

Information Federation in Grid Information

Services

MEHMET S. AKTAS

Submitted to the faculty of the Indiana University Graduate School

in partial fulfillment of requirements

for the degree

Doctoral of Philosophy

in the Department of Computer Science

Indiana University

May 2007

 ii

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the

requirements for the degree of Doctor of Philosophy.

Doctoral Committee

Geoffrey C. Fox, Ph.D. (Principal Advisor)

Dennis Gannon, Ph.D.

David Leake, Ph.D.

Beth Plale, Ph.D.

May 3, 2007

 iii

© 2007

Mehmet S. Aktas

 All Rights Reserved

 iv

Abstract

Information Services address the challenging problems of announcing and

discovering resources in Grids. Independent Grid projects have developed their own

solutions to Information Services. These solutions are not interoperable with each other,

target vastly different systems and address diverse set of requirements: Large-scale Grid

applications require management of large amounts of relatively slowly varying metadata.

E-Science Grid applications such as dynamic Grid/Web Service collections require

greater support for dynamic metadata. We research Grid Information Services that

support both the scalability of large amounts of relatively slowly varying metadata and

the performance demands of rapidly updated information in dynamic regions.

We propose a novel system architecture that provides unification and federation

of information in Grid Information Services. The proposed system utilizes publish-

subscribe paradigm and associative shared memory platforms to provide an add-on

architecture that interacts with existing information systems. We present an empirical

evaluation of our approach and investigate its practical usefulness. The results

demonstrate that the proposed system improves the quality of information services in

terms of performance and fault-tolerance with negligible processing overheads. The

results also indicate that efficient decentralized Grid Information Service Architectures

can be built by utilizing publish-subscribe based messaging schemes.

 v

TABLE OF CONTENTS

ABSTRACT .. IV

LIST OF FIGURES .. X

LIST OF TABLES .. IV

CHAPTER 1 INTRODUCTION .. 1

1.1 MOTIVATION ... 3

1.2 STATEMENT OF RESEARCH PROBLEMS ... 5

1.3 SCOPE OF RESEARCH ... 6

1.3.1 Requirements of the architecture .. 6

1.3.2 Application use domains ... 8

1.3.2.1 A workflow session metadata manager component ... 9

1.3.2.2 A metadata catalog service component ... 10

1.3.2.3 A metadata caching component ... 11

1.3.2.4 Context-store for high performance SOAP ... 12

1.3.2.5 Managing Real-Time Session Metadata .. 13

1.4 CONTRIBUTION .. 14

1.5 ORGANIZATION OF THE THESIS .. 16

CHAPTER 2 REVIEW OF STATE OF ART ... 18

2.1 MANAGING SERVICE METADATA AS CONTEXT .. 19

2.1.1 Managing interaction-independent service metadata .. 21

2.1.1.1 Analysis of service metadata management research from matchmaking processing point of view 21

2.1.1.2 Analysis of service metadata management research based on architectural design issues 23

2.1.1.3 Analysis of service metadata management research based on formation of underlying networks 28

2.1.1.4 Specifications defining interaction-independent service metadata .. 30

2.1.2 Managing interaction-dependent service metadata ... 35

2.2 PUBLISH-SUBSCRIBE PARADIGM ... 40

 vi

2.3 TUPLESPACES PARADIGM .. 42

2.4 REPLICATION AND CONSISTENCY ISSUES... 43

2.5 SUMMARY.. 48

CHAPTER 3 ARCHITECTURE .. 50

3.1 SYSTEM OVERVIEW .. 50

3.2 NETWORK COMMUNICATION MODEL ... 54

3.3 ASSUMPTIONS .. 56

3.4 SYSTEM COMPONENTS ... 56

3.4.1 Query and Publishing Module .. 57

3.4.2 Expeditor Module ... 58

3.4.3 Filter and Resource Manager Modules ... 59

3.4.4 Sequencer Module .. 60

3.4.5 Storage and Access Modules .. 60

3.5 SUPPORTED INFORMATION SERVICE SPECIFICATIONS.. 60

3.5.1 WS-Context Specification .. 61

3.5.2 Extended UDDI Specification .. 61

3.5.3 Unified Schema Specification ... 62

3.6 SUMMARY.. 62

CHAPTER 4 ABSTRACT DATA MODELS .. 64

4.1 OVERVIEW ... 65

4.2 THE WS-CONTEXT SPECIFICATION SEMANTICS .. 66

4.2.1 WS-Context Schema ... 67

4.2.1.1 Session entity structure .. 68

4.2.1.2 Session service entity structure.. 69

4.2.1.3 Context entity structure ... 70

4.2.2 WS-Context Schema XML API .. 72

4.2.3 Using WS-Context Schema XML API ... 73

 vii

4.3 THE EXTENDED UDDI SPECIFICATION SEMANTICS ... 74

4.3.1 Extended UDDI Schema ... 74

4.3.1.1 Business service entity structure .. 75

4.3.1.2 Service attribute entity structure .. 76

4.3.2 Extended UDDI Schema XML API .. 78

4.3.3 Using Extended UDDI Schema XML API ... 79

4.4 THE UNIFIED SCHEMA SPECIFICATION SEMANTICS ... 80

4.4.1 The Glue Schema Specification .. 80

4.4.2 The Schema Integration .. 81

4.4.3 The Unified Schema ... 83

4.4.4 The Unified Schema XML API .. 86

4.4.5 Using the Unified Schema XML API ... 86

4.5 THE HYBRID SERVICE UNIFORM ACCESS SEMANTICS ... 87

4.5.1 The Hybrid Service Schema ... 88

4.5.2 Specification Metadata Schema .. 89

4.5.3 Using the Hybrid Service Access Interface .. 91

4.6 SUMMARY.. 92

CHAPTER 5 PROTOTYPE IMPLEMENTATION .. 93

5.1 HYBRID GRID INFORMATION SERVICE ... 94

5.1.1 Execution Logic Flow ... 95

5.2 QUERY AND PUBLISHING MODULE ... 99

5.3 EXPEDITOR MODULE .. 100

5.4 FILTER AND RESOURCE MANAGER MODULES ... 101

5.5 SEQUENCER MODULE ... 104

5.6 ACCESS AND STORAGE MODULES .. 104

5.6.1 Tunable Parameters ... 106

5.6.2 Decision Metrics ... 109

5.6.3 Control Data Structures... 110

 viii

5.6.4 Network Messages .. 111

5.6.4.1 Server-Information Request and Response messages .. 112

5.6.4.2 Context Access Request and Response messages ... 112

5.6.4.3 Context Storage Request and Response messages ... 113

5.6.4.4 Primary-Copy Selection Request and Response messages .. 114

5.6.4.5 Primary-Copy Notification message.. 115

5.6.4.6 Context Update Request and Propagation messages ... 115

5.6.5 Hybrid Service Discovery Model ... 116

5.6.6 Replica Content Placement ... 117

5.6.7 Dynamic Replication .. 119

5.6.8 Consistency Enforcement ... 122

5.6.8.1 Update distribution .. 124

5.6.8.2 Update propagation ... 126

5.6.8.3 Primary-copy selection .. 127

5.6.9 Access Request Distribution ... 128

5.6.9.1 Request Distribution .. 129

5.7 THE WS-CONTEXT XML METADATA SERVICE ... 130

5.8 THE EXTENDED UDDI XML METADATA SERVICE ... 132

5.9 SUMMARY.. 135

CHAPTER 6 PROTOTYPE EVALUATION ... 136

6.1 EXPERIMENTAL SETUP ENVIRONMENT .. 137

6.2 RESPONSIVENESS EXPERIMENT ... 140

6.2.1 Results of the Responsiveness Experiment ... 142

6.3 SCALABILITY EXPERIMENT .. 147

6.3.1 Results of the Scalability Experiment ... 149

6.4 DISTRIBUTION EXPERIMENT .. 153

6.4.1 Results of the Distribution Experiment ... 154

6.5 DYNAMIC REPLICATION EXPERIMENT ... 157

 ix

6.5.1 Results of the Dynamic Replication Experiment .. 158

6.6 FAULT-TOLERANCE EXPERIMENT .. 159

6.6.1 Results of the Fault-tolerance Experiment .. 160

6.7 CONSISTENCY ENFORCEMENT EXPERIMENT .. 163

6.7.1 Consistency Enforcement Experiment Results ... 163

6.8 SUMMARY.. 166

CHAPTER 7 CONCLUSION AND FUTURE WORK .. 169

7.1 THESIS SUMMARY ... 169

7.2 ANSWERS TO RESEARCH QUESTIONS ... 174

7.3 FUTURE RESEARCH DIRECTIONS ... 178

APPENDIX A: SUPPORTED XML API SETS ... 180

APPENDIX B: EXAMPLE XML METADATA DOCUMENTS 233

REFERENCES .. 235

 x

LIST OF FIGURES

Figure 1. A dynamic Grid/Web Service collection may be built in a dynamic fashion as Grids of Grids

applications with modest number of services involved at any one time for particular functionality 3

Figure 2 This figure illustrates the centralized version of a Hybrid Grid Information Service interacting

with a client. The dashed box indicates the Hybrid Service. It is an add-on architecture that runs one

layer above information service implementations (such as the extended UDDI XML Metadata

Service (our implementation of UDDI Specification) and WS-Context XML Metadata Service (our

implementation of Context Manager component of the WS-Context Specification)) to handle

metadata associated to services. To facilitate management of service metadata, the prototype

integrates both UDDI and WS-Context Specification implementations. It provides a uniform access

interface by utilizing UDDI and WS-Context XML API to interact with the clients. It utilizes an

Information Resource Manager abstraction layer to interact with lower layer Information Services. . 51

Figure 3 Distributed Hybrid Grid Information Services. This figure illustrates N-node decentralized Hybrid

Service from the perspective of a single Hybrid Service (Replica Server-1) interacting with two

clients. The Hybrid Grid Information Service uses a topic based publish-subscribe messaging system

to enable communication between its instances... 53

Figure 4 An example eleven-node Hybrid Service metadata hosting environment where each node is

connected with publish-subscribe based overlay network. Numbered squares represent nodes running

Hybrid Services (see Figure 2 for centralized version of the ser service). The thick lines on the figure

are used to show different message delivery routes between peers 2 and 7 that are described in the

text. .. 55

Figure 5 The Architectural Design for the Hybrid Grid Information Service ... 57

Figure 6 WS-Context Service Schema .. 68

Figure 7 Structure diagram for sessionEntity .. 69

Figure 8 Structure diagram for sessionService .. 70

Figure 9 Structure diagram for context entity ... 71

Figure 10 Extended UDDI Service Schema .. 75

Figure 11 Partial structure diagram for businessService entity ... 76

 xi

Figure 12 Structure diagram for serviceAttribute .. 78

Figure 13 Unified Schema ... 85

Figure 14 Hybrid Service XML Schema for Hybrid Service metadata publish function 88

Figure 15 Structure diagram for Specification Metadata Schema: This metadata file defines all required

information necessary to support a new information service ... 90

Figure 16 Execution Logic Flow for the Hybrid Grid Information Service. This figure illustrates the

execution flow of the Hybrid Grid Information Service from top-to-bottom. Each rectangle shape

identifies a layer of the system with particular purpose. The square-black color shapes indicate that

the corresponding component checks with the specification-mapping metadata file to understand how

to process the client’s request. The squire-white color shape indicate that the corresponding layer

checks with mapping rule files to map Unified Schema instances to appropriate local information

service schema instances. .. 96

Figure 17 We implemented an Information Resource Manager, which separates specification-

implementations from the implementation of the Hybrid Service. .. 103

Figure 18 - Message exchanges for Hybrid Service Discovery Model. Each newcomer node sends out a

multicast probe message to locate available services in the network. Each target node responds with a

unicast message to make themselves discoverable. This figure illustrates the interaction between the

initiator server and the target network nodes for service discovery model. 116

Figure 19 - Message exchanges for Storage (Replica Content Placement). This figure illustrates the

interaction between the initiator server and the target network nodes to complete replica-content

placement. .. 118

Figure 20 - Message exchanges for Dynamic Replication/Migration. The dynamic replication/migration

process is executed by the Dynamic Caching Manager residing at the initiator node. The Dynamic

Caching Manager replicates/migrates data if the demand exceeds certain thresholds. This figure

illustrates the interaction between a hosting server and demanding server to complete replica

placement/migration for context x. .. 120

 xii

Figure 21 An eleven-node Hybrid Service replica-hosting environment. Numbered callout shapes represent

replica servers. Letters ranging from A to O correspond to contexts replicated on the replica servers

ranging from 1 to 11. In this example, minimum required degree of replication is two. 122

Figure 22 - Message exchanges for update operation of a context. This figure illustrates the interaction

between the initiator server and the primary-copy host node of context x. 124

Figure 23 - Message exchanges for Primary-Copy Selection process. This figure illustrates the interaction

between the initiator server and the target network nodes to complete the primary-copy selection

process. Time arrow is down. .. 127

Figure 24 - Message exchanges for context access. This figure illustrates the interaction between the

initiator and a target node hosting the context for request distribution. Time arrow is down. 129

Figure 25 Testing cases of responsiveness experiment for a standard operation .. 142

Figure 26 Test results for backup frequency investigation .. 143

Figure 27 Round Trip Time Chart for WSContext Schema Metadata Publish Requests 144

Figure 28 Round Trip Time Chart for Unified Schema Metadata Publish Requests for publishing WS-

Context type metadata ... 145

Figure 29 Round Trip Time Chart for Extended UDDI Metadata Publish Requests 146

Figure 30 Round Trip Time Chart for Unified Metadata Publish Requests for publishing UDDI-type

metadata ... 146

Figure 31 Testing cases of scalability experiment for inquiry and publish functionalities 148

Figure 32 Logarithmic scale round trip time chart for Hybrid Service - WS-Context inquiry and publish

operations when context payload size increases .. 150

Figure 33 Round Trip Time chart for publish requests when context payload size increases from 10Kbytes

to 100Kbytes .. 150

Figure 34 Average Hybrid Service – WSContext Schema inquiry and publish response time chart -

response time at various levels of message rates per second ... 151

Figure 35 The design of the distribution experiment. The rounded shapes indicate NaradaBrokering nodes.

The rectangle shapes indicate Hybrid Service instances located at different locations. The first test

was conducted with one broker where the broker is located before the Hybrid Service instance in

 xiii

Bloomington, IN, while the second test was conducted with two broker nodes each sitting on the

same machine before the Hybrid Service instance. ... 153

Figure 36 The Distribution Experiment Results between Bloomington and Indianapolis - Each point in the

graph corresponds to average of 1000 observations. ... 154

Figure 37 The Distribution Experiment Results between Bloomington and Tallahasse - Each point in the

graph corresponds to average of 1000 observations. ... 155

Figure 38 The Distribution Experiment Results between Bloomington and San Diego - Each point in the

graph corresponds to average of 1000 observations. ... 155

Figure 39 Time spent in various sub-activities of the request distribution scheme of the Hybrid Service .. 156

Figure 40 The design of the dynamic replication experiment. The rounded shapes indicate NaradaBrokering

nodes. The rectangle shapes indicate Hybrid Service instances located at different locations. In the

first testing case, dynamic replication capability is disabled. In the second testing case, dynamic

replication capability is enabled... 158

Figure 41 The results of the dynamic replication experiment. .. 158

Figure 42 The design of the fault tolerance experiment. The rounded shapes indicate NaradaBrokering

nodes. The rectangle shapes indicate Hybrid Service instances located at different locations. In the

first testing case, we measure the end-to-end latency for varying number replica-content creation with

only one broker. In the second case, we repeat the same test with two brokers. 160

Figure 43 Fault Tolerance Experiment results when one replica is created at Indianapolis, IN. Each point in

the graph corresponds to average of 1000 observations. ... 160

Figure 44 Fault Tolerance Experiment results when two replicas are created at two remote locations:

Indianapolis, IN and Tallahase, FL. Each point in the graph corresponds to average of 1000

observations. .. 161

Figure 45 Fault Tolerance Experiment results when three replicas are created at three remote locations:

Indianapolis, IN, Tallahase, FL and San Diego, CA. Each point in the graph corresponds to average

of 1000 observations. ... 161

Figure 46 Time spent in various sub-activities of the replica-content creation scheme of the Hybrid Service.

 ... 162

 xiv

Figure 47 Consistency Enforcement Experiment Results when an update request (originated from

Bloomington, IN) is carried out on the primary-copy holder located in Indianapolis, IN. Each point in

the graph corresponds to average of 1000 observations. ... 164

Figure 48 Consistency Enforcement experiment results when an update request (originated from

Bloomington, IN) is carried out on the primary-copy holder located in Tallahassee, FL. Each point in

the graph corresponds to average of 1000 observations. ... 164

Figure 49 Consistency Enforcement Experiment Results when an update request (originated from

Bloomington, IN) is carried out on the primary-copy holder located in San Diego, CA. Each point in

the graph corresponds to average of 1000 observations. ... 165

Figure 50 Time spent in various sub-activities of the Hybrid Service consistency enforcement scheme. The

results analyze the overhead of distributing update requests to the primary-copy holder where the

update requests take place for consistency enforcement reasons. .. 165

 xv

LIST OF TABLES

Table 1 Summary of the replication and consistency enforcement strategies that we take as a requirement

for the proposed system implementation. .. 47

Table 2 XML API for the WS-Context Service .. 72

Table 3 The Publish/Inquiry XML API for the extended UDDI Service. The extended UDDI XML API is

introduced an extension to existing UDDI Specification XML API Sets. ... 78

Table 4 The Publish/Inquiry XML API for the Unified Schema. The Unified Schema XML API is

introduced to enable different information service providers/clients to publish/query metadata to the

Hybrid Service. .. 86

Table 5 Summary of the cluster node - machine configurations used in centralized testing experiments .. 138

Table 6 Summary of the machines used in decentralized setting experiments .. 139

Table 7 Statistics for the Figure 26 .. 143

Table 8 Statistics for the first test set. We conduct testing cases to learn performance of the Unified and

WS-Context Schema standard publish operations. In these tests, we publish WSContext-type

(interaction-dependent) metadata with Unified Schema publish operation and WSContext Schema

publish operation through the Hybrid Service. (Test-1: Echo service testing case, Test-2: Unified

Schema publish-operation with memory access testing case, Test-3: WS-Context publish-operation

with memory access testing case, Test-4: Unified Schema publish-operation with database access

testing case, Test-5: WS-Context Schema publish-operation with database access testing case). The

time units are in milliseconds. ... 145

Table 9 Statistics for the second test set. We conduct testing cases to learn performance of the Unified

Schema and extended UDDI Schema standard publish operations. In these tests, we publish UDDI-

type (interaction-independent) metadata with Unified Schema publish operation and extended UDDI

Schema publish operation through the Hybrid Service. (Test-1: Echo service testing case, Test-2:

Unified Schema publish-operation with memory access testing case, Test-3: Extended UDDI Schema

publish-operation with memory access testing case, Test-4: Unified Schema publish-operation with

database access testing case, Test-5: Extended UDDI Schema publish-operation with database access

testing case). The time units are in milliseconds.. 147

 xvi

Table 10 Statistics of Figure 32 for Hybrid Service - WS-Context Schema API - inquiry and publish

operations with changing context payload sizes. Time units are in milliseconds. 150

Table 11 Statistics of Figure 33 for Hybrid Service - WS-Context Schema - publish operations with

changing context payload sizes. Time units are in milliseconds .. 151

Table 12 Statistics of the experiment results depicted in Figure 34. These measurements were taken with

Hybrid Service when the WS-Context Schema inquiry and publish request is granted with memory

access. Time units are in milliseconds. .. 152

Table 13 Statistics for Figure 39. Overhead of request distribution. Average timings in milliseconds....... 156

Table 14 Statistics for Figure 46. Overhead of replica-content creation. Average timings in milliseconds.

 ... 162

Table 15 Statistics for Figure 50. Statistics for overhead of update distribution. Average timings in

milliseconds. .. 166

 1

Chapter 1

Introduction

Information Services address the challenging problems of announcing and

discovering resources in Grids. Independent Grid projects have developed their own

solutions to Information Services. These solutions are not interoperable with each other,

target vastly different systems and address diverse sets of requirements. For an example,

large-scale Grid applications require management of large amounts of relatively slowly

varying metadata. Another example, e-Science Grid applications can be thought of as

dynamically assembled collections of modest numbers of distributed services that are

assembled for specific tasks that can be as diverse as forecasting earthquakes [1] or

managing audiovisual collaboration sessions [2]. These dynamic Grid/Web service

collections require greater support for dynamic metadata.

Extensive metadata requirements of both the worldwide Grid and the dynamic

Grid/Web Service collections that support local dynamic action may be investigated in

 2

diverse sets of application domains such as sensor and collaboration grids. For example,

workflow-style Geographical Information System Grids such as the Pattern Informatics

application [1] require information systems for storing both semi-static, stateless and

transitory metadata needed to describe distributed session state information. The Pattern

Informatics application is an earthquake simulation and modeling code integrated with

streaming data services as well as visualization services for earthquake forecasting.

Another example, collaborative streaming systems such as Global Multimedia

Collaboration System (GlobalMMCS) [3] involve both large, mostly static information

systems as well as much smaller and dynamic ones. GlobalMMCS is a service-oriented

collaboration system, which integrates various services including videoconferencing,

instant messaging and streaming, and is interoperable with multiple videoconferencing

technologies (see Section 1.3.2 for more detailed discussion on application use domains).

Figure 1 illustrates a model of building a system hierarchy where services are

aggregated into atomic grids that perform basic functionality. We assume that dynamic

Grid/Web Service collections model the desired functionality. Our goal is to define the

practical extent of a given dynamic Grid/Web Service collection based on information

exchange. The basic (atomic) grids include Geographical Information System,

collaboration, sensor, compute, and knowledge grid. Composite grids are built

recursively from both atomic and other composite grids. In this picture, we need the core

Grid Services at the bottom of the figure with services like XML metadata services (in

other words Grid Information Services) for static and dynamic information.

 3

Services: Power,

Gas, GPS Stations

and Filters

Physical Network

XML Metadata

Services

Services: GPS

Stations

and Filters

Earthquake Prediction

Grid/Web Service Collection

Energy Emergency Response

Grid/Web Service Collection

…………..

Data Access/Storage

Security WorkflowNotification Messaging

Portals Knowledge GridCollaboration Grid

Sensor Grid Compute GridGIS Grid

Core Grid Services

XML Metadata

Services

Figure 1. A dynamic Grid/Web Service collection may be built in a dynamic fashion as

Grids of Grids applications with modest number of services involved at any one time for

particular functionality

The basic grids can be reused in all critical infrastructure grids, which in turn are

customized, compared and overlaid with other grids for different critical infrastructure

communities such as crisis grid, emergency response and so forth. As an example, a

Pattern Informatics application can be built in composite fashion from basic grids, such

as Geographical Information System and sensor grids. Given this picture, we expect that

Grid of Grids concept [4] can be applied recursively to build dynamic Grid/Web Service

collections.

1.1 Motivation

As the Service Oriented Architecture (SOA) principles have gained

importance, an emerging need has appeared for methodologies to locate desired

services that provide access to their capability descriptions. As these services

interact with each other within a workflow session to produce a common

 4

functionality, another emerging need has also appeared for storing, querying, and

sharing the resulting metadata needed to describe session state information. The Grid

Information Services support both discovery and handling of services through metadata

and are vital components of Grids [5]. In this thesis, we are particularly interested in

investigating Grid Information Services that are able to manage both stateless and stateful

(transient) metadata associated to services in Service Oriented Architectures.

We identify the following limitations of current approaches in Information

Services supporting Grids.

First, different Grid applications adopted customized implementations of Grid

Information Services. Their data model and communication language is different.

Therefore, these information services are not interoperable. They cannot share each

other’s metadata and utilize each other’s resources.

Second, most of the existing Grid Information Services do not support

dynamically assembled service collections gathered at any one time to solve a particular

problem at hand [6, 7]. The main reason for this is that they are not built along this

model. For instance, they do not provide capabilities (such as lifetime management,

notification mechanisms, and so forth) to support dynamic metadata management. The

majority of existing approaches (for an example, the Universal Description, Discovery,

and Integration (UDDI) [8]) are used to discover/handle quasi-static, rarely changing

information while ignoring the dynamically generated session state information.

Third, most of the existing approaches to Information Services have centralized

components and do not address high performance and fault-tolerance issues [6, 7].

 5

Handling information requirements of dynamic Grid/Web Service collections requires

high performance, decentralized, and fault tolerant information systems.

Fourth, existing Information Service mechanisms do not take into account

demand changes when making decisions on metadata access and storage. However,

information services for dynamic regions should be able to relocate metadata to nearby

locations of interested entities in order to provide efficient access, storage of the shared

information, as the dynamic metadata needs to be delivered on tight time constraints

within a given dynamic Grid/Web Service collection.

Fifth, existing approaches to Information Services do not provide uniform

interfaces for publishing and discovery of both dynamically generated and static

information. This creates a limitation on the client-end, as the users have to interact with

more than one metadata service. This increases the complexity of clients and creates fat

clients. We therefore see this as an important area of investigation.

1.2 Statement of research problems

In this thesis, we mainly focus on investigating a novel approach of building high

performance, fault tolerant Hybrid Grid Information Service. In order to build such

architecture, we particularly identify the following research questions.

- Can we implement a hybrid system architecture that unifies custom

implementations of Grid Information Services to provide a common access

interface to different kinds of service-metadata (such as interaction-dependent

and interaction-independent) in Service Oriented Architectures?

 6

- How can we provide federation of information among the Grid Information

Services, so that they can share/exchange metadata with each other? What is a

common data model and communication protocol for such federation

capability?

- What is the efficient metadata access/storage strategy for such a hybrid system

architecture that could speed up performance of existing Grid Information

Services and that could provide persistency of information?

- What are the efficient request distribution, replica-content creation, and

consistency enforcement strategies to achieve decentralized hybrid

information system architecture? Can we implement these fundamental

features of a decentralized system with publish-subscribe based messaging

schemes? How does the system behavior change for continuous operation?

- How can we achieve a self-adopting decentralized information service

architecture that can answer instantaneous client-demand changes?

- Can we support communication among Grid/Web Services with efficient

mediator information service methodologies?

1.3 Scope of Research

In order to define the scope of the proposed research, we outline various

requirements of the desired system architecture and its application usage scenarios.

1.3.1 Requirements of the architecture

We are interested in investigating a novel architecture for information services in

order to meet the following requirements of the research problem at hand.

 7

Uniformity: The types of information may vary in both traditional and Semantic

Grids. This requires a Hybrid Grid Information Service providing a uniform interface to

different kinds of metadata. Thus, the Hybrid Grid Information Service architecture

should be able to unify different information systems under one unified architecture and

present a common access interface.

Federation: Different Grid applications adopt customized implementations of

information services. These Grid applications should be able to communicate through the

Grid Information Services and utilize each other’s resources. This requires information

federation capability in the Hybrid Grid Information Service architecture.

Interoperability: Information should be accessible by diverse set of consumer

services through standard interfaces to increase usability. This requires leveraging

existing Web Service standards for service discovery and communication to enable

Information Services and consumer services to operate effectively together.

Dynamism: Dynamic metadata may have changing user demands over time.

Therefore, metadata need to be reallocated based on changing user demands and

locations. This requires Information Services that can support optimization techniques in

metadata access and that can move the highly requested metadata to where they wanted.

Fault-tolerance: The Hybrid Grid Information Service architecture is required to

improve the capabilities of existing information services in terms of fault tolerance.

Archiving of metadata should be provided for persistency of information. Furthermore,

high availability of information is necessary to keep redundant copies of the same data

for fault-tolerance reasons.

 8

Performance: The Hybrid Grid Information Service architecture is required to

improve the capabilities of existing information services in terms of performance. For

example, the system should be able to support dynamic, high-frequency metadata

generation in a dynamic Grid/Web Service collection with a fine-granularity time delay.

1.3.2 Application use domains

To present the applicability of proposed research, we investigate the metadata

management components and information requirements of various application use

domains. The first example is a workflow-session metadata manager, a vital component

of workflow-style Grid applications. A workflow-session metadata manager is

responsible for providing a store/access/search interface to metadata generated during

workflow execution. The second example is a metadata catalog service. A catalog service

is a metadata service that stores both prescriptive and descriptive information about

Grid/Web Services. The third example is a metadata archival service. This service is used

for supporting distributed and collaborative computational science applications where

user inputs needed to be archived within a session to enable users to access/reuse their

previously stored user-system interactions. The fourth example is a third-party metadata

repository, also called a Context-store. This component is used in a fast web service

communication model in a collaborative mobile computing environment where the

redundant parts of the exchanged messages are stored. Finally, the session metadata

manager component is designed to provide storage/access/search interface to dynamic

metadata generated in real-time conferencing applications.

 9

1.3.2.1 A workflow session metadata manager component

Description: A workflow-session metadata manager is responsible for storing

transient metadata needed to describe distributed session state information in a workflow.

Requirements: Participants of a workflow must know about the state of the

system, so that they can perform their assigned tasks within a specific sequence. This can

be done by either pull or push based approaches. In a pull-based approach, each

participant continuously checks with the system if the state is changed. For instance,

some application domains may employ various browser-based applications and pushing

the states to the web-applications through an http server is rather complicated. So, the

pull-based approach can be used in those domains to interact with the service to get the

state updates. In a push-based approach, participants are notified of the state changes. The

push-based approach is mainly used to interact with the workflow session metadata

manager in order to reduce the server load caused by continuous information polling.

Usage Scenario: We have investigated two practical example usage domains,

which are in need of a workflow-session metadata manager: Pattern Informatics and The

Interdependent Energy Infrastructure Simulation System (IEISS). Pattern Informatics, a

technique to detect seismic activities and make earthquake predictions, was developed at

University of Southern California at Davis. The Pattern Informatics Geographical

Information System Grid [1] integrates the Pattern Informatics code with publicly-

available, Open Geographical Information System Consortium (OGC)-compatible, geo-

spatial data and visualization services. The Interdependent Energy Infrastructure

Simulation System is a suite of analysis software tools developed by Los Alamos

National Laboratory (LANL). IEISS provides assessment of the technical, economic and

 10

security implications of the energy interdependencies [9]. IEISS Geographical

Information System Grid, a workflow-style Geographical Information System Grid

application developed at LANL, supports IEISS analysis tools by integrating them with

openly available geo-spatial data sources and visualization services. Both Pattern

Informatics and IEISS systems are in need for an Information Service, which can be

utilized as the workflow session metadata manager.

1.3.2.2 A metadata catalog service component

 Description: A Metadata Catalog Service is responsible for providing an

access/store interface to both prescriptive and descriptive metadata about services.

Requirements: Geographical Information Systems based Grid applications are

comprised of various archival services, data sources, and visualization services. Services

such as the Web Map [10] and Web Feature [11] service, because they are generic, must

provide additional, descriptive metadata in order to be useful. The problem is simple: a

client may interact with two different Web Feature Services in exactly the same way (the

WSDL is the same), but the two Web Feature Services may hold different data. One, for

example, may contain GPS data for the Western United States while the other has GPS

data for Northern Japan. Clients must be able to query information services that encode

(in standard formats) all the necessary information, or metadata, that enables the client to

connect to the desired service. Thus, we see the need for a metadata catalog service,

which would manage metadata associated to all these Grid/Web Services, and make them

discoverable. A client should be able to get “capabilities” metadata file either from the

service itself or from the metadata catalog. Thus, these metadata catalog services are also

 11

expected to have a dynamic metadata retrieval capability, which enables the system to

dynamically retrieve the capability metadata file from the service under consideration.

Usage Scenario: The two aforementioned application use domains: Pattern

Informatics and IEISS Geographical Information System application are comprised of

various data and map generating Grid/Web services. Thus, both of these application

domains are in need of a metadata catalog service, which would provide a unified and

systematic way to find a service through a registry of services.

1.3.2.3 A metadata caching component

Description: This component is responsible for preserving various dynamic

metadata generated during a session.

Requirements: In computational grid portals, we see a need for persistent

preservation of dynamic metadata. For an example, when users upload their input data to

execute a scientific application, the input data is usually given through input form pages,

which are tedious to fill out. In most cases, the users will have minor changes on the

input parameters to a particular job and resubmit it later. So, the input data must be

preserved as metadata in a persistent third-party data store to be reused later in user-

system interaction. For another example, some job runs may take hours or days to

execute. In order to keep track of dynamically generated session information regarding a

running job, some level of persistence is required. Thus, we see the need for a metadata

service to provide a persistence storage capability. Here, session metadata can be stored

in parent-child relationships. One should be able to create a hierarchical session tree

where each branch can be used as an information holder for dynamic metadata with

 12

similar characteristics. This would enable the system to be queried for metadata

associated to a session under consideration.

Usage Scenario: The Virtual Laboratory for Earth and Planetary Materials

(VLab) [12] is a National Science Foundation funded interdisciplinary project which is a

Grid/Web Service based system for enabling distributed computational chemistry and

material science application for the study of planetary materials. One of the issues that

the VLab project is addressing is the preservation of user input data, information about

job status and so forth. In order to keep track of such information, a session bean (i.e. a

Java Bean Object) is used. As the session is susceptible to system crashes or web-server

restart, the serialized form of session beans must be stored in a persistent metadata store.

To this end, the VLab project needs a WS-Context Service, a lightweight, Web Services

based metadata system to provide persistent storage for the dynamic metadata generated

during a session.

1.3.2.4 Context-store for high performance SOAP

Description: A Context-store component is a metadata service responsible for

storing redundant/unchanging parts of SOAP messages exchanged in service

communication.

Requirements: The SOAP message enables applications on heterogeneous

platforms to interoperate with each other by defining text-based remote procedure call

(RPC) mechanism. However, the verbose nature of a SOAP message holds potential

overheads. For example, when data is converted to and from a SOAP message, both size

and processing time of the message is increased substantially. This creates performance

inefficiencies in some application domains, such as mobile computing. The mobile

 13

computing environment, which holds many physical constraints like limitations in

processing power, battery life, and wireless connections, needs an efficient solution to the

problem of expensive processing cost of SOAP messages. The redundant/unchanging

parts of a SOAP message are XML elements which are encoded in every SOAP

message exchanged between two services. These XML elements can be considered as

dynamic metadata associated to a conversation. Such metadata can be considered as

rarely changing and has a lifetime bounded with duration of the session. In order to

achieve optimized Web Service communication, which is most needed in mobile

environments due to high communication latency, there is a need for a metadata service

to store the redundant XML elements of messages.

Usage Scenario: The Handheld Flexible Representation (HHFR) is an application

designed to provide efficient and optimized message exchange paradigm in mobile Web

Service environment [13, 14]. The HHFR architecture provides layers, which optimize

and stream messages to achieve high performance mobile Web Service communication.

The HHFR system needs a third-party repository, (i.e. Context-store) to store the

redundant/unchanging parts of the messages exchanged between services. This way the

size of the exchanged messages can be reduced to achieve optimized Web Service

communication.

1.3.2.5 Managing Real-Time Session Metadata

Description: A Session Metadata Manager component is responsible for

managing dynamic metadata generated during audiovisual sessions.

Requirements: Collaborative audio/video sessions may have varying types of

metadata describing the group of participants, clients as well as the associated media

 14

services. Such metadata can be investigated as static and dynamic. For example, the

number of available sessions and their associated detailed information is static in nature,

while, participant entities, streams, services or filters involved in a session is dynamic.

For real-time audio/video conferencing applications, dynamically changing information

should be managed by a third-party metadata repository. This way, the system can keep

track of audio/video streams.

Usage Scenario: The Global Multimedia Collaboration System (GlobalMMCS)

project [3] is a service-oriented multimedia collaboration system that mainly process

varying multimedia streams such as audio, video and so forth. GlobalMMCS multimedia

sessions generate real-time metadata describing various entities of a session such as

streams. The GlobalMMCS project is in need for a Session Metadata Manager

component to provide access/store/search interface to dynamic metadata generated in

real-time conferencing applications.

1.4 Contribution

The main contribution of this thesis is to propose an architecture for an Hybrid

Grid Information Service supporting both distributed and centralized paradigms and

managing both dynamic and slowly varying quasi-static metadata.

The implications of this thesis are seven-fold.

• Identifying the information management requirements of dynamic Grid/Web

Service collections (a modest number of dynamic collections of actively

interacting Grid/Web Services that are put together for particular

functionality) [15-18].

 15

• Proposing an extended version of the existing UDDI Specification to provide

a domain-independent and metadata-oriented management of service metadata

[19-21]. An example implementation [22, 23] of the proposed specification is

presented particularly to meet with the information requirements of the

Geographical Information Systems. This implementation presents an approach

on how to aggregate and search geospatial services using UDDI and has been

used and tested in Geographical Information System application use domain

discussed in Section 1.3.2.2.

• Proposing a data model and communication protocol for the Context Manager

component of the WS-Context Specifications to provide dynamic, session-

related metadata management. This work introduces an efficient mediator

Information Service to achieve service communication among interacting

Grid/Web Services [19, 21, 24].

• Proposing a novel architecture for fault tolerant and high performance Grid

Information Services linking publish-subscribe based messaging schemes with

associative shared memory platforms for metadata management [17, 25]. As

an example of the proposed architecture, a prototype implementation is

presented and evaluated. This implementation utilizes publish-subscribe based

messaging infrastructure to implement replication, request distribution and

consistency enforcement aspects of a distributed system. Section 1.3.2

discusses various motivating application use domains where the prototype

implementation has been used and tested [1, 12, 22, 26-30].

