Broker Network Manager (aids in deployment of Broker network)

The broker network manager also has a HTTP to NaradaBrokering transport mapper that wraps
SOAP messages and publishes it to a specific topic. This scheme is described in more detail in
Section 3.3.2. The HTTP Mapper service can either be part of the static broker or a separate
process running on the same host as the static broker.

3.3 Deploying topologies
The overall architecture is illustrated in Figure 5. The system consists of a set of 3 static brokers
which serves as bootstrap nodes. These nodes are only responsible for providing
NaradaBrokering wrapped transport for SOAP messages. We have placed these static brokers on
3 geographically distributed machines. Specifically we have used a machine at Indianapolis, and
two machines in the lab at Indiana University, Bloomington and are accessible through the
domain names gridservicelocator.org, messageservicelocator.org and
webservicelocator.org.

Page 6 of 13

Registry
Simple registry of
available BSAs and
access information

BSA-4

BSA-2

BSA-3

BSA-5

BSA-1

Broker Broker

Broker

A static broker
network

Listen on
specific topics

Register BSA with global
registry

BNM

BNM communicates with the BSAs via SOAP Messages

Static (bootstrap) brokers are used for SOAP Message
delivery to remote (directly unreachable) brokers

BSAs register their endpoints in a simple registry

Figure 5: Overall Architecture

Consider the 5 BSAs shown in above figure. These BSAs are distributed over different machines.
BSAs (1 and 2) are directly accessible and hence the broker network manager may communicate
directly with these services. BSAs (3 – 5) however are possibly in different administrative domain
with respect to the broker network manager. The broker network manager then leverages
NaradaBrokering wrapped message delivery for sending and receiving SOAP messages.
Although the broker network manager may directly behave as a client to the static brokers, we
use a HTTP Mapper service to wrap SOAP Message as an NaradaBrokering Event. This process
is detailed in Section 3.3.2.

3.3.1 Registering BSAs

When the BSA starts up, it can be started to either use the direct HTTP transport or leverage the
brokering network to transfer SOAP messages. The advantage of the later is that BSA present in a
different administrative domain can be accessed by transporting SOAP messages wrapped as
NaradaBrokering Events using HTTP tunneling. Once the BSA has initialized, it registers itself in
a registry service such as a UDDI registry. For our purpose, we have implemented a simple
registry service that stores the endpoint address for each registered BSA.

The BSA cycles through all three static brokers trying connection to each of these brokers. This
helps us provide fault-tolerance against unreachable hosts. Broker Discovery mechanism [24]
may be used to find the nearest best broker to connect to. As long as the BSA can connect to at
least one of the static brokers, it can be managed by the BNM.

3.3.2 Mapping topics to Endpoint References

To route SOAP messages to each BSA, the BSA creates a unique 128-bit UUID based topic during
initialization. The BSA then proceeds to register this UUID as its endpoint address in the registry.

To interact with the BSA, an interested BNM publishes events on topic of the form BSA/UUID.
However, to provide transparency of operation, we use a HTTP Mapper service that runs on the
same host as the static broker. The BNM makes a normal HTTP call to the HTTP Mapper service.
The <wsa:To> addressing header in the SOAP message is then modified as follows

Page 7 of 13

<wsa:To>http://gridservicelocator.org:6000/12345678-1234-1234-
123456789012</wsa:To>

This specifies that the SOAP Message is sent to the HTTP mapper service running on
gridservicelocator.org on port 6000 and it should be forwarded to the BSA whose UUID
is 12345678-1234-1234-123456789012.

The HTTP Mapper puts its topic as an immutable property in the NaradaBrokering event header
while the SOAP message is copied as the payload. This event is then published on the topic
BSA/12345678-1234-1234-123456789012.Once the response is generated by the
destination BSA, the response is sent back to the HTTP Mapper service which was responsible for
forwarding the SOAP message. The BSA uses the HTTP Mapper’s topic represented by the
immutable header property in the original event to determine the correct destination.