 16

• Proposing a novel architecture for unification of different Grid Information

Services under one Hybrid System. This approach introduces a Hybrid Grid

Information Service that works as an add-on system above the existing Grid

Information Services. It introduces abstraction layers, which enable the

system to support one to many information services and their communication

protocols.

• Proposing a novel architecture for federation of Grid Information Services in

metadata instances. This thesis introduces a common data model and

communication language to provide a common platform where customized

implementations of Grid Information Services can interoperate and share

information. With this approach, we aim to enable different Grid applications

to communicate with each other and utilize each other’s services.

• Identifying and analyzing the key factors that affect the performance of the

information systems with peer-to-peer strategies as well as systems adopting

in-memory storage solutions [25].

1.5 Organization of the thesis

This chapter presented a general introduction of the proposed research. First, the

limitations in existing Grid Information Service solutions, which lead into the proposed

research, were discussed. Then, the statement of the research problems is given. In order

to present the scope of the research, the requirements expected from this research are

outlined. Next, a number of application use domains and their metadata requirements are

 17

discussed to emphasize the research problems are worthwhile to answer. Finally, a

discussion on the contributions of the thesis is presented.

The organization of the rest of the thesis is as follows. Chapter 2 reviews the

major solutions in state of art of the studies covered in this thesis. It analyzes the service

metadata under two types: interaction-dependent and interaction-independent. Having

identified the two-metadata types, it gives an extensive survey on the previous metadata

management solutions under two categories: managing interaction-independent, static

metadata and managing interaction-dependent, session-related metadata. Here, previous

solutions are analyzed followed by discussions on the reasons why the previous solutions

do not answer the research problem at hand. Chapter 2 also discusses various concepts

and paradigms that are taken into account in designing a solution addressing the research

problem. Chapter 3-5 presents the Hybrid Grid Information Service. Chapter 3 discusses

the architectural design details of the system. Chapter 4 gives an overview of the

semantics of the system. In this chapter, the two base elements of the semantics of the

proposed solution are identified: data model semantics and semantics for XML API. With

this identification made, the proposed approach and experiences in designing “semantics”

for the Hybrid Service are discussed. Chapter 5 presents the prototype implementation of

the system. Chapter 6 analyzes the performance evolution of the Hybrid Service

prototype. It presents benchmarking on performance, scalability, distribution, fault-

tolerance and consistency enforcement aspects of the system. Chapter 7 contains the

thesis summary, answers to research questions and the future research directions.

 18

Chapter 2

Review of State of Art

A Grid/Web Service is a software component that has public programming

interface described by XML and is capable of being accessed by using XML based

messages passed on by internet protocols [31]. The Computational Grid introduces large

amounts of services managed by different organizations or individuals to let users utilize

distributed computing resources, applications and data. Peer to Peer computing also

provides services where researchers package their own resources as services to offer

others in their community. For an example, Geographical Information Systems provide

very useful problems in supporting “virtual organizations” and their associated

information systems. These systems are comprised of various archival data services

(Web Feature Services), data sources (Web-enabled sensors), and map generating

services. Organizations like the Open Geospatial Consortium (OGC) [32] define the

metadata standards. All of these services are metadata-rich, as each of them must

 19

describe their capabilities (What sorts of features do they provide? What

geographic bounding boxes do they support?) Furthermore, these services must typically

be assembled into short-term service collections that, together with code execution

services, are combined into a meta-application (i.e. a workflow). As the services

interact (collaborate) with each other in a workflow, they generate metadata, which is the

distributed state information. Therefore, we have both stateless and stateful (transient)

metadata. This is an example of the very general problem of managing information about

Web Services. Thus, we see an emerging need for Information Services managing all

kinds of metadata associated to Web Services.

In this chapter, we survey the state of art in this area of investigation. We also

overview background knowledge on relevant concepts covered in this thesis such as

tuplespaces, publish-subscribe paradigms, replication and consistency issues.

2.1 Managing service metadata as Context

Web Services may have complex characteristics and interact with one or a set of

services. Service descriptions expressing these characteristics must be capable of

accurately representing these services.

We use the term “context” to define all available information associated with a

Web Service. For the purposes of our research, context is a piece of information

(metadata) describing behavior, environment and characteristics of a service. Context

encapsulates not only activities that service is involved in but also the service itself as an

entity. From this point forward, we will be using context and service metadata

interchangeably, as they both refer to the information associated with a service.

 20

We broadly classify context into two categories: interaction-dependent and

interaction-independent. Interaction-dependent context is the session metadata generated

by one or more services as a result of their interactions.
1
 Interaction-independent context

is rarely changing information describing the characteristics of services.
2

Another way of classifying context could be based on its characteristics such as

prescriptive (functional) and descriptive (non-functional). The prescriptive characteristics

are directly related with functionality of the service. For instance, the Open Geographical

Information Systems Consortium defines standards for prescriptive characteristics of

services as an auxiliary capability file defining the data coverage of geospatial services.

The descriptive characteristics are the non-functional properties associated with services.

The non-functional properties of services may include availability (such as temporal,

spatial availability), service quality (such as throughput, number of max supported

clients), security and so forth.

Locating resources of interest is a fundamental problem in resource intensive

environments. An effective methodology to facilitate resource discovery is to provide and

manage information about resources. Here, a resource corresponds to a service and

information associated to it refers to metadata of a service. Thus, we see a greater need

for metadata management solutions to make such metadata available in peer-to-peer/grid

environments. Having identified the two-metadata types, that is interaction-independent

and interaction-dependent; we survey previous solutions for metadata management under

two categories: a) managing interaction-independent service metadata and b) managing

interaction-dependent service metadata.

1 An example XML document representing an interaction-dependent metadata is given in Appendix B.1.
2 An example XML document representing an interaction-independent metadata is given in Appendix B.2.

 21

2.1.1 Managing interaction-independent service metadata

Previous solutions addressing the interaction-independent metadata discovery and

storage problem has mainly focused on four different areas. First area covers problems in

the matchmaking process. The matchmaking process compares the service metadata

(i.e. information associated to a service) with an access request (i.e. inquiry constructed

by the requesters), tries to match them and produces results. Second area focuses on

centralized and decentralized storage architectures. The third area focuses on the

ways of handling metadata request distribution based on underlying networks. Finally,

the fourth area focuses on standardizations defining interaction-independent service

metadata.

2.1.1.1 Analysis of service metadata management research from matchmaking

processing point of view

The service matchmaking process is a retrieval process that finds results by

matching a service request (inquiry criteria) with service descriptions (metadata). We

broadly classify existing research under two major trends: syntactic-level matching and

concept-based matching.

• Syntactic Level Matching: In this research trend, retrieval is founded on keyword-

based (UDDI [8], Corba Naming [33]), unique identifier based (Blootooth [34]),

interface-based (JINI [35]), or attribute based matching (Salutation [36], OGSA [37]).

These methodologies suggest a syntactic level matching between the access request and

service metadata and have their own merits in simplicity of implementation. Limitations:

Different keywords/attributes might have the same meaning. Likewise, same

 22

keywords/attributes might have different meanings. Therefore, these methodologies

suffer from syntactical mismatches, which in turn cause poor search results.

• Concept-based Matching: Concept-based retrieval [38-40] provides a common data

format for both service providers and service requestors. It defines ontologies and

provides service matchmaking on concepts as opposed to keywords. This way the

limitations of syntactical matchmaking are avoided and better precision and recall can be

achieved in the results. An example concept-based retrieval mechanism, ServoGrid

Metadata Discovery system [41] utilizes ontologies of an earthquake simulation grid for

data representation and provides a retrieval tool for earth scientists to locate resources

(codes, data) of interests. Here metadata can be represented using varying metadata

models such as Semantic Web languages RDF [42] and OWL [43, 44]. Limitations:

Defining and creating ontology of a given metadata domain may not be trivial, as it is

difficult to bring together scientists agree on a consistent ontology capturing all the

concepts of the domain. Say, there are more than one ontology for a given metadata

domain. In that case, it may be difficult to combine these ontologies, if they have

contradicting concepts describing the same thing.

• Discussion: These methodologies mainly focus on improving recall/precision in

order to improve the quality of search results. This research has been investigated in [40,

45, 46] and so not covered in this thesis. We view architectural design issues and

distributed system aspects of managing metadata as higher priority.

 23

2.1.1.2 Analysis of service metadata management research based on architectural

design issues

Existing service metadata discovery architectures can be broadly categorized as

centralized and decentralized by the way they handle with service information storage.

• Centralized Registries: In centralized approach, there is a central look-up

mechanism where all services are dependent on one node. Mainstream service discovery

architectures like JINI [35], Salutation [36], and Service Location Protocol [47] have

been developed to provide discovery of remote services residing in distributed nodes in a

wired network. Their architectures are based on a central registry for service registration

and discovery. Limitations: The centralized registry approach presents a single point of

failure and is limited to a certain storage capability. It does not scale up to high number of

services that in turn creates a performance and scalability bottleneck for the system.

• Decentralized Registries: In decentralized approach, there is no central database.

This research trend mainly focuses on decentralized search where all the peers of the

system actively participate the discovery process. Peer-to-Peer systems may broadly be

categorized as pure and hybrid [48, 49]. On one hand, pure systems endeavor for total

decentralization and self-organization, on the other hand hybrid systems have some form

of centralized control. Pure peer-to-peer networks may further be categorized as a)

structured and b) unstructured. In structured peer-to-peer architectures, system resource

placement at peers is enforced with strict constraints. For an example, Globus Monitoring

and Discovery System (MDS4) [50] has a structured architecture where there is a single

top-level information service that presents a uniform interface to clients to access data,

while the data is collected by lower-level information providers. Relational Grid

 24

Monitoring Architecture (R-GMA) [51] presents a relational model where users

query/store/access metadata centrally and if information is found, directly connect to

information providers to retrieve the data without intermediary nodes. Another example

of the structured peer-to-peer architectures, is the systems where the nodes are equally

enabled and controlled and service information is disseminated to all nodes (CAN [52]

and Chord [53]). In unstructured peer-to-peer architectures, there is complete lack of

constraints on the placement of resources and the capabilities of the system nodes [49].

Each node forwards the incoming query to a neighbor based on a routing strategy. An

extensive survey on Grid Information Services can be found at [6, 7].

Architectures with pure decentralized storage models have focused on the concept

of distributed hash tables (DHT) [52, 53]. The DHT approach assumes possession of an

identifier such as hash table that identifies the service that need to be discovered. Each

node forwards the incoming query to a neighbor based on the calculations made on DHT.

For instance, a DHT specifies a relation between a resource and a position in a distributed

network. A good example of DHT is the Chord [53] project. Each entity of the network is

hashed; therefore, the position of the entity in the network is determined through DHT. A

message is routed to the closest entity to the final destination. Inspired from peer-to-peer

discovery model, there has been work conducted on to develop peer-to-peer architectures

[54, 55] for distributed information management.

Another decentralized approach, Bittorent is a peer-to-peer file distribution

protocol which is designed to distribute large amounts of widely distributed data. A

Bittorent network consists of three entites: a tracker, a torent file and peers. A tracker is a

server that keeps track of which peers (seeds, downloaders) are in the network. A torent

 25

is a metadata file that contains information about all the downloadable pieces of a data. A

peer is software, which implements the Bittorent protocol. Each peer is capable of

requesting, and transferring data across network. Peers are classified into two categories:

seeds and downloaders. The former has the complete copy of the file and offers it for

download. The latter has the parts of the file and downloads the file from other seeds or

downloaders. An example peer-to-peer storage service, Amazon Simple Storage Service

(Amazon S3) is a web-scale storage which supports use of the Bittorent protocol. It

provides a simple web service interface used to provide storage and retrieval of any data

across widely distributed area.

The data management in decentralized systems is mainly studied by distributed

database systems research [56]. This research area enables applications to share data at a

higher conceptual level, while ignoring the implementation details of the local data

systems. In turn, this enables transparent access to multiple, logically interrelated

distributed databases. To achieve this, a distributed database system, which allows

management of database systems with different schemas, is defined [57]. Based on this

scheme, an application can pose a query to the distributed database system, which maps

the query into local queries, integrates the results coming from different data systems and

return the results to the client. The distributed database systems achieve this transparency

by providing a schema management. The schema management can be achieved with

either a centralized approach or a decentralized schema mapping approach. The former

approach defines a global schema over the existing data sources and mappings between

global schema and local database schemas. The latter approach maps a query on a given

data system schema to another query of another data system’s schema.

 26

Limitations: As the resource placement at nodes is strictly enforced in structured

peer-to-peer networks, these systems suffer from a heavy overhead on the bootstrap of

the network. Pure decentralized storage models have mainly focused on DHT approach.

The DHT approach provides good performance on routing messages to corresponding

nodes. However, it is limited to primitive query capabilities on the database operations

[48]. Furthermore, the DHT approach does not take into account changes in the client

demands and load balancing. The Bittorent approach and Amazon S3 storage service that

utilizes the Bittorent protocol have the following limitations. First, the overhead involved

in transferring small size data (e.g. in the order of kilobytes) is big. For example, the total

required bandwidth for necessary protocol messages for downloading a small size data is

high. Second, the tracker is a performance bottleneck and a single point of failure in the

network. Thus, the performance of a Bittorent network depends on the capacity of the

tracker. In addition, if the tracker fails, it is not possible for peers to locate each other. To

achieve data integration, centralized or decentralized schema mapping approaches can be

utilized. The global schema approach captures expressiveness capabilities of customized

local schemas. However, this approach cannot scale up to high number of data sources.

The decentralized schema mapping approach is able to express high-level queries over

customized data-system schemas without relying on a global schema; however, this

approach limits the query expressiveness.

• Discussion: The centralized storage scales better in performance for limited storage

capability compared to decentralized approach, whereas a decentralized approach can

scale up to high amount of metadata where centralized approach fails. Pure decentralized

storage models such as peer-to-peer service discovery architectures have focused on the

 27

concept of distributed hash tables (DHT). This method may provide better performance

as the database operation messages are routed fast, however, it still does not provide the

same performance to handle dynamic metadata as centralized database does. The research

ideas in distributed database systems can be revisited to achieve information integration

in Grid Information Services. The distributed database systems enable information

integration through query processing. In other words, it transforms the client’s query into

local queries and integrates the results. This methodology has performance drawbacks

due to overhead of query mapping and forwarding. To achieve high performance, there is

a need for a higher-level add-on architecture that can assemble the information coming

from different data sources and carries out queries on the heterogeneous information

space. We think that once we achieve such higher-level architecture, the global schema

approach can be used for integrating a limited number of widely used information service

schemas, as it encapsulates the expressiveness power of the customized schemas that are

being integrated.

In this thesis, we will take as a design requirement that the proposed system

should link peer-to-peer and centralized metadata storage strategies. The proposed

system should be designed to provide a) management for small-size metadata, b) high

performance by utilizing in-memory storage solutions, c) fault-tolerance by increasing

the availability of metadata, and d) peer-to-peer message distribution strategy by utilizing

a classic middleware approach; publish-subscribe based messaging system. The proposed

system should be designed as an add-on architecture above existing Grid Information

Services. It should also be designed to provide unification and federation of information

coming from different sources under one hybrid system. To achieve this, global schema

 28

approach can be revisited to achieve a unified schema integrating different Grid

Information Service Schemas.

2.1.1.3 Analysis of service metadata management research based on formation of

underlying networks

Another way of classifying service discovery architectures could be based on the

formation of the network and the way of handling with discovery request distribution.

• In traditional wired networks, network formation is systematic since each node

joining the system is assigned an identity by another device in the system [58, 59].

Example wired network discovery architectures such as JINI [35] and Service Location

Protocol [47] focus on discovering local area network services provided by devices like

printer.

• In ad-hoc networks (unstructured peer-to-peer systems), there is no controlling

entity and there is no constraint on the resource dissemination in the network. Existing

solutions [58, 60] for service discovery for ad-hoc networks (e.g. pervasive computing

environments) can be broadly categorized as broadcast-driven and advertisement-driven

approaches [61]. In broadcast-driven approach, a service discovery request is broadcasted

throughout the discovery network. In this approach, if a node contains the service, it

unicast with a response message. In advertisement-driven approach, services advertise

themselves to all available nodes. In this case, each node interested discovering a service

caches the advertisement of the service. The WS-Discovery Specification [62] supports

both broadcast-driven and advertisement-based approaches. To minimize the

consumption of network bandwidth, this specification supports the existence of registries

and defines a multicast suppression behavior if a registry is available on the network.

 29

Limitations: The traditional wired-network based architectures are limited, as they

depend on a controlling entity, which assigns identifiers to participating entities. If the

size of the network is too big, the broadcast-driven approach has a disadvantage, since it

utilizes significant network bandwidth, which in turn creates a large load on the network.

The advertisement-driven approach does not scale, as the network nodes may have

limited storage and memory capability. The WS-Discovery approach is promising to

handle metadata in peer-to-peer computing environment; however, it has the

disadvantage of being dependent on hardware multicast for message dissemination.

• Discussion: Metadata discovery solutions designed for ad-hoc networks are

appropriate for Grid and peer-to-peer computing environments, as these solutions do not

have any constraints on resource dissemination in the network. Among these solutions,

the WS-Discovery approach is promising as it employs a pure peer-to-peer approach

where the messages (advertisement/discovery) are broadcasted in the system.

Inspired by WS-Discovery approach, we will take as a requirement that the

proposed system should employ a broadcast-based metadata discovery approach. Each

message should include a unique identifier distinguishing the peer, which initiated the

request. On receipt of a message, only the nodes that have the requested information

should reply with a response message. Moreover, we will also take as a requirement that

the proposed system should employ an advertisement-driven approach for advertising the

existence of network nodes. Apart from the WS-Discovery approach, the proposed

system should use a software multicast based message dissemination for request

distribution, metadata and network node advertisements.

 30

2.1.1.4 Specifications defining interaction-independent service metadata

As the Service Oriented Architecture (SOA) principles [63] have gained

importance, an emerging need has appeared for standardization of XML metadata

services that provide programming interface to access and manipulate service metadata.

The previous sections introduced the concept of “context” as the service metadata and

surveyed previous solutions that provide management/discovery of rarely changing,

interaction-independent metadata. This section investigates the existing specifications/

standardizations defining the service metadata. In our investigation, we mainly focus on

metadata requirements of Geographical Information Systems, as they provide very useful

problems in supporting “virtual organizations” and their associated information systems.

• Web Registry Services: The Web Registry Service [64], introduced by the Open

Geographical Information Systems Consortium (OGC) [32] is an approach to standardize

the metadata management problem particularly for Geographical Information Systems

domain. The OGC is an international organization providing specifications to integrate

geospatial data and geo-processing resources into mainstream computing. It leads efforts

to provide a) standardized protocols for accessing geospatial information and services

and b) standardized service metadata such as “capabilities.xml” documents. The OGC

introduced a) the Catalog Specification [65] and b) the Web Registry Service (WRS)

Specification [64]. The OGC Catalog Specification is an abstract specification, which

was introduced to create a conceptual model to allow the creation of implementation

specifications for discovery and retrieval of metadata that describes geospatial data and

geo-processing services. The Web Registry Service (WRS) Specification is an

implementation specification of the OGC Catalog Specification, which was introduced to

 31

define a standard way to discover/publish service information of geospatial services and

presents a domain-specific registry capability for geospatial information. The WRS

Specification adopts the OGC Registry Information Model, which is based on the

ebXML registry information model (ebRIM) [66, 67]. The WRS Specification uses

ebRIM to support/integrate service entries with metadata and provide metadata

management for geospatial domain. An example prototype [68] of the WRS Specification

is implemented by LAITS group in George Mason University. This prototype is primarily

based on Metadata Catalog Service (MCS) [69], a stand-alone metadata catalog service

with an Open Grid Service Architecture (OGSA) [37] service interface. The prototype

implementation provides a mapping between the OGC Registry Information Model and

the MCS data model. Limitations: The WRS approach is limited to the Geographical

Information Systems domain. As it was designed as a Geographical Information Systems

domain-specific solution, it supports neither the information model nor the programming

interface that could facilitate a generic metadata management.

• UDDI: The Universal Description, Discovery, and Integration (UDDI) Specification

is the most prominent and widely used standard that is based on a XML-based protocol

that provides a directory and enables services advertise themselves and discover other

services. UDDI is domain-independent standardized method for publishing/discovering

information about Web Services. It offers users a unified and systematic way to find

service providers through a centralized registry of services. As it is WS-Interoperability

(WS-I) [70] compatible, UDDI has the advantage being interoperable with most existing

Grid/Web Service standards. Limitations: We observe that the adoption of UDDI

Specification in various domains such as Geographical Information Systems is slow,

 32

since the existing UDDI specification has following limitations. First, UDDI introduces

keyword-based retrieval mechanism. It does not allow advanced metadata-oriented query

capabilities on the registry. Second, UDDI does not take into account the volatile

behavior of services. Since Web Services may come and go and information associated

with services might be dynamically changing, there may be stale data in registry entries

[71]. Third, since UDDI is domain-independent, it does not provide domain-specific

query capabilities such as geospatial queries. Thus, UDDI should be extended to

overcome these limitations.

• OGC use of UDDI Registries: In order to remedy some of these limitations, various

solutions have been introduced. For an example, OGC has proposed a set of design

principles, requirements and spatial discovery methodologies for discovery of OGC

services through UDDI interface [72]. The proposed methodologies have been

implemented by various organizations such as Sycline [73] and Galdos [74]. The

Syncline experiment focuses on implementing a UDDI discovery interface on an existing

OGC Catalog Service data model so that UDDI users can discover services registered

through OGC Registries. The Galdos experiment focuses on turning OGC Service

Registry into a UDDI node by utilizing JAXR API to map UDDI inquiry interface to the

OGC Registry Information Model [72]. Briefly, these methodologies showed that it is

possible to do spatial discovery and content discovery through UDDI Specification.

Limitations: Existing UDDI approaches by OGC community are designed for and

limited to geospatial specific usage. Services such as the Web Map and Web Feature

service, because they are generic, must provide additional, descriptive metadata, such as

Quality of Service attributes, in order to be useful. OGC approach does not define a data

 33

model rich enough to capture descriptive metadata that might be associated with service

entries. That is, their approach does not put the descriptive metadata in the UDDI

Registry. Therefore, it is still an open problem how to make these geospatial services

distinguishable from others based on their qualities. Thus, we see the need for extensive

metadata-oriented query capabilities in addition to geospatial query capabilities. We also

note that the discovery methodologies (introduced by OGC community) extend the UDDI

interface; however, they do not introduce an extension to existing UDDI information

model.

• UDDI-Extensions: The UDDI-M [75] and UDDIe [71] projects introduce the idea of

associating metadata and lifetime with UDDI Registry service descriptions where

retrieval relies on the matches of attribute name-value pairs between service description

and service requests. UDDI-M
T
 [45, 76] improves the metadata representation from

attribute name-value pairs into RDF triples. A similar approach to leverage UDDI

Specification was introduced by METEOR-S [77] project which identifies different

semantics when describing a service, such as data, functional, quality of service and

executions. Another approach, Grimories [78] is also an implementation of UDDI

Specification. The Grimories Registry extends the functionalities of UDDI to provide a

semantic enabled registry designed and developed for the MyGrid project [79]. It

supports third-party attachment of metadata about services. The Grimories represents all

published metadata in the form of RDF triples allows the published metadata reside either

in a database, or in a file, or in a memory. Limitations: These approaches have

investigated a generic and centralized metadata service focusing on the domain-

independent metadata management problems. However, these solutions, as they are

 34

generic, do not solve the domain-specific metadata management problems. (How can

registries facilitate geo-spatial queries on a metadata catalog for Geographical

Information Systems domain?) We note that, the Grimories approach utilizes a caching

mechanism for the RDF triple store. Although, this is a promising approach, we find the

following limitations. Firstly, the performance of the system is bounded by the

performance of the triple store (The Grimories uses the Jena software toolkit to operate

on the RDF triple store. Thus, the limitations of Jena implementation may cause a

performance bottleneck). Secondly, if the memory was chosen as the primary storage, the

Grimories registry would sacrifice persistency as the snapshots of memory are not

backed-up by the system. If the database was chosen as the primary storage, the system

would sacrifice performance, as the system has to make disk access to publish a

metadata. Thirdly, the Grimories’s memory built-in storage does not provide mutual

exclusive access to the shared data.

• Discussion: This thesis investigates methodologies, compatible with widely used

standards, for discovering services based on both general and domain-specific search

criteria. An example for domain-specific query capability is Xpath queries on the

auxiliary and domain-specific metadata files stored in the UDDI Registry. Another

distinguishing aspect of our investigation is the support for session metadata.

We will take as a requirement that our system should support not only quasi-

static, stateless metadata, but also more extensive metadata requirements of interacting

systems. Similar to existing solutions (UDDI-M and UDDIe), the proposed design should

use name-value pairs to describe characteristics of services and extend UDDI’s

Information Model to associate metadata with service descriptions. This approach has its

 35

own merits in the simplicity of design and implementation. The proposed system should

also explore an in-memory storage mechanism that would provide persistency,

performance and data sharing capabilities all together. UDDI-M
T
 and METEOR-S are

example projects that utilize semantic web languages to provide better service

matchmaking in retrieval process. This research has been investigated [45, 76, 77] and so

not covered in our investigation. We view dynamic and domain-specific metadata

requirements of sensor/ Geographical Information System and collaboration Grids as

higher priority.

2.1.2 Managing interaction-dependent service metadata

Often Web Services are assembled into short-term service collections that are

gathered together into a meta-application (such as a workflow) and collaborate with each

other to perform a particular task. For example, an airline reservation system could

consist of several Web Services, which are combined together to process reservation

requests, update customer records, and send confirmations to clients. As these services

interact with each other, they generate session state, which is simply a data value that

evolves as result of Web Service interactions and persists across the interactions. As the

applications, employing Web Service oriented architectures, need to discover, inspect and

manipulate state information in order to correlate the activities of participating services,

an emerging need appeared for the technologies and specifications that would standardize

managing distributed session state information. We can broadly classify existing

solutions that define the stateful interactions of Web Services under two categories: a)

point-to-point and b) third-party.

 36

• Point-to-Point methodologies to enable service communication: Point-to-point

methodologies provide service conversation with metadata from the two services that

exchange information. There are varying specifications focusing on point-to-point service

communication, such as Web Service Resource Framework (WSRF) [80] and WS-

Metadata Exchange (WS-ME) [81]. WSRF specification, which is proposed by Globus

alliance, IBM and HP, defines conventions for managing state, so that collaborating

applications can discover, inspect, and interact with stateful resources in standard and

interoperable ways. The WS-ME provides a mechanism a) to share information about the

capabilities of participating Web Services and b) to allow querying a WS Endpoint to

retrieve metadata about what to know to interact with them. Limitations: Point-to-point

methodologies provide service conversation with metadata only from the two services

that exchange information.

• Third-party methodologies to enable service communication: Communication

among services can be achieved with a third-party based metadata management strategy.

The Web Services Context Specification (WS-Context) [82] is a promising example of

this trend. It was introduced as a part of the Web Services Composite Application

Framework (WS-CAF) [83] which is a suite of three specifications, WS-Context, WS-

Coordination Framework (WS-CF) [84], and WS-Transaction Management (WS-TXM)

[85]. The WS-Context defines a simple mechanism to share and keep track of common

information shared between multiple participants in Web Service interactions. WS-CF

defines a coordinator to which Web Services are registered to ensure messages and

results are communicated correctly. The coordinator provides the notification of outcome

messages to Web Services participating in an activity. WS-TXM defines three distinct

 37

transaction protocols: two phase commit, long running actions, and business process

flows. These are used in the coordination framework to make existing transaction

managers interoperable. The three specifications comprise a stack of functionality [83].

WS-Context is at the bottom and adding WS-CF and then WS-TXM.

The WS-Context is a lightweight storage mechanism, which allows the

participant’s of an activity to propagate and share context information. It defines an

activity as a unit of distributed work involving one or more parties (services,

components). In order for an activity to extend over a number of Web Services, certain

information has to flow among the participant of application. This specification refers

such information as context and focuses on its management. The WS-Context

Specification defines three main components: a) context service, b) context, and c) an

activity lifecycle service. The context service is the core service concerned with

managing lifecycle of context propagation. The context defines information about an

activity and is referenced with a URI. It allows a collection of actions to take place for a

common outcome. For an example, a participating application can discover results of

other participants’ execution, which is stored as context. The minimum required context

information (such as the context URI) is exchanged among Web Services in the header of

SOAP messages to correlate the distributed work in an activity. This way, a participant

service obtains the identifier and makes a key-based retrieval on the context service.

Thus, a typical search with the WS-Context is mainly based on key-based

retrieval/publication capabilities. The activity of lifecycle service defines the scope of a

component activity. Note that, activities can be nested. An activity may be a component

activity of another. In this case, additional information (such as security metadata) to a

 38

basic context may be kept in a component service, which is registered with the core

context service and participate in the lifecycle of an activity.

 The WS-Context and UDDI introduce two different ways of managing service

metadata. The WS-Context defines a standard way of maintaining distributed session

state information associated to participating services. The UDDI is a standard way of

publishing/discovering generic information associated to Web Services. Therefore, the

two-metadata management solutions – UDDI and WS-Context – are comparable, as they,

both deal with service metadata. Firstly, the UDDI is concerned with the interaction-

independent metadata space. The interaction-independent metadata is rarely changing

information describing functional or non-functional properties of Web Services. On the

other hand, the WS-Context is concerned with the interaction-dependent metadata space.

The interaction-dependent metadata is highly updated and dynamic information

describing information associated to Web Service activities. Thus, the two-metadata

services define different functionalities to meet the requirements of the two different

metadata domains. Secondly, in the WS-Context approach, the members of an activity

should be notified of the distributed state information such as when it is created or

deleted. This way, the dynamism in the metadata is captured by the participating services

of the activity. However, in the UDDI approach, the interaction-independent metadata is

rarely changing and may not necessarily require a notification mechanism. Thirdly, the

WS-Context is intended for activities that are comprised of modest number interacting

Web Services. However, the UDDI is intended for the whole Grid. Thus, the UDDI

requires a degree of complexity in inquiry operations to improve the selectivity and

increase the recall and precision in the search results. Fourthly, the WS-Context is

 39

intended to correlate activities of Web Services that participate to an activity. Thus, it

supports loose coupling of services by employing synchronous callback facilities.

However, the UDDI is a synchronous Web Service and provides an immediate response

to a query. Fifthly, the WS-Context approach should be lightweight for allowing multiple

Web Services to share a common context. Thus, it requires high performance and

scalability in numbers for concurrent accesses. However, in the UDDI approach, Web

Service metadata entry can only be updated by its publisher and is not shared, thus

concurrency is not a high priority. Limitations: We find various limitations in WS-

Context Specification in supporting stateful interactions of Web Services. First, the

context service, a component defined by WS-Context to provide access/storage to state

information, has limited functionalities such as the two primary operations: GetContext

and SetContext. However, traditional and Semantic Grid applications present extensive

metadata needs which in turn requires advanced search/access/store interface to

distributed session state information. Second, the WS-Context Specification is only

focused on defining stateful interactions of Web Services. It does not define a searchable

repository for interaction-independent information associated to the services involved in

an activity. However, there is a need for a unified specification, which can provide an

interface not only for stateful metadata but also for the stateless, interaction-independent

metadata associated to Web Services.

• Discussion: Among the existing specifications, which standardize service

communications, we believe that the WS-Context Specification is the most promising to

tackle the problem of managing distributed session state. Unlike the other service

communication specifications, WS-Context models a session metadata repository as an

 40

external entity where more than two services can easily access/store highly dynamic,

shared metadata.

Thus, we will take as a design requirement that the proposed system should utilize

an extended version of WS-Context Specification to manage dynamically generated

session metadata. In order to remedy the limitations of WS-Context, the proposed

approach should support a fault-tolerant, high-performance Hybrid XML Metadata

Service.

2.2 Publish-Subscribe Paradigm

Most distributed systems rely on passing messages between processes. Thus,

system entities communicate with each other by exchanging messages, which captures

varying information such as search/storage requests, system conditions and so forth.

These systems can be categorized based on their messaging infrastructures such as

publish-subscribe systems, point-to-point communication systems, queuing systems, and

peer-to-peer based systems [86]. Among them, publish-subscribe paradigm principles

have gained importance in recent years, as recently released specifications such as Java

Message Service [87] and WS-Eventing Specification [88] benefit from publish-

subscribe system principles to standardize development of interoperable systems. The

publish-subscribe paradigm uses an asynchronous messaging. In a publish-subscribe

system, publishers can broadcast each message (e.g. through a topic), rather than

addressing it to specific recipients. The messaging system then sends the message to all

recipients that subscribed to a topic. Advantages: As it is asynchronous, a publish-

subscribe system forms a loosely coupled architecture where the publishers do not know

 41

who the subscribers are. This messaging scheme is more scalable architecture than point-

to-point solutions, since message senders only deal with creating the original message,

and can leave the job of message distribution to the messaging infrastructure.

Limitations: Messages are typically broadcasted over a network. This allows a more

dynamic network topology. However, as the volume of messages increase, this may

result in overloading of the network without appropriate pruning strategies.

Discussion: We will take as a requirement that our system should support the

publish-subscribe paradigm as a communication middleware for message exchanges

between system entities.

NaradaBrokering [89-93] is an open-source and distributed messaging

infrastructure implementing the publish-subscribe paradigm. It establishes a hierarchy

structure at the network, where a peer is part of a cluster that is a part of a super-cluster,

which is in turn part of a super-super-cluster and so on. The organization scheme of this

scenario forms a communication between peers that increases logarithmically with

geometric increase in network size. The NaradaBrokering software is the most

appropriate solution for our design decision, since its entities, i.e. brokers, specify

constraints on the quality of service related delivery of events. It provides a substrate of

Quality of Services (security, reliability, etc.). In turn, this enables various capabilities to

the system such as order, duplicate elimination, reliable message delivery, security and so

forth. Note that these capabilities are not inherently part of publish-subscribe paradigm.

 42

2.3 TupleSpaces Paradigm

A TupleSpace forms a associated shared memory through which two or more

processes can exchange/share data. It provides mutual exclusive access, associative

lookup and persistence for a repository of tuples that can be accessed concurrently. Thus,

a tuplespace can be used to coordinate events of processes. A tuplespace is comprised of

a set of tuples: data structures containing typed fields where each field contains a value.

A small example of a tuple would be: ("context_id", Context), which indicates a tuple

with two fields: a) a string, "context_id" and b) an object, "Context". The tuplespace was

first introduced by Gelernter and Carriero at Yale University [94] as a part of Linda

programming language. Linda consists fundamentally of four operations ("in", "rd", "out"

and "eval") through which tuples can be added, retrieved or taken from a tuplespace. The

JavaSpaces [95] project by Sun extends and implements Linda. Likewise, IBM has a

tuplespaces implementation called TSpaces [96]. Linda has been extended to support

different types of communication and coordination between systems and has increased

some interest in diverse communities such as the ubiquitous computing (sTuples [97])

and Semantic Web (Triple Spaces [98], Semantic Web Spaces [99]). Advantages: The

tuplespaces concept provides the ability for data sharing and coordinating events of

processes. It enables processes exchange/share data regardless of whether their lifetime

overlaps. It also enables mutual exclusive access on the shared data. This in turn provides

coordination of events of processes. Limitations: The tuplespaces paradigm is a

centralized solution and exposed to limitations of centralized systems such as single-point

of failure and performance bottleneck.

 43

Discussion: The tuplespaces paradigm provides mutually exclusive access,

which in turn enables data sharing between processes. This way both the shared memory

and the processes are temporarily and spatially uncoupled. We consider tuplespaces

paradigm as an appropriate model to enable communication between Web Services. We

will take as a requirement that our design should employ the tuplespaces paradigm as an

in-memory storage. The decentralized approaches can scale up to high amount of

metadata. Therefore, this thesis should also investigate how to link a centralized in-

memory approach with decentralized peer-to-peer systems to provide an approach for a

Grid Information Service. A java implementation of the TupleSpaces concept,

JavaSpaces [95], was released by Sun MicroSystems [100]. However, JavaSpaces

requires a number of daemon services to run including a naming service, a restart service,

and the JavaSpaces service. These services add complexity to the systems employing

JavaSpaces. MicroSpaces [101], an open-source implementation of TupleSpaces

paradigm, is an alternative collection of java libraries and provides same API semantics

identical with JavaSpaces. MicroSpaces is a multi-threaded application and dependent on

RMI to provide interactions with JavaSpaces. Apart from the existing implementation

approaches, we will take as a requirement that our design should support a lightweight

implementation of JavaSpaces that does not require RMI-based communication protocol

or other daemon services to run.

2.4 Replication and Consistency Issues

Replication is a well-known and commonly used technique to improve the quality

of metadata hosting environments. One approach to replication is to keep a copy of a data

 44

at every node of the network (full replication). The other approach is to keep a copy of a

data only at a few number of replica servers (partial replication) [102, 103]. Replication

can further be categorized as permanent-replication and server-initiated replication [103].