4 WS – Management based modeling
WS-Management requires all managed resources to be identified by a <ResourceURI>. This
has been defined in the BSA schema available at
http://www.hpsearch.org/schemas/2005/11/BSA. Our initial model defines the
following Resource URIs,

1. BROKER that identifies the broker in question
2. LINK that identifies a link between 2 brokers
3. CONFIGURATION that identifies the broker configuration with which the broker is to be

initialized
4. CONFIGURATIONPROPERTY that identifies each individual property in the broker

configuration
5. NODEADDRESS that refers to a node address as required by the broker when it joins a broker

network
6. GATEWAYADDRESS that refers to a gateway address when a broker in cluster connects to a

broker in another cluster
7. BUFFEREDMESSAGE that is used to retrieve the response to a previously sent request from

the request buffering service.

The BSA is an implementation of the WS Management processor which is part of a framework for
deploying WS-Management compatible management services. Our initial implementation
consists of WS – Transfer and WS-Enumeration while we plan on leveraging WS – Eventing [25]
provided by NaradaBrokering.

4.1 Management Operations
In this section we list the various management operations as defined by the BSA. Note that not all
resources may support all operations. In the case where an operation is requested on a resource
which is not supported, an UnSupportedOperation fault is thrown. The various operations are
listed in Table 1.

Resource Supported
Operations Operation Detail

Create Initializes a broker using the current configuration and
returns a unique BrokerID. This broker is initialized in
the same JVM as the BSA.

Delete Kills the broker identified by the BrokerID
BROKER

Get Retrieves information about the broker specified by the
BrokerID

LINK Create Creates a link by trying a connection to the specified
broker using the specified transport. On success, returns

Page 8 of 13

a LinkID corresponding to the link
Delete Deletes the link identified by the LinkID
Get Retrieves the value(s) of specified configuration

property
CONFIGURATION,

CONFIGURATIONPROPERTY Put Replaces the value(s) of the specified configuration with
a new value. If the broker has already initialized we do
not allow this operation.

NODEADDRESS,
GATEWAYADDRESS

Create When a broker is initialized and connects to an existing
broker in the broker network, this operation enables the
new broker to request a node address from the broker
to which it is connected to. This is a required step
because of the inherent design of NaradaBrokering.

BUFFEREDMESSAGE Get Retrieves a previously buffered response
Table 1: Summary of various operations modeled in the Broker Service Adapter

4.2 Enumeration and Eventing
WS-Management allows managed resources to enumerate large set of values from managed
containers using the interface defined in WS-Enumeration. Although we provide support in the
framework for WS-Enumeration, we do not see any suitable requirement in BSA that requires us
to provide any implementation. WS-Management also allows managed resources to publish
events that give regular updates on the status of the resources. Although our initial
implementation does not provide any support for WS-Eventing, we are currently working on
integrating support for WS-Eventing by leveraging the WS-Eventing container recently added in
NaradaBrokering.

4.3 Discovery of Managed Resources
WS – Management Catalog [26] defines a metadata format for the discovery of management
functionality of resources. Current implementation provides static binding to the BSA’s WS-
Management interface in the BNM. We provide discovery by means of a simple registry service
that lists the endpoints associated with individual BSAs.

5 Results
WS-Management relies heavily on SOAP 1.2 specification for conveying various faults and
details associated with exceptions. During development we noted that the Soap with
Attachments API for JAVA (SAAJ API) library provided with JDK 1.4 implements SOAP 1.1
while support for SOAP 1.2 is provided in the newer releases of SAAJ (version 1.3 EA) which is
shipped with Java WSDP 2.0. In order to provide maximum compatibility with various leveraged
3rd party softwares we have implemented our own SOAP message sender and receiver.

We benchmarked our architecture with 2 topologies. In both cases, we employed as simple
topology generator that generated links such that the ith broker is connected to (i-1)th broker
(for all i > 1). Table 2 summarizes the machine configuration.

Machine Machine Specification Java Version Network

Benchmarking machine
trex.ucs.indiana.edu

Linux, 2.6.5-7.155.29-default,
Pentium 4 2.53 GHz 512 MB

RAM
Grid Farm machines
in CGL, Bloomington
(gf1.ucs.indiana.edu –
gf8.ucs.indiana.edu)

Linux 2.4.22-1.2188.nptlsmp,
4 - Intel Xeon 2.4 GHz CPUs,

2 GB RAM

Java HotSpot(TM)
Client VM (build

1.4.2_03-b02,
mixed mode)

Linked via
100 Mbps

link

Home Machine: Athlon 64 3400+ Processor Java HotSpot(TM) Linked via

Page 9 of 13

For Testing between different
administrative domains
(behind a home DSL router)

2.41 GHz, 1 GB RAM
Windows XP Pro w/ SP2

Client VM (build
1.4.2_08-b03,
mixed mode)

a 1.5 Mbps
Home DSL

network
Table 2: Test Machine Configuration

For manipulating XML, we leveraged Apache XMLBeans toolkit (version 2.0.0). Table 3 lists the
specifications that were implemented during the development phase.

WS - Specification Spec Release Date
WS Management June 2005
WS Transfer Sep 2004
WS Enumeration Sep 2004
WS Addressing Aug 2004
SOAP Version 1.2

Table 3: Versions of Web Service related specifications that were implemented.

We tested the time it takes to deploy a broker topology consisting of 8 brokers. This test uses
direct HTTP transport since all machines are accessible from the machine running the BNM. We
first set different configuration in each BSA and then initialize all 8 brokers. Once all of them have
initialized, we also time the process of creating links between brokers. Finally we shutdown all
brokers. We have used a high resolution timer which reports times to microsecond accuracy to
time the various operations.

(All values reported are in milliseconds)
Total Time

(benchmarked on
trex.ucs.indiana.edu)

Actual Time
(benchmarked on Gridfarm

machines) Process
Mean Standard

Deviation
Mean Standard

Deviation

Overhead Average
Overhead

Set Configuration
(8 brokers)

717.24 118.4 128.78 7.93 588.46 73.56

Create Broker
(8 brokers)

729.02 81.59 237.79 42.87 491.23 61.40

Get
Configuration
(8 brokers)

488.88 132.7 0 0 488.88 61.11

Create Link
(7 links)

746.52 343.3 128.07 14.92 618.45 88.35

Get Node
Address
(7 brokers)

594.69 106.03 112.12 13.41 482.57 68.94

Delete Broker
(8 brokers)

828.59 279.54 228.43 155.59 600.16 75.02

Table 4: Timings and Overhead when deploying a network of 8 Brokers

The average timing was found by running the test several times, removing outliers (to remove
effects of initialization costs) and selecting last 10 readings. We report the average cost and the
standard deviation of each step. The last column shows the average overhead for each step. We
note that the average overhead is (about 72 mSec) consists of marshalling the SOAP Envelope,
transporting the SOAP message, unmarshalling the SOAP Envelope and extracting the actual
request / response. Table 4 shows the results. The “Actual Time” reported for the
GetConfiguration operation is 0 since, in the implementation, the BSA always updates the
configuration whenever an operation occurs. There is no special processing done during this call

Page 10 of 13

and the only work done comprises of marshalling the already existing information as XML and
shipping it across to the BNM.

(All values reported are in milliseconds)
Total Time

(benchmarked on
gf4.ucs.indiana.edu)

Actual Time
(benchmarked on home

machine) Process
Mean Standard

Deviation
Mean Standard

Deviation

Overhead Average
Overhead

Set Configuration
(3 brokers)

517.59 61.2 1.56 0.64 516.03 172.01

Create Broker
(3 brokers)

512.16 46.87 63.61 3.61 448.55 149.52

Get
Configuration
(3 brokers)

536.07 27.85 0 0 536.07 178.69

Create Link
(2 links)

308.35 22.78 22.36 4.52 285.99 143.00

Get Node
Address
(2 brokers)

290.22 33.14 1.55 0.27 288.67 144.34

Delete Broker
(3 brokers)