Permanent-replication keeps the copies of a data permanently for fault-tolerance reasons,

while the server-initiated replication creates the copies of a data temporarily to improve

the responsiveness of the system for a period of time during which the data is in high

demand.

Sivasubramanian et al [102] give an extensive survey on designing and

developing replica hosting environments, as does Robinovich in [104], paying particular

attention to dynamic replication. As the nature of some of the targeted metadata domains

of this thesis is highly dynamic, we focus on replica hosting systems that are handling

with dynamic data. These systems can be discussed under following design issues: a)

distribution of client requests, b) selection of replica servers for replica placement, and c)

consistency enforcement.

Distribution of client requests is the problem of redirecting the request to the most

appropriate replica server. Some of the existing solutions to this problem rely on the

existence of a DNS-Server [104, 105]. These solutions utilize a redirector/proxy server

that obtains physical location of a collection of data-systems hosting a replica of the

requested data, and choose one to redirect client’s request.

Replica placement is another issue that deals with selecting data hosting

environments for replica placement and deciding how many replicas to have in the

system. Some of the existing solutions that apply dynamic replication, monitor various

properties of the system when making replica placement decisions [104, 106]. For

 45

instance, Radar [107] replicates/migrates dynamic content based on changing client

demands. Spread [106] considers the path between the data-system and the client and

makes decisions to replicate dynamic content on that path.

The consistency enforcement issue has to do with ensuring all replicas of the

same data to be the same. A consistency enforcement model is a contract between a

hosting environment and its clients [102]. Some classification approaches to categorize

existing research for consistency enforcement are discussed in [102, 103]. Tanenbaum

[103] differentiates consistency under two main classes: data-centric and client-centric. In

the data-centric approach, all copies of a data are updated regardless of whether some

client is aware of those updates. In the client-centric approach, consistency is ensured

from a client’s perspective. Client-centric consistency model allows copies of a data to be

inconsistent with each other as long as the consistency is ensured from a single client’s

point of view. The implementations of the consistency models can be categorized as

primary-based protocols (primary-copy approach) and replicated-write protocols [103].

In primary-copy approach, updates are carried out on a single server, while in the

replicated-write approach; updates can be originated at multi servers. For an example,

Radar [104] applies the primary-copy approach, which suggests a copy of a data item to

be designated as primary-copy, to ensure consistency enforcement. Updates can be

transferred in different ways. One approach, for example, is to transfer the whole content

of a replica, while the other is to transfer the difference between the previous copy and

the updated copy. Update propagation can be initiated in different ways. For example,

data may be pulled from an up-to-date server (pull). Another example, an up-to-date

server may keep track of the servers holding copies of a data and push the updates onto

 46

those servers (push). Some update propagation schemes combine pull and push

methodologies. For instance, the Akamai project [105] introduces versioning where a

version number is part of the data identifier, so that the client can only fetch the updated

data (with a given identifier) from the corresponding data hosting system.

Discussion: The proposed architecture should differ from previous solutions for

web replica hosting systems, as the intended use is not to be a web-scale hosting

environment. Table 1 shows a summary of the useful strategies that we take as a design

requirement for our implementation design.

As for the request routing mechanism, we think that, broadcasting access requests

would be the most appropriate request distribution solution considering our targeted

domains. Some of the existing solutions to dynamic replication [104, 105] assume all

data-hosting servers to be ready and available for replica placement and ignore

“dynamism” both in the network topology and in the data. In reality, data-systems can

fail anytime and may present volatile behavior, while the data can be highly updated.

Thus, to capture such “dynamism”, we take as a requirement that the proposed system

should broadcast the requests to the nodes holding the data under question. For message

dissemination, the system should employ a pure peer-to-peer approach, which is based on

publish-subscribe based messaging schemes to achieve a multi-publisher multicast

mechanism.

 47

Design Issue The design requirements of the proposed system

Replica-content placement copies of a context should be kept permanently for

fault tolerant reasons (permanent replication)

copies of a context should be kept temporarily for a

time period during which the context is in demand to

improve performance (server-initiated replication)

Request routing client’s request should be broadcasted to those nodes

holding the context in question (broadcast-based

request dissemination)

Consistency enforcement updates should be carried out on a single server

(primary-copy approach) - every update request

should be assigned a synchronized timestamp, which

can later be used for ordering among the updates

copies of a context can be inconsistent with each

other; however, they should be consistent from a

client’s perspective.

whole content of a context should be broadcasted by

the primary-copy to the redundant permanent-copy

holders

Table 1 Summary of the replication and consistency enforcement strategies that we take as a requirement

for the proposed system implementation.

As for the replica placement methodology, we consider providing an architecture,

which would allow both partial and full replication to take place with negligible system

processing overheads. We also consider both permanent and server-initiated replication

as appropriate strategies for the proposed system. The permanent-replication could

provide a minimum required fault tolerance, while the server-initiated replication could

improve responsiveness of the system.

To minimize the cost of consistency enforcement, we take as a requirement that

the system should employ a client-centric consistency model, which suggests copies of a

context can be inconsistent with each other; however, they should be consistent from a

client’s perspective. The proposed approach should provide consistency models

addressing consistency requirements of different application domains.

 48

As for the consistency enforcement protocol, the primary-copy approach is the

most appropriate solution for the proposed approach based on the requirements of

aforementioned application use domains (See Section 1.3.2). In the primary-copy

approach, to perform an update operation just the primary-copy is locked. Since primary

copies are distributed at various data-systems, a single site will not be overloaded with

locking all its data for update operations. Thus, we take as a requirement that the system

should support the primary-copy approach at the implementation stage of consistency

enforcement.

As for the way an update is initiated, the push approach could be an appropriate

solution. The push approach has a disadvantage since it requires the primary-copy host to

store and keep track of the state of each replica server holding a copy of the replica. To

overcome this limitation, we take as a requirement that the system should introduce an

approach, which utilizes broadcast-based dissemination to send updates only to those

nodes holding the redundant copies of a context. Based on this scheme, the primary-copy

host could push the updates, when an update occurs. This multicast-based approach does

not require the primary-copy host to keep the state of the partial replica set of a context.

2.5 Summary

This chapter discussed the state of art in the research area of service metadata

management in Information Services. First, an overview of service metadata and

metadata management was presented. Then existing solutions are identified under several

mainstream categories based on the ways they tackle with the research issues in sub-

processes of metadata management: a) service metadata matchmaking processing b)

 49

architectural design for storage handling c) formation of underlying networks c)

standardizations on service metadata management. Having identified these categories,

previous solutions, their advantages and limitations are investigated followed by

discussions. From this, we have identified useful strategies that we will use in our

architecture. We also overviewed background knowledge on various concepts such as the

publish-subscribe paradigm, the TupleSpace paradigm, replication and consistency issues

involved in dynamic and distributed metadata management.

 50

Chapter 3

Architecture

Chapter 2 analyzed the existing solutions and their limitations involved in

managing context associated to Grid/Web Services. Based on the analysis, this chapter

particularly focuses on the modular architecture of a system by addressing the research

problem given in Section 1.2 and the limitation of previous solutions discussed in Section

2.1.

3.1 System overview

We have designed a novel architecture for a Hybrid Grid Information Service

addressing the metadata management requirements (see Section 1.3.1) of aforementioned

application domains (see Section 1.3.2) to support handling and discovery of not only

quasi-static, stateless metadata, but also session related metadata [15-17, 25, 108].

 51

Client

TUPLE SPACE API

TUPLE POOL (JAVA SPACES)

UNIFORM ACCESS INTERFACE

Request processor

Access Control Notification

A HYBRID GRID INFORMATION
SERVICE

IN-MEMORY STORAGE

Extended
UDDI

WS-
Context

….

INFORMATION RESOURCE MANAGER

Figure 2 This figure illustrates the centralized version of a Hybrid Grid Information Service interacting

with a client. The dashed box indicates the Hybrid Service. It is an add-on architecture that runs one layer

above information service implementations (such as the extended UDDI XML Metadata Service (our

implementation of UDDI Specification) and WS-Context XML Metadata Service (our implementation of

Context Manager component of the WS-Context Specification)) to handle metadata associated to services.

To facilitate management of service metadata, the prototype integrates both UDDI and WS-Context

Specification implementations. It provides a uniform access interface by utilizing UDDI and WS-Context

XML API to interact with the clients. It utilizes an Information Resource Manager abstraction layer to

interact with lower layer Information Services.

To meet the uniformity requirements, the Hybrid Grid Information Service

architecture presents abstraction layers, which enables the system to support one to many

information services and their communication protocols. This way, the system unifies

different information services under one hybrid system.

To meet the federation requirement, it presents a federation capability where

different information services can be federated in metadata instances. To facilitate this

capability, we introduce a Unified Schema by integrating different information service

schemas. The Unified Schema provides a common platform to enable interaction between

customized implementations of Grid Information Services. With this capability, the

 52

system allows users to provide their own mapping rules. The Hybrid System provides

transformations between metadata instances of the Unified Schema and the customized

Grid Information Service Schemas (such as Extended UDDI Schema).

To meet the interoperability requirement, and to be compatible with existing

Grid/Web Service standards, we implemented two Information Services (Extended UDDI

XML Metadata Service and WS-Context XML Metadata Service) based on WS-I

compatible WS-Context [82] and UDDI [8] Specifications. A centralized version of the

architecture is depicted in Figure 2. This figure illustrates a client interacting with the

Hybrid Grid Information Service, which is running as an add-on component above the

Extended UDDI and WS-Context Information Services.

To meet the performance requirement, the Hybrid Grid Information Service

utilizes an in-memory storage to minimize average execution time for standard

operations. The in-memory storage provides associated shared memory platform and is

designed based on the TupleSpaces paradigm (see Section 2.3). This in turn minimizes

the access latency.

To provide persistency of information, the Hybrid Information Service backs-up

newly-inserted/updated metadata instances into the appropriate information service

implementation back-end with certain time intervals. To meet the fault-tolerance

requirement (see Section 1.3.1), the system utilizes replication technique to provide high

availability of information. Section 2.4 gives a brief overview of existing solutions to

replication technique. Replication can be categorized by the manner in which replicas are

created and managed. One strategy is permanent replication: replicas are manually

created, managed and kept permanently. This strategy is mostly used for fault-tolerance

 53

reasons. Another strategy is server-initiated (dynamic) replication: replicas are created,

managed and kept based on changing user behavior. This strategy is mostly used to

enhance system performance. The Hybrid Grid Information Service utilizes both

permanent replication and dynamic replication technique. The permanent replication is

used to provide fault-tolerance in terms of availability. The dynamic replication technique

is used for performance optimization. Here, the dynamic replication technique enhances

performance by replicating data onto servers in the proximity of demanding clients that in

turn reduces access latency. Figure 3 illustrates the decentralized version of the

architecture.

Subscriber

Publisher

Replica Server-2 Replica Server-N

Topic Based Publish-Subscribe

Messaging System

HTTP(S)

WSDL

Client

WSDL

Client

WSDL WSDL

Database

Replica Server-1

Database

Database

WSDL

HYBRID Service

WSDL

HYBRID Service

HYBRID

Grid Information Service

Ext UDDI

Database

WS-Context
...

Database

Ext UDDI

Database

WS-Context
...

Ext UDDI WS-Context
...

Figure 3 Distributed Hybrid Grid Information Services. This figure illustrates N-node decentralized Hybrid

Service from the perspective of a single Hybrid Service (Replica Server-1) interacting with two clients. The

Hybrid Grid Information Service uses a topic based publish-subscribe messaging system to enable

communication between its instances.

 54

To meet the dynamism requirement (see Section 1.3.1), the proposed system

introduces a) efficient metadata access/storage capabilities and b) optimization

techniques for self-adaptation to instantaneous client-demand changes. Firstly, to achieve

efficiency in metadata access and storage, it utilizes publish-subscribe based messaging

schemes. For an example, if a query cannot be granted locally and requires external

metadata, the request is broadcasted only to those nodes hosting the requested metadata

in the network at least to retrieve one response satisfying the request. This way the

system is able to probe the system to look for a running server carrying the right

information at the time of the query. Secondly, we observe that in a dynamic Grid/Web

Service collection, the nature of data is very dynamic and the replica servers hosting

copies of a context may have volatile behavior. Moreover, metadata may have changing

user demands. To capture the dynamic behavior, the Hybrid System uses the dynamic

replication technique where copies of a data may be created, deleted, or migrated among

hosting data-systems based on changing user demands [109].

3.2 Network communication model

An important aspect of the proposed system is that it utilizes a software

multicasting capability as a communication medium for sending out access and storage

requests to the network nodes. This is a topic-based publish-subscribe software

multicasting mechanism, and it is used to provide message-based communication. Any

node can publish and subscribe to topics, which in turn create a multi-publisher multicast

broker network.

 55

The architectural design of the proposed system is built on top such publish-

subscribe based multicast broker network system as depicted in Figure 4. In this

illustration, each peer runs a Hybrid Grid Information Service. We use NaradaBrokering

[110] publish-subscribe system as a communication middleware for message exchanges

between peers. NaradaBrokering establishes a hierarchy structure at the network, where a

peer is part of a cluster that is a part of a super-cluster, which is in turn part of a super-

super-cluster and so on. It provides efficient and reliable message delivery to the targeted

peer en route to intended clients. For example, in Figure 4, we observe various message

delivery routes from peer-2 to peer-7. The NaradaBrokering software is able to make

decision to choose the most efficient message delivery route, i.e., 2-6-7, as opposed to

inefficient delivery routes such as 2-3-5-6-7 or 2-3-4-10-9-8-6-7. Here, every peer, either

targeted or en route to one, computes to shortest path to reach target destinations.

1

2

3
4

5

6

7
8

9

10

11

WSDL

Client

WSDL

Client

WSDL WSDL

HYBRID

Grid Information Service

Database

Ext UDDI

Database

WS-Context
…

Figure 4 An example eleven-node Hybrid Service metadata hosting environment where each node is

connected with publish-subscribe based overlay network. Numbered squares represent nodes running

Hybrid Services (see Figure 2 for centralized version of the ser service). The thick lines on the figure are

used to show different message delivery routes between peers 2 and 7 that are described in the text.

 56

3.3 Assumptions

Our architectural design relies on following assumptions.

• Memory Management: We assume that today’s servers are capable of holding

both interaction-independent and interaction-dependent metadata (associated to

Grid/Web Services) in in-memory storage.

• Consistency: A client-centric consistency model (that allows replicas of the same

context to be different within the borders of the system, while providing

consistency from the perspective of a client) is sufficient for the targeted

application use domains described in Section 1.3.2.

3.4 System Components

The architectural design of the proposed system consists of abstraction layers.

Figure 5 illustrates the detailed architectural design of the system. In order to implement

the abstraction layers, the Hybrid System implementation consists of various modules

such as Query and Publishing, Expeditor, Access, Storage, Filtering and Information

Resource Manager and Sequencer. We discuss the abstraction layers of the system within

the context of the system’s modular structure in the following sections.

 57

Client

TUPLE SPACE API

TUPLE POOL

Extended UDDI

WS API

TUPLE processor

Lifetime

Management

Persistency

Management

Fault Tolerance

Management

WS-Context

WS API
….

Request processor

Access Control Notification

Extended UDDI WS-Context ….

Information Resource Manager
PUB-SUB Network Manager

Unified

Schema API

Dynamic Caching

Management

Filter

Figure 5 The Architectural Design for the Hybrid Grid Information Service

3.4.1 Query and Publishing Module

The Query and Publishing module implements the following abstraction layers: 1)

The uniform access interface layer, 2) The request-processing layer, and 3) The access

control and notification layers. 1) The clients interact with the system through the

uniform access interface. The uniform access layer imports the XML API of the

supported Information Services. As illustrated in Figure 5, the Hybrid Information

Service prototype supports XML API for Extended UDDI, WS-Context and Unified

Schema (the Unified Schema integrates different local schemas into one global schema

for federation of information services. See Section 4.4 for details.). The access interface

can import more XML API, as the new information services are integrated with the

system. 2) The request-processing layer is responsible for extracting incoming requests

 58

and process operations on the Hybrid Service. 3) The notification capability enables the

interested clients to be notified of the state changes happening in a metadata. It is

implemented by utilizing publish-subscribe based paradigm. The access control

abstraction layer is responsible for enforcing controlled access to the Hybrid Grid

Information Service.

3.4.2 Expeditor Module

The Expeditor module implements the following abstraction layers: 1) Tuple

Spaces Access layer, 2) Tuple Pool, 3) Tuple-processing and various capability layers. 1)

TupleSpaces Access API allows access to in-memory storage. This API supports all

query/publish operations that can take place on the Tuple Pool., 2) The Tuple Pool

implements a lightweight implementation of JavaSpaces Specification (see Section 2.3

for details) and is a generalized in-memory storage mechanism. It enables mutually

exclusive access and associative lookup to shared data, 3) The tuple processor is being

used to provide various capabilities. Once the metadata instances are stored in the Tuple

Pool as tuple objects, the system starts processing the tuples and provides the following

capabilities. The first capability is the LifeTime Management. Each metadata instance

may have a lifetime defined by the user. If the metadata lifetime is exceeded, then it is

evicted from the TupleSpace. The second capability is the Persistency Management. The

system checks with the tuple space every so often for newly added /updated tuples and

stores them into the database for persistency of information. The third capability is the

Fault Tolerance Management. The system checks with the tuple space every so often for

newly-added/updated tuples and replicates them in other Hybrid Service instances using

the publish-subscribe messaging system. This capability also provides consistency among

 59

the replicated datasets. The fourth capability is the Dynamic Caching Management. With

this capability, the system keeps track of the requests coming from the pub-sub system

and replicates/migrates tuples to other information services where the high demand is

originated.

3.4.3 Filter and Resource Manager Modules

In this thesis, to facilitate testing of the Hybrid Service federation capability, we

introduce a Unified Schema and its Query/Publish XML API to provide federation of

information in Grid Information Services. To illustrate the federation capability, the

Unified Schema is constructed by integrating three information service schemas:

Extended UDDI, WS-Context and Glue (see 4.4.1 for more details). We discuss the

abstract data models and communication protocols of the Unified Schema in Section 4.4

in detail. This approach is introduced to provide a common communication platform

among the existing information services.

The Filtering module is implemented to support the federation capability of the

Hybrid System. It implements the filtering layer, which provides filtering capability

based on the user defined mapping rules to provide transformations between instances of

the Unified Schema and local information service schemas such as WS-Context Schema.

The Information Resource Manager component implements the Information

Resource Management layer. This layer is responsible for managing low-level

information service implementations. It provides decoupling between the Hybrid Service

and sub-systems.

 60

3.4.4 Sequencer Module

The Sequencer module ensures that an order is imposed on actions/events that

take place in a session. It is used to label each metadata, which will be stored in the

system, with synchronized timestamps.

3.4.5 Storage and Access Modules

Both Storage and Access Modules implements the Pub-Sub Network

Management abstraction layer. The Storage module mainly handles with replica

placement, dynamic replication and consistency enforcement. The Access module

handles with request distribution. It deals with the problem of redirecting a client request

to the appropriate replica server. Both Access and Storage modules utilize topic based

publish-subscribe paradigm to interact with the other nodes in the system.

3.5 Supported Information Service Specifications

The Hybrid Grid Information Service presents an architecture, which extends the

capabilities of customized implementations of information service specifications. This

add-on capability enables unification and federation of information in Grid Information

Services.

To facilitate testing of the unification capability, we provided implementations of

the two specifications: the WS-Context Specification and the UDDI Specification. Thus,

the prototype implementation of the Hybrid Service supports the WS-Context and

Extended UDDI XML Metadata Services. The WS-Context XML Metadata Service

manages session-related, interaction-dependent metadata associated to Grid/Web

Services. The extended UDDI XML Metadata Service is an implementation of extended

 61

version of existing UDDI Specification. It manages interaction-independent, rarely

changing metadata associated to Grid/Web Services.

To facilitate the testing of the federation capability, we introduced a Unified

Schema Specification. With the Unified Schema Specification, we integrate different

information service data models under one Unified Schema and provide an XML API to

publish/inquire Unified Schema metadata instances.

3.5.1 WS-Context Specification

Section 2.1.2 discussed the WS-Context Specification and its limitations. The

WS-Context Specification defines session related, interaction-dependent metadata. This

thesis implements the WS-Context XML Metadata Service, which presents a schema and

XML API for the Context Manager component of the WS-Context Specification. The

WS-Context Service implementation expands on the existing WS-Context Specification

and provides advanced capabilities such as a) support for real-time replay capabilities (in

particular for collaboration domain), b) support for session failure recovery, and c)

parent-child relationships on the state information of the Grid/Web Services. The

semantics of the extended version of the WS-Context Specification are discussed in

Section 4.2, while the prototype implementation is discussed in Section 5.7

3.5.2 Extended UDDI Specification

Section 2.1.1.4 discussed the limitations of existing UDDI Specifications. This

thesis presents an extended UDDI Specification addressing these limitations and provides

an implementation: the extended UDDI XML Metadata Service. The extended UDDI

Service provides a metadata-oriented storage capability. It supports static metadata

 62

management requirements of Grid/Web Services. It is designed to be a domain-

independent metadata service to meet with the static, stateless information requirements

of the application use domain discussed in Section 1.3.2.2. To meet with the specific

metadata requirements of Geographical Information Systems, the design was further

extended to support geospatial queries on the metadata catalog. This service introduces

various capabilities: a) publishing additional metadata associated with service entries, b)

posing metadata-oriented, geospatial, and domain-independent queries on the static

metadata catalog and c) aggregating and searching geospatial services. The semantics of

extended UDDI Specification are discussed in Sections 4.3, while the prototype

implementation is discussed in Section 5.8.

3.5.3 Unified Schema Specification

The Hybrid Service supports a federation capability where different Grid

Information Services can be integrated in metadata instances. This thesis introduces a

Unified Schema, which integrates different information service schemas and provides

Query/Publish XML API that can be carried out on the metadata instances of the Unified

Schema. This enables the Hybrid Service clients to publish/query metadata describing all

aspects (interaction-independent and interaction-dependent) of Grid/Web Services. The

semantics of the Unified Schema is discussed in Section 4.4.

3.6 Summary

This chapter presented the architectural design of the Hybrid Grid Information

Service. (The detailed XML API for the Hybrid Service is given in the Appendix A). To

achieve this goal, first, an overview of the system was given. Then, its network

 63

communication model was discussed. Next, the assumptions on which the system is built

were presented followed by brief descriptions of its modular components. Finally, the

information service specifications, which are supported by the Hybrid System, were

introduced. Chapter 4 discusses the semantics of the proposed system, while Chapter 5

discusses the prototype implementation.

 64

Chapter 4

Abstract Data Models

Geographical Information Systems provide very useful problems in supporting

“virtual organizations” and their associated information systems. These systems are

comprised of various archival data services (Web Feature Services), data sources (Web-

enabled sensors), and map generating services. All of these services are metadata-rich, as

each of them must describe their capabilities (What sorts of geospatial features do

they provide? What geographic bounding boxes do they support?). Organizations like

the Open Geospatial Consortium define these metadata standards. These services must

typically be assembled into short-term service collections that, together with code

execution services, are combined into a meta-application (i.e. a workflow). Thus, we

see that we have both stateless and stateful (transient) metadata. To address the problems

of metadata management in Geographical Information Systems-like application use

domains (see Section 1.3.2.1), we have investigated semantics for Information Services

 65

that can provide uniform access interface to stateless and stateful information associated

to services.

4.1 Overview

We designed and implemented a novel architecture [15-17, 25, 108] for a

Hybrid Grid Information Service supporting handling and discovery of not only quasi-

static, stateless metadata, but also session related metadata. The Hybrid Service runs as

an add-on architecture above existing information services. It provides unification and

federation of information in Grid Information Services. The Hybrid Service provides a

uniform access interface that allows users to publish/inquire metadata instances by

utilizing different information service XML APIs.

Firstly, to achieve the unification capability with the Hybrid Service, we built two

information services: WS-Context XML Metadata Service and Extended UDDI XML

Metadata Service. To implement these services, we utilized the two WS-I compatible

Specifications: Web Services Context (WS-Context) [82] and Universal Description,

Discovery, and Integration (UDDI) [8]. The WS-Context Service is implemented based

on WS-Context Specification. It is an implementation of the Context Manager component

of the WS-Context Specification. We designed a schema and XML API set to provide

search/access/storage interface for the session-related metadata. The Extended UDDI

Service is implemented based on extended UDDI Specification which we designed by

expanding on out-of-box UDDI Specifications. We designed extensions to out-of-box

UDDI Data Structure and UDDI XML API set to be able to associate both prescriptive

and descriptive metadata with service entries.

 66

Secondly, to achieve the federation capability with the Hybrid Service, we built a

Unified Schema Specification. This Specification introduces a Unified Schema, which

integrates different information service data models. For schema integration, we consider

three Information Service Schemas: Extended UDDI, WS-Context and Glue [111]. To be

able publish/inquire metadata instances of the Unified Schema; we also introduce an

XML API set.

Thirdly, to achieve a uniform access interface with the Hybrid Service, we

provided a Hybrid Schema, which describes how to interact with the system in a uniform

way, and XML API that would allow the users to publish/inquire metadata instances

utilizing XML APIs of aforementioned specifications.

In this section, we discuss the semantics of the supported specifications and

Hybrid Service in detail. We have identified the following base elements of the

semantics: a) information model (data semantics), b) XML programming interface

(semantics for publish and inquiry XML API).

4.2 The WS-Context Specification Semantics

Chapter 2 introduced varying ways of managing context associated with services.

Section 2.1.2 described methodologies for managing interaction-dependent context.

Among these methodologies, we find WS-Context promising to tackle the problem of

managing distributed session state. Unlike the point-to-point approaches explained in

Section 2.1.2, WS-Context models a third-party metadata repository as an external entity

where more than two services can easily access/store highly dynamic, shared metadata.

 67

We investigated semantics for a XML Metadata Service that would expand on WS-

Context approach for managing distributed session state information.

4.2.1 WS-Context Schema

We introduced an information model comprised of following entities:

sessionEntity, sessionService and context. Figure 6 illustrates the data model for the WS-

Context Service. A sessionEntity describes information about a session under which a

service activity takes place. A sessionEntity may contain one to many sessionService

entities. A sessionService entity describes information about a Web Service participating

to a session. Both sessionEntity and sessionService may contain one to many context

entities. A context entity contains information about interaction-dependent, dynamic

metadata associated to either sessionService or sessionEntity or both. Each entity

represents specific types of metadata. Instances of these structures have system-defined

unique identifiers. An instance of an entity gets its identifier when it is first published

into the system. All entities have a lifetime during which the entity instances are expected

to be up-to-date. The following sections discuss the core entities of the WS-Context

Service Schema.

 68

context: information about a

dynamic metadata and metadata

value

sessionService: all information

about a service participating to a

session
contains

contains

contains

sessionEntity: information about

a session under which an activity

takes place

 Figure 6 WS-Context Service Schema

4.2.1.1 Session entity structure

A sessionEntity describes a period of time devoted to a specific activity,

associated contexts, and serviceService involved in the activity. A sessionEntity can be

considered as an information holder for the dynamically generated information. The

structure diagram for sessionEntity is illustrated in Figure 7. An instance of a

sessionEntity is uniquely identified with a session key. A session key is generated by the

system when an instance of the entity is published. If the session key is specified in a

publication operation, the system updates the corresponding entry with the new

information. When retrieving an instance of a session, a session key must be presented. A

sessionEntity may have name and description associated with it. A name is a user-defined

identifier and its uniqueness is up to the session publisher.

 69

 Figure 7 Structure diagram for sessionEntity

A user-defined identifier is useful for the information providers to manage their

own data. A description is optional textual information about a session. Each

sessionEntity contains one to many context entity structures. The context entity structure

contains dynamic metadata associated to a Web Service or a session instance or both.

(See 4.2.1.3 for context entity structure). Each sessionEntity is associated with its

participant sessionServices. The sessionService entity structure is used as an information

container for holding limited metadata about a Web Service participating to a session (see

4.2.1.2 below for session service entity structure). A lease structure describes a period of

time during which a sessionEntity or serviceService or a context entity instances can be

discoverable.

4.2.1.2 Session service entity structure

The sessionService entity contains descriptive, yet limited information about Web

Services participating to a session. The structure diagram for sessionService entity is

 70

illustrated in Figure 8. A service key identifies a sessionService entity. A sessionService

may participate one or more sessions. There is no limit on the number of sessions in

which a service can participate. These sessions are identified by session keys. Each

sessionService has a name and description associated with it. This entity has an endpoint

address field, which describes the endpoint address of the sessionService. Each

sessionService may have one or more context entities associated to it. The lease structure

identifies the lifetime of the sessionService under consideration.

 Figure 8 Structure diagram for sessionService

4.2.1.3 Context entity structure

A context entity describes dynamically generated metadata. The structure diagram

for context entity is illustrated in Figure 9. An instance of a context entity is uniquely

identified with a context key, which is generated by the system when an instance of the

entity is published. If the context key is specified in a publication operation, the system

 71

updates the corresponding entry with the new information. When retrieving an instance

of a context, a context key must be presented.

Figure 9 Structure diagram for context entity

A context is associated with a sessionEntity. The session key element uniquely

identifies the sessionEntity that is an information container for the context under

consideration. A context has also a service key, since it may also be associated with a

sessionService participating a session. A context has a name associated with it. A name is

a user-defined identifier and its uniqueness is up to the context publisher. The

information providers manage their own data in the interaction-dependent context space

by using this user-defined identifier. The context value can be in any representation

format such as binary, XML or RDF. Each context has a lifetime. Thus, each context

entity contains the aforementioned lease structure describing the period of time during

which it can be discoverable.

 72

4.2.2 WS-Context Schema XML API

We present an XML API for the WS-Context Service. The XML API sets of the

WS-Context XML Metadata Service can be grouped as Publish, Inquiry, Proprietary, and

Security. Appendix A.1 gives the detailed descriptions about the syntax, arguments, and

return values of the WS-Context XML API Sets. Table 2 gives the list of available XML

API, which we introduce with the WS-Context Service.

Function Category Information Service

Save_context Publish Functions The WS-Context Information

Service XML API: This API is

to support/handle interaction-

dependent metadata associated to

both services and sessions.

Save_session

Save_sessionService

Delete_context

Delete_session

Delete_sessionService

Get_contextDetail Inquiry Functions

Get_sessionDetail

Get_sessionServiceDetail

Find_context

Find_session

Find_sessionService

Save_publisher Proprietary Functions

 Get_publisherDetail

Delete_publisher

Find_publisher

Get_authToken Security Functions

 Discard_authToken

Table 2 XML API for the WS-Context Service

The Publish XML API is used to publish metadata instances belonging to

different entities of the WS-Context Schema. The Inquiry XML API is used to pose

inquiries and to retrieve metadata from service. The Proprietary XML API is

implemented to provide find/add/modify/delete operations on the publisher list, i.e.,

authorized users of the system. The Security XML API is used enable authenticated

access to the service. Here, we adapt semantics for both the proprietary XML API and

security XML API from existing UDDI Specifications.

 73

4.2.3 Using WS-Context Schema XML API

Given the capabilities of the WS-Context Service, one can simply populate

metadata instances using the WS-Context XML API as in the following scenario. Say, a

user publishes a metadata under an already created session. In this case, the user first

constructs a context entity element.

Here, a context entity is used to represent interaction-dependent, dynamic metadata

associated with a session or a service or both. Each context entity has both system-

defined and user-defined identifiers. The uniqueness of the system-defined identifier is

ensured by the system itself, whereas, the user-defined identifier is simply used to enable

users to manage their memory space in the context service. As an example, we can

illustrate a context as in ((system-defined-uuid, user-defined-uuid, “Job completed”)). A

complete example of a context is given in the Appendix B.1. A context entity can be also

associated with service entity and it has a lifetime. Contexts may be arranged in parent-

child relationships. One can create a hierarchical session tree where each branch can be

used as an information holder for contexts with similar characteristics. This enables the

system to be queried for contexts associated to a session under consideration. This

enables the system to track the associations between sessions. As the context elements are

constructed, they can be published with save_context function of the WS-Context XML

API. On receiving publishing metadata request, the system processes the request, extracts

the context entity instance, assigns a unique identifier, stores in the in-memory storage

and returns a respond back to the client.

 74

4.3 The Extended UDDI Specification Semantics

We have designed extensions to the out-of-box UDDI Data Structure (described

in [8]) to be able to associate both prescriptive and descriptive metadata with service

entries. This way the system can interoperate with existing UDDI clients without

requiring an excessive change in the implementations. UDDI-M [75] and UDDIe [71]

projects introduced the idea of associating simple (name, value) pairs with service

entities. This methodology is promising as it provides a generic metadata catalog and yet

it has its own merits of simplicity in implementation. Thus, we adopt this approach and

expand on existing UDDI Specifications as described in the following section.

4.3.1 Extended UDDI Schema

We introduced an extended UDDI data model to address the metadata

requirements of Geographical Information System/Sensor Grids. The existing UDDI Data

Model consists of following core entities: businessEntity, businessService,

bindingTemplate, publisherAssertions and tModel. A businessEntity contains information

about the party who publishes information about a service. It may contain one to many

businessService entities. The publisherAssertions entity defines the relationship between

the two businessEntities. A businessService entity provides descriptive information about

a particular family of Grid/Web Services. It may contain one to many bindingTemplate

entities, which define the technical information about a service end-point. A

bindingTemplate entity contains references to tModel, which defines descriptions of

specifications for service end-points.

 75

In our approach, we expanded on the out-of-box UDDI data model. This data

model includes following additional/modified entities: a) service attribute entity

(serviceAttribute) and b) extended business service entity (businessService). Here, each

businessService entity is associated with one to many serviceAttribute entities. We

describe the additional/modified data model entities (both the serviceAttribute and

businessService entities) in the next sections.

serviceAttribute: information

about metadata associated to

service

bindingTemplate: Technical

information about a service point

tModel: Description of

Specifications for services or

taxonomies

publisherAssertions: Defines

relationships between two

business entities

businessEntity: information

about the party who publishes

information about Web Services

businessService: all information

about a service

has references to

has references to

contains contains

contains

Figure 10 Extended UDDI Service Schema

4.3.1.1 Business service entity structure

The UDDI’s business service entity structure contains descriptive, yet limited

information about Web Services. A comprehensive description of the out-of-box business

 76

service entity structure defined by UDDI can be found in [8]. Here, we only discuss the

additional XML structures introduced to expand on existing business service entity. (The

structure diagram for business service entity is illustrated in Figure 11)

Figure 11 Partial structure diagram for businessService entity

These additional XML elements are a) service attribute and b) lease. The service

attribute XML element corresponds to a static metadata (e.g. WSDL of a given service).

Similar to session entity, a business service entity may have a lifetime associated with it.

A lease structure describes a period of time during which a service can be discoverable.

4.3.1.2 Service attribute entity structure

A service attribute (serviceAttribute) data structure describes information

associated with service entities. The structure diagram for serviceAttribute entity is

illustrated in Figure 12. Each service attribute corresponds to a piece of metadata, and it

is simply expressed with (name, value) pairs. Apart from similar approaches [71, 75], in

the proposed system, a service attribute includes a) a list of abstractAtttributeData, b) a

categoryBag and c) a boundingBox XML structures. An abstractAttributeData element is

used to represent metadata that is directly related with functionality of the service and

store/maintain these domain specific auxiliary files as-is. This allows us to add third-

 77

party data models such as “capabilities.xml” metadata file describing the data coverage of

domain-specific services such as the geospatial services. An abstractAttributeData can be

in any representation format such as XML or RDF. This data structure allows us to pose

domain-specific queries on the metadata catalog. Say, an abstractAttributeData of a

geospatial service entry contains “capabilities.xml” metadata file. As it is in XML format,

a client may conduct a find_service operation with an XPATH query statement to be

carried out on the abstractAttributeData, i.e. “capabilities.xml”. In this case, the results

will be the list of geospatial service entries that satisfy the domain-specific XPATH

query.

The categoryBag is used to provide a custom classification scheme to categorize

serviceAttribute elements. A simple classification could be whether the service attribute

is prescriptive or descriptive. A boundingBox element is used to describe both temporal

and spatial attributes of a given geographic feature. This way the system enables spatial

query capabilities on the metadata catalog.

 78

 Figure 12 Structure diagram for serviceAttribute

4.3.2 Extended UDDI Schema XML API

We present extensions/modifications to existing UDDI XML API set to

standardize the additional capabilities of our implementation. These additional

capabilities can be grouped under two XML API categories: Publish and Inquiry. Table 3

gives the list of additional XML API that we introduce with the Extended UDDI Service.

Function Category Information Service

Save_serviceAttribute Publish Extended UDDI API: This

API is to support/handle

interaction-independent

metadata associated to

services.

Save_service

Delete_serviceAttribute

Delete_service

Get_serviceAttributeDetail Inquiry

Get_serviceDetail

Find_serviceAttribute

Find_service

Table 3 The Publish/Inquiry XML API for the extended UDDI Service. The extended UDDI XML API is

introduced an extension to existing UDDI Specification XML API Sets.

 79

The Publish XML API is used to publish metadata instances belonging to

different entities of the extended UDDI Schema. The Inquiry XML API is used to pose

inquiries and to retrieve metadata from the Extended UDDI Information Service. More

detailed information about syntax, arguments, and return values of the programming API

sets are given in Appendix A.2.