415.67 46.36 21.45 1.74 394.22 131.41

Table 5: Timings and Overhead when deploying a network of 3 brokers within a different administrative
domain (behind a home DSL router)

The second test involves using the NaradaBrokering wrapped transport for delivering SOAP
Messages. Here we tested with 3 brokers and 2 links. Note that using this particular method of
transport, we can access BSAs in different administrative domains. Due to the restriction on the
need of IP address for connecting brokers, it may not be always possible for brokers in different
administrative domains to be connected together. In this case we propose using a proxy broker
that sits in the open network and links the two different broker networks. A set of brokers can
however be managed from a different administrative domain. We believe that with the
proliferation of IPv6 address space, this problem may be resolved to some extent. Table 5 shows
the timing associated with this topology.

To simulate heterogeneous environments with restricted transports and open ports, we turn off
the relevant transport links in the bootstrap broker hosted on www.webservicelocator.org.
The average overhead was found to be significantly higher than the direct HTTP connection. This
was due to wrapping of SOAP message using NaradaBrokering, which resulted in multiple hops
between the BNM and the BSA.

We also observe that in both cases all of the operations listed above are executed serially. Certain
operations such as setting individual configurations and starting brokers are independent of each
other and could be parallelized in order to decrease the total time to deploy the broker network.

6 Conclusion and Future Work
In this paper we have presented our scheme for Web Service based management interface for
easy configuration and deployment middleware components. We have shown how management
can be made scalable and fault-tolerant in presence of heterogeneous environments and have
presented results associated with a prototype of the management architecture that manages the
NaradaBrokering messaging infrastructure. The costs obtained are one-time initialization costs
during deployment of the network and are hence quite acceptable. We are currently working on
implementing a heartbeat mechanism based on WS-Eventing to monitor broker liveness and

Page 11 of 13

various other events that enable the BNM to take runtime decisions. We plan on researching
suitable means of effectively providing multiple managers to manage a large set of resources. We
also plan on investigating support for WS – Management Catalog for describing BSA interaction
schema and set of managed resources.

Acknowledgement
This work is supported by the NASA Advanced Information Systems Technology (AIST)
program and NSF Information Technology Research (ITR) program, project Number 0427264.
The authors would also like to thank Prof. Gordon Erlebacher (erlebach@csit.fsu.edu) for
his critique on the HPSearch project.

References
[1] Web Service Management (WS – Management), Sun, Microsoft, Intel, et al., June 2005. Available

from https://wiseman.dev.java.net/specs/2005/06/management.pdf
[2] Network Topologies: http://en.wikipedia.org/wiki/Network_topology, Visited Feb 6, 2006
[3] Gurhan Gunduz, Shrideep Pallickara and Geoffrey Fox An Efficient Scheme for Aggregation and

Presentation of Network Performance in Distributed Brokering Systems to be published in Journal
on Systemics, Cybernetics and Informatics 2004

[4] GlobalMMCS (Global Multimedia Conferencing System), Project page:
http://www.globalmmcs.org

[5] Ahmet Uyar, Scalable Service Oriented Architecture for Audio/Video Conferencing, Ph.D. Thesis,
May 2005

[6] Shrideep Pallickara and Geoffrey Fox. NaradaBrokering: A Middleware Framework and
Architecture for Enabling Durable Peer-to-Peer Grids. Proceedings of ACM/IFIP/USENIX
International Middleware Conference Middleware-2003.

[7] Geoffrey Fox, Shrideep Pallickara, Marlon Pierce, Harshawardhan Gadgil. Building Messaging
Substrates for Web and Grid Applications. In special Issue on Scientific Applications of Grid
Computing in Philosophical Transactions of the Royal Society, London, Volume 363, Number
1833, pp 1757-1773, August 2005.

[8] Geoffrey Fox and Shrideep Pallickara. Deploying the NaradaBrokering Substrate in Aiding
Efficient Web & Grid Service Interactions. Invited paper for Special Issue of the Proceedings of
the IEEE on Grid Computing. Vol 93, No 3. pp 564-577. March 2005.