4.3.3 Using Extended UDDI Schema XML API

Given the capabilities of the Extended-UDDI Service, one can simply populate

metadata instances using the Extended-UDDI XML API as in the following scenario.

Say, a user publishes a new metadata to be attached to an already existing service in the

system. In this case, the user constructs a serviceAttribute element. Based on

aforementioned extended UDDI data model, each service entry is associated with one or

more serviceAttribute XML elements. A serviceAttribute corresponds to a piece of

interaction-independent metadata and it is simply expressed with (name, value) pair. We

can illustrate a serviceAttribute as in the following example: ((throughput, 0.9)). A

serviceAttribute can be associated with a lifetime and categorized based on custom

classification schemes. A simple classification could be whether the serviceAttribute is

prescriptive or descriptive. In the aforementioned example, the throughput service

attribute can be classified as descriptive. In some cases, a serviceAttribute may

correspond to a domain-specific metadata where service metadata could be directly

related with functionality of the service. For instance, OGC compatible Geographical

Information System services provide a “capabilities.xml” metadata file describing the

data coverage of geospatial services. We use an abstractAttributeData element to

represent such metadata and store/maintain these domain specific auxiliary files as-is. As

 80

the serviceAttribute is constructed, it can then be published to the Hybrid Service by

using “save_serviceAttribute” operation of the extended UDDI XML API. On receiving a

metadata publish request, the system extracts the instance of the serviceAttribute entity

from the incoming requests, assigns a unique identifier to it and stores in in-memory

storage. Once the publish operation is completed, a response is sent to the publishing

client.

4.4 The Unified Schema Specification Semantics

The Hybrid Grid Information Service provides a federation capability that enables

integration of different information services in metadata instances. With this capability,

our aim is to introduce an architecture, which would support an integrated schema by

utilizing expressiveness power of different information service schemas. To facilitate the

testing of this capability, we created a Unified Schema that would integrate different

information service schemas. We consider the schemas ExtendedUDDI, Glue and WS-

Context as a motivating example to create the Unified Schema. The Extended UDDI and

the WS-Context Schemas are described in Sections 4.2 and 4.3 respectively in detail. We

discuss the Glue Schema Specification in the next section. We discuss the methodology

for integrating these Schemas in Section 4.4.2.

4.4.1 The Glue Schema Specification

The Grid Laboratory Uniform Environment (Glue) Schema [111] is a

collaboration effort to support interoperability between US and Europe Grid Projects. It

presents description of core Grid resources at the conceptual level by defining an

information model. The Information Model of the Glue Schema is given in [111]. The

 81

Glue Schema has the following core entities: site, computing element, storage element,

service. The site entity is used to aggregate services and resources installed and managed

by the same people. The computing element entity is a concept that captures information

related computing resources. The storage element entity presents a data model for

abstracting storage resources. The service entity captures all the common attributes

associated to Grid Services. A site can aggregate one to n computing elements, one to n

storage elements, one to n services. Here, each service may contain one to n service data.

4.4.2 The Schema Integration

Schema integration is an activity of providing a unified representation of multiple

data models [112]. The schema integration consists of two core steps: schema matching

[112] and schema merging [113]. The schema matching step identifies mapping between

the similar entities of schemas. Matching between different schema entities are defined

based on semantic relationships according to the comparison of their intentional domains.

To provide schema matching we have two steps: a) finding the matching concepts, b)

finding the semantic relationship and constructing partial integrated schemas among the

matching concepts. The schema-merging step merges different schemas and creates an

integrated schema based on the mappings identified during schema matching step. The

schema-merging step also identifies the mappings between the integrated schema and

local schemas.

We consider the schemas ExtendedUDDI, Glue and WS-Context as a motivating

example to create the Unified Schema. We start the schema integration between the

ExtendedUDDI and Glue Schemas. In the first step (schema matching step), we find the

following correspondences between the entities of these schemas. The first mapping is

 82

between ExtendedUDDI.businessEntity and Glue.site entities: The ExtendedUDDI.

businessEntity is used to aggregate one to many Web Services managed by the same

people or organization. Similarly, the Glue.site entity is used to aggregate services and

resources managed by same people. Therefore, businessEntity and site are matching

concepts, as their intentional domains are similar. The cardinality between the site and

businessEntity differs, as the businessEntity may contain one to many site entities. For an

example, Indiana University could be an instance of the businessEntity while the

Community Grids Laboratory could be an instance of the site entity. Indiana University

contains one to many research labs. The second mapping is between

ExtendedUDDI.businessService and Glue.service entities: These entities are equivalent

as the set of real objects that they represent are the same. The cardinality between these

entities is also the same. In the integrated schema, we unify these entities as service

entity. The third mapping is between ExtendedUDDI.serviceAttribute and

Glue.serviceData: These two entities can be considered as equivalent as they both

describe attributes associated to Grid/Web Services. The cardinality between these

entities is also the same. In the integrated schema, we unify these entities as metadata.

After the schema matching is completed, we merge the two schemas and create an

integrated schema (ExtendedUDDI &Glue) based on the mappings that we identified.

We continue with the schema integration by integrating the WS-Context Schema

with the newly constructed ExtendedUDDI&Glue Schema. In the schema-matching step,

we find the following mappings: First mapping is between

(ExtendedUDDI&Glue).businessEntity, (ExtendedUDDI&Glue).site and WS-

Context.sessionEntity: The businessEntity is used to aggregate one to many services and

 83

sites managed by the same people. The site entity aggragates grid resources including

services, computing and storage elements. The sessionEntity is used to aggregate session

services participating to a session. Therefore, businessEntity and site (from

ExtendedUDDI&Glue schema) can be considered as matching concepts with the

sessionEntity (from WS-Context schema) as their intentional domains are similar. The

cardinality between these entities differs, as the businessEntity may contain one to may

sessionEntities. The site entity also may contain one to many sessionEntities. The second

mapping is between: (ExtendedUDDI&Glue). service and WS-Context.sessionService:

These entities are equivalent as the intentional domains that they represent are the same.

The cardinality between these entities is also the same. In the integrated schema, we unify

these entities as service entity. The third mapping is between

(ExtendedUDDI&Glue).metadata and WS-Context.context: These entities are equivalent

as the intentional domains that they represent are the same. The cardinality between these

entities is also the same. In the integrated schema, we unify these entities as metadata

entity. Finally, we merge the two schemas based on the mappings that we identified and

create a unified schema (see Figure 13 for illustration) that integrates the Extended

UDDI, WS-Context and Glue Schemas.

4.4.3 The Unified Schema

We built a Unified Service Schema integrating the extended UDDI, the WS-

Context and the Glue Schemas [111] by following the steps described in the previous

section. The Unified Schema captures both interaction-dependent and interaction-

independent information associated to Grid/Web Services. The Unified Schema unifies

matching and disjoint entities of different schemas. It is comprised of the following

 84

entities: businessEntity, sessionEntity, site, service, computingElement, storageElement,

bindingTemplate, metadata, tModel, publisherAssertions. Figure 13 illustrates the

information model for the Unified Schema. A businessEntity describes a party who

publishes information about a session (in other words service activity), site or service.

The publisherAssertions entity defines the relationship between the two businessEntities.

The sessionEntity describes information about a service activity that takes place. A

sessionEntity may contain one to many service and metadata entities. The site entity

describes information about services, their sessions and resources installed and managed

by the same people. The site entity may contain information about Grid resources, such

as services, computingElements and storageElements. The service entity provides

descriptive information about a Grid/Web Service family. It may contain one to many

bindingTemplate entities that define the technical information about a service end-point.

 85

metadata: information about

metadata associated to service

bindingTemplate: Technical

information about a service point

tModel: Description of

Specifications for services or
taxonomies

publisherAssertions: Defines

relationships between two

business entities

computingElement: all info.
required to manage computing

resources

storageElement: all
information required to manage

storage resources

businessEntity: information about

the party who publishes information

about a service, site or session

service: all information about a

service

sessionEntity: all information
about a session (service

activity)

has references to

has references to

contains contains

contains

contains

contains

contains

contains
contains

contains

contains

site: all information about a
concept to aggregate

services, sessions, resourcescontains

Figure 13 Unified Schema

A bindingTemplate entity contains references to tModel that defines descriptions

of specifications for service end-points. The service entity may also have one to many

metadata attached to it. A metadata contains information about both interaction-

dependent, interaction-independent metadata and service data associated to Grid/Web

Services. A metadata entity describes the information pieces associated to services or

sites or sessions as (name, value) pairs.

 86

4.4.4 The Unified Schema XML API

We introduce a Query/Publish XML API that can be carried out on the instances

of the Unified Schema. We can group the Unified Schema XML API under two

categories: Publish and Inquiry.

Function Category Information Service

Save_business Publish The Unified Schema XML

API: This API is to

support/handle both

interaction-independent and

interaction-dependent

metadata associated to

services. It enables a

query/publish syntax on the

heterogeneous information

coming from different

information service providers.

Save_session

Save_service

Save_metadata

Delete_business

Delete_session

Delete_service

Delete_metadata

Get_businessDetail Inquiry

Get_sessionDetail

Get_serviceDetail

Get_metadataDetail

Find_business

Find_session

Find_service

Find_metadata

Table 4 The Publish/Inquiry XML API for the Unified Schema. The Unified Schema XML API is

introduced to enable different information service providers/clients to publish/query metadata to the Hybrid

Service.

The Publish XML API is used to publish metadata instances belonging to

different entities of the Unified Schema. The Inquiry XML API is used to pose inquiries

and to retrieve metadata instances of the Unified Schema. More detailed information

about syntax, arguments, and return values of the programming API sets are given in

Appendix A.3.

4.4.5 Using the Unified Schema XML API

Given these capabilities, one can simply populate the Hybrid Service with Unified

Schema metadata instances using its XML API as in the following scenario. Say, a user

 87

wants to publish both session-related and interaction-independent metadata associated to

an existing service. In this case, the user constructs metadata entity instance. Each

metadata entity has both system-defined and user-defined identifiers. The uniqueness of

the system-defined identifier is ensured by the system itself, whereas, the user-defined

identifier is simply used to enable users to manage their memory space in the context

service. As an example, we can illustrate a context as in the following examples: a)

((throughput, 0.9)) and b) ((system-defined-uuid, user-defined-uuid, “Job completed”)).

A complete example of a context is given in the Appendix B.3. A metadata entity can be

also associated with site, or sessionEntity of the Unified Schema and it has a lifetime. As

the metadata entity instances are constructed, they can be published with

“save_metadata” function of the Unified Schema XML API. On receiving publishing

metadata request, the system processes the request, extracts the metadata entity instance,

assigns a unique identifier, stores in the in-memory storage and returns a respond back to

the client.

4.5 The Hybrid Service Uniform Access Semantics

The Hybrid Service introduces an abstraction layer for uniform access interface to

be able to support one to many information service specification (such as WS-Context,

Extended UDDI, or Unified Schema).

To achieve the uniform access capability, the system presents two XML Schemas:

a) Hybrid Schema and b) Specification Metadata Schema. The Hybrid Schema defines

the generic access interface. The Specification Metadata Schema defines the necessary

 88

information required by the system to support a specification. We discuss the semantics

of the uniform access interface and the specification metadata in the following sections.

4.5.1 The Hybrid Service Schema

The Hybrid Service presents an XML Schema, called the Hybrid Schema, to

enable uniform access to the system. The Hybrid Schema defines publish and inquiry

XML API which allows clients/providers to send specification-based publish/query

requests (such as WS-Context’s “save_context” request) to the system. To illustrate the

Hybrid Service access interface, we only discuss the “save_schemaEntity” element (see

Figure 14), which is used to publish metadata instances into the Hybrid Service. More

detailed information about syntax, arguments, and return values of the XML API sets are

given in Appendix A.4.

 Figure 14 Hybrid Service XML Schema for Hybrid Service metadata publish function

One utilizes the “save_schemaEntity” element to publish metadata instances for

the customized implementations of information service specifications. The

“save_schemaEntity” element includes an “authInfo” element, which describes the

 89

authentication information; “lease” element, which is used to identify the lifetime of the

metadata instance; “schemaName” element, which is used to identify a specification

schema (such as Extended UDDI Schema); “schemaFunctionName”, which is used to

identify the function of the schema (such as “save_ serviceAttribute”);

“schema_SAVERequestXML”, which is an abstract element used for passing the actual

XML document of the specific publish function of a given specification. The Hybrid

Service requires a specification metadata document that describes all necessary

information to be able to process XML API of the schema under consideration. We

discuss the specification metadata semantics in the following section.

4.5.2 Specification Metadata Schema

The Specification Metadata XML Schema is used to define all necessary

information required for the Hybrid Service to support an implementation of information

service specification. The structure diagram for specification metadata is illustrated in

Figure 15. The Hybrid System requires an XML metadata document, which is generated

based on the Specification Metadata Schema, for each information service specification

supported by the system. The specification metadata file enables the Hybrid System to

know how to process instances of a specification XML API.

The specification metadata includes name, description, and version of the

specification under consideration. These are the descriptive information to help the

Hybrid Service to identify the local information service schema under consideration.

 90

Figure 15 Structure diagram for Specification Metadata Schema: This metadata file defines all required

information necessary to support a new information service

The FunctionProperties element describes all required information regarding the

functions that will be supported by the Hybrid Service. The FunctionProperties element

consists of one to many FunctionProperty sub-elements. The FunctionProperty element

consists of function name, memory-mapping and information-service-backend mapping

information. Here the memory-mapping information element defines all necessary

information to process an incoming request for in-memory storage access. The memory-

mapping information element defines the name, user-defined identifier and system-

defined identifier of an entity. The information-service-backend information is needed to

process the incoming request and execute the requested operation on the appropriate

information service backend. This information defines the function name, its arguments,

return values and the class, which needs to be executed in the information service back-

end. The MappingRules element describes all required information regarding the

mapping rules that provide mapping between the Unified Schema and the local

information service schemas such as extended UDDI and WS-Context. The

 91

MappingRules element consists of one-to-many MappingRule sub-elements. Each

MappingRule describes information about how to map a unified schema XML API to a

local information service schema XML API. The MappingRule element contains the

necessary information to identify functions that will be mapped to each other.

4.5.3 Using the Hybrid Service Access Interface

Given these capabilities, one can simply populate the Hybrid Service as in the

following scenario. Say, a user wants to publish a metadata into the Hybrid Service using

WS-Context’s “save_context” operation through the generic access interface. In this

case, firstly, the user constructs an instance of the “save_context” XML document (based

on the WS-Context Specification) as if s/he wants to publish a metadata instance into the

WS-Context Service. Once the specification-based publish function is constructed, it can

be published into the Hybrid Service by utilizing the “save_schemaEntity” operation of

the Hybrid Service Access API.

As for the arguments of the “save_schemaEntity” function, the user needs to pass

the following arguments: a) authentication information, b) lifetime information, c)

schemaName as “WS-Context”, d) schemaFunctionName as “save_context” and e) the

actual save_context document which was constructed based on the WS-Context

Specification. Recall that, for each specification, the Hybrid Service requires a

SpecMetadata XML document (an instance of the Specification Metadata Schema). On

receipt of the “save_schemaEntity” publish operation, the Hybrid Service obtains the

name of the schema (such as WS-Context) and the name of the publish operation (such as

save_context) from the passing arguments. In this case, the Hybrid Service consults with

the WS-Context SpecMetadata document and obtains necessary information about how to

 92

process incoming “save_context” operation. Based on the memory mapping information

obtained from user-provided SpecMetadata file, the system processes the request, extracts

the context metadata entity instance, assigns a unique identifier, stores in the in-memory

storage and returns a response back to the client.

4.6 Summary

This chapter presented the semantics of the information services presented in this

thesis. First, it presented the semantics of the WS-Context Specifications. Second, it

presented the semantics of the extended UDDI Specifications. Third, it presented the

semantics of the Unified Schema Specification. Finally, we introduced the semantics for

the Hybrid Grid Information Service Uniform Access Interface.

 93

Chapter 5

Prototype Implementation

This chapter presents implementation details of a prototype of the aforementioned

system architecture. The purpose of the prototype is to validate the system architecture of

Chapter 3 and abstract data models of Chapter 4. This prototype is implemented by

utilizing following technologies and open-source research projects: a) Java 2 SDK,

Standard Edition with version 1.5 [114], b) Apache Axis Web Service Development

Platform with version 2 [115], c) NaradaBrokering Messaging Infrastructure with version

1.1.6 [116], and d) Apache JUDDI project, an open-source java implementation of the

UDDI Specification [117]. Our implementation is also open-source and available from

[118]. The implementation of the proposed architecture can be structured under three

distinct systems: the Hybrid Grid Information Service, the WS-Context Service and the

extended UDDI Service.

 94

5.1 Hybrid Grid Information Service

We implemented a fault tolerant and high performance Hybrid Grid Information

Service. As described in Chapter 3, each Hybrid Grid Information Service consists of

various modules such as Query and Publishing, Expeditor, Filter and Resource Manager,

Sequencer, Access and Storage. The Query and Publishing module is responsible for

processing the incoming requests issued by end-users. The Expeditor module forms a

generalized in-memory storage mechanism and provides a number of capabilities such as

persistency of information. The Filter and Resource Manager Module provides

decoupling between the Hybrid Information Service and the sub-systems. The Sequencer

module is responsible for labeling each incoming context with a synchronized timestamp.

Finally, the Access and Storage modules are responsible for actual communication

between the distributed Hybrid Service nodes to support the functionalities of a replica

hosting system.

In our design, we focus on three fundamental issues of designing a replica hosting

system: replica-content placement, request routing and consistency enforcement. Replica

content placement has to do with creating a set of duplicated data replicas across the

nodes of a distributed system. Request routing has to do with redirecting a client request

to the most appropriate replica server. Consistency enforcement deals with ensuring data

coherency across replicas in the system.

In the modular structure of the system architecture, the Storage module covers the

replica-content placement and consistency enforcement issues, while the Access module

implements the request routing. The communication between the nodes is done by using

a multi-publisher, multicast communication mechanism (see Section 3.2). The system

 95

utilizes the NaradaBrokering [89, 110] software, an open-source, publish-subscribe based

messaging infrastructure, to provide such communication. A node is connected to another

via NaradaBrokering link, which in turn creates an overlay network that connects the

Hybrid Service nodes. We discuss the execution flow of the system and the abstraction

layers of the implementation in the following section.

5.1.1 Execution Logic Flow

Figure 16 illustrates the execution logic flow for the Hybrid Grid Information

Service. Firstly, the proposed system presents a uniform access layer. This abstraction

layer supports one to many communication protocol of different information services.

Secondly, the system presents a request-processing layer. On receiving the client

request, the request processor extracts the incoming request. The request processor

processes the incoming request by checking it with the specification metadata files (see

Section 4.5.2). For each supported schema, there is a specification-mapping metadata file,

which defines all the functions that can be executed on the instances of the schema under

consideration. Each function defines the required information related with the schema

entities to be represented in the Tuple Pool. (For example; entity name, entity identifier

key, etc…). Based on this information, the request processor extracts the inquiry/publish

request from the incoming message and executes these requests on the Tuple Pool. We

apply the following strategy to process the incoming requests. First off all, the system

keeps all locally available metadata keys in a table in the memory. On receipt of a

request, the system first checks if the metadata is available in the memory by checking

with the metadata-key table. If the requested metadata is not available in the local system,

the request is forwarded to the Pub-Sub Manager layer to probe other Hybrid Services for

 96

the requested metadata. If the metadata is in the in-memory storage, then the request

processor utilizes the Tuple Space Access API and executes the query in the Tuple Pool.

10 of 34

Client

TUPLE SPACE API

TUPLE POOL (JAVA SPACES)

UNIFORM ACCESS INTERFACE

Request processor

Access Control Notification

A HYBRIG GRID INFORMATION SERVICE

MEMORY-IN STORAGE

Information

Service - I

Information

Service - II
….

INFORMATION RESOURCE MANAGER

Client

TUPLE SPACE API

TUPLE POOL

Extended

UDDI WS API

TUPLE processor

Lifetime

Management

Persistency

Management

Fault Tolerance

Management

WS-Context

WS API
….

Request processor

Access Control Notification

Extended UDDI WS-Context ….

Information Resource

Manager

PUB-SUB Network

Manager

Hybrid

API

Dynamic Caching

Management

Filter

Client

TUPLE SPACE ACCESS API

Mapping

Files

(XML)

TUPLE POOL

Extended

UDDI API

TUPLE processor

Lifetime

Management

Persistency

Management

Information Resource

Manager

Resource

Handler

DB1

Resource

Handler

DB2

……

…

PUB – SUB Network Manager

HYBRID GIS NETWORK

CONNECTED WITH PUB-

SUB SYSTEM

WS-Context

API
….

Request processor

Access Control Notification

…..

Publisher Subscriber

Mapping

Rule

Files (XSLT)

Filter

Extended UDDI WS-Context

Hybrid

API

Dynamic Caching

Management

Fault Tolerance

Management

Figure 16 Execution Logic Flow for the Hybrid Grid Information Service. This figure illustrates the

execution flow of the Hybrid Grid Information Service from top-to-bottom. Each rectangle shape identifies

a layer of the system with particular purpose. The square-black color shapes indicate that the corresponding

component checks with the specification-mapping metadata file to understand how to process the client’s

request. The squire-white color shape indicate that the corresponding layer checks with mapping rule files

to map Unified Schema instances to appropriate local information service schema instances.

In some cases, requests may require to be executed in the local information

service back-end. For an example, if the client’s query requires SQL query capabilities, it

will be forwarded to the Information Resource Manager, which is responsible of

managing the local information service implementations.

Thirdly, once the request is extracted and processed, the system presents

abstraction layers for some capabilities such as access control management and

notification. First capability is the Access Control Management. This capability layer is

 97

intented to provide access controlling for metadata accesses. As the main focus of our

investigation is distributed metadata management aspects of information services, we

leave out the research and implementation of this capability as future study. The second

capability is the Notification Management. Here, the system informs the interested parties

of the state changes happening in the metadata. This way the requested entities can keep

track of information regarding a particular metadata instance.

Fourthly, if the request is to be handled in the memory, the Tuple Space Access

API is used to enable the access to the in-memory storage. This API allows us to perform

operations on the Tuple Pool. The Tuple Pool is an in-memory storage. The Tuple Pool

provides a storage capability where the metadata instances of different information

service schemas can be represented.

Fifthly, once the metadata instances are stored in the Tuple Pool as tuple objects,

the tuple processor layer is being used to process tuples and provide a variety of

capabilities. The first capability is the LifeTime Management. Each metadata instance

may have a lifetime defined by the user. If the metadata lifetime is exceeded, then it is

evicted from the Tuple Pool. The second capability is the Persistency Management. The

system checks with the tuple space every so often for newly-added / updated tuples and

stores them into the local information service back-end. The third capability is the

Dynamic Caching Management. The system keeps track of the requests coming from the

other Hybrid Service instances and replicates/migrates metadata to where the high

demand is originated. The fourth capability is the Fault Tolerance Management. The

system again checks with the tuple space every so often for newly-added / updated tuples

 98

and replicates them in other information services using the pub-sub system. This service

is also responsible for providing consistency among the replicated datasets.

The Hybrid Service supports a federation capability to address the problem of

providing integrated access to heterogenous metadata. To facilitate the testing of this

capability, this thesis introduces a Unified Schema by integrating different information

service schemas (see Section 4.4). If the metadata is an instance of the Unified Schema,

such metadata needs to be mapped into the appropriate local information service back-

end. To achieve this, the Hybrid Service utilizes a filtering layer. This layer does filtering

based on the user-defined mapping rules to provide transformations between the Unified

Schema instances and local schema instances. If the metadata is an instance of a local

schema, then the system does not apply any filtering, and backs-up this metadata to the

corresponding local information service back-end.

Sixthly, if the metadata is to be stored to the information service backend (for

persistency of information), the Information Resource Management layer is used to

provide connection with the back-end resource. The Information Resource Manager

handles with the management of local information sevice implementations. It provides

decoupling between the Hybrid Service and sub-systems. With the implementation of

Information Resource Manager, we have provided a uniform, single interface to sub-

information systems. The Resource Handler implements the sub-information system

functionalities. Each information service implementation has a Resource Handler which

enables interaction with the Hybrid Service.

Seventhly, if the metadata is to be replicated/stored into other Hybrid Service

instances, the Pub-Sub Management Layer is used for managing interactions with the

 99

Pub-Sub network. On receiving the requests from the Tuple Processor, the Pub-Sub

Manager publishes the request to the corresponding topics. The Pub-Sub Manager may

also receive key-based access/storage requests from the pub-sub network. In this case,

these requests will be carried out on the Tuple Pool by utilizing TupleSpace Access API.

The Pub-Sub Manager utilizes a Publisher and a Subscriber in order to provide

communication among the instances of the Hybrid Services.

5.2 Query and Publishing module

The Query and Publishing module is responsible for implementing a uniform

access interface for the Hybrid Grid Information Service (see Chapter 4 for detailed

discussion on the semantics of XML API sets supported by the system). This module

implements the Request Processing, Access Control and Notification Management

abstraction layers explained in the previous section.

On completing the request processing task, the Query and Publishing module

utilizes the Tuple Space API to execute the request on the Tuple Pool. On completion of

operation, the Query and Publication module sends the result to the client.

As the context information may not be open to anyone, there is a need for an

information security mechanism. We leave out the investigation and implementation of

this mechanism for the decentralized Hybrid Service as a future study. We define an

Access Control abstraction layer that will be responsible for providing controlled access

to metadata instances. We must note that to facilitate testing of the centralized Hybrid

Service in various application use domains (see Section 1.3.2), we implemented a simple

mechanism. Based on this implementation, the centralized Hybrid Service requires an

 100

authentication token to restrict who can perform inquiry/publish operation. The

authorization token is obtained from the Hybrid Service at the beginning of client-server

interaction. In this scenario, a client can only access the system if he/she is an authorized

user by the system and his/her credentials match. If the client is authorized, he/she is

granted with an authentication token which needs to be passed in the argument lists of

publish/inquiry operations.

The Query and Publishing module also implements a notification scheme to meet

the requirements of application use domains discussed in Section 1.3.2. This is achieved

by utilizing a publish-subscribe based messaging scheme. This enables users of Hybrid

Service to utilize a push-based information retrieval capability where the interested

parties are notified of the state changes. This push-based approach reduces the server load

caused by continuous information polling. This methodology is especially become useful

for the application use domains where the consistency is important. Based on this

scheme, state changes are propagated to the interested clients by the primary-copy

holding service whenever an update occurs. (see Section 5.6.8.2 for more details on

update propagation). We use the aforementioned NaradaBrokering software (see Section

2.2) as the messaging infrastructure and its libraries to implement subscriber and

publisher components.

5.3 Expeditor module

This module implements the following abstraction layers: 1) Tuple Spaces Access

layer, 2) Tuple Pool, and 3) Tuple Processing layers. The Tuple Spaces Access layer

provides an access interface on the Tuple Pool, which is a generalized in-memory storage

 101

mechanism. Here, we built the in-memory storage based on the TupleSpaces paradigm

[94] (see Section 3.4.2 for detailed discussion). The Tuple-processing layer introduces a

number of capabilities: LifeTime Management, Persistency Management, Dynamic

Caching Management and Fault Tolerance Management. Here, the LifeTime Manager is

responsible for evicting those tuples with expired leases. The Persistency Manager is

responsible for backing-up newly-stored / updated metadata into the information service

back-ends. The Fault Tolerance Manager is responsible for creating replicas of the newly

added metadata. The Dynamic Caching Manager is responsible for replicating/migrating

metadata under high demand onto replica servers where the demand originated. (In this

study, we adopt the dynamic replication methodology, introduced by Rabinovich et al,

which will be discussed in Section 5.6.7 in length).

5.4 Filter and Resource Manager Modules

The Filtering module implements the filtering layer, which provides a mapping

capability based on the user defined mapping rules. The Filtering module obtains the

mapping rule information from the user-provided mapping rule files. As the mapping rule

file, we use the XSL (stylesheet language for XML) Transformation (XSLT) file. The

XSLT provides a general purpose XML transformation based on pre-defined mapping

rules. Here, the mapping happens between the XML APIs of the Unified Schema and the

local information service schemas (such as WS-Context or extended UDDI schemas).

The Information Resource Manager, illustrated in Figure 17, handles with

management of local information service implementations such as the extended UDDI.

The Resource Manager separates the Hybrid System from the sub-system classes. It

 102

knows which sub-system classes are responsible for a request and what method needs to

be executed by processing the specification-mapping metadata file (see Section 4.5.2)

that belongs the local information service under consideration.

On receipt of a request, the Information Resource Manager checks with the

corresponding mapping file and obtains information about the specification-

implementation. Such information could be about a class (which needs to be executed),

it’s function (which needs to be invoked), and function’s input and output types, so that

the Information Resource Manager can delegate the handling of incoming request to

appropriate sub-system. By using this approach, the Hybrid Service can support one to

many information services as long as the sub-system implementation classes and the

specification-mapping metadata files are provided.

The Resource Handler implements the sub-information system functionalities.

Each specification has a Resource Handler, which allows interaction with the database.

The Hybrid System classes communicate with the sub-information systems by sending

requests to the Information Resource Manager, which forwards the requests to the

appropriate sub-system implementation.

Although the sub-system object (from the corresponding Resource Handler)

performs the actual work, the Information Resource Manager seems as if it is doing the

work from the perspective of the Hybrid Service inner-classes. This approach separates

the Hybrid Service implementation from the local schema-specific implementations

 103

Information Resource

Manager

Resource

Handler

DB1

Resource

Handler

DB2

……

…

Extended UDDI WS-Context

…..

Hybrid Service

Class

Hybrid Service

Class

Hybrid Service

Class

…..

Figure 17 We implemented an Information Resource Manager, which separates specification-

implementations from the implementation of the Hybrid Service.

The Resource Manager component is also used for recovery purposes. We have

provided a recovery process to support persistent in-memory storage capability. This type

of failure may occur if the physical memory is wiped out when power fails or machine

crashes. This recovery process converts the database data to in-memory storage data

(from the last backup). It runs at the bootstrap of the Hybrid Service. This process utilizes

user-provided “find_schemaEntity” XML documents to retrieve instances of schema

entities from the information service backend. Each “find_schemaEntity” XML

document is a wrapper for schema specific “find” operations. At the bootstrap of the

system, firstly, the recovery process applies the schema-specific find functions on the

information service backend and retrieves metadata instances of schema entities.

Secondly, the recovery process stores these metadata instances into the in-memory

storage to achive persistent in-memory storage.

 104

5.5 Sequencer module

In order to impose an order on updates, each context has to be time-stamped

before it is stored or updated in the system. The responsibility of the Sequencer module is

to assign a timestamp to each metadata, which will be stored into the Hybrid Service. To

do this, the Sequencer module interacts with Network Time Protocol (NTP)-based time

service [119] implemented by NaradaBrokering software (see Section 2.2). This service

achieves synchronized timestamps by synchronizing the machine clocks with atomic

timeservers available across the globe. The Sequencer module is also used to generate

unique identifiers to assign system-generated keys to newly stored dynamic metadata.

This is succeeded by utilizing a java UUID generator (JUG) [107], which is an open-

source, free, java implementation of the IETF UUID Specification [120]. The Sequencer

module interacts with the Expeditor module to assign unique identifiers or timestamps to

the newly stored or updated contexts.

5.6 Access and Storage modules

Distribution of client requests is the problem of redirecting a client request to the

appropriate replica server. In the modular structure of our design, the Access module

supports the request distribution by publishing messages to topics in NaradaBrokering

software multicast system.

The Storage module handles with replica-content placement and consistency

enforcement. It interacts with data-systems that can store a replica and provides

replication. It also ensures data consistency among replicas. It interacts with the

Expeditor module to access local data maintained in Tuple Pool.

 105

Replica placement issue consists of two sub-problems: replica server placement

and replica content placement [102]. The former issue deals with the problem of finding

suitable locations for replica servers, while the latter issue handles with selecting replica

servers that should host a data. In this research, we study the latter problem, which

concerns with the selection of replica servers that must hold the data under consideration.

A major design issue for distributed data-systems is to decide where, when, and

by whom copies of a data are to be placed [121]. Tanenbaum discusses three different

kinds of copies of a data in [103]: permanent, server-initiated, and client-initiated.

Permanent replicas can be considered as an initial replica-set comprised of minimum

required number of copies of a data. This type of replica is used to provide a certain

degree of fault-tolerance. Server-initiated replicas are considered temporary and created

by a data-system in a dynamic fashion to improve the performance. For example, server-

initiated replicas can be created to handle sudden and big number of requests coming

from a location far away from the server. The Hybrid System is implemented to support

both permanent and server-initiated types of replica. Server-initiated replication is

introduced to enhance the performance in terms of minimizing the latency. We utilize the

dynamic replication methodology introduced by Rabinovich et al [104] to control the

server-initiated replicas. The dynamic replication technique allows us to gradually

decrease or increase the popularity of server-initiated replicas depending on the changing

client demands (Section 5.6.7 will discuss the dynamic replication in length). Permanent

copies of a data are important to at least keep the minimum required number of replicas

for the same data. The client-initiated replicas are the copies of a data that are just

requested and temporarily stored at the client applications. The management of client-

 106

initiated replicas of a data belongs to client applications, thus it is not in scope of the

Hybrid System server side implementation.

5.6.1 Tunable Parameters

In order to provide replica-content placement, access distribution, dynamic

replication and consistency enforcement in replica hosting system, the following tunable

parameters are used: backup-time-interval, dynamic-replication-time-interval, minimum-

fault-tolerance-watermark, maximum-server-load-watermark, timeout-period, deletion-

threshold and replication-threshold.

backup-time-interval: In order to provide persistency, metadata instances in the

Tuple Pool are backed-up into a persistent storage (such as MySQL database) with

certain time intervals (backup-time-interval). There is a trade-off in choosing the value

for backup-time-interval. If the backup-time-interval is chosen to be too small, then the

system performance will be lower. If this time interval is too big, then the system will be

less persistent. (See Section 6.2 for our investigation on backup-time-interval.)

dynamic-replication-time-interval: In order to provide dynamic replication,

metadata instances in the Tuple Pool are replicated in replica-hosting environment in a

dynamic fashion within certain time intervals (dynamic-replication-time-interval). The

trade-off in choosing the value for dynamic-replication-time-interval is similar to the one

for backup-time-interval. If the dynamic-replication-time-interval is chosen to be too

small, then the system performance will be affected. If this time interval is too big, then

the system will not adapt well to changes in client demands such as sudden bursts of

request that come in from an unexpected location. (Rabinovich et al introduced an

 107

extensive study on choosing values for the dynamic-replication tunable parameters. In

our investigation, we chose the simulation parameters relying on their study in [104].)

minimum-fault-tolerance-watermark: To provide a certain level of fault-

tolerance, we use a minimum-fault-tolerance-watermark indicating minimum required

degree of replication. The trade-off in choosing the value for minimum-fault-tolerance-

watermark is the following. If the value is chosen to be high, then the time and system

resources required completing replica-content placement and keeping these replicas up-

to-date would be high. If the value is chosen to be too small, then the degree of

replication (fault-tolerance level) will be low. (See Section 6.6 for our investigation on

fault-tolerance levels.)

maximum-server-load-watermark: To avoid overloading a single Hybrid Service,

we use a tunable parameter maximum-server-load-watermark and a decision metric

instantaneous-server-load. For an example, a given Hybrid Service node can process an

incoming storage request, if the instantaneous-server-load would not exceed maximum-

server-load-watermark, which is predefined in the configurations file. Otherwise, this

request should be forwarded to another server. As for the instantaneous-server-load

metric, we use the message rate information as an indication of the load on the system at

a given time interval. The trade-off in choosing the value of maximum-server-load-

watermark is as in the following. If this value is chosen to be too high, then the Hybrid

Service performance will decrease. If the value is chosen to be too low, then the Hybrid

Service will be running under its potentials. (See Section 6.3 for our investigation on

message rate scalability.)

 108

timeout-period: The tunable timeout-period value indicates the amount of time

that a Hybrid Service node is willing to wait to receive response messages. The trade-off

in choosing this number is the following. If the timeout-period is too small, the initiator

of a request will not wait enough for the context access responses coming from a

multicast group. For example, if there are two replica servers, one in U.S. and the other in

Australia, the query initiator located in U.S. may miss the result coming from the node

located in Australia with a small timeout-period. If the timeout-period is too big, then the

query initiator may have to wait for a long time unnecessarily for some information that

does not exist in the replica-hosting environment.

deletion-threshold: If a temporary-copy (server-initiated) of a context is in low

demand and its demand count is below deletion-threshold, then this temporary copy

needs to be deleted. The deletion-threshold determines the rate for migration and

replication occurring in the system. If a deletion-threshold is selected too low, the system

will create more temporary copies, which will lead into high number of message

exchanges in the system. If a deletion-threshold is too high, the system will keep low-

demand temporary copies of a context unnecessarily. In our investigation, we chose the

deletion-threshold value based on the study introduced in [104].

replication-threshold: If a context is in high demand and its demand count is

above a replication-threshold, then the context is replicated as a temporary-copy. If the

replication-threshold is selected to be too high, then the system will not adapt well to

high number of client demands. If the replication-threshold is too low, the system will try

to create temporary replicas at every remote replica where small number of requests

comes in. This may cause unnecessary consumption of system resources. (Rabinovich et

 109

al [104] discusses the dependency between replication and deletion thresholds that in turn

indicates that the value of replication-threshold must be selected above deletion-

threshold. In our investigation, we chose the replication-threshold value based on the

study introduced in [104].)

5.6.2 Decision Metrics

The Hybrid Service uses some measurements to decide on replica-content

placements. Our replica-server selection policy takes both server load and proximity

decision metrics into account when making replica-content placement decisions. The

server load metric is a decision metric, which may be represented with multiple factors.

We used the following two factors: a) topical information (i.e. number of unique topics,

which the Hybrid Service subscribe to) and b) message rate (i.e. number of messages,

issued by end-users, within a unit of time). If the number of topics, which a Hybrid

Service subscribes to, is high, it is likely that the Hybrid Service will receive high number

of access/update messages. If the message rate on a given Hybrid Service is increased, its

performance will start dropping down. Therefore, we take into consideration the topical

and message rate information as server load metrics. Each node can estimate its own

server load based on these two factors. Server load is periodically recorded and it reflects

the average load of a Hybrid Service at a given time interval. Note that, each nodes keeps

decision metrics information about other nodes in the system. The server load

information is obtained periodically by sending a Server-Information Request message to

other available network nodes in the system. The proximity metric is the decision metric,

which is used to indicate the distance in network space between Hybrid Service instances.

The proximity metric information is obtained periodically by sending ping requests

 110

(Server-Information Requests) to the available network nodes in the system through

publish-subscribe system topics. The latency in the ping request gives the proximity

information between the two Hybrid Service instances.

5.6.3 Control Data Structures

The system keeps following control data structures in decision-making process of

replica-content placement, dynamic replication and consistency enforcement: is-context-

removable-flag, access-demanding-server-info, access-request-count, replica-server-

info-map and version-number.

is-context-removable-flag: In order to ensure that there exists certain number of

permanent replica-set of a given context, is-context-removable-flag control variable is

used. This variable is used to differentiate permanent and server-initiated replicas and

contained within the Tuple object. If this variable is true, then a context replica is

considered as server-initiated and can be deleted by the dynamic replication algorithm

(see Section 5.6.7) unless there are enough clients demanding it. If it is false, then this

copy is considered as permanent and cannot be deleted for fault-tolerance reasons.

access-demanding-server-info: Each Hybrid Service node, let us say s, keeps

track of certain information, access-demanding-server-info, about access requests aimed

at a context x where (x | x is a context hosted by s). This information is used by dynamic

replication algorithm to find those replica servers, which demanded the context under

investigation, the most. The access-demanding-server-info includes the number of access

request counts per context and the hostname (e.g. IP address) of the replica server where

access requests come from.

 111

access-request-count: The accumulated value of all individual access requests

(made by different nodes in the system) gives the total number of demand, access-

request-count, on a particular context. This value is used by the dynamic replication

algorithm to control dynamic migration and replication of a given context replica.

replica-server-info-map: Each Hybrid Service node, let us say s, keeps track of

certain information, replica-server-info, about other available servers in the system. This

information is used by replica-content placement algorithm to find best replica servers,

which are capable of storing the permanent-copies of a context under investigation. The

replica-server-info includes the hostname (e.g. IP address) of the replica other server,

their proximity and server load information.

version-number: The version-number is the synchronized timestamp of the last

update.

5.6.4 Network Messages

The communication between Hybrid Service nodes happen via message

exchanges. There are various messages designed to enable communication between the

nodes of the network to enable replica-content placement, access distribution, dynamic

replication and consistency-enforcement. These messages are Server-Information

Request and Response, Context Access Request and Response, Context Storage Request

and Response, Primary-Copy Selection Request and Response, Primary-Copy

Notification, Context Update Request and Propagation messages. We discuss the purpose

and dissemination methodology of these messages in the following sections.

 112

5.6.4.1 Server-Information Request and Response messages

A Hybrid Service node advertises its existence when it first joins the network with

a message, the Server-Information Request. The purpose of the Server-Information

Request message is two-fold. First purpose is to inform other servers about a newly

joining server. Second purpose is to refresh the replica-server-information data structure

with the updated information (such as proximity and server load information) every so

often. This message is broadcasted through publicly known topic to every other available

network nodes. The proximity between the initiator and the individual network nodes is

calculated based on the elapse-time between sending off the Server-Information Request

and receiving the Server-Information Response message. The Service-Information

Response message is sent back by unicast over a unique topic (IP_Address) to the

initiator. This message also contains the server load information of the responding

network node.

5.6.4.2 Context Access Request and Response messages

A Hybrid Service node advertises the need for context access with the Context

Access Request to the system. The purpose of the Context Access Request message is to

ask those servers, holding the context under demand, for query handling. This message is

disseminated to only those nodes holding the context under consideration. This is done by

multicasting the message through the unique topic corresponding to the metadata. (Note

that we use UUID of the metadata as topic). By listening to this topic, each node, holding

the context under consideration, receives a Context Access Request message, which in

turn includes the context query under consideration. On receipt of a Context Access

Request message, each Hybrid Service sends a Context Access Response message, which

 113

contains the context under demand, to the initiator. This message is sent out by unicast

directly to the initiator over a unique topic. (Note that we use IP address of the initiator as

topic to send responses via unicast back to the initiator). By listening to this topic, the

initiator receives the response messages from nodes that answered the access request.

5.6.4.3 Context Storage Request and Response messages

A Hybrid Service node advertises the need for storage with a request message, the

Context Storage Request. The purpose of the Context Storage Request message is two-

fold. First purpose is to assign handling of the storage operation to those Hybrid Service

nodes that are selected based on the replica-server selection policy. Note that this

message is used in replica-content placement process, which is discussed in Section 5.6.6.

The second purpose is to ask another Hybrid Service node to replicate or take over

maintaining a context to enhance the overall system performance. Note that with this

message, the system is able to relocate/replicate contexts in the proximity of demanding

clients. It is used in dynamic replication process, which is discussed in Section 5.6.7 and

enables relocation/replication of contexts due to changing client demands. The Context

Storage Request message is unicast over a unique topic to the selected replica server(s).

By listening to its unique topic (IP_Address), each existing node receives a Context

Storage Request message, which in turn includes the context under consideration. On

receipt of a Context Storage Request message, a Hybrid Service node stores the context

and sends a Context Storage Response message to the initiator. The Hybrid Service

stores the context either as a permanent-copy or server-initiated (temporary) copy based

on whether the context is being created for fault-tolerance reasons or performance

reasons. The purpose of the response message is to inform the initiator that the answering

 114

node hosts the context under consideration. This message is also sent out by unicast

directly to the initiator over a unique topic (IP_Address). By listening to this topic, the

initiator receives response messages from the nodes that handled the storage request.

5.6.4.4 Primary-Copy Selection Request and Response messages

In order to provide consistency across the copies of a context, updates are

executed on the primary-copy host. If the primary-copy host of a context is down, a

Hybrid Service node advertises the need for selection of primary-copy host of the context

with following message: Primary-Copy Selection Request. This message is sent out by

multicast by the initiator Hybrid Service node only to those servers holding the

permanent-copy of the context under consideration. The purpose of the Primary-Copy

Selection Request message is used to select a new primary-copy host if the original is

considered to be down. The Primary-Copy Selection Request message is disseminated

over a unique topic corresponding to the metadata under consideration. We use the

metadata key (UUID) as the topic, which all nodes, holding the permanent-copy of the

metadata, within the system subscribe to. By listening to this topic, each existing node

receives this message. On receipt of a Primary-Copy Selection Request message, each

node response with the Primary-Copy Selection Response message directly to the

initiator node. The purpose of this message is to inform the initiator about the permanent-

copy of the context under consideration and give some information (such as hostname,

transport protocols supported, communication ports) regarding how other nodes should

communicate with the answering node. The response message is sent out by unicast

directly to the initiator over a unique topic (IP_Address). By listening to this topic, the

initiator receives the response message from the answering node.

 115

5.6.4.5 Primary-Copy Notification message

A Hybrid Service node uses a Primary-Copy Notification message to notify the

newly selected primary-copy holder. This Notification message is disseminated by

unicast directly to the newly selected node. By listening to its unique topic, each existing

node may receive a primary-copy notification message, which in turn includes the

assignment for being the primary-copy of the context under consideration. Each primary-

copy holder of a given context subscribes to a unique topic (such as UUID/PrimaryCopy)

to receive messages aimed to the primary-copy holder of that context.

5.6.4.6 Context Update Request and Propagation messages

A Context Update Request message is sent by a replica server to the primary-copy

host to ask for handling the updates related with the context under consideration. This

message is sent out via unicast by the initiator Hybrid Service node directly to the

primary-copy host over a unique topic. By listening to this topic, the primary-copy-host

receives the context update request message. A Context Update Propagation message is

sent by the primary-copy host only to those servers holding the context under

consideration. This message is sent via multicast to the unique topic of the metadata

immediately after an update is carried out on the primary-copy to enforce consistency. By

listening to this topic, each existing permanent-copy holder node receives a Context

Propagation message, which in turn includes the updated version of the context under

consideration.

 116

5.6.5 Hybrid Service Discovery Model

The Hybrid Service has a multicast discovery model to locate available services.

Initially, a newcomer Hybrid Service sends a multicast Server-Information Request

message when it joins the network to make itself available for discovery. Each Hybrid

Service network node subscribes to the multicast channel (publicly known topic) to

receive Server-Information Request messages. On receiving this request message, each

node sends a response message, Server-Information Response message, via unicast

directly to the newcomer Hybrid Service. This way, each node makes itself discoverable

to other nodes in the system at the bootstrap. Each Hybrid Service node constructs a

replica-server-info data structure about other available replica servers in the system. This

data structure contains information about decision metrics such as server load and

proximity.

Figure 18 - Message exchanges for Hybrid Service Discovery Model. Each newcomer node sends out a

multicast probe message to locate available services in the network. Each target node responds with a

unicast message to make themselves discoverable. This figure illustrates the interaction between the

initiator server and the target network nodes for service discovery model.

Each node keeps its replica-server-info data structure refreshed. This is done by

sending out Server-Information Request messages periodically to obtain up-to-date

information. This model enables the system to keep track of proximity and server load

information of the available network nodes. This is required for decision-making process

Initiator node Target node

Server-Information Request / multicast

Server-Information Response /unicast time

 117

of fundamental aspects of the decentralized system architecture such as replica-content

placement and consistency enforcement.

5.6.6 Replica Content Placement

In a distributed system, data is replicated to enhance reliability and performance.

Replica content placement is a replication methodology that deals with replicating newly

inserted data onto other servers, which are capable for storage. After replication, there

may only be two types of copies of a context in the system: permanent and server-

initiated (temporary). A permanent copy of a context is used as a backup facility to

enhance reliability. A server-initiated copy is created temporarily and used to enhance

system performance. For the permanent-copy of a context, the Hybrid Service subscribes

to a unique topic to receive access/update request concerning the context under

consideration. For the server-initiated copy of a context, the Hybrid Service does not

subscribe to a topic to minimize the number of messages exchanged for request

distribution. The server-initiated copies are only used to enhance the system performance.

In the prototype implementation, the replica content placement process is run

offline by the Replication Manager that is responsible of replicating contexts in the

system. The Replication Manager runs every so often and checks with the Tuple Pool (in-

memory storage) if there are contexts that are newly inserted or updated.

If there is an update, then the update distribution process, which is discussed in

Section 5.6.8.1, is performed. After the update distribution process is over, the status of

the context is changed from “updated” to “normal”. If there is a newly inserted context in

the Tuple Pool, the Replication Manager starts the replica-content placement process (i.e.

the distribution of copies of a context into replica hosting environment). This is needed to

 118

create certain number (predefined in the configurations file) of permanent replicas. We

must note that, on receipt of a client’s publish request, an existing node checks if it can

handle the request under consideration. Each existing node decides if it is able to store the

context by checking the server instantaneous-server-load against the maximum

maximum-server-load-watermark. Those replica-servers, which are capable of handling

the request, perform the operation. However, if the node is overloaded, then this

operation is forwarded to the best possible server based on a replica-server selection

policy. Figure 19 depicts message exchanges between an initiator Hybrid Service node

and a target Hybrid Service node for replica content placement.

Figure 19 - Message exchanges for Storage (Replica Content Placement). This figure illustrates the

interaction between the initiator server and the target network nodes to complete replica-content placement.

Our replica server selection policy takes into account two decision metrics: server

load and proximity (see Section 5.6.2). To enforce our selection policy and select replica

servers for replica-content placement, we adopt the replica selection algorithm introduced

by Rabinovic et al [104] and integrate it with our implementation. The replica server

selection process is repeated on target replica servers, until the initiator selects predefined

number (minimum-fault-tolerance-watermark) of replica servers for replica-content

placement. The initiator Hybrid Service chooses the best-ranked server among the

selected replica-servers as the primary-copy to enforce consistency.

Initiator node Target node

Context Storage Request / unicast

Context Storage Response /unicast time

 119

Once the replica-server selection is completed, the initiator sends unicast message

(Context Storage Request message) to the selected replica-servers. On receipt of a storage

request, a replica server stores the context as a permanent-copy, followed by sending a

response (acknowledgement) message directly to the initiator (via unicast). The newly-

selected primary-copy holder receives its Context Storage Request message with a flag

indicating that it is the primary-copy holder of that context. Note that, the purpose of

storing permanent-copy is for fault-tolerance. The number of permanent replicas is

predefined with minimum-fault-tolerance-watermark in the configurations file and will

remain the same for fault-tolerance reasons. We also utilize the dynamic replication

methodology, which is discussed in the next section. This is a performance optimization

technique that may move/replicate permanent-copies of a replica onto servers if it is only

beneficial for client proximity. This way, the system improves its responsiveness in terms

of minimizing the access latency, as the copies of a replica are moved onto servers where

the requests are originated.

5.6.7 Dynamic Replication

In order to take into consideration sudden changes in client demands, we use

dynamic replication as a performance optimization technique. Dynamic replication deals

with the problem of dynamically placing temporary replicas in regions where requests are

coming from. This is a push-based replication methodology where a dynamically

generated replica is pushed (replicated/migrated) onto a replica server. Such replicas are

also referred as push caches [122]. Dynamic replication decisions are made

autonomously at each node without any knowledge of other copies of the same data.

 120

In our implementation, we adopt the dynamic replication methodology introduced

by Rabinovich et al [104]. This methodology introduces an algorithm, which is used for

the Web Hosting Systems, which maintain widely distributed, high-volume, rarely

updated and static information. The dynamic replication algorithm by Rabinovich et al

considers two issues: a) a replication can take place to reduce the load on a replica server

and b) a replication can take place due to changes in the client demands. Our main

interest is to provide an optimized performance by replicating temporary-copies of

contexts to replica servers in the proximity of demanding clients. To this end, we only

focus on the second issue, which concerns with creating replicas if it is only beneficial for

client proximity. In the prototype implementation, the dynamic replication process is run

by the Dynamic Caching Manager that is responsible for deciding dynamic replica-

content placements.

Figure 20 - Message exchanges for Dynamic Replication/Migration. The dynamic replication/migration

process is executed by the Dynamic Caching Manager residing at the initiator node. The Dynamic Caching

Manager replicates/migrates data if the demand exceeds certain thresholds. This figure illustrates the

interaction between a hosting server and demanding server to complete replica placement/migration for

context x.

The Dynamic Caching Manager runs at a Hybrid Service S with certain time

intervals (dynamic-replication-time-interval) and re-evaluates the placement of the

contexts that are locally stored. It checks with the Tuple Pool if there are contexts that

can be migrated or replicated onto other servers in the proximity of clients that presented

high demand for these contexts. It does this by comparing the access request count for

A node hosting a context x

Context Storage Request / unicast

Context Storage Response / unicast

A node demanding context x

time

 121

each context against some threshold values. If the total demand count for a replica C at a

Hybrid Service S (cntS (C)) is below a deletion-threshold(S, C) and the replica is a

temporary-copy, that replica will be deleted from local storage of Hybrid Service S. If,

for some Hybrid Service X, a single access count registered for a replica C at a Hybrid

Service S (cntS(X, C)) exceeds a migration-ratio, that service (service X) is asked to host

the replica C instead of service S. (Note that the migration-ratio is needed to prevent a

context migrate back and forth between the nodes. In our investigation, we chose the

migration-ratio value as % 60 based on the study introduced in [104]). This means

service S wants to migrate replica C to service X which is in the proximity of clients that

has issued enough access requests within the predefined time interval (dynamic-

replication-time-interval). In this case, replica C will be migrated to service X. To

achieve this, a Context Storage Request is sent directly to service X by service S. On

receipt of a Context Storage Request, service X creates a permanent copy of the context,

followed by sending a Context Storage Response message. If the total demand count for a

replica C at service S (cntS (C)) is above a replication-threshold(S, C), then the system

checks if there is a candidate Hybrid Service, which has requested replica C. If, for some

Hybrid Service Y, a single access count registered for a replica C at service S (cntS(Y, C))

exceeds a replication-ratio, that service (service Y) is asked to host a copy of replica C.

(Note that, in order dynamic replication to ever take place, the replication-ratio is selected

below the migration-ratio [104]. In our investigation, we chose the replication-ratio value

as % 20.) This means service S wants to replicate replica C to service Y that is in the

proximity of clients that has issued access requests for this context. An example snapshot

of 11-node Hybrid Service replica hosting environment is depicted in Figure 21 where

 122

dynamic metadata (contexts ranging from A to O) replicated on the Hybrid Service nodes

ranging from 1 to 11. In the example, the quantity of some replicas (for example context

replicas D, E and F) is shown more than the quantity of others because of high demand

for these replicas. Our aim is not to replicate the server, but the individual contexts based

on changing client demands. Figure 20 depicts message exchanges between an initiator

node and a target node for dynamic replication process.

1

2

3

4

5

6

7

8

10

11

A

B
C

D

E F

G

H
I

J

K L

D

E F

D

E F

A

B
C

G

H
I J

K L

M

N
O

M

N
O

D

E F
9

J

K L

M

N
O

Figure 21 An eleven-node Hybrid Service replica-hosting environment. Numbered callout shapes represent

replica servers. Letters ranging from A to O correspond to contexts replicated on the replica servers ranging

from 1 to 11. In this example, minimum required degree of replication is two.

5.6.8 Consistency Enforcement

The consistency enforcement issue has to do with ensuring all replicas of a data to

be the same. We implement the primary-copy approach for consistency enforcement, i.e.,

updates are originated from a single site. Tanenbaum classifies this approach as primary-

based remote-write protocol [103]. This approach ensures that the primary-copy of a

metadata holds up-to-date version of the context under consideration. All update

operations are carried out on the primary-copy replica server and the updates are

propagated to the permanent-copy holders by the primary-copy.

 123

As mentioned earlier, at any given snapshot of the Hybrid Service network, the

system may contain temporary and permanent of copies of a context. On one hand,

temporary copies are kept for performance reasons. On the other hand, permanent-copies

are kept for fault-tolerance reasons. Each Hybrid Service assigns/creates unique topics for

each individual permanent-copy (to receive access and update requests), while it creates

no topics for the temporary copies (to avoid flooding the network with access messages).

This creates an environment where the system may have different versions of the context,

as the temporary copies are not updated. To achieve consistency from the target

applications perspective, the Hybrid Service introduces different models to address

consistency requirements of different applications. The first model is mainly for read-

mostly applications. For these applications, different copies of the context are considered

to be consistent and the Hybrid Service allows clients to fetch any copies of the context

(permanent or temporary). The second model is for the applications where the update-

ratio is high and the consistency enforcement is important. In this case, the Hybrid

Service requires the applications to subscribe unique topics of the metadata that they are

interested. This way, these applications will be informed of the state changes happening

in the metadata immediately after an update occurs. In this model, the primary-copy

holder broadcasts the updates through the unique topic corresponding to the metadata

under consideration.

We divide the implementation of consistency enforcement into two categories:

“update distribution” and “update propagation”. The “update distribution” deals with how

the Hybrid Service implements an update operation that take place on the distributed

 124

metadata store. The “update propagation” deals with how the Hybrid Service implements

the methodology for propagation of updates.

5.6.8.1 Update distribution

On receiving client publication requests, a Hybrid Service node first checks if the

request contains a system-defined context key. If not, the system treats the request as if it

is a new publication request. In this case, storage process, explained earlier in Section

5.6.6, takes place. Otherwise, the system treats publication request as if it is an update

request.

The system assigns a synchronized timestamp to each published context (newly

written or updated). This is achieved by utilizing NaradaBrokering NTP protocol based

timing facility. By utilizing this capability, we give sequence numbers to published data

to ensure an order is imposed on the concurrent write operation that take place in the

distributed data store. Based on this strategy, a write operation could take place on a data

item, only if the timestamp of the updated context was bigger than the version number of

the most recent write. This ensures that write/update requests are carried out on a data

item x at primary-copy host s, in the order in which these requests are published into the

distributed metadata store.

Figure 22 - Message exchanges for update operation of a context. This figure illustrates the interaction

between the initiator server and the primary-copy host node of context x.

Initiator node Primary-copy hosting node of context x

Context Update Request / unicast

Context Update Propagation / multicast

time

 125

An update operation is executed offline, i.e., just after an acknowledgement is

sent to the client, by the Replication Manager which is responsible of replicating updated

contexts. The update distribution process is executed to perform updates on the primary-

copy holder of a context. If the primary-copy host is the initiator node itself, then the

update is handled locally. If the primary-copy host is another node, then the update is

forwarded to the primary-copy holder. The initiator service sends a message, Context

Update Request (see Section 5.6.4.6), by unicast directly to the primary-copy-host for

handing over the update handling of a context. The Context Update Request message

means that the initiator node is interested in updating the primary-copy replica. This

message is sent via unicast by the Replication Manager process offline of the publication

request. This message includes the updated version of the context under consideration.

On receipt of a Context Update Request message, first, the primary-copy host extracts the

updated version of the context from incoming message. Then, it updates the local context

if the timestamp of the updated version is bigger than the timestamp of the primary-copy.

After the update process is completed, a Context Update Propagation message (see

Section 5.6.4.6) is sent to only those servers holding the permanent-copy of the context

under investigation. The purpose of the Context Update Propagation is to reflect updates

to the redundant copies immediately after the update occurs. On receipt of a Context

Update Propagation message from the primary-copy, the initiator Hybrid Service node

changes the status of the context under consideration from “updated” to “normal”. If

there is no response received from primary-copy host within predefined time interval

(timeout_period) in response to Context Update Request, the primary-copy host is

decided to be down. In this case, the initiator node should select a new primary-copy host

 126

(the primary-copy selection process will be discussed in Section 5.6.8.3). After a new

primary-copy host is selected, the aforementioned update distribution process is re-

executed.

We utilize synchronized timestamps to label published metadata. This allows us

to impose an order on the actions that take place in the distributed metadata store. In our

implementation, we combine the synchronized timestamps with the primary-based

consistency protocol approach. Based on this strategy, each published context is given a

synchronized timestamp. An update operation could take place on a data item, only if the

timestamp of the newly published update is bigger than the version number of the most

recent update. This way, all write operations can be carried out on the primary-copy host,

in the same order they were published in to the system. However, this approach has also

some practical limits, as the update rate is bounded by the timestamp accuracy of the

synchronized timestamps. To achieve ordering among the distributed updates, we use

NTP protocol based synchronized timestamps provided by the NaradaBrokering software

timing libraries [119].

5.6.8.2 Update propagation

In a distributed data-system, an update propagation process can either be initiated

by the server which is in need for the up-to-date copy and wants the pull updates from

primary-copy host (pull methodology) or by the server that holds the update and wants to

push to other replica servers (push methodology) [109]. In our prototype implementation,

we utilized push methodology for update propagation and multicast technique for

dissemination of updates. Based on this methodology, whenever an update occurs the

primary-copy immediately reflects the changes to the redundant copies in order to keep

 127

them up-to-date. Updates can be distributed in two ways: unicast and multicast [103]. In

unicast update propagation, the primary copy server sends its updates to replica holders

by sending separate messages. In multicast update propagation, it sends its updates using

an underlying multicasting facility, which in turn takes care of sending messages to the

network. For dissemination of updates, we use the multicast approach and publish the

update to the unique topic corresponding to the metadata. This way, the system is able to

send the updates only to those permanent-copy holding servers.

5.6.8.3 Primary-copy selection

The primary-copy selection process is used to select a new primary-copy host for

consistency enforcement reasons, if the original primary-copy host is down at the

moment. A primary-copy host of a context is considered down, if no answer is received

in response to a message (such as Context Update Request message) that is directed to it.

When the primary-copy host of a context is considered down, the primary-copy selection

process is executed step-by-step as depicted in Figure 23 and explained as in the

following.

Figure 23 - Message exchanges for Primary-Copy Selection process. This figure illustrates the interaction

between the initiator server and the target network nodes to complete the primary-copy selection process.

Time arrow is down.

Initiator node Target node

Primary-Copy Selection Request /multicast

Primary-Copy Selection Response / unicast

Primary-Copy Notification / unicast

time

 128

Say, a Hybrid Service node finds out that a primary-copy of a context is down. In

this case, the initiator broadcasts a Primary-Copy Selection Request message (see Section

5.6.4.4) to only those servers holding the context to select the primary-copy host.

On receipt of a Primary-Copy Selection Request message, each replica-holding

server that maintains a “permanent” copy of the context under consideration, issues a

Primary-Copy Selection Response message (see Section 5.6.4.4). Here, the purpose of a

Primary-Copy Selection Response message is to inform the initiator that the answering

node contains a permanent copy of the context under investigation. On receipt of the

Primary-Copy Selection Response messages, the initiator obtains the information about

nodes carrying the permanent copy of the context. Then the initiator selects the best

replica server based on a replica server selection process described in Section 5.6.6 as the

primary-copy server. In this case, A Primary-Copy Notification message (see Section

5.6.4.5) is sent to the selected server indicating that it is selected as the new primary-copy

host for the context under investigation. On receipt of a Primary-Copy Notification

message, the permanent-copy holder becomes the primary-copy holder and subscribe the

unique address (/UUID/PrimaryCopy) corresponding to the primary-copy of the context

under consideration.

5.6.9 Access Request Distribution

On receipt of a client’s inquiry request, a Hybrid Service node looks up for the

requested context within local storage. If the context exists in local storage, then the

inquiry is satisfied and a response message is sent back to the client. If the inquiry asks

for external metadata, the system performs the request distribution (access) process,

which is discussed in the next section in length.

 129

5.6.9.1 Request Distribution

The prototype implements a request distribution methodology, which is based on

broadcast dissemination where the requests are distributed to only those servers holding

the context under consideration. This approach does not require keeping track of

locations of every single data located in the system. It makes use of copies of a data that

are not frequently accessed and kept only for fault-tolerant reasons. In turn, this improves

the responsiveness of the system.

Request Distribution: The initiator node issues a Context Access Request message

(see Section 5.6.4.2) to the multicast group, if the client’s access request is not satisfied in

the local storage. This message contains minimum required information (such as context

key) regarding the context in demand. The Context Access Request means that the

initiator node is interested in discovering the qualified replica servers that may contain

the requested context and answer with a response.

Figure 24 - Message exchanges for context access. This figure illustrates the interaction between the

initiator and a target node hosting the context for request distribution. Time arrow is down.

On receipt of a Context Access Request message, a replica-holding Hybrid

Service issues a Context Access Response message (see Section 5.6.4.2). The purpose of

a Context Access Response message is to send a response with the context satisfying the

query. (Note that, each server keeps track of the count of access requests and the

Context Access Request /multicast

Context Access Response / unicast

Initiator node Target node

time

 130

locations where access requests come from for each context. In turn, this enables the

system to apply dynamic replication process and adapt to sudden bursts of client demands

coming from a remote replica. This is why, if the access request is granted, each server

registers the incoming access request in the access-demanding-server-info data structure

and increments the total access-request-count of the context under investigation.) On

receiving first Context Access Response message, the initiator Hybrid Service node,

obtains the context that can satisfy the query under consideration. Then a response

message is sent back to inquiring client. The initiator only waits for responses that arrive

within the predefined timeout value. If there is no available Hybrid Service node that can

satisfy the context query within the timeout duration, the access process ends and a “not

found” message is sent to the client.

5.7 The WS-Context XML Metadata Service

To support the Hybrid Service for the dynamic, interaction-dependent metadata

management requirements of the target application domains, the WS-Context Service

prototype was implemented. The WS-Context Service is an implementation of Context

Manager component of the WS-Context Specifications. Its main purpose is to provide

support for distributed state based systems such as collaboration and workflow-style

grids. This service allows the participant’s of an activity to propagate and share context

information. With this implementation, we achieved the following capabilities to support

the application use domains described in Section 1.3.2.

Firstly, the WS-Context Service implementation introduced a data model and

communication protocol for the Context Service component of the WS-Context

 131

Specification. This data model allowed the client applications to store dynamic state

metadata based on parent-child relationships that in turn provided flexibility for

managing contexts with associations within the WS-Context metadata space. The abstract

data models for WS-Context Schema and Query/Publish XML API is discussed in

Section 4.2.

Secondly, the WS-Context Service implementation introduced advanced query

capabilities to support collaboration grids domain explained in Section 1.3.2.5. Here, the

system provided XML API support for enabling real-time playback and session failure

recovery capabilities in distributed collaboration session management. The Query/Publish

XML API of the WS-Context Service is given in Appendix A.1.

Thirdly, a synchronous callback communication capability is implemented. To

utilize this capability a client application has to provide a respondent service, which is

used to communicate with the WS-Context Service using synchronous callback style

functions. Here, the callback style storage/retrieval functions need to contain the callback

address of a respondent service in passing arguments. This allows the WS-Context

Service to sent results to a client who initiates a publication or inquiry callback style

operations. This functionality is implemented as part of the WS-Context Specifications.

Fourthly, a leasing capability is implemented. This ensured that the out-of-date

entries within the WS-Context Service are automatically cleaned up by assigning them an

expiration date. This is succeeded by implementing a management scheme for the service

entries stored in the database. This scheme implements a leasing manager process, which

is responsible for only allowing access to those metadata entries whose leases are not

expired and evicting those entries with expired leases from the database.

 132

Fifthly, the WS-Context Service introduced a notification scheme to meet the

requirements of collaboration grids. This is succeeded by utilizing a publish-subscribe

based messaging scheme. Here, our aim is to inform the interested clients about the state

changes happening in a session. On receiving a publishing/deletion/update request for a

particular context in a given session, the WS-Context Service multicasts a message. This

message includes the type of the operation and the context under consideration and is

disseminated over a uniquely identified topic (UUID of the session known by the

participants of that session) which all clients participating the session subscribe to. By

listening to this multicast group, each client is informed of the state changes happening in

that session.

5.8 The Extended UDDI XML Metadata Service

To support the Hybrid Service for the static, interaction-independent metadata

management requirements of the target application domains, the extended UDDI

prototype was implemented. In order to meet the information requirements of the

aforementioned application use scenarios (see Section 1.3.2), the prototype was

implemented as a domain independent metadata service. To further support the metadata

requirements of Geographical Information Systems [108], this prototype implementation

was also extended to support geo-spatial queries on the metadata catalog associated to

service entries. With this implementation, we achieved the following capabilities.

Firstly, additional capabilities to existing UDDI Registry are implemented to

associate metadata with service entries. Section 4.3 discussed the semantics of both the

information model and the programming interface of the extended UDDI service that

 133

supports these capabilities. (Also, more detailed information about syntax, arguments,

and return values of the extended UDDI programming interface is available in Appendix

A.2.).

Secondly, a leasing capability is implemented. This solves a problem with UDDI

repositories: information can become outdated, so the out-of-date entries are

automatically cleaned up by assigning them an expiration date. This is succeeded by

implementing a management scheme for the service entries stored in the database. This

scheme implements a leasing manager process, which is responsible for only allowing

access to those metadata entries whose leases are not expired and evicting those entries

with expired leases from the database. Service providers may extend the lease by

updating the metadata entry with the new lease.

Thirdly, Geographical Information System-specific taxonomies are implemented

to describe Open Geographical Information System Consortium (OGC) compatible

services such as Web Feature Services and their capabilities files. Each Web Feature

Service provides data layers corresponding to geographic entities. The “capabilities.xml”

file is (in effect) the standard metadata description of OGC services. An important

challenge is that existing UDDI Specification does not natively support publishing of

services with a bounding box corresponding to a data layer and representing a location of

interest. To overcome this problem, we use a standard capability of UDDI registries,

tModels, which are used to classify service entries according to predefined taxonomies.

For example, we use geographic taxonomies (e.g. the QuadCode taxonomy [72]) to

classify UDDI service entries based on spatial coverage. The tModels of the predefined

taxonomies are published to the extended UDDI only once at the startup of the system.

 134

This methodology allows us to publish geospatial services based on predefined categories

and pose spatial queries on the UDDI-Registry. This way humans and applications can

find geospatial services that match a particular data layer with requested spatial coverage.

Some examples of these taxonomies used in extended UDDI service can be found at

[123].

Fourthly, a dynamic aggregation capability of the geospatial services is

implemented to satisfy the metadata requirements of the application usage case discussed

in Section 1.3.2.2 in particular. Each Web Feature Service is published into the extended

UDDI service based on aforementioned predefined taxonomies. The extended UDDI first

checks if the newly published service is actually a geospatial service. Services with the

same tModel are services of the same type. If the newly published service entry turns out

to include the same tModel as the Web Feature Services do, then the extended UDDI

starts interacting with corresponding Web Feature Service to acquire the capabilities file

describing the data layers and their spatial coverage. This methodology allows us to

provide a Geographical Information System specific metadata catalog registry where the

geospatial services can be searched based on their data layers and coverage areas.

Finally, a more general-purpose extension is implemented to the UDDI data

model that allows us to insert arbitrary XML metadata into the repository. This may be

searched using XPATH queries, a standard way for searching XML documents [124].

This allows us to support other XML-based metadata descriptions developed for other

classes of services besides Geographical Information System. The Web Services

Resource Framework (WSRF), a Globus/IBM-led effort, is an important example. Our

 135

approach allows users to insert both user-defined and arbitrary metadata into the UDDI

XML metadata repository.

5.9 Summary

This chapter describes the prototype of Hybrid Grid Information Service. It

presented the functional modules and abstraction layers of the system paying particular

implementation to design decisions. The implementation of the system is explained under

three categories: the Hybrid Grid Information Service, the WS-Context Information

Service and the extended UDDI Information Service. As being the focus of the thesis, the

Hybrid Grid Information Service implementation was presented within its modular

architecture in detail. This architecture consists of Query and Publishing, Expeditor,

Filter and Resource Manager, Sequencer, Storage and Access modules. Among them, the

implementation of Access and Storage modules was further explained, as these modules

implement the fundamental requirements of a replica-hosting environment such as

replica-content placement, request distribution, and consistency enforcement.

 136

Chapter 6

Prototype Evaluation

This chapter presents an evaluation of the prototype implementation of the

proposed system and investigates its practical usefulness. In this chapter, the following

research questions are being addressed:

• What is the baseline performance of the Hybrid Service implementation as far as

the WS-Context, extended UDDI and Unified Schema standard operations?

(Section 6.2 answers this question.)

• What is the effect of the network latency on the baseline performance of the

system? (Section 6.2 answers this question.)

• What is the optimum backup-interval time for achieving high performance and

persistency for the standard publication operations? (Section 6.2 answers this

question.)

 137

• What is the performance degradation of the system for standard operations under

increasing message sizes? (Section 6.3 answers this question.)

• What is the performance degradation of the system for standard operations under

increasing message rates? (Section 6.3 answers this question.)

• What is the cost of the access request distribution in terms of the time required to

fetch a copy of a data (satisfying an access request) from a remote location?

(Section 6.4 answers this question.)

• What is the effect of dynamic replication in the cost of the access request

distribution in terms of the time required to fetch a copy of a data? (Section 6.5

answers this question.)

• What is the cost of the storage request distribution for fault-tolerance in terms of

the time required to create replicas at remote locations? (Section 6.6 answers this

question.)

• What is the cost of consistency enforcement in terms of the time required to carry

out updates at the primary-copy holder? (Section 6.7 answers this question.)

6.1 Experimental Setup Environment

We tested our code using various nodes of a cluster located at the Community

Grids Laboratory of Indiana University. This cluster consists of eight Linux machines

that have been setup for experimental usage. The cluster node configuration is given at

Table 5.

 138

Cluster node configuration

Processor Intel® Xeon™ CPU (2.40GHz)

RAM 2GB total

Network Bandwidth 100 Mbits/sec.
3
 (among the cluster nodes)

OS GNU/Linux (kernel release 2.4.22)

Table 5 Summary of the cluster node - machine configurations used in centralized testing experiments

We tested the performance of the prototype with client programs (program for

sending queries) and provider programs (program for publishing context). Both clients

and providers are multithreaded programs. These applications take following arguments:

a) the number of threads and b) number of messages to be fired by each thread. The

performance is evaluated with respect to response time at both the querying and

publishing client applications. The response time is the average time from the point a

client sends off a query until the point the client receives a complete response. We

illustrate our timing methodology in the pseudo code below.

SET the number of threads to N

SET the number of transaction to be executed to T

 CREATE N number of threats

 STOP the threads until N threads are created and ready

ThreadSleep(random(1000))

 FOR X = 1 to T

 SET start to 0, stop to 0

 START time

Hybrid_Service_API(..)