[9] Shrideep Pallickara and Geoffrey Fox. On the Matching Of Events in Distributed Brokering
Systems. Proceedings of IEEE ITCC Conference on Information Technology. April 2004. pp
68-76 Volume II.

[10] Web Services Reliable Messaging Protocol (WS-ReliableMessaging)
ftp://www6.software.ibm.com/software/developer/library/ws-
reliablemessaging200403.pdf

[11] Web Services Reliable Messaging TC WS-Reliability. http://www.oasis-
open.org/committees/download.php/5155/WS-Reliability-2004-01-26.pdf

[12] Web Service Distributed Management (WSDM), HP ; et al.
[13] The Web Services Resource Framework. http://www.globus.org/wsrf/
[14] B. Hudzia, M-T. Kechadi, and A. Ottewill, "TreeP: A Tree-Based P2P Network Architecture",

International Workshop on Algorithms, Models and tools for parallel computing on
heterogeneous networks (HeteroPar' 05), Boston, Massachusetts, USA, September 27-30, 2005.

[15] H.V. Jagadish, Beng Chin Ooi, Quang Hieu Vu, BATON: A Balanced Tree Structure for Peer-To-
Peer Networks, In Proceedings of the 31st VLDB Conference, Trondheim, Norway, 2005

Page 12 of 13

[16] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek and Hari Balakrishnan, “Chord:
A scalable peer-to-peer lookup service for internet applications” in Proceedings of SIGCOMM, Aug
2001.

[17] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp and Scott Schenker, “A scalable
content-addressable network” in Proceedings of SIGCOMM, Aug 2001

[18] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. Joseph, and John
Kubiatowicz Tapestry: A Resilient Global-scale Overlay for Service Deployment, IEEE Journal on
Selected Areas in Communications, January 2004, Vol. 22, No. 1

[19] Antony Rowstron and Peter Druschel, “Pastry: Scalable, distributed object location and routing
for large-scale peer-to-peer systems” in Proceedings of Middleware, Nov 2001

[20] Web Service Transfer (WS – Transfer), Microsoft et al., September 2004. Available from
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-transfer.pdf

[21] Web Service Enumeration (WS – Enumeration), Microsoft, BEA, et al., September 2004 Available
from http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-enumeration.pdf

[22] Aleksander Slominski, Alexandre di Costanzo, Dennis Gannon, and Denis Caromel.
Asynchronous Peer-to-PeerWeb Services and Firewalls. (To Appear) In 7th International Workshop
on Java for Parallel and Distributed Programming (IPDPS 2005), April 2005

[23] Kyle Brown, et al., Web Services Polling, Oct 2005. Available from
http://www.w3.org/Submission/ws-polling/

[24] Shrideep Pallickara, Harshawardhan Gadgil, Geoffrey Fox; On the Discovery of Brokers in
Distributed Messaging Infrastructure, (To Appear) In Proceedings of the IEEE Cluster 2005
Conference. Boston, MA

[25] Web Services Eventing (WS – Eventing), Microsoft, IBM & BEA, August 2004. Available at
http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf

[26] The Web Services Management Catalog, Sun et al., June 2005 Available from
http://developers.sun.com/techtopics/webservices/management/WS-
Management_Catalog.June.2005.pdf

Page 13 of 13

http://www.cluster2005.org/

	1 Introduction
	1.1 Scalable and Fault-tolerant Management Framework
	1.2 Desiderata

	2 Managing the Distributed Brokering Infrastructure
	Example
	2.2 NaradaBrokering
	2.3 Related Work

	3 Architecture
	3.1 Broker Service Adapter (BSA)
	3.2 Broker Network Manager (BNM)
	3.3 Deploying topologies
	3.3.1 Registering BSAs
	3.3.2 Mapping topics to Endpoint References

	4 WS – Management based modeling
	4.1 Management Operations
	4.2 Enumeration and Eventing
	4.3 Discovery of Managed Resources

	5 Results
	6 Conclusion and Future Work
	Acknowledgement
	References