 STOP time

 PRINT (elapse time)

 END FOR

For the three decentralized setting experiments (such as distribution, fault-

tolerance and consistency enforcement), we have selected nodes that are separated by

3
 The bandwidth measurements were taken with Iperf tool for measuring TCP and UDP bandwidth

performance.(http://dast.nlanr.net/Projects/Iperf)

 139

significant network distances. The machines, used in these experiments, are summarized

in Table 6.

 Summary of Machine Configurations

 Location Processor RAM OS

gf6.ucs.indiana.edu

Bloomington, IN,

USA

Intel® Xeon™ CPU

(2.40GHz)

2GB

total

GNU/Linux

(kernel

release

2.4.22)

complexity.ucs.indiana.edu
Indianapolis, IN,

USA

Sun-Fire-880, sun4u

sparc SUNW

16GB

total

SunOS 5.9

Lonestar.tacc.utexas.edu

Austing, TX, USA Intel(R) Xeon(TM)

CPU 3.20GHz

4GB

total

GNU/Linux

(kernel

release

2.6.9)

tg-login.sdsc.teragrid.org

San Diego, CA,

USA

GenuineIntel IA-64,

Itanium 2, 4

processors

8GB

total

GNU/Linux

vlab2.scs.fsu.edu

Tallahase, FL,

USA

Dual Core AMD

Opteron(tm)

Processor 270

2GB

total

GNU/Linux

(kernel

release

2.6.16)

Table 6 Summary of the machines used in decentralized setting experiments

We used metadata samples (which were actually used in aforementioned Pattern-

Informatics application use domain) with a fixed size of 1.7KByte. We illustrate the WS-

Context, extended UDDI and Unified Schema metadata samples in Appendix B.1, B.2.,

and B.3 respectively. Although there is much functionality introduced by the Hybrid

Information Service, the focus of the experiments is on key-based publish (save

operation) and inquiry (retrieve operation) capabilities.

Analyzing the results gathered from the experiments, we encountered some outliers

(abnormal values). Due to outliers, the average may not be representative for the mean

value of the observation times. This in turn may affect the results. For example, these

outliers may increase the average execution time and the standard deviation. In order to

avoid abnormalities in the results, we removed the outliers by utilizing the Z-filtering

methodology. In Z-filtering, first, the average and standard deviation values are

 140

calculated. Then a simple test is applied. [abs(measurement_i-measurement_average)] /

stdev > z_value_cutoff. This test discards the anomalies. After first filtering is over, the

new average and standard deviation values are calculated with the remaining observation

times. This process was recursively applied until no filtering occurred.

We wrote all our code in Java, using the Java 2 Standard Edition compiler with

version 1.5. In the experiments, we used Tomcat Apache Server with version 5.5.8 and

Axis software with version 2 as a container. The maximal heap size of the JVM was set

to 1024MB by using the option –Xmx1024m. The Tomcat Apache Server uses multiple

threads to handle concurrent requests. In the experiments, we increased the default value

for maximum number of threads to 1000 to be able to test the system behavior for high

number of concurrent clients. As backend storage, we use MySQL database with version

4.1. We used the “nanoTime()” timing function that comes with Java 1.5 software.

6.2 Responsiveness Experiment

The primary interest in doing this experiment is to understand the baseline

performance of the implementation of the Hybrid Service. The performance evaluation of

the service is done for publish functions under normal conditions, i.e., when there is no

additional traffic. For the responsiveness experiment, the aim was to explore the optimal

performance of the system on a centralized setting. Here, the Hybrid Service was running

on cluster node-6, while the client and provider applications were running on the cluster

node-5. One should keep in mind that given client/server architecture, with all machines

on the same network, is setup to measure an approximation of the optimal system

 141

performance. We expect that the results measured in this environment will be the optimal

upper bound of the system performance.

In this experiment, we particularly investigate performance of our in-memory

storage methodology for the extended UDDI, WS-Context and Unified Schema standard

operations. We conduct following testing cases: a) A client sends publish requests to an

echo service. The echo service receives a message and then sends it back to the client

with no processing applied. b) A single client sends publish requests to a Hybrid Service

where the system grants the request with memory access. c) A single client sends publish

requests to a Hybrid Service where the system grants the request with database access.

This experiment studies the effect of various overheads that might affect the

system performance. To do this, an echo service is used. The echo service returns the

input parameter passed to it with no processing applied. This service helps measuring

various overheads such as the network communication, client application initialization

and container processing. By comparing and contrasting the results from the echo service

and the Hybrid Service, the actual time spent for pure server side processing can be

observed. In this experiment, we use the same Web Service container engine (Apache

Axis with version 2) for all testing cases.

In our investigation of system performance, we conducted the testing cases when

there were 5000 metadata published in the system. At each testing case, the client sends

200 sequential requests for publish purposes. We record the average response time. This

experiment was repeated five times. The design of these experiments is depicted in

Figure 25.

 142

Test-1. Echo Service

single

threaded W
S
D
L

Client

1 user/200

transactions

Test-2. Publish with memory access for WS-Context,

extended UDDI and Unified Schema standard

operations

W
S
D
L

Client

Ext-UDDI

HYBRID

SERVICE

W
S
D
L

WS-Context

ECHO

SERVICE

W
S
D
L

Test-3. Publish with database access for WS-Context,

extended UDDI and Unified Schema standard

operations

single

threaded W
S
D
L

Client

Ext-UDDI

HYBRID

SERVICE

W
S
D
L

WS-Context

1 user/200

transactions

1 user/200

transactions

single

threaded

 Figure 25 Testing cases of responsiveness experiment for a standard operation

6.2.1 Results of the Responsiveness Experiment

We conduct an experiment where we investigate the best possible backup-interval

period to provide persistency and high performance at the same time. Here, for testing

purposes, we used WS-Context Schema primary operations: save_context and

get_context. Based on this experiment, we observe the trade-off in choosing the value for

backup-time-interval. If the backup frequency is too high such as every 10 milliseconds,

then the time required for a publish function is ~ 10.2 milliseconds. If the backup

frequency is every 10 seconds or lower, we find that average execution time for publish

operation stabilized to ~7.5 milliseconds. Therefore, we choose the value for backup

frequency as every 10 sec in our experiments.

 143

 Figure 26 Test results for backup frequency investigation

 Publish Function Inquiry Function

 Interval Time

 (seconds)

 Average timings

 (msec)

 STDev

 (msec)

 Average timings

 (msec)

 STDev

 (msec)

0.01 10.24 3.57 7.20 1.80

0.1 8.29 3.13 6.86 1.71

1 7.76 2.48 6.85 1.70

10 7.46 1.94 6.85 1.71

100 7.46 1.82 6.81 1.60

Table 7 Statistics for the Figure 26

Figure 27 and Figure 28 show the performance results of publish operation of Unified

Schema and WS-Context Schema. We publish WS-Context type metadata, which is

interaction-dependent metadata, with either WS-Context or Unified Schema publish

operations. Similarly, Figure 29 and Figure 30 show the performance results of publish

operation of Unified Schema and extended UDDI Schema. We publish UDDI-type

metadata, which is interaction-independent metadata, with either extended UDDI or

Unified Schema publish operations.

1

3

5

7

9

11

10 100 1000 10000 100000

A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 T

im
e
 (

m
s
e
c
)

Backup-time interval (msec) (logaritmic scale)

Average - Publish

Average - Inquiry

STDev - Publish

STDev - Inquiry

 144

The results show that we gain more than 50% performance increase by employing

an in-memory storage mechanism in our design. This experimental study indicates that

one can achieve noticeable performance improvements in metadata management for

standard operations by simply employing an in-memory storage mechanism, while

preserving a certain persistency level, as the metadata have to be backed up offline in at

most N time unit. Based on our investigation on backup frequency, we choose the value

of N to be every 10 seconds.

 Figure 27 Round Trip Time Chart for WSContext Schema Metadata Publish Requests

0

5

10

15

1 2 3 4 5

T
im

e
 (

m
s
e
c
)

Repeated Test Cases

Round Trip Time Chart for WSContext Schema Metadata Publish Request

Average - echo service

Average - memory

Average - database

STDev - echo service

STDev - memory

STDev - database

 145

Figure 28 Round Trip Time Chart for Unified Schema Metadata Publish Requests for publishing WS-

Context type metadata

 Statistics for the first test set from different publish request testing cases

 Average timings STDev

Test-1 – Echo Service 6.64 1.40

Test-2 – Unified - memory 7.46 1.82

Test-3 – WSContext - memory 7.77 1.51

Test-4 – Unified - database 21.73 1.75

Test-5 – WSContext - database 16.24 1.80

Table 8 Statistics for the first test set. We conduct testing cases to learn performance of the Unified and

WS-Context Schema standard publish operations. In these tests, we publish WSContext-type (interaction-

dependent) metadata with Unified Schema publish operation and WSContext Schema publish operation

through the Hybrid Service. (Test-1: Echo service testing case, Test-2: Unified Schema publish-operation

with memory access testing case, Test-3: WS-Context publish-operation with memory access testing case,

Test-4: Unified Schema publish-operation with database access testing case, Test-5: WS-Context Schema

publish-operation with database access testing case). The time units are in milliseconds.

0

5

10

15

20

25

1 2 3 4 5

T
im

e
 (

m
s
e
c
)

Repeated Test Cases

Round Trip Time Chart for Unified Schema Metadata Publish Request

Average - echo service

Average - memory

Average - database

STDev - echo service

STDev - memory

STDev - database

 146

 Figure 29 Round Trip Time Chart for Extended UDDI Metadata Publish Requests

Figure 30 Round Trip Time Chart for Unified Metadata Publish Requests for publishing UDDI-type

metadata

0

5

10

15

20

1 2 3 4 5

T
im

e
 (

m
s
e
c
)

Repeated Test Cases

Round Trip Time Chart for Extended UDDI Schema Metadata Publish
Request

Average - echo service

Average - memory

Average - database

STDev - echo service

STDev - memory

STDev - database

0

5

10

15

20

25

1 2 3 4 5

T
im

e
 (

m
s
e
c
)

Repeated Test Cases

Round Trip Time Chart for Unified Schema Metadata Publish Request

Average - echo service

Average - memory

Average - database

STDev - echo service

STDev - memory

STDev - database

 147

Statistics for the second test set from different publish request testing cases

 Averate timings STDev

Test-1 – Echo Service 6.64 1.40

Test-2 – Unified - memory 8.08 1.13

Test-3 – Ext UDDI - memory 7.61 1.26

Test-4 – Unified - database 24.41 1.78

Test-5 – Ext UDDI - database 18.88 1.44

Table 9 Statistics for the second test set. We conduct testing cases to learn performance of the Unified

Schema and extended UDDI Schema standard publish operations. In these tests, we publish UDDI-type

(interaction-independent) metadata with Unified Schema publish operation and extended UDDI Schema

publish operation through the Hybrid Service. (Test-1: Echo service testing case, Test-2: Unified Schema

publish-operation with memory access testing case, Test-3: Extended UDDI Schema publish-operation

with memory access testing case, Test-4: Unified Schema publish-operation with database access testing

case, Test-5: Extended UDDI Schema publish-operation with database access testing case). The time units

are in milliseconds.

6.3 Scalability Experiment

In this experiment, we conducted two testing cases on the centralized version of

the Hybrid Service to investigate its scalability. We tried to answer the following two

questions: a) how well does the system perform when the context size is increased, b)

how well does the system perform when the message rate per second is increased.

In the first testing case, our goal is to quantify the performance degradation in

response time when contexts, with larger sizes, published/retrieved into/from the Hybrid

Service. We have done this by increasing the context sizes until the response time

degrades. In this experiment, round-trip time was recorded at each inquiry/publish

request message. To facilitate the testing, we used WS-Context Schema publish and

inquiry operations on the Hybrid Service. The design of this testing case (Test-5) is

depicted in Figure 31.

 148

Test -5. Hybrid Service – WS-Context

inquiry/publish operations with increasing message

sizes
Test -6. Hybrid Service – WS-Context inquiry/publish

operations with increasing message rates (# of messages

per second)

single

threaded W
S
D
L

Client

1 user/100

transactions

HTTP(S)

W
S
D
LThread

Pool

W
S
D
LThread

Pool

5 Client distributed to cluster

nodes 1 to 5, with each running

1 to 15 threads

Ext-UDDI

HYBRID

SERVICE

W
S
D
L

WS-Context

Ext-UDDI

HYBRID

SERVICE
W
S
D
L

WS-Context

 Figure 31 Testing cases of scalability experiment for inquiry and publish functionalities

In the second testing case (Test-6), we want to determine how well the number of

users anticipated can be supported by the system for constant loads. Our goal is to

quantify the degradation in response time at various levels of simultaneous users. In order

to understand such performance degradation, we evaluate standard Hybrid Grid

Information Service operations. To facilitate the testing, we use WS-Context standard

operations with additional concurrent traffic. We have done this by ramping-up the

number of messages sent per second until the system performance degrades. In this

experiment, messages are fired off in random fashion. In order to ensure randomness of

message distribution, the client applications are scattered into five different machines. To

synchronize all clients (located in different machines) to start/stop firing messages at the

same time, publish-subscribe based methodology is used. By listening to a predefined

topic, each client receives “start/stop firing” message, which in turn starts/stop the testing

 149

process and synchronize the clients distributed into different machines. To increase the

message rate, both number of iterations and number of threads at each client (in each

machine) are gradually increased. In order to minimize the influence of thread scheduling

on the latency, the number of threads, at each machine, range from 1 to 15. In this

experiment, the Hybrid Service was running on cluster node-6, while the client and

provider were running on the cluster nodes ranging from node-1 to node-5. We recorded

the round trip time at each inquiry/publish request message and applied this test for both

publish and inquiry standard operations. The design of this test is depicted in

Figure 31, while the results are depicted in Figure 34. The detailed statistics are given in

Table 12.

6.3.1 Results of the Scalability Experiment

Based on the results, we note that Hybrid Grid Information Service standard

operations performed well for increasing context sizes. For example, Figure 32 indicates

that the cost of inquiry and publish operations remains almost the same, as the context’s

payload size increases from 100Bytes up to 10KBytes. Figure 33 indicates the system

behavior for publish message for the context payload size between 10Kbytes and

100Kbytes. By comparing the results from an Echo Service and Hybrid Service, we

observe that the pure server processing time remains the same as the size of the messages

increase.

 150

Figure 32 Logarithmic scale round trip time chart for Hybrid Service - WS-Context inquiry and publish

operations when context payload size increases

 inquiry operation - memory access publish operation - memory access

Kbytes Average timings STDev Average timings STDev

0.1 7.18 1.34 7.38 1.70

1 7.17 1.73 7.43 1.75

10 7.50 1.79 8.58 1.67

100 15.50 1.77 30.64 1.93

Table 10 Statistics of Figure 32 for Hybrid Service - WS-Context Schema API - inquiry and publish

operations with changing context payload sizes. Time units are in milliseconds.

Figure 33 Round Trip Time chart for publish requests when context payload size increases from 10Kbytes

to 100Kbytes

0

5

10

15

20

25

30

0.1 1.0 10.0 100.0

a
v
g
 r

o
u
n
d
 t

ri
p
 t

im
e
 (

m
ill

is
e
c
o
n
d
s
)

context payload size (KB)

Average - publish operation

Average - inquiry operation

STDev - publish operation

STDev - inquiry operation

0

5

10

15

20

25

30

35

40

10 20 30 40 50 60 70 80 90 100

a
v
g
 r

o
u
n
d
 t

ri
p
 t

im
e
 (

m
ill

is
e
c
o
n
d
s
)

context payload size (KB)

Average - Echo Service

Average - memory access

Average - database access

STDev - Echo Service

STDev - metadata access

STDev - database access

 151

 echo service

 publish operation

 memory access

 publish operation

 database access

Kbytes Average timings STDev Average timings STDev Average timings STDev

10 8.58 1.67 8.93 1.67 16.33 1.79

20 10.78 1.66 11.68 1.67 18.78 1.86

30 12.52 1.72 13.50 1.74 21.23 1.76

40 15.72 1.67 16.42 1.67 24.12 1.62

50 18.17 1.73 18.87 1.75 27.57 1.65

60 19.94 1.41 20.73 1.40 29.43 1.68

70 22.29 1.76 22.98 1.76 31.98 1.72

80 24.85 1.83 25.70 1.83 35.17 2.05

90 27.38 1.83 28.29 1.84 37.37 1.58

100 29.73 1.94 30.64 1.93 40.51 2.42

Table 11 Statistics of Figure 33 for Hybrid Service - WS-Context Schema - publish operations with

changing context payload sizes. Time units are in milliseconds

Figure 34 Average Hybrid Service – WSContext Schema inquiry and publish response time chart -

response time at various levels of message rates per second

0

10

20

30

40

50

60

70

0 200 400 600 800 1000

a
v
g
 r

o
u
n
d
 t

ri
p
ti
m

e
(m

s
)

message rate (message/per second)

inquiry message rate

publish message rate

 152

Hybrid Service - WS-Context Schema inquiry operation

messages/second Average timings STDev

167 5.45 0.65

522 5.84 0.97

778 5.9 0.91

940 47.05 33.52

942 92.25 45.13

Hybrid Service - WS-Context Schema publish operation

messages/second Average timings STDev

186 5.65 2.07

359 5.86 2.94

469 10.69 8.28

479 21.36 16.51

480 70.57 52.22

Table 12 Statistics of the experiment results depicted in Figure 34. These measurements were taken with

Hybrid Service when the WS-Context Schema inquiry and publish request is granted with memory access.

Time units are in milliseconds.

Based on the results depicted in Figure 34 and listed in Table 12, we determine

that a large number of concurrent inquiry requests may well be responded to without any

error by the system and do not cause significant overhead on the system performance. We

observe that after around 800 inquiry messages per second, the system performance

degradates due to high message rate. This threshold is mainly due to the limitations of

Web Service container, as we observe the similar threshold when we test the system with

an echo service that returns the input parameter passed to it with no message processing

is applied. Based on the results depicted in Figure 34 and listed in Table 12, we also

determine that a significant number of concurrent publication requests may well be

responded without any error by the system and do not cause big overhead on the system

performance. We observed that the system performance starts dropping down after

around 400 publication messages per second within a second. This threshold is mainly

due to the persistency capability of the system. As the publish message-rate is increased,

the number of updated/newly written contexts (within a unit time interval) in the Tuple

Pool is also increased. In turn, the time required for writing the larger number of updates

 153

into local information service back-end is increased. Thus, we see higher fluctuations in

the response times for increasing number of simultaneous publish requests by examining

the standard deviations results listed in Table 12.

6.4 Distribution Experiment

In this experiment, we conducted various testing cases to investigate the cost of

distribution. We measured the cost of distributing access request into remote servers

separated with significant network distances.

NB
node

Hybrid
Service
instance

Hybrid
Service

instance

Bloomington, IN 3 different instance located 3
different remote locations:

1 - Indianapolis, IN

2- Tallahassee, FL

3- San Diego, CA

Hybrid
Service

instance

Hybrid
Service
instance

Bloomington, IN 3 different instance located 3
different remote locations:

1 - Indianapolis, IN

2- Tallahassee, FL

3- San Diego, CA

NB
node

NB
node

Figure 35 The design of the distribution experiment. The rounded shapes indicate NaradaBrokering nodes.

The rectangle shapes indicate Hybrid Service instances located at different locations. The first test was

conducted with one broker where the broker is located before the Hybrid Service instance in Bloomington,

IN, while the second test was conducted with two broker nodes each sitting on the same machine before the

Hybrid Service instance.

In particular, we performed this experiment to answer following questions: a)

what is the cost of access request distribution in terms of time required to fetch copies of

a data (satisfying an access query) from remote locations?, b) how does the cost of

 154

distribution change when using multiple intermediary brokers for communication?, c)

how does the performance of the distribution change for continuous, uninterrupted

operations?

6.4.1 Results of the Distribution Experiment

Figure 36 The Distribution Experiment Results between Bloomington and Indianapolis - Each point in the

graph corresponds to average of 1000 observations.

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25

T
im

e
 (

m
s
)

Every 1000 observations

Bloomington - Indianapolis Access Distribution Chart

Average - Latency

STDev - Latency

Average - One Broker

STDev - One Broker

Average - Two Brokers

STDev - Two Brokers

 155

Figure 37 The Distribution Experiment Results between Bloomington and Tallahasse - Each point in the

graph corresponds to average of 1000 observations.

Figure 38 The Distribution Experiment Results between Bloomington and San Diego - Each point in the

graph corresponds to average of 1000 observations.

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25

T
im

e
 (

m
s
)

Every 1000 observations

Bloomington, IN - Tallahassee, Florida Distribution Chart

Average - Latency

STDev - Latency

Average - One Broker

STDev - One Broker

Average - Two Brokers

STDev - Two Brokers

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25

T
im

e
 (

m
s
)

Every 1000 observations

Bloomington - San Diego Distribution Chart

Average - Latency

STDev - Latency

Average - One Broker

STDev - One Broker

Average - Two Brokers

STDev - Two Brokers

 156

 Figure 39 Time spent in various sub-activities of the request distribution scheme of the Hybrid Service

 one broker two brokers latency

bloomington-indianapolis 3.59 4.79 2.42

bloomington-tallahassee 3.55 4.78 36.05

bloomington-san diego 3.63 4.92 66

Table 13 Statistics for Figure 39. Overhead of request distribution. Average timings in milliseconds.

Based on the results depicted in Figure 36, Figure 37, and Figure 38, we extract

the processing time involved for access request distribution. We depict the time spent in

various sub-activities of distribution in Figure 39 and list the results in Table 13. By

analyzing the results, we observe that regardless of how the Hybrid Service instances are

distributed, the system showed the same stable performance, which is around 3.6 ms

when using one intermediary broker. This time includes the Hybrid Service system

processing overhead and overhead of using an intermediary broker as part of publish-

0

10

20

30

40

50

60

70

bloomington-indianapolis bloomington-tallahassee bloomington-san diego

T
im

e
 (

m
s
)

overhead of distribution when using one intermediary broker

overhead of distribution when using two intermediary brokers

latency

 157

subscribe system. We observe that the overhead of access request distribution increases

only by 1.2 ms when we use an additional intermediary broker. The results also indicated

that the system performs well for continuous, uninterrupted request distribution

operations.

6.5 Dynamic Replication Experiment

In this experiment, we conducted a testing case to investigate the performance of

dynamic replication. We used the dynamic replication for performance optimization to

replicate temporary copies of contexts to where they wanted. In this experiment, we

simulated a workload, where we have 1000 metadata in the Hybrid Service instance

located at Indianapolis, IN. The size of the metadata is around 1.7 KByte. The dynamic

replication placement decision takes place every 100 seconds. The dynamic replication

deletion threshold was 0.03 requests per second, while the replication threshold was 0.18

requests per second. In this testing case, metadata from the Indianapolis instance was

requested randomly by the Hybrid Service instance located at Bloomington. If the remote

metadata is replicated to local site, the system simply obtains the data from local in-

memory storage. We conducted two testing cases to answer the following questions: a)

What is the cost of access distribution to fetch copies of a context from the remote

location (Indianapolis), when the dynamic replication is disabled, b) What is the cost of

access distribution to fetch copies of a context from the remote location (Indianapolis),

when dynamic replication is enabled.

 158

NB
node

Hybrid
Service

instance

Hybrid
Service

instance

Bloomington, IN Indianapolis, IN

Test-1 Distribution with Dynamic Replication Disabled

Test-2 Distribution with Dynamic Replication Enabled

NB
node

Hybrid
Service

instance

Hybrid
Service

instance

Bloomington, IN Indianapolis, IN

Figure 40 The design of the dynamic replication experiment. The rounded shapes indicate NaradaBrokering

nodes. The rectangle shapes indicate Hybrid Service instances located at different locations. In the first

testing case, dynamic replication capability is disabled. In the second testing case, dynamic replication

capability is enabled.

6.5.1 Results of the Dynamic Replication Experiment

 Figure 41 The results of the dynamic replication experiment.

0

1

2

3

4

5

6

7

0 5 10 15 20 25

L
a
te

n
c
y

Every 100 second

Dynamic Replication Performance Chart - Distribution between
Bloomington, IN and Indianapolis, IN

Average - Distribution
with Dynamic
Replication

STDev - Distribution
with Dynamic
Replication

Average - Distribution

STDev - Distribution

 159

Based on the results depicted in Figure 41, in this experiment, we observed that

the dynamic replication methodology could actually move highly requested metadata to

where they wanted. We observed that the system stabilized after around 16 minutes.

Here, the system managed to move half of the metadata to the local site after around 8

minutes, where we observed the highest peak in the standard deviation values. This is

simply because half of the access requests were granted locally, while the other half were

granted at the remote location.

6.6 Fault-tolerance Experiment

In this experiment, we conducted various testing cases to investigate the cost of

fault-tolerance when moving from centralized system to a decentralized replica hosting

system. In particular, we performed our testing cases to answer following questions: a)

What is the cost of replica-content placement for fault-tolerance in terms of the time

required to create replicas at remote locations?, b) How does the system behavior change

for continuous, uninterrupted replica-content placement operations?. To answer these

questions, we conducted two testing cases: The first test was conducted with one broker

when the broker was located before the Hybrid Service instance at Bloomington, IN. The

second test was conducted with two brokers each sitting on the same machine before the

Hybrid Service instances. In this experiment, we increased the fault tolerance level

gradually and measured end-to-end latency for replica-content placement.

 160

Hybrid

Service

instance

Hybrid

Service

instance

Bloomington, IN

NB node NB node

Hybrid

Service

instance
NB node

Hybrid

Service

instance
NB node

Indianapolis, IN

Tallahassee, FL

San Diego, CA

Hybrid

Service

instance

Hybrid

Service

instance
Bloomington, IN

NB node

Hybrid

Service

instance

Hybrid

Service

instance

Indianapolis, IN

Tallahassee, FL

San Diego, CA

Test - 1

Test - 2

Figure 42 The design of the fault tolerance experiment. The rounded shapes indicate NaradaBrokering

nodes. The rectangle shapes indicate Hybrid Service instances located at different locations. In the first

testing case, we measure the end-to-end latency for varying number replica-content creation with only one

broker. In the second case, we repeat the same test with two brokers.

6.6.1 Results of the Fault-tolerance Experiment

Figure 43 Fault Tolerance Experiment results when one replica is created at Indianapolis, IN. Each point in

the graph corresponds to average of 1000 observations.

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25

T
im

e
 (

m
s
)

Every 1000 observations

1 replica creation at remote location: Indianapolis, IN

Average - Latency

STDev - Latency

Average - One Broker

STDev - One Broker

Average - Two Brokers

STDev - Two Brokers

 161

Figure 44 Fault Tolerance Experiment results when two replicas are created at two remote locations:

Indianapolis, IN and Tallahase, FL. Each point in the graph corresponds to average of 1000 observations.

Figure 45 Fault Tolerance Experiment results when three replicas are created at three remote locations:

Indianapolis, IN, Tallahase, FL and San Diego, CA. Each point in the graph corresponds to average of 1000

observations.

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25

T
im

e
 (

m
s
)

Every 1000 observations

2 replica creation at remote locations: Indianapolis, Tallahase - Fault
Tolerance Chart

Average - Latency

STDev - Latency

Average - One Broker

STDev - One Broker

Average - Two Brokers

STDev - Two Brokers

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25

T
im

e
 (

m
s
)

Every 1000 observations

3 replica creation at remote locations: San Diego, Indianapolis and
Tallahase - Fault Tolerance Chart

Average - Latency

STDev - Latency

Average - One Broker

STDev - One Broker

Average - Two Brokers

STDev - Two Brokers

 162

Figure 46 Time spent in various sub-activities of the replica-content creation scheme of the Hybrid Service.

 one broker two brokers end-to-end latency

1 replica (Indianapolis) 4.02 5.27 2.43

2 replicas (Indianapolis–Tallahassee) 4.54 5.67 36.05

3 replicas (Indianapolis–Tallahassee –San Diego) 5.13 6.24 65.90

Table 14 Statistics for Figure 46. Overhead of replica-content creation. Average timings in milliseconds.

Based on the results depicted in Figure 43, Figure 44, and Figure 45, we extract

the processing time involved to provide fault-tolerance by utilizing publish-subscribe

based messaging schemes. We depict the time spent in various sub-activities of replica

creation in Figure 46 and list in Table 14. By analyzing the results, we observe that the

system presents a stable performance over time for replica creation. We observe that the

time required for one replica creation is only four milliseconds. The cost of replica

creation time includes the Hybrid Service system processing overhead and overhead of

0

10

20

30

40

50

60

70

1 replica creation
(Indianapolis)

2 replica creation
(Indianapolis, IN -
Tallahassee, FL)

3 replica creation
(Indianapolis-

IN, Tallahassee-FL, San
Diego-CA)

T
im

e
 (

m
s
)

overhead of replica creation when using one intermediary broker

overhead of replica creation when using two intermediary brokers

end-to-end latency

 163

using an intermediary broker as part of publish-subscribe system. We also observe that

the time required for replica creation increases, as the number of replica copies increases.

This is because; the system has to perform an additional unicast message for each

additional replica creation. The time required for a unicast message is less than one

millisecond. The results also indicated that, the overhead of replica-content creation

increases only by 1.2 ms, when we use an additional intermediary broker.

6.7 Consistency Enforcement Experiment

The design of the consistency enforcement is similar to the distribution experiment

depicted in Figure 35. In this experiment, our aim is to answer the following questions: a)

What is the cost of consistency enforcement in terms of the time required to carry out

updates at the primary-copy holder?, b) How does the system behavior change for

continuous, uninterrupted update operations (for consistency enforcement)? To this end,

we conducted two tests: The first test was conducted with one broker where the broker is

located before the Hybrid Service instance in Bloomington, IN, while the second test was

conducted with two broker nodes each sitting on the same machine before the Hybrid

Service instances. In this experiment, we measured the time required to distribute an

update request to the primary-copy holder of the context under consideration for

consistency enforcement reasons.

6.7.1 Consistency Enforcement Experiment Results

 164

Figure 47 Consistency Enforcement Experiment Results when an update request (originated from

Bloomington, IN) is carried out on the primary-copy holder located in Indianapolis, IN. Each point in the

graph corresponds to average of 1000 observations.

Figure 48 Consistency Enforcement experiment results when an update request (originated from

Bloomington, IN) is carried out on the primary-copy holder located in Tallahassee, FL. Each point in the

graph corresponds to average of 1000 observations.

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25

A
v
e
ra

g
e
 T

im
e
 (

m
s
)

Every 1000 observations

Bloomington - Indianapolis Consistency Enforcement Chart

Average - Latency

Average - One Broker

Average - Two Brokers

STDev - Latency

STDev - One Broker

STDev - Two Brokers

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25

A
v
e
ra

g
e
 T

im
e
 (

m
s
)

Every 1000 observations

Bloomington, IN - Tallahassee, Florida Consistency Enforcement Chart

Average - Latency

Average - One Broker

Average - Two Brokers

STDev - Latency

STDev - One Broker

STDev - Two Brokers

 165

Figure 49 Consistency Enforcement Experiment Results when an update request (originated from

Bloomington, IN) is carried out on the primary-copy holder located in San Diego, CA. Each point in the

graph corresponds to average of 1000 observations.

Figure 50 Time spent in various sub-activities of the Hybrid Service consistency enforcement scheme. The

results analyze the overhead of distributing update requests to the primary-copy holder where the update

requests take place for consistency enforcement reasons.

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25

A
v
e
ra

g
e
 T

im
e
 (

m
s
)

Every 1000 observations

Bloomington - San Diego Consistency Enforcement Chart

Average - Latency

Average - One Broker

Average - Two Brokers

STDev - Latency

STDev - One Broker

STDev - Two Brokers

0

10

20

30

40

50

60

70

bloomington-indianapolis bloomington-tallahassee bloomington-san diego

T
im

e
 (

m
s
)

overhead of consistency enforcement when using one intermediary broker

overhead of consistency enforcement when using two intermediary brokers

latency

 166

 one broker two brokers end-to-end latency

Bloomington – Indianapolis 4.05 5.32 2.42

Bloomington – Tallahassee 3.83 5.03 36.05

Bloomington – San Diego 4.07 5.49 66

Table 15 Statistics for Figure 50. Statistics for overhead of update distribution. Average timings in

milliseconds.

Based on the results depicted in Figure 47, Figure 48 and Figure 49, we extract

the processing time involved to provide consistency enforcement using publish-subscribe

based messaging schemes. We depict the time spent in various sub-activities of

distributing and carrying out the update request at the primary-copy holder in Figure 50

and list in Table 15. This cost of consistency enforcement includes the Hybrid Service

system processing overhead (for distributing update request to primary-copy holder) and

overhead of using an intermediary broker as part of publish-subscribe system. We

observe that the time required for consistency enforcement does not change regardless of

how Hybrid System instances are distributed. Similar to our results in the previous two

experiments, we observe that the overhead of consistency enforcement increases only by

1.2 ms when we use an additional intermediary broker. By analyzing the results, we also

observe that the system presents a stable performance over time for continuous

consistency enforcement operations.

6.8 Summary

This chapter presented the performance evaluation of the Hybrid Service. Firstly,

the evaluation indicated that metadata management systems could provide remarkable

performance achievements by simply employing an in-memory storage mechanism,

while preserving persistency of information. The results pointed out the trade-off between

 167

the persistency and performance. The results showed that performance is increased for a

standard publish operation, when the back-up frequency is chosen as a small number. In

other words, if the system uses bigger time interval for back-up, it performs better.

Secondly, it pointed out the trade-off between the scalability and performance.

Based on the results, we discovered some threshold values for the maximum number of

simultaneous publish or inquiry operations that can be performed on the system. For

example, when the number of inquiry workload exceeds 800 simultaneous messages per

second, the performance of the system starts dropping down. Therefore, the higher

scalability, the lower the performance would be for a standard operation, when the

workload of the system exceeds certain threshold values. The results also showed that the

system is able scale to increasing message sizes and performs well.

Thirdly, it pointed that Hybrid Service presents stable behavior for access request

distribution, replica creation and consistency enforcement over a high number continuous

operations. The results indicated that, with our solution, the cost of achieving distribution,

fault tolerance and consistency enforcement is in the order of milliseconds. We also

observed that the cost of fault tolerance is higher than both the cost of distribution and the

cost of consistency enforcement. This is because; there is an additional time required for

performing additional unicast messages for higher fault-tolerance levels.

Fourthly, it pointed out that we can achieve performance optimization by

employing dynamic replication technique in decentralized metadata management. The

results indicated that the cost of repetitive access requests could be reduced by moving

temporary copies of contexts to where they wanted.

 168

Finally, it pointed out the trade-off between performance and fault-tolerance. Here

the fault-tolerance is considered in terms of availability (i.e. degree of replication). The

results indicated that the cost of replica-content creation increases, when the degree of

fault-tolerance increased.

 169

Chapter 7

Conclusion and Future Work

7.1 Thesis Summary

This thesis studied Grid Information Services to address metadata management

requirements of application use domains described in Section 1.3.2. We determined the

scope of this research by identifying the metadata management requirements of

motivating application use domains. Section 1.3.1 discussed these requirements in details.

We discussed the relevant work in Chapter 2. Having identified the requirements and

reviewed the previous solutions, we proposed semantics and an architectural design for a

Hybrid Grid Information System. We introduced the Hybrid Grid Information Service

Architecture in Chapter 3. We discussed its semantics in Chapter 4 and explained its

prototype implementation in Chapter 5. We introduced empirical evaluation of the system

in Chapter 6.

 170

Firstly, the proposed Hybrid Service architecture provides unification of Grid

Information Services. It forms an add-on architecture that interacts with the local

information systems and unifies them in a higher-level hybrid system. In other words, the

Hybrid Service provides a unifying architecture where one can assemble metadata

instances of different information services. To achieve this, the Hybrid System

Architecture introduces various abstraction layers for uniform access interface and

information resource management. Each information service has its own customized

schema and communication protocol. The uniform access abstraction layer is

implemented to support one to many communication protocols. The information resource

management abstraction layer is implemented to manage one to many local schema

implementations. In our prototype implementation, we have shown that the Hybrid

Service is able to unify the two local information service implementations: WS-Context

and Extended UDDI and support their communication protocols.

Secondly, the proposed Hybrid Service provides federation of information in Grid

Information Services. This capability enables federation of Grid Information Services in

metadata instances. To achieve this capability, the Hybrid Service requires a global

schema integrating local information service schemas and user-provided mapping rules to

provide mappings. To facilitate testing of this capability, we introduced a Unified

Schema as a common communication platform and it’s Query/Publish XML API as a

shared common language. We have also introduced mapping rules as XSLT files between

the Unified Schema and local information service schemas. The Hybrid Service performs

transformations between instances of the Unified Schema and the local schemas based on

the user-provided mapping rules. With this capability, we enable different Grid

 171

Information Service implementations to interact with each other and share each other’s

metadata. Furthermore, with this approach, we provide the ability to issue integrated

queries on the heterogeneous metadata space where metadata comes from different

information service providers. This allows us to support an integrated access to not only

quasi-static, rarely changing interaction-independent metadata, but also highly updated,

dynamic interaction-dependent metadata associated to Grid/Web Services. We have

shown an example of the federation capability, by introducing a Unified Schema

integrating the three local information service schemas: extended UDDI, Glue and WS-

Context. We have also introduced an integrated communication protocol that allows users

to publish metadata instances into the heterogeneous metadata space. In our prototype

implementation, the Hybrid Grid Information Service supported transformations between

the Unified Schema and the two local information service schemas: WS-Context and

extended UDDI, as we provided the implementations of these two information services.

Thirdly, the Hybrid Service is implemented as a high performance information

system. With the Hybrid Service approach, we introduced an in-memory storage, which

runs one layer above existing local information services. To achieve persistency of

information, the Hybrid Service occasionally stores newly-inserted/updated metadata into

appropriate local information service backend. To implement the in-memory storage

capability, the proposed system utilizes an associative shared memory platform (by

utilizing the JavaSpaces Specification).

Fourthly, the Hybrid Service is implemented as a decentralized system. To

achieve decentralization, we utilized publish-subscribe based messaging schemes to

provide interaction among the distributed instances of the Hybrid System. We utilized a

 172

topic based publish-subscribe messaging communication to implement fundamental

aspects of decentralized information systems such as fault-tolerance, distribution, and

consistency enforcement. To improve the overall performance of the system, we have

also used performance optimization techniques such as dynamic migration/replication,

which improves overall system performance by moving/replicating highly requested

metadata to where they wanted.

Fifthly, we have implemented the WS-Context Service based on the WS-Context

Specifications to provide an efficient mediator service supporting communication among

services in dynamically assembled Grid/Web service collections. The proposed Hybrid

System runs as an add-on architecture, one layer above the implementation of the WS-

Context Service. The WS-Context Specification models interaction-dependent, session

metadata as an external entity where more than two services can access/store highly

dynamic shared metadata. It intends to manage the lifecycle of dynamic information

within an activity. We termed an activity as “session” and dynamically generated

information associated to it as “interaction-dependent metadata”. In this thesis, to

implement the WS-Context Service, we introduce semantics, which consists of data

model and programming interface (see Sections 4.2). In the prototype implementation of

WS-Context Service, we provided advanced query capabilities to support distributed state

management and collaboration session management. Examples of these capabilities could

be a) support for real-time replay and b) session-failure recovery.

Sixthly, we have implemented an extended version of existing UDDI

Specification. This is an information service designed to address metadata management

requirements of Geographical Information Systems, yet it also provides domain-

 173

independent advanced query capabilities. With this implementation, we introduce

information model (see Section 4.3.1) and access interface (see Section 4.3.2). The

extended UDDI information model includes entities, where additional metadata

associated to a Web Service, can be stored. Its programming interface provides metadata-

oriented publishing/discovery capabilities. The additional XML API set introduces

various capabilities such as publishing additional metadata associated with service

entries, posing metadata-oriented, geospatial, and domain-independent queries. The

domain-independent search capability is a more general-purpose extension to the UDDI

data model. It allows us to insert arbitrary XML metadata into the repository. This way,

the metadata catalog may be searched using XPATH queries, a standard way for

searching XML documents.

Finally, we have performed a set of experiments to evaluate the performance the

Hybrid Service. We conducted a performance experiment (see Section 6.2) where the

results showed that information services could provide significant performance

achievements by employing an in-memory storage while preserving a certain level of

persistency. We conducted scalability experiments (see Section 6.3) where the results

indicated that the Hybrid Service is able to respond well to large number of concurrent

requests without any error. This experiment also showed that the system performs well

for increasing metadata sizes. We conducted a distribution experiment (see Section 6.4)

where we investigated the performance and stability of our distribution methodology. The

results indicated that the cost of providing request distribution is only few milliseconds

and the system performance does not degrade for uninterrupted, continuous operations.

We conducted an experiment to test if the dynamic replication mechanism works (see

 174

Section 6.5). The results showed that the system is able to move/replicate highly

requested metadata to where the requests are originated. We have also investigated the

performance and stability of our methodologies for replica-content creation and

consistency enforcement (see Sections 6.6 and 6.7). The results indicated that the

processing cost of having fault-tolerance and enforcing consistency is only few

milliseconds and the system presents a stable performance for continuous operations.

7.2 Answers to Research Questions

We answer the aforementioned research questions (see Section 1.2) based on our

findings:

1) Can we implement a hybrid system architecture that unifies custom

implementations of Grid Information Services to provide a common access interface

to different kinds of service-metadata in Service Oriented Architectures?

 The answer to this question is “yes”. We introduced a Hybrid Grid Information

Service that is an add-on architecture above the existing grid information services. It

presents abstraction layers for both metadata access and information-resource

management. It is able to support one to many information service implementation

backends and their communication protocols. It unifies their metadata under a higher-

level structure. Chapter 3 overviewed the architecture, Chapter 4 discussed its abstract

data models and Chapter 5 explained the prototype implementation of the architecture.

This approach provided a uniform access interface to different kinds of service-metadata

in Service Oriented Architectures.

 175

2) How can we provide federation of information among the Grid

Information Services, so that they can share/exchange metadata with each other?

What is a common data model and communication protocol for such federation

capability?

 We observe that different Grid applications adopt customized implementations of

Grid Information Services. These information services support different communication

protocols and they are not interoperable with each other. This creates a challenge, as

different Grid domains cannot share/exchange metadata and communicate with each

other. To address this challenge, we built a federation capability integrated within the

Hybrid Grid Information Service Architecture. To achieve this, we introduced a Unified

Schema Specification by integrating the data models of Extended UDDI, WS-Context

and Glue Specifications. We also introduced a shared communication protocol to achieve

an integrated access to heterogeneous information space. The Hybrid Service allows

users to provide their own mapping rules to map Unified Schema instances to the other

local schema instances. It performs the transformations based on the user-provided

mapping rules. Chapter 4 discussed the Unified Schema abstract data models and XML

API that allowed us to create the federation capability among different Grid Information

Services. Chapter 5 discussed the prototype and explained how the Hybrid Service

achieves the federation capability in detail.

3) What is the efficient metadata access/storage strategy for such a hybrid

system architecture that could speed up performance of existing Grid Information

Services and that could provide persistency of information?

 176

To meet the performance requirement of the research problem, the Hybrid Grid

Information Service is designed as an in-memory storage, which runs one layer above the

existing information services to improve their performance. To provide an in-memory

storage, we utilized the TupleSpaces asynchronous communication paradigm (see Section

2.3). The TupleSpaces concept provides an associative lookup capability and is an

appropriate model when there are multiple-writers sharing the data. All metadata accesses

happen in memory to minimize average transaction execution time of the standard

operations. In order to achieve persistency, we implemented a persistency management

capability, which backs-up newly inserted/updated information into appropriate

information service backend every so often. The experimental studies discussed in

Sections 6.2 and 6.3 showed that the proposed methodology provides an efficient

performance in metadata access/storage, while providing persistency of information at

the same time.

4) What are the efficient request distribution, replica-content creation, and

consistency enforcement strategies to achieve decentralized hybrid information

system architecture? Can we implement these fundamental features of the

decentralized system with publish-subscribe based messaging schemes?

To meet the fault-tolerance and performance requirements of the research

problem, we implemented the Hybrid System as a decentralized information service with

efficient distribution, replica-content creation, look-ahead caching and consistency

enforcement schemes. To implement these fundamental issues of designing a

decentralized replica hosting system, we use the topic-based publish-subscribe paradigm.

We discuss our implementation methodology in Chapter 5 with detail. Chapter 6

 177

discussed experiments investigating our approach. Based on our results, we have found

that one can achieve efficient distribution, fault-tolerance and consistency enforcement

capabilities by utilizing publish-subscribe based messaging schemes with negligible

processing overheads.

5) How does the decentralized system behavior change for continuous

operation?

By analyzing the results gathered from different experiments (see Sections 6.4,

6.6, and 6.7) evaluating the fundamental aspects of our replica hosting system, we

observed that the system performance does not degrade because of continuous operations.

Thus, we concluded that the system presented stability for continuous request

distribution, replica-content creation and consistency enforcement operations.

6) How can we achieve a self-adopting decentralized information service

architecture that can answer instantaneous client-demand changes?

By analyzing the metadata requirements of our application use domains, we

observed that metadata might have volatile behavior and have changing user demands.

To meet the dynamism requirement, we implemented the dynamic replication algorithm

introduced by Rabinovich et al [104]. This approach provided a self-adopting capability

into the system. This way the system captures the dynamic behavior both in metadata and

network topology. The dynamic replication methodology replicates/migrates metadata to

handle sudden bursts of client requests coming from unexpected remote locations.

Section 5.6.7 discussed our dynamic replication approach and Section 6.5 discussed the

experiments. The results showed that the dynamic replication works in decentralized

 178

metadata management architectures and provides performance optimization in metadata

access.

7) Can we support communication among Grid/Web Services with efficient

mediator information service methodologies?

Based on the performance results given in Sections 6.2 and 6.3, we have shown

that communication among services could be achieved with efficient centralized metadata

strategies (such as the WS-Context approach, see Section 2.1.2), with metadata coming

from more than two services. Our performance results indicated that the processing

overhead of metadata access and storage is very small (see Section 6.2). In contrast,

point-to-point methodologies provide service conversation with metadata only from the

two services that exchange information. Our approach also showed that, by employing

the centralized approach, one could perform collective operations such as queries on

subsets of all available metadata in service conversation. We have shown example of this

with Hybrid Grid Information Service integrated with the WS-Context Service.

7.3 Future Research Directions

 This thesis revisited distributed data management techniques to achieve integrated

access to heterogeneous metadata in Grid Information Services. It introduced a Unified

Schema (by integrating different information service schemas) and provided mappings

between the Unified Schema and local schemas based on user-provided mapping rules.

We plan to expand on this approach to be able to scale up large number of metadata

sources. We will further research decentralized schema mapping strategies to express

high-level queries over the local schemas without relying on a global Unified Schema.

 179

An additional area that we intend to research that is needed to complete the system is an

information security mechanism for the distributed Hybrid Service. This research should

investigate the security concerns related to communication between network nodes and

users, as well as security concerns related to authorization to deal with access control.

 180

Appendix A: Supported XML API Sets

Supported XML API Index

A1. The WS-Context Service XML API Sets

A2. The Extended UDDI Service XML API Sets

A3. The Unified Information Service XML API Sets

A4. Hybrid Information Service Generic Web Service Interface

A.1. The WS-Context Service XML API Sets

The API Sets of the WS-Context XML Metadata service can be grouped as

following: 1) Inquiry, 2) Publication, 3) Security and 4) Proprietary XML API Sets.

A.1.1. The WS-Context Service Inquiry XML API Set

We introduced various API calls representing inquiries that can be used to retrieve

data from the WS-Context Service.

find_sessionService: The find session service API call is a functionalitiy of the

WS-Context XML Metadata Service. It locates services matching the conditions

specified in the query.

Syntax:

<find_sessionService [maxRows=”nn”] [listHead="0]>

[<findQualifiers>]

[<authInfo>]

[<sessionKey>]

[<name>]

[<xpathExpression>]

[<context>]

[<lease>]

</find_ sessionService >

Attributes:

• maxRows: The optional integer value that allows the requesting program

to limit the number of results returned.

 181

• listHead: The optional integer value indicates which item should be

returned as the head of the list first.

Arguments:

• findQualifiers: The optional collection of find Qualifier elements can be

used to alter the behaviour of the search functionality.

• authInfo: The optional argument is an element containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• sessionKey: The session uuid_keys are used to specify one to many

instances of a sessionEntity element in the hybrid service. If the

sessionKeys are specified, only those services that are associated with

these sessionKeys will be searched.

• name: This optional collection of string values represent one or more

names given to session service entities. This argument is used together

with an appropriate wildcard character specified in the findQualifiers. For

instance, as the default wildcard is “exactMatch”, if the name argument is

specified, any serviceEntity matching the specified names will be

searched.

• xpathExpression: This optional element is used if the query needed to be

placed in in-memory storage.

• context: This optional argument defines a list of dynamic metadata

(context) that are to be associated with a service instance. If the context is

 182

specified, only those services that are associated with these contexts will

be searched.

• lease: This optional argument defines a time period during which the

requested list of web services are up and running.

Returns:

This API call returns a list of session service entities matching the query on

success. In the event that no matches were located for the specified criteria, the service

entity array structure returned will be empty. This signifies zero messages. If no

arguments are passed a zero-match result set will be returned.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

find_session: The find_session API call is related with the WS-Context. It is used

to find session entity elements.

Syntax:

<find_session [maxRows=”nn”] [listHead="0]>

[<findQualifiers>]

[<authInfo>]

[<serviceKey>]

[<name>]

[<xpathExpression>]

[<context>]

[<lease>]

</find_ session >

Arguments:

• findQualifiers: The optional collection of find Qualifier elements can be

used to alter the behaviour of the search functionality.

 183

• authInfo: The optional argument is an element containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• serviceKey: This uuid_key(s) is used to specify a particular instance of a

service element in the registered data. If the serviceKey(s) is specified,

only those session entities that are associated with the given serviceKey(s)

will be searched.

• name: This is an identifier given by the user to session entities. This

argument is used together with an appropriate wildcard character specified

in the findQualifiers. For instance, as the default wildcard is

“exactMatch”, if the identifier argument is specified, any session entity

matching the specified identifier will be searched.

• xpathExpression: This optional element is used if the query needed to be

placed in in-memory storage.

• context: This optional argument defines a list of dynamic metadata

(context) that are to be associated with a service instance. If the context is

specified, only those sessions that are associated with these contexts will

be searched in the system.

• lease: This optional argument defines a time period during which the

requested list of sessions are declared to be valid.

Returns:

This API call returns a list of session entities matching the query on success. In

the event that no matches were located for the specified criteria, the session entity array

 184

structure returned will be empty. This signifies zero messages. If no arguments are passed

a zero-match result set will be returned.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

find_context: The find_context API call is related with the WS-Context. It is

used to find context entity elements.

Syntax:

<find_context [maxRows=”nn”] [listHead="0]>

[<findQualifiers>]

[<authInfo>]

[<sessionKey>]

[<serviceKey>]

[<name>]

[<xpathExpression>]

[<lease>]

</find_ context >

Arguments:

• findQualifiers: The optional collection of find qualifier elements can be

used to alter the behaviour of the search functionality.

• authInfo: The optional argument is an element containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• sessionKey: This uuid_key(s) is used to specify a particular instance of a

session entity element. If the sessionKey(s) is specified, only those context

elements that are associated with the given sessionKey(s) will be searched.

 185

• serviceKey: This uuid_key(s) is used to specify a particular instance of a

service element in the registered data. If the serviceKey(s) is specified,

only those context entities that are associated with the given serviceKey(s)

will be searched.

• name: This is an identifier given by the user to context entities. This

argument is used together with an appropriate wildcard character specified

in the findQualifiers. For instance, as the default wildcard is

“exactMatch”, if the identifier argument is specified, any context entity

matching the specified identifier will be searched.

• xpathExpression: This optional element is used if the query needed to be

placed in in-memory storage.

• lease: This optional argument defines a time period during which the

requested list of contexts are declared to be valid.

Returns:

This API call returns a list of context entities matching the query on success. In

the event that no matches were located for the specified criteria, the context entity array

structure returned will be empty. This signifies zero messages. If no arguments are passed

a zero-match result set will be returned.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

get_sessionServiceDetail: The get_sessionServiceDetail is related with the WS-

Context. It returns the sessionService structure corresponding to specified serviceKey(s).

 186

Syntax:

<get_serviceDetail >

[<authInfo>]

[<serviceKey>]

</ get_serviceDetail >

Arguments:

• authInfo: The optional argument is an element containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• serviceKey: This uuid_key(s) is used to specify a particular instance of a

sessionService element. If the serviceKey(s) is specified, only those

businessService elements that are associated with the given serviceKey(s)

will be searched.

Returns:

This API call returns a sessionServiceDetail element on success. A

sessionServiceDetail is an XML element, which contains an array of sessionService

structures. In the event that no matches were located for the specified criteria, the

sessionServiceDetail element will not contain any sessionService elements. If no

arguments are passed a zero-match result set will be returned.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

get_sessionDetail: The get_sessionDetail API call is used to retrieve

sessionEntity data structure corresponding to each of the session key values specified in

the arguments. It is a functionality related with the WS-Context Schema.

 187

Syntax:

<get_ sessionDetail >

[<authInfo>]

[<sessionKey>]

</ get_ sessionDetail >

Arguments:

• authInfo: The optional argument is an element containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• sessionKey: This uuid_key(s) is used to specify a particular instance of a

sessionEntity element. If the sessionKey(s) is specified, only those

sessionEntity structures that are associated with the given sessionKey(s)

will be searched/retrieved.

Returns:

This API call returns a sessionDetail element on success. A sessionDetail is an

XML element, which contains an array of sessionEntity structures. If no arguments are

passed a zero-match result set will be returned.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

get_contextDetail: The get_contextDetail API call is used to retrieve the context

structure corresponding to the context key values specified in the argument list. It is a

functionality related with the WS-Context Schema.

Syntax:

<get_ contextDetail >

 188

[<authInfo>]

[<contextKey>]

</ get_ contextDetail >

Arguments:

• authInfo: The optional argument is an element containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• contextKey: This uuid_key(s) is used to specify a particular instance of a

context element. If the contextKey (s) is specified, only those context

structures that are associated with the given contextKey (s) will be

searched/retrieved.

Returns:

This API call returns a contextDetail element on success. A contextDetail is an

XML element, which contains one to many context context elements, which are

associated with the specified contextKey(s) in the arguments. If no arguments are passed

a zero-match result set will be returned.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

get_contents: The get_contents API call is using syncrounous callback style

communication for sending requests. It is defined by WS-Context Specification. The

syntax of this call is exactly the same as the get_contextDetail(…) function. However,

this function does not send anything directly in response to the request. Thus, the only

difference between the get_contents(…) and the get_contextDetail(…) functions is that

 189

the former uses a synrounous call-back style communication while the latter utilizes

RPC-style communication. The get_contents(…) function contains the call-back address

of a ContextRespondant Service in passing arguments. The ContextRespondant Service is

used to communicate with the system using syncrounous callback style functions. It

allows the system to send results to a client who initiates a publication or inquiry callback

style operations. Similar to the get_contextDetail(…), this function is also used to retrieve

the context structure corresponding to the context key values specified in the argument

list. It is a functionality related with the WS-Context Schema.

Syntax:

<get_contents >

[<authInfo>]

[<contextKey>]

</ get_contents >

Arguments:

• authInfo: The optional argument is an element containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• contextKey: This uuid_key(s) is used to specify a particular instance of a

context element. If the contextKey (s) is specified, only those context

structures that are associated with the given contextKey (s) will be

searched/retrieved.

Returns:

This API call uses a synchronous call-back for communication. Thus, it does not

return anything directly in response to the request. Instead all results are sent to a

ContextRespondant Service using synrounous call-backs. In response to the

 190

get_contents(…), the “contents” function of the ContextRespondant Service is invoked.

This is needed to return the details of a context (a contextDetail element). A

contextDetail is an XML element, which contains the entire context under consideration.

Caveats:

If any error occurs in processing this API call, following two functions may be

invoked on the ContextRespondant Service: a) unknownContextFault(): This message is

sent to indicate the specified context could not be found for update, and b) generalFault():

This message is sent to indicate that some other error occurred during the execution of

the function. These two functions are part of ContextRespondant Service which is

defined by WS-Context Specifications, so not covered here.

A.1.2. The WS-Context Service Publish XML API Set

We introduce various extensions to XML API of the Context Manager of the WS-

Context Specification to publish and update session-related metadata associated with

services.

save_sessionService: The save session service API call is related with the WS-

Context XML Metadata Service. It allows users to update or add one or more

sessionService elements into the WS-Context XML Metadata Service.

Syntax:

<save_sessionService >

[<authInfo>]

[<sessionService>]

</ save_ sessionService >

Arguments:

 191

• authInfo: The optional argument is an element containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• sessionService: This is a required argument which consists of one or more

sessionService elements. A sessionService element contains a sessionKey,

which is uuid_key used to specify the category under which the service is

to be published, and a sessionKey, used to specify the session to which the

service is being participated. If the serviceKey, an identifier used to

specify the service, is passed with the sessionService element, then the

system updates the entries associated with the serviceKey.

Returns:

This API call returns a sessionServiceDetail element, which contains the resulting

sessionService structures after publication of new information.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

save_session: The save_session API call is used to add/update one or more

session entities. It is related with the WS-Context XML Metadata Service.

Syntax:

<save_session >

[<authInfo>]

[<sessionEntity>]

</ save_session >

Arguments:

 192

• authInfo: The optional argument is an element containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• sessionEntity: This is a required argument which consists of one or more

aforementioned sessionEntity elements.

Behaviour:

If the sessionKey, an identifier used to specify the sessionEntity, is passed within

the sessionEntity element, then the system updates the entries associated with the

specified sessionKey.

Returns:

This API call returns a sessionDetail element, which contains the information

after publication/update operation, takes place for the affected sessionEntity elements.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

save_context: The save_context API call is used to add/update on or more

context (dynamic metadata) entities into the service. It is related with the WS-Context

XML Metadata Service.

Syntax:

<save_context >

[<authInfo>]

[<context>]

</ save_context >

Arguments:

 193

• authInfo: The authInfo element is an optional argument containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• context: This is a required argument which defines a list of dynamic

metadata (context) that are to be associated with a sessionEntity or

sessionService instance. In order to do an update operation, a context

structure may be first obtained by using get_contextDetail operation.

Behaviour:

If a contextKey, an identifier used to specify a particular context, is passed within

the context element, then this is a signal for the system that the corresponding context

exists in the system. So, the system updates the entries associated with the specified

contextKey.

If a contextKey is passed with an empty value, then the system behave as if the

dynamic context under consideration is being inserted for the first time. So, the system

generates a unique identifier corresponding to this context and new entries are inserted

associated with the newly generated contextKey.

Returns:

This API call returns a contextDetail element on success. A contextDetail

contains the final version of context(s) after publication or update operation.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

 194

set_contents: The set_contents API call is using syncrounous callback style for

sending requests. It is defined by WS-Context Specification. The syntax of this call is the

same as save_context function. However, this function does not send anything directly in

response to the request. Similar to the save_context(…), this function is also used to

add/update one or more context (interaction-dependent metadata) entities into the service.

Syntax:

<set_contents >

[<authInfo>]

[<context>]

</set_contents >

Arguments:

• authInfo: The authInfo element is an optional argument containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• context: This is a required argument which defines a list of dynamic

metadata (context) that are to be associated with a sessionEntity or

sessionService instance.

Behaviour:

The behaviour of this function is almost the same as the aforementioned

save_context function. The only difference between the set_contents(…) and the

save_context(…) is that the former uses a synrounous call-back style communication

while the latter utilizes RPC-style communication. Thus, the set_contents(…) function

contains the call-back address of a ContextRespondant Service in its arguments. The

ContextRespondant Service is used to communicate with the system using syncrounous

 195

call-back style functions. It allows the hybrid service to sent results to a client who

initiates a publication or inquiry callback style operations.

Returns:

This API call is a synchronous callback function. Thus, it does not return anything

directly in response to the request. Instead, all results are sent to the ContextRespondant

Service using synrounous callbacks. In response to the set_contents(…) function, the

contentsSet function of the ContextRespondant Service is invoked. This is needed to

indicate that the contents of the context have been stored/updated successfully.

Caveats:

If any error occurs in processing this API call, following two functions may be

invoked on the ContextRespondant Service: a) unknownContextFault(): This message is

sent to indicate the specified context could not be found for update, and b) generalFault():

This message is sent to indicate that some other error occurred during the execution of

the function. These two functions are part of ContextRespondant Service, which is

defined by WS-Context Specifications, so not covered here.

delete_sessionService: The delete_sessionService API call is related with the

WS-Context XML Metadata Service. It is used to delete existing session service entities

associated with the specified service_Key(s) from the system.

Syntax:

<delete_service >

[<authInfo>]

[<serviceKey>]

</ delete_service >

Arguments:

 196

• authInfo: The authInfo element is an optional argument containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• serviceKey: This is a required argument and used to specify a particular

instance of a service element. When this argument is passed, one or more

service entitles associated with the specified serviceKey(s) will be deleted.

Returns:

When a successful deletion operation is executed a success message is returned to

the client.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

delete_session: The delete_session API call is a functionality related with the

WS-Context Schema and used to delete one or more sessionEntity structures from the

system.

Syntax:

<delete_session >

[<authInfo>]

[<sessionKey>]

</ delete_session >

Arguments:

• authInfo: The authInfo element is an optional argument containing an

authentication token. If there is a required restricted access, then this

argument is passed.

 197

• sessionKey: This is a required argument and used to specify a particular

instance of a sessionEntity element. When this argument is passed, one or

more sessionEntity structures associated with the specified sessionKey(s)

will be deleted.

Returns:

When a successful deletion operation is executed a success message is returned to

the client.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

delete_context: The delete_context API call is a functionality related with the

WS-Context Schema and used to delete one or more context structures from the system.

Syntax:

<delete_context >

[<authInfo>]

[<contextKey>]

</ delete_context >

Arguments:

• authInfo: The authInfo element is an optional argument containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• contextKey: This is a required argument and used to specify a particular

instance of a context element. When this argument is passed, one or more

context elements associated with the specified contextKey(s) will be

deleted.

 198

Returns:

When a successful deletion operation is executed a success message is returned to

the client.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

A.1.3. The WS-Context Service Security and Proprietary API

The WS-Context XML Metadata Service adopts the semantics for the Security

XML API (get_authToken, discard_authToken) and Proprietary XML API

(save_publisher, get_publisherDetail, find_publisher and delete_publisher) from existing

UDDI Specifications [8]. We implement these semantics to provide

find/add/modify/delete operations on the publisher list, i.e., authorized users of the

system. These XML APIs include the following function calls. We must note that the

WS-Context Securiy API is implemented for the centralized WS-Context metadata

registry approach. Based on this implementation, the centralized service requires an

authentication token to restrict who can perform inquiry/publish operation. The

authorization token is obtained from the service at the beginning of client-server

interaction. In this scnerio, a client can only access the system if he/she is an authorized

user by the system and his/her credentials match. If the client is authorized, he/she is

granted with an authentication token which needs to be passed in the argument lists of

publish/inquiry operations.

A.1.3.1. Security XML API

 199

get_authToken: The get_authToken API call is used to request an authentication

token as an “authInfo” (authentication information) element from the service. Both

publication and inquiry API set includes authentication information in their input

arguments.

discard_authToken: The discard_authToken API call is used to inform hybrid

WS-Context service that a particular authentication token is no longer required and

should be considered as invalid.

A.1.3.2. Proprietary XML API

find_publisher: The find_publisher API call is used to find publishers registered

with the system matching the conditions specified in the arguments.

save_publisher: The save_publisher API call is used to add or update

information about a publisher.

delete_publisher: The delete_publisher API call is used to delete information

about a publisher with a given publisherID.

get_publisherDetail: The get_publisherDetail API call is used to retrieve detailed

information regarding one or more publishers with given publisherID(s).

A.2 Extended UDDI XML Service XML API Set

The API Sets of the extended UDDI XML Metadata service can be grouped as

following: 1) Inquiry and 2) Publish.

A.2.1 Extended UDDI Service Inquiry XML API Set

We introduced various API calls representing inquiries that can be used to retrieve

data from the Extended UDDI XML Metadata Service.

 200

find_service: This API is a functionality related with the extended UDDI. The

find service API call locates services matching the conditions specified in the query. Each

find_service query enables metadata oriented query capabilities. This capability concern

with static and rarely changing attributes of services(s).

Syntax:

<find_service [maxRows=”nn”] [listHead="0]>

[<findQualifiers>]

[<authInfo>]

[<businessKey>]

[<names>]

[<xpathExpression>]

[<categoryBag>]

[<serviceAttribute>]

[<lease>]

[<tModelBag>]

</find_service>

Attributes:

• maxRows: The optional integer value that allows the requesting program

to limit the number of results returned.

• listHead: The optional integer value indicates which item should be

returned as the head of the list first.

Arguments:

• findQualifiers: The optional collection of find Qualifier elements can be

used to alter the behaviour of the search functionality.

• authInfo: The optional argument is an element containing an

authentication token. If there is a required restricted access, then this

argument is passed.

 201

• businessKey: This uuid_key is used to specify a particular instance of a

businessEntity element in the registered data. If the businessKey is

specified, only those services that are associated with the businessKey will

be searched.

• name: This optional collection of string values represent one or more

names given to businessService entities. This argument is used together

with an appropriate wildcard character specified in the findQualifiers. For

instance, as the default wildcard is “exactMatch”, if the name argument is

specified, any serviceEntity matching the specified names will be

searched.

• xpathExpression: This optional element is used if the query needed to be

placed in in-memory storage.

• categoryBag: This optional argument is a list of category references.

When this argument is used the returned list of services will contain

element matching all the categories passed (by default logical operation

AND is set).

• serviceAttribute: This optional argument defines a list of static metadata

(service attributes) that are to be associated with a service instance. If the

service attribute is specified, only those services that are associated with

these service attribute will be searched in the registry.

• lease: This optional argument defines a time period during which the

requested list of web services are up and running.

 202

• tModelBag: This optional argument is a collection of uuid_key elements

specifiying that search results are to be limited to those services that

expose themselves with a technical fingerprint that match.

Returns:

This API call returns a list of businessService entities matching the query. In the

event that no matches were located for the specified criteria, the service entity array

structure returned will be empty. This signifies zero messages. If no arguments are passed

a zero-match result set will be returned.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

find_serviceAttribute: This API is a functionality related with the extended

UDDI. It is used to locate serviceAttribute elements matching the query.

Syntax:

<find_serviceAttribute [maxRows=”nn”] [listHead="0]>

[<findQualifiers>]

[<authInfo>]

[<serviceKey>]

[<xpathExpression>]

[<categoryBag>]

[<lease>]

</find_ serviceAttribute >

Arguments:

• findQualifiers: The optional collection of find qualifier elements can be used

to alter the behaviour of the search functionality.

• authInfo: The optional argument is an element containing an authentication

token. If there is a required restricted access, then this argument is passed.

 203

• serviceKey: This uuid_key is used to specify a particular instance of a

businessService element in the registered data. If the serviceKey is specified,

only those serviceAttributes that are associated with the serviceKey will be

searched.

• xpathExpression: This optional element is used if the query needed to be

placed in in-memory storage.

• categoryBag: This optional argument is a list of category references. When

this argument is used the returned list of service attributes will be matching all

the categories passed (by default logical operation AND is set).

• lease: This optional argument defines a time period during which the

requested list of service attributes are valid.

Returns:

This API call returns a list of service attribute entities matching the query. In the

event that no matches were located for the specified criteria, the service attribute entity

array structure returned will be empty. This signifies zero messages. If no arguments are

passed a zero-match result set will be returned.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

get_serviceDetail: This API is a functionality related with the extended UDDI.

The get_serviceDetail returns the extended businessService structure corresponding to

specified serviceKey(s). The system returns a businessService structure, which contains

interaction-independent (static) information.

 204

Syntax:

<get_serviceDetail >

[<authInfo>]

[<serviceKey>]

</ get_serviceDetail >

Arguments:

• authInfo: The optional argument is an element containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• serviceKey: This uuid_key(s) is used to specify a particular instance of a

businessService element. If the serviceKey(s) is specified, only those

businessService elements that are associated with the given serviceKey(s)

will be searched.

Returns:

This API call returns a serviceDetail element on success. A serviceDetail is an

XML element, which contains an array of businessService structures. In the event that no

matches were located for the specified criteria, the serviceDetail element will not contain

any businessService elements. If no arguments are passed a zero-match result set will be

returned.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

get_serviceAttributeDetail: The get_serviceAttributeDetail is a functionality of

the extended UDDI. It is used to retrieve semi-static metadata associated to a unique

identifier. The system retrieves the requested serviceAttribute structures corresponding to

 205

specified attributeKey(s) and returns the results as an array of serviceAttributes within an

element called serviceAttributeDetail. The result is returned back to the querying user.

Syntax:

<get_ serviceAttributeDetail >

[<authInfo>]

[<attributeKey>]

</ get_ serviceAttributeDetail >

Arguments:

• authInfo: The optional argument is an element containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• attributeKey: This uuid_key(s) is used to specify a particular instance of a

serviceAttribute element. If the attributeKey(s) is specified, only those

serviceAttribute elements that are associated with the given

attributeKey(s) will be searched/retrieved.

Returns:

This API call returns a serviceAttributeDetail element on success. A

serviceAttributeDetail is an XML element, which contains an array of serviceAttribute

structures. If no arguments are passed a zero-match result set will be returned.

A.2.2 The Extended UDDI Service Publish XML API Set

We introduced various API calls representing inquiries that can be used to retrieve

data from the Extended UDDI XML Metadata Service.

save_service: The save_service API is related with the extended UDDI Schema.

The save service API call allows users to update or add one or more businessService

 206

elements into the extended UDDI XML Metadata Service. It uses the same syntax with

the out-of-box UDDI save service.

Syntax:

<save_service >

[<authInfo>]

[<businessService>]

</ save_service >

Arguments:

• authInfo: The optional argument is an element containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• businessService: This is a required argument which consists of one or

more businessService elements.

Returns:

This API call returns a serviceDetail element, which contains the resulting

businessService structures after publication of new information.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

save_serviceAttribute: The save_serviceAttribute API is related with the

extended UDDI Schema. Here, the system handles the serviceAttribute publication

operation and returns a serviceAttributeDetail element.

Syntax:

<save_serviceAttribute >

[<authInfo>]

[<serviceAttribute>]

 207

</ save_serviceAttribute >

Arguments:

• authInfo: The optional argument is an element containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• serviceAttribute: This is a required argument which consists of one or

more serviceAttribute elements. A serviceAttribute is a static metadata. It

contains a serviceKey, which is uuid_key used to specify the service entry

under which this metadata is to be published. If the attributeKey, an

identifier used to specify the serviceAttribute, is passed within the

serviceAttribute element, then the system updates the entries associated

with the attributeKey.

Returns:

This API call returns a serviceAttributeDetail element on success. A

serviceAttributeDetail contains the final version of serviceAttribute(s) after publication or

update operation.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

delete_service: The delete_service API is related with the extended UDDI

Schema and used to delete existing service entities associated with the specified

service_Key(s) from the system. This API call adopts the syntax from the out-of-box

UDDI delete function for interoperability.

 208

Syntax:

<delete_service >

[<authInfo>]

[<serviceKey>]

</ delete_service >

Arguments:

• authInfo: The authInfo element is an optional argument containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• serviceKey: This is a required argument and used to specify a particular

instance of a businessService element. When this argument is passed, one

or more service entitles associated with the specified serviceKey(s) will be

deleted.

Returns:

When a successful deletion operation is executed, an empty message is returned

to the client.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

delete_serviceAttribute: The delete_serviceAttribute is a functionality related

with the extended UDDI Schema. It is used to delete service attribute metadata associated

to services.

Syntax:

<delete_serviceAttribute >

[<authInfo>]

[<attributeKey>]

 209

</ delete_serviceAttribute >

Arguments:

• authInfo: The authInfo element is an optional argument containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• attributeKey: This is a required argument and used to specify a particular

instance of a serviceAttribute element. When this argument is passed, one

or more static-metadata entries associated with the specified

attributeKey(s) will be deleted.

Returns:

When a successful deletion operation is executed, an empty message is returned

to the client.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

A.3. The Unified Schema XML API Set

The Hybrid Information Service introduces a Unified Schema and XML API to

provide a common information model and query/publish syntax for both interaction-

dependent and interaction-independent metadata spaces. The Unified Schema XML API

set can be grouped as following: 1) Inquiry and 2) Publish.

A.3.1. The Unified Schema Inquiry XML API:

 210

We introduced various API calls representing inquiries that can be used to retrieve

data from the Hybrid Service using the Unified Schema XML API.

find_service: The find service API call is a functionality of the Unified Schema.

It locates services matching the conditions specified in the query.

Syntax:

<find_service [maxRows=”nn”] [listHead="0]>

[<authInfo>]

[<name>]

[<xpathExpression>]

</find_ service >

Attributes:

• maxRows: The optional integer value that allows the requesting program

to limit the number of results returned.

• listHead: The optional integer value indicates which item should be

returned as the head of the list first.

Arguments:

• authInfo: The optional argument is an element containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• name: This optional string value represents a name given to service entity

by the user.

• xpathExpression: This optional element is used if the query needed to be

placed in in-memory storage.

Returns:

 211

This API call returns a list of service entities matching the query on success. In

the event that no matches were located for the specified criteria, the service entity array

structure returned will be empty. This signifies zero messages. If no arguments are passed

a zero-match result set will be returned.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

find_business: The find business API call is a functionalitiy of the Unified

Schema. It locates business entity instances matching the conditions specified in the

query.

Syntax:

<find_business [maxRows=”nn”] [listHead="0]>

[<authInfo>]

[<name>]

[<xpathExpression>]

</find_business >

Attributes:

• maxRows: The optional integer value that allows the requesting program

to limit the number of results returned.

• listHead: The optional integer value indicates which item should be

returned as the head of the list first.

Arguments:

• authInfo: The optional argument is an element containing an

authentication token. If there is a required restricted access, then this

argument is passed.

 212

• name: This optional string value represents a name given to business

entity by the user.

• xpathExpression: This optional element is used if the query needed to be

placed in in-memory storage.

Returns:

This API call returns a list of business entities matching the query on success. In

the event that no matches were located for the specified criteria, the business entity array

structure returned will be empty. This signifies zero messages. If no arguments are passed

a zero-match result set will be returned.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

find_session: The find_session API call is related with the Unified Schema. It is

used to find session entity elements.

Syntax:

<find_session [maxRows=”nn”] [listHead="0]>

[<authInfo>]

 [<name>]

[<xpathExpression>]

</find_session >

Arguments:

• authInfo: The optional argument is an element containing an

authentication token. If there is a required restricted access, then this

argument is passed.

 213

• name: This optional string value represent a name given to session entity

by the user.

• xpathExpression: This optional element is used if the query needed to be

placed in in-memory storage.

Returns:

This API call returns a list of session entities matching the query on success. In

the event that no matches were located for the specified criteria, the session entity array

structure returned will be empty. This signifies zero messages. If no arguments are passed

a zero-match result set will be returned.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

find_metadata: The find_metadata API call is related with the Unified Schema.

It is used to find metadata entity elements.

Syntax:

<find_metadata [maxRows=”nn”] [listHead="0]>

[<authInfo>]

[<name>]

[<xpathExpression>]

</find_ metadata >

Arguments:

• authInfo: The optional argument is an element containing an

authentication token. If there is a required restricted access, then this

argument is passed.

 214

• name: This optional string value represent a name given to session entity

by the user.

• xpathExpression: This optional element is used if the query needed to be

placed in in-memory storage.

Returns:

This API call returns a list of metadata entities matching the query on success. In

the event that no matches were located for the specified criteria, the metadata entity array

structure returned will be empty. This signifies zero messages. If no arguments are passed

a zero-match result set will be returned.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

get_serviceDetail: The get_serviceDetail is a Unified Schema API call, which

returns the service structure of the Unified Schema corresponding to specified

serviceKey(s).

Syntax:

<get_serviceDetail >

[<authInfo>]

[<serviceKey>]

</ get_serviceDetail >

Arguments:

• authInfo: The optional argument is an element containing an

authentication token. If there is a required restricted access, then this

argument is passed.

 215

• serviceKey: This uuid_key(s) is used to specify a particular instance of a

service element. If the serviceKey(s) is specified, only those service

elements that are associated with the given serviceKey(s) will be searched.

Returns:

This API call returns a serviceDetail element on success. A serviceDetail is an

XML element, which contains an array of service structures. In the event that no matches

were located for the specified criteria, the serviceDetail element will not contain any

service elements. If no arguments are passed a zero-match result set will be returned.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

get_sessionDetail: The get_sessionDetail API call is used to retrieve

sessionEntity data structure corresponding to each of the session key values specified in

the arguments. It is a functionality related with the Unified Schema.

Syntax:

<get_sessionDetail >

[<authInfo>]

[<sessionKey>]

</ get_sessionDetail >

Arguments:

• authInfo: The optional argument is an element containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• sessionKey: This uuid_key(s) is used to specify a particular instance of a

sessionEntity element. If the sessionKey(s) is specified, only those

 216

sessionEntity structures that are associated with the given sessionKey(s)

will be searched/retrieved.

Returns:

This API call returns a sessionDetail element on success. A sessionDetail is an

XML element, which contains an array of sessionEntity structures. If no arguments are

passed, a zero-match result set will be returned.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

get_businessDetail: The get_businessDetail API call is used to retrieve

businessEntity data structure corresponding to each of the business key values specified

in the arguments. It is a functionality related with the Unified Schema.

Syntax:

<get_businessDetail >

[<authInfo>]

[<businessKey>]

</ get_businessDetail >

Arguments:

• authInfo: The optional argument is an element containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• businessKey: This uuid_key(s) is used to specify a particular instance of a

businessEntity element. If the businessKey(s) is specified, only those

businessEntity structures that are associated with the given businessKey(s)

will be searched/retrieved.

 217

Returns:

This API call returns a businessDetail element on success. A businessDetail is an

XML element, which contains an array of businessEntity structures. If no arguments are

passed, a zero-match result set will be returned.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

get_metadataDetail: The get_metadataDetail API call is used to retrieve the

metadata structure corresponding to the metadata key values specified in the argument

list. It is a functionality related with the Unified Schema.

Syntax:

<get_ metadataDetail >

[<authInfo>]

[<metadataKey>]

</ get_ metadataDetail >

Arguments:

• authInfo: The optional argument is an element containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• metadataKey: This uuid_key(s) is used to specify a particular instance of a

metadata element. If the metadataKey (s) is specified, only those metadata

structures that are associated with the given metadataKey (s) will be

searched/retrieved.

Returns:

 218

This API call returns a metadataDetail element on success. A metadataDetail is an

XML element, which contains metadata elements, which are associated with the specified

metadataKey(s) in the arguments. If no arguments are passed a zero-match result set will

be returned.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

A.3.2. The Unified Schema Publish XML API:

save_service: The save service API call is a hybrid function which allows the

users to update or add one or more service elements into the Hybrid Service using the

Unified Schema XML API.

Syntax:

<save_service >

[<authInfo>]

[<service>]

</ save_service >

Arguments:

• authInfo: The optional argument is an element containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• service: This is a required argument which consists of one or more service

elements.

Returns:

This API call returns a serviceDetail element, which contains the resulting service

structures after publication of new information.

 219

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

save_business: The save business API call is a Unified Schema function which

allows the users to update or add one or more business elements into the Hybrid Service

using the Unified Schema XML API.

Syntax:

<save_business>

[<authInfo>]

[<businessEntity>]

</ save_business>

Arguments:

• authInfo: The optional argument is an element containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• businessEntity: This is a required argument which consists of one or more

business entity elements.

Returns:

This API call returns a businessDetail element, which contains the resulting

business structures after publication of new information.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

save_session: The save_session API call is used to add/update one or more

session entities into the Hybrid Service. It is a functionality of the Unified Schema.

 220

Syntax:

<save_session>

[<authInfo>]

[<sessionEntity>]

</ save_session>

Arguments:

• authInfo: The optional argument is an element containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• sessionEntity: This is a required argument which consists of one or more

aforementioned sessionEntity elements.

Behaviour:

If the sessionKey, an identifier used to specify the sessionEntity, is passed within

the sessionEntity element, then the system updates the entries associated with the

specified sessionKey.

Returns:

This API call returns a sessionDetail element, which contains the information

after publication/update operation, takes place for the affected sessionEntity elements.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

save_metadata: The save_metadata API call is used to add/update on or more

metadata entities into the Hybrid Service. It is a functionality of the Unified Schema.

Syntax:

<save_metadata >

 221

[<authInfo>]

[<metadata>]

</ save_metadata >

Arguments:

• authInfo: The authInfo element is an optional argument containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• metadata: This is a required argument which defines a list of metadata

that are to be associated with a session, service, or site.

Behaviour:

If a metadataKey, an identifier used to specify a particular metadata, is passed

within the metadata element, then this is a signal for the system that the corresponding

metadata exists in the system. So, the system updates the entries associated with the

specified metadata Key.

If a metadata Key is passed with an empty value, then the system behave as if the

metadata under consideration is being inserted for the first time. So, the system generates

a unique identifier corresponding to this metadata and new entries are inserted associated

with the newly generated metadata key.

Returns:

This API call returns a metadataDetail element on success. A metadataDetail

contains the final version of metadata after publication or update operation.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

 222

delete_service: The delete_service API call is a Unified Schema function, which

is used to delete existing service entities associated with the specified service_Key(s)

from the system.

Syntax:

<delete_service >

[<authInfo>]

[<serviceKey>]

</ delete_service >

Arguments:

• authInfo: The authInfo element is an optional argument containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• serviceKey: This is a required argument and used to specify a particular

instance of a service element. When this argument is passed, one or more

service entitles associated with the specified serviceKey(s) will be deleted.

Returns:

When a successful deletion operation is executed a success message is returned to

the client.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

delete_business: The delete_business API call is a Unified Schema function,

which is used to delete existing business entities associated with the specified

business_Key(s) from the system.

Syntax:

 223

<delete_business>

[<authInfo>]

[<businessKey>]

</delete_business>

Arguments:

• authInfo: The authInfo element is an optional argument containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• businessKey: This is a required argument and used to specify a particular

instance of a business element. When this argument is passed, one or more

service entitles associated with the specified businessKey(s) will be

deleted.

Returns:

When a successful deletion operation is executed a success message is returned to

the client.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

delete_session: The delete_session API call is a functionality related with the

Unified Information Service Schema and used to delete one or more sessionEntity

structures from the system.

Syntax:

<delete_session>

[<authInfo>]

[<sessionKey>]

</ delete_session>

 224

Arguments:

• authInfo: The authInfo element is an optional argument containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• sessionKey: This is a required argument and used to specify a particular

instance of a sessionEntity element. When this argument is passed, one or

more sessionEntity structures associated with the specified sessionKey(s)

will be deleted.

Returns:

When a successful deletion operation is executed a success message is returned to

the client.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

delete_metadata: The delete_metadata API call is a functionality related with the

Unified Schema and used to delete one or more metadata structures from the system.

Syntax:

<delete_metadata >

[<authInfo>]

[<metadataKey>]

</ delete_ metadata >

Arguments:

• authInfo: The authInfo element is an optional argument containing an

authentication token. If there is a required restricted access, then this

argument is passed.

 225

• metadataKey: This is a required argument and used to specify a particular

instance of a metadata element. When this argument is passed, one or

more metadata elements associated with the specified metadataKey(s) will

be deleted.

Returns:

When a successful deletion operation is executed a success message is returned to

the client.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

A.4. Hybrid Information Service Web Service Interface

In our prototype implementation, we have shown that the Hybrid Grid

Information Service can support two widely used standards: UDDI and WS-Context

Specifications. We have implemented a Hybrid Grid Information Service query/publish

abstraction layer where one can use the XML API of different information services

without changing the uniform access interface.

hybrid_function: The hybrid_function service API call allows users to pose

inquiry/publish requests based on any specification. With this function, the user can

specify the type of the schema and the function. This function allows users to access an

information service back-end directly. The user also specifies the request in XML format

based on the specification under consideration. On receiving the hybrid_function request

call, the system handles the request based on the schema and function specified in the

query. Thre result is returned to user in XML format.

 226

Syntax:

<hybrid_function>

[<authInfo>]

[<specName>]

[<functionName>]

[<requestXML>]

</hybrid_function>

Arguments:

• authInfo: The optional argument is an element containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• specName: This argument indicates the name of the schema which is

under consideration.

• functionName: This argument indicates the name of the function.

• requestXML: This argument indicates the request in XML format based on

the schema under consideration.

Returns:

This API call returns the result of the requested function in XML format based on

the schema specified in the hybrid_function.

save_schemaEntity: This API call is used to save an instance of any schema

entities of a given Specification. The save_schemaEntity API call is a hybrid function

which allows the users to update/add one or more schema entity elements into the Hybrid

Grid Information Service. This API is carried out on the JavaSpaces based in-memory

storage. On receiving a save_schemaEntity publication request message, the system

processes the incoming message based on information given in the mapping file of the

schema under consideration. Then, the system stores the newly-inserted schema entity

 227

instances as java objects into the JavaSpaces. Here, each schema entity object is stored

associated with a unique identifier generated for the new publish request.

Syntax:

<save_schemaEntity>

[<authInfo>]

[<lease>]

[<schema_Name>]

[<schema_FunctionName>]

[<schema_RequestXML>]

</ save_schemaEntity>

Arguments:

• authInfo: The optional argument is an element containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• lease: This optional argument defines a time period during which the

requested list of web services are up and running.

• schema_Name: This argument is used to specify the schema under

consideration.

• schema_FunctionName: This argument is used to identify the schema

specific method which will be executed over the instance of the schema

under consideration.

• schema_RequextXML: This argument is used to specify the actual publish

function XML document, which is generated for saving an instance of an

entity of the schema under consideration.

Returns:

 228

This API call returns a schemaEntityDetail element, which contains the resulting

schema entity structures after publication of new information.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

get_schemaEntityDetail: The get_schemaEntityDetail is a hybrid API call,

which is used to retrieve an instance of any schema entities of a given specification. It

returns the entity structure corresponding to key(s) specified in the query. This function is

carried out on the JavaSpaces. On receiving a get_schemaEntityDetail retrieval request

message, the system processes the incoming message based on information given in the

mapping file of the schema under consideration. Then the system, retrives the correct

entity associated with the key from JavaSpaces. Finally, the system sends the result to the

user.

Syntax:

<get_schemaEntityDetail>

[<authInfo>]

[<schema_Name>]

[<schema_FunctionName>]

[<schema_RequestXML>]

</get_schemaEntityDetail>

Arguments:

• authInfo: The optional argument is an element containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• schema_Name: This argument is used to specify the schema under

consideration.

 229

• schema_FunctionName: This argument is used to identify the schema

specific method which will be executed over the instance of the schema

under consideration.

• schema_RequextXML: This argument is used to specify the XML which is

generated for retrieving an instance of an entity of the schema under

consideration.

Returns:

This API call returns a schemaEntityDetail element, which contains the schema

entity structure corresponding to a key.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

delete_schemaEntity: The delete_schemaEntity is a hybrid API call, which is

used to delete an instance of any schema entities of a given Specification. The

delete_schemaEntity API call is a hybrid function, which is used to delete existing

service entities associated with the specified key(s) from the system. It is carried out on

the JavaSpaces. On receiving a schema entity deletion request message, the system

processes the incoming message based on information given in the mapping file of the

schema under consideration. Then the system, deletes the correct entity associated with

the key. Finally, the system sends a success message whether the deletion is completed

successfully.

Syntax:

<delete_schemaEntity>

[<authInfo>]

 230

[<schema_Name>]

[<schema_FunctionName>]

[<schema_RequestXML>]

</delete_schemaEntity>

Arguments:

• authInfo: The optional argument is an element containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• schema_Name: This argument is used to specify the schema under

consideration.

• schema_FunctionName: This argument is used to identify the schema

specific method which will be executed over the instance of the schema

under consideration.

• schema_RequextXML: This argument is used to specify the XML which is

generated for deleting an instance of an entity of the schema under

consideration.

Returns:

This API call returns a success element which contains a boolean variable

indicating whether the deletion compleled with success.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

find_schemaEntity: This API call locates schemaEntities whose entity types are

identified in the arguments. This function allows the user to locate a schema entity among

the heteregenous tuple space where there exists tuples belong to different schemas. It is

 231

carried out on the JavaSpaces. On receiving a find_schemaEntity request message, the

system processes the incoming message based on information given in the schema

mapping file of the schema under consideration. Then the system, locates the correct

entities matching the query under consideration.

Syntax:

<find_schemaEntity>

[<authInfo>]

[<entity_Type>]

[<schema_Name>]

[<schema_FunctionName>]

[<schema_RequestXML>]

</find_schemaEntity>

Arguments:

• authInfo: The optional argument is an element containing an

authentication token. If there is a required restricted access, then this

argument is passed.

• entity_Type: This argument is used to specify the type of the entity which

is being searched.

• schema_Name: This argument is used to specify the schema under

consideration.

• schema_FunctionName: This argument is used to identify the schema

specific method which will be executed over the instance of the schema

under consideration.

• schema_RequextXML: This argument is used to specify the XML which is

generated for finding an instance of an entity of the schema under

specification.

 232

Returns:

This API call returns a schemaEntityDetail element, which contains the schema

entity structures matching the query.

Caveats:

If any error occurs in processing this API call, a dispositionReport element will be

returned to the caller within a SOAP fault.

 233

Appendix B: Example XML Metadata Documents

B.1. Sample Context XML metadata

<?xml version="1.0" encoding="UTF-8"?>

<wscontext:context

 xmlns:wscontext="http://datatype.fthpis.cgl/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <contextKey>ABCCE800-AB35-11DA-A4FC-C80C5880CB18</contextKey>

 <serviceKey>ABCCE800-AB35-11DA-A4FC-C80C5880CB19</serviceKey>

 <sessionKey>ABCCE800-AB35-11DA-A4FC-C80C5880CB20</sessionKey>

 <name>context://GIS/PI/ABCCE544-CX35-11EA-BVFC-C34C7789CB33</name>

 <value>context:///GIS/VC/3ea29661-2d5e-11db-8c56-cf37cd202027/3ebd7162-2d5e-11db-8c56-

cf37cd202027/cost</value>

 <valueType>String</valueType>

 <lease>

 <timeout>1000</timeout>

 <isInfinite>false</isInfinite>

 </lease>

 <version>1</version>

</wscontext:context>

B.2. Sample UDDI XML metadata

<?xml version="1.0" encoding="UTF-8"?>

<uddi:businessService

xmlns:uddi="http://uddi.services.axis.cgl/uddi_schema

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <serviceKey>12114460-B4B6-11DA-A1DD-C2341CB5D80D</serviceKey>

 <businessKey>7115B940-A95E-11DA-B940-CB4E3E38D62F</businessKey>

 <uddi:name>

 <value>Sample Service</value>

 </uddi:name>

 <uddi:description>

 <value>Service Description</value>

 </uddi:description>

 <value>String</value>

 <uddi:bindingTemplates>

 <uddi:bindingTemplate>

 <bindingKey>129679F0-B4B6-11DA-A1DD-E719F6E12358</bindingKey>

 <serviceKey>12114460-B4B6-11DA-A1DD-C2341CB5D80D</serviceKey>

 <uddi:accessPoint>

 <value>http://gf7.ucs.indiana.edu:8092/wfs-streaming-service/services/wfs</value>

 <useType>research</useType>

 </uddi:accessPoint>

 </uddi:bindingTemplate>

 </uddi:bindingTemplates>

 <uddi:categoryBag>

 <uddi:keyedReference>

 <uddi:tModelKey>6D712AF0-4ADA-11DA-BC65-C767C07EBBEA</uddi:tModelKey>

 <uddi:keyName>ServiceCategory</uddi:keyName>

 <uddi:keyValue>GIS-WFS</uddi:keyValue>

 </uddi:keyedReference>

 <uddi:categoryBag>

</uddi:businessService>

B.3. Sample Unified Schema XML metadata

<?xml version="1.0" encoding="UTF-8"?>

<unified_schema:service

 xmlns:hybrid_schema="http://datatype.generic.fthpis.cgl/"

 234

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <serviceKey>856679F0-B4B6-11DA-A1DD-E719F6E12358</serviceKey>

 <serviceType>Web Feature Service</serviceType>

 <name>Service Name</name>

 <description>

 <value>Service Description</value>

 </description>

 <serviceEndpointAddress>http://gf7.ucs.indiana.edu:8092/wfs-streaming-service/services/wfs</serviceEndpointAddress>

 <metadata>

 <metadataKey>7115B940-A95E-11DA-B940-CB4E3E38D98F</metadataKey>

 <serviceKey>856679F0-B4B6-11DA-A1DD-E719F6E12358</serviceKey>

 <name>session-id</name>

 <value>0001</value>

 <lease><isInfinite>true</isInfinite></lease>

 <version>1</version>

 </metadata>

 <lease><isInfinite>true</isInfinite></lease>

</unified_schema:service>

 235

References

1. Aydin, G., et al. SERVOGrid Complexity Computational Environments (CCE)

Integrated Performance Analysis. in Grid Computing, 2005. The 6th IEEE/ACM

International Workshop on. 2005: IEEE.

2. Wu, W., et al. A Web-services based conference control framework for heterogenous

A/V collaboration. in 7th IASTED International Conference on INTERNET AND

MULTIMEDIA SYSTEMS AND APPLICATIONS IMSA 2003 August 13-15, 2003

Honolulu, Hawaii, USA. 2003.

3. Wu, W., et al., Service Oriented Architecture for VoIP conferencing. International

Journal of Communication Systems, 2006.

4. Fox, G., Grids of Grids of Simple Services. CISE Magazine July/August 2004.

5. B. Plale, P.D., and G. Von Laszewski. , Key Concepts and Services of a Grid

Information Service. In Proceedings of the 15th International Conference on Parallel

and Distributed Computing Systems (PDCS 2002), , 2002.

6. M. Gerndt, R.W., Z. Balaton, G. Gombás, P. Kacsuk, Zs. Németh, N. Podhorszki, H-

L. Truong, T. Fahringer, M. Bubak, E. Laure, T. Margalef, Performance Tools for the

Grid: State of the Art and Future. 2004, Shaker Verlag.

7. Zanikolas, S., Sakellariou, R., A Taxonomy of Grid Monitoring Systems. . Future

Generation Computer Systems, 21(1), 2005: p. pp. 163--188.

8. Bellwood, T., Clement, L., and von Riegen, C., UDDI Version 3.0.1: UDDI Spec

Technical Committee Specification http://uddi.org/pubs/uddi-v3.0.1-20031014.htm.

2003.

9. LANL, Los Alamos National Laboratory, The Interdependent Energy Infrastructure

Simulation System (IEISS) project, web site is available at

http://www.lanl.gov/orgs/d/d4/interdepend.

10. Open Geospatial Consortium Inc., OpenGIS Web Map Service (WMS) Specification

available at http://www.opengeospatial.org/standards/wms. 2006.

11. Open Geospatial Consortium Inc., OpenGIS Web Feature Service (WFS)

Specification available at http://www.opengeospatial.org/standards/wfs. 2006.

12. Nacar, M., et al. VLab: Collaborative Grid Services and Portals to Support

Computational Material Science. in GCE'05 Workshop on Grid Computing.

Environments http://pipeline0.acel.sdsu.edu/mtgs/gce05 at SC05 Seattle, WA. 2005.

2005.

13. Oh, S. and G. Fox, HHFR: A new architecture for Mobile Web Services: Principles

and Implementations, Technical Report. 2005, Community Grids Lab., Indiana

University: Bloomington.

14. Oh, S., et al. Optimized communication using the SOAP infoset for mobile

multimedia collaboration applications. in Collaborative Technologies and Systems,

2005. Proceedings of the 2005 International Symposium on. 2005.

15. Aktas, M., G. Fox, and M. Pierce. Managing Dynamic Metadata as Context. in

Istanbul International Computational Science and Engineering Conference

(ICCSE2005 http://www.iccse.org/) June 2005. 2005.

16. Aktas, M.S., G. Fox, and M. Pierce, An Architecture for Supporting Information in

Dynamically Assembled Semantic Grids, Technical Report. 2005, Community Grids

Lab., Indiana University.

 236

17. Aktas, M.S., G. Fox, and M. Pierce. Information Services for Dynamically

Assembled Semantic Grids. in Proceedings of 1st International Conference

http://kg.ict.ac.cn/SKG2005/ on SKG2005 Semantics, Knowledge and Grid Beijing

China November 27-29 2005. 2005.

18. Fox, G., Aktas, M., Aydin, G., Bulut, H., Pallickara, S., Pierce, M., Sayar, A., Wu,

W., Zhai, G., Real Time Streaming Data Grid Applications, (IEEE) Proceedings of

TIWDC 2005 CNIT Tyrrhenian International Workshop on Digital Communications

July 4-6 2005. (To appear) in a book chapter in "Distributed Cooperative

Laboratories: Networking, Instrumentation and Measurements" by F.Davoli, S.

Palazzo, S. Zappatore, Eds., Springer,Norwell, MA, 2006, pp. 253-267.

19. Pallickara, S., Fox, G., Aktas, M., Gadgil, H., Yildiz, B., Oh, S., Patel, S., Pierce, M.,

Yemme, D., A Retrospective on the Development of Web Service Specifications in

(To appear) in Securing Web Services: Practical Usage of Standards and

Specifications. 2006, Edited by Dr. Periorellis Panos (University of Newcastle Upon

Tyne) and published by Idea Group.

20. Aktas, M.S., Aydin, Galip, Fox, Geoffrey F., Gadgil, Harshawardhan, Pierce, Marlon,

Sayar, Ahmet, Information Services for Grid/Web Service Oriented Architecture

(SOA) Based Geospatial Applications, Technical Report. 2005, Community Grids

Lab., Indiana University.

21. Aktas, M., et al. Web Service Information Systems and Applications. in GGF-16

Global Grid Forum Semantic Grid Workshop 2006. Athens, Greece.

22. Aktas, M.S., et al. Implementing Geographical Information System Grid Services to

Support Computational Geophysics in a Service-Oriented Environment. in NASA

Earth-Sun System Technology Conference

http://esto.nasa.gov/conferences/estc2005/index.html University of Maryland,

Adelphi, Maryland, June 28 - 30, 2005. All material is online for paper , presentation

http://www.esto.nasa.gov/conferences/estc2005/Presentations/a6p2.pdf , and abstract

http://www.esto.nasa.gov/conferences/estc2005/author.html. 2005.

23. Aydin, G., Sayar, A., Gadgil, H., Aktas, M., Fox, G., Ko, S., Bulut, H., Pierce, M. ,

Building and Applying Geographical Information System Grids, (To appear) in a

special issue of Concurrency and Computation: Practice and Experience, Wiley.

24. Aktas, M.S., Oh, Sangyoon, Fox, Geoffrey C., Pierce, Marlon E. XML Metadata

Services. in The 2nd International Conference on Semantics, Knowledge and Grid

(SKG2006). 2006. Guilin, China.

25. Aktas, M.S., Fox, Geoffrey C., Pierce, Marlon E., Fault Tolerant High Performance

Information Services for Dynamic Collections of Grid and Web Services. The

International Journal of Grid Computing: Theory, Methods and Applications, Future

Generation of Computer Systems (FGCS) Special issue from 1st International

Conference on SKG2005 Semantics, Knowledge and Grid Beijing China November

27-29 2005, 2005.

26. Aktas, M.S., et al., iSERVO: Implementing the International Solid Earth Research

Virtual Observatory by Integrating Computational Grid and Geographical

Information Web Services. PAGEOPH, 2004.

27. Oh, S., Aktas, Mehmet S., Fox, Geoffrey C., Pierce, Marlon, Architecture for High-

Performance Web Service Communications Using an Information Service. World

 237

Scientific and Engineering Academy and Society Transactions on Information

Science and Applications 2006.

28. Oh, S., Aktas, Mehmet S., Pierce, Marlon, Fox, Geoffrey C. Optimizing Web Service

Messaging Performance Using a Context Store for Static Data. in Invited paper for

5th WSEAS Int.Conf. on TELECOMMUNICATIONS and INFORMATICS (TELE-

INFO '06). 2006. Istanbul, Turkey.

29. Fox, G., et al., Algorithms and the Grid. Computing and Visualization in Science,

2006.

30. Fox, G., Aktas, M., Aydin, G., Donnellan, A., Gadgil, H., Granat, R., Pallickara, S.,

Parker, J., Pierce, M., Oh, S., Rundle, J., Sayar, A., Scharber, M. . Building Sensor

Filter Grids: Information Architecture for the Data Deluge in the IEEE Proceedings

of 1st International Conference on SKG2005 Semantics, Knowledge and Grid 2005.

Beijing China

31. W3C Web Service Architecture Document, available at http://www.w3.org/TR/ws-

arch/, 2003.

32. OGC, The Open Geospatial Consortiom (OGC), web site available at

http://www.opengis.org.

33. Object_Management_Group, Catalog of Corba/IIOP specifications, available at

http://www.omg.org/technology/documents/corbaservices_spec_catalog.htm.

34. SIG, B., Blootooth Specification available at http://bluetooth.com.

35. Ken Arnold, A.W., Byran O’Sullivan, Robert Scheifler, and Jim Waldo, The JINI

Specification. 1999: Addison-Wesley, Reading, MA.

36. The_Salutation_Consortium_Inc., Salutation architecture specification (part 1),

version 2.1 edition available at http://www.salutation.org. 1999.

37. Foster, I., Kesselman, C., Nick, Jeffrey M., Tuecke, S. The Physiology of the Grid:

An Open Grid Services Architecture for Distributed Systems Integration. in Open

Grid Service Infrastructure WG, Global Grid Forum. 2002.

38. Chen, H., An Intelligent Broker Architecture for Context-Aware Systems. 2003,

University of Maryland: Baltimore County.

39. Wu, D., Parsia, B., Sirin, E., Hendler, J., Nau, D. Automating DAML-S Web Services

Composition Using SHOP2. in In 2nd International Semantic Web Conference

(ISWC). 2003. Florida, USA.

40. Chakraborty, D., Perich, D., Avancha, S., Joshi, A. DReggie: A Smart Service

Discovery Technique for E-Commerce Applications. in In Workshop in conjunction

with 20th Symposium on Reliable Distributed Systems. 2001.

41. Aktas, M.S., et al. A Web based Conversational Case-Based Recommender System

for Ontology aided Metadata Discovery. in GRID '04: Proceedings of the Fifth

IEEE/ACM International Workshop on Grid Computing (GRID'04). 2004: IEEE.

42. Klyne, G., Carroll, J., Resource Description Framework (RDF): Concepts and

Abstract Syntax. Latest version available at http://www.w3.org/TR/rdf-concepts/.

2004.

43. The_OWL_Service_Coalition, OWL-S:Semantic Markup for Web Services available

at http://www.daml.org/services/owl-s/1.0/owl-s.html. 2003.

44. McGuinness, D.L., Harmelen, F. , OWL Web Ontology Language Overview. Latest

version available at http://www.w3.org/TR/owl-features/. 2004.

 238

45. Miles, S., Papay, J., Dialani, V., Luck, M., Decker, K., Payne, T., and Moreau, L.

Personalized Grid Service Discovery. in Nineteenth Annual UK Performance

Engineering Workshop (UKPEW'03). 2003. University of Warwick, Coventry,

England.

46. Paolucci, M., Kawamura, T., Payne, T. R. and Sycara, K. Importing the Semantic

Web in UDDI. in In Proceedings of Web Services, E-Business and Semantic Web

Workshop, CAiSE 2002. , pages pp. 225-236. 2002. Toronto, Canada.

47. Guttman, E., Perkins, C., Veizades, J., Service Location Protocol, RFC 2165,

available at http://rfc.net/rfc2165.html. 1997.

48. Milojicic, D.S., et al. , Peer-to-Peer Computing, in HP Labs Technical Report HPL-

2002-57. 2002, HP Labs.

49. Fletcher, G., Sheth, H., Borner, K. Unstructured Peer-to-Peer Networks: Topological

Properties and Search Performance. in the 3rd Int. Workshop on Agents and Peer-to-

Peer Computing (AP2PC), at AAMAS 2004. 2004. New York City: Springer LNCS

3601, pp. 14-27.

50. MDS4, Monitoring & Discovery System (MDS4), web site is available at

http://www.globus.org-/toolkit/mds.

51. A. Cooke, A.G., L. Ma, W. Nutt, J. Magowan, P. Taylor, R. Byrom, L. Field, S.

Hicks, and J. Leake. , R-GMA: An Information Integration System for Grid

Monitoring. Proceedings of the 11th International Conference on Cooperative

Information Systems, 2003.

52. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S. A Scalable Content-

Addressable Network. in Proc. ACM SIGCOMM, pp 161-172. 2001.

53. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D. R., Kaashoek, M. F., Dabek, F.,

Balakrishnan, H. Chord: A Scalable Peer-to-Peer Lookup Protocol for Internet

Applications. in IEEE/ACM Trans. on Networking. 2001.

54. Ripeanu, M., Foster, I. Mapping the Gnutella Network: Macroscopic Properties of

Large Scale Peer-to-Peer Systems. in In 1st International Workshop on Peer to Peer

Systems. 2002.

55. Lv, Q., Cao, P., Cohen, E., Li, K., Shenker, S. Search and Replication in Unstructured

Peer to Peer Networks. in In 16th ACM International Concerence on

SuperComputing. 2002. New York, USA.

56. T. Ozsu, P.V., Principles of Distributed Database Systems. 2nd Edition, Prentice Hall,

1999.

57. Valduriez, P., Pacitti, E., Data Management in Large-scale P2P Systems. Int. Conf.

on High Performance Computing for Computational Science (VecPar'2004) - LNCS

3402, Springer, 2004: p. 109-122.

58. S. Helal, N.D., and C. Lee. Konark-A Service Discovery and Delivery Protocol for

Ad-Hoc Networks. in In Third IEEE Conference on Wireless Communications

Network (WCNC). March 2003. New Orleans, USA.

59. Marin-Perianu, R., Hartel, P., Scholten, J. A Classification of Service Discovery

Protocols. in Technical Report TR-CTIT-05-25 Centre for Telematics and

Information Technology, University of Twente, Enschede. ISSN 1381-3625 2005.

60. R. Hermann, D.H., M. Moser, M. Nidd, C. Rohner, A. Schade, DEAPspace--

Transient ad hoc networking of pervasive devices. Computer Networks 2001. Volume

35 p. pp 411-428.

 239

61. Tang, D., Chang, D., Tanaka, K., Baker, M., Resource Discovery in Ad-Hoc

Networks, in CSL-TR-98-769. 1998, Stanford University.

62. Beatty, J., Kakivaya, G., Kemp, D., Kuehnel, T., Lovering, B., Roe, B., St. John, C.,

Schlimmer, J., Simonnet, G., Walter, D., Weast, J., Yarmosh, Y., and Yendluri, P. ,

Web Services Dynamic Discovery (WS-Discovery) available from

http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-discovery.pdf. 2004.

63. Booth, D., et al. W3C Web Service Architecture Document, available at

http://www.w3.org/TR/ws-arch/. 2003.

64. Open_GIS_Consortium_Inc., OWS-1 Registry Service available at

http://www.opengeospatial.org/docs/01-024r1.pdf. 2002.

65. Open Geospatial Consortium Inc., OpenGIS Catalog Specification available at

http://portal.opengeospatial.org/files/index.php?artifact_id=901.

66. OASIS_ebXML_Registry_Technical_Committee, OASIS/ebXML Registry

Information Model v2.0 Approved Committee Specification available at

http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebRIM.pdf.

67. ebXML, ebXML Registy Specification, web site available at http://www.ebxml.org.

68. Zhao, P., Chen, A., Liu, Y., Di, L., Yang, W., Li, P. Grid metadata catalog service-

based OGC web registry service. in Proceedings of the 12th annual ACM

international workshop on Geographic information systems. 2004. Washington DC,

USA

69. Singh, G., Bharathi, S., Chervenak, A., Deelman, E., Kesselman, C., Manohar, M.,

Patil, S. and Pearlman. L. . A Metadata Catalog Service for Data Intensive

Applications. in SC'03. November 15-21, 2003. Phoenix, Arizona, USA.

70. Web Service Interoperability (WS-I) Organization, web site is available at

http://www.ws-i.org.

71. ShaikhAli, A., Rana, O., Al-Ali, R., Walker, D. UDDIe: An Extended Registry for

Web Services. Proceedings of the Service Oriented Computing: Models,

Architectures and Applications. in SAINT-2003 IEEE Computer Society Press. .

2003. Orlando Florida, USA.

72. Open_GIS_Consortium_Inc., OWS1.2 UDDI Experiment. OpenGIS Interoperability

Program Report OGC 03-028 available at http://www.opengeospatial.org/docs/03-

028.pdf. 2003.

73. Sycline, Sycline Inc., web site available at http://www.synclineinc.com.

74. Galdos, Galdos Inc., web site available at http://www.galdosinc.com.

75. Dialani, V., UDDI-M Version 1.0 API Specification. 2002, University of

Southampton – UK. 02.: Southampton.

76. Miles, S., Papay, J., Payne, T., Decker, K., Moreau, L. Towards a Protocol for the

Attachment of Semantic Descriptions to Grid Services. in In The Second European

across Grids Conference. 2004. Nicosia, Cyprus.

77. Verma, K., Sivashanmugam, K. , Sheth, A., Patil, A., Oundhakar, S. and Miller, J.,

METEOR–S WSDI: A Scalable P2P Infrastructure of Registries for Semantic

Publication and Discovery of Web Services. Journal of Information Technology and

Management.

78. GRIMOIRES - UDDI compliant Web Service registry with metadata annotation

extension, availble at http://sourceforge.net/projects/grimoires.

79. MyGrid - UK e-Science project, available at http://www.mygrid.org.uk.

 240

80. Czajkowski, K., Ferguson, D., Foster, I., Frey, J., Graham, S., Sedukhin, I., Snelling,

D., Tuecke, S., Vambenepe, W., The WS-Resource Framework, available at

http://www.globus.org/wsrf/specs/ws-wsrf.pdf. 2004.

81. Ballinger, K., et al., The Web Services Metadata Exchange

http://specs.xmlsoap.org/ws/2004/09/mex/WS-MetadataExchange.pdf. 2004.

82. Bunting, B., Chapman, M., Hurley, O., Little M,, Mischinkinky, J., Newcomer, E.,

Webber, J., and Swenson, K. , Web Services Context (WS-Context) ver 1.0

http://www.arjuna.com/library/specs/ws_caf_1-0/WS-CTX.pdf. 2003.

83. Bunting, B., Chapman, M., Hurley, O., Little M,, Mischinkinky, J., Newcomer, E.,

Webber, J., and Swenson, K., Web Service Composite Application Framework (WS-

CAF) Ver 1.0. http://developers.sun.com/techtopics/webservices/wscaf/primer.pdf.

July 2003.

84. Bunting, B., Chapman, M., Hurley, O., Little M,, Mischinkinky, J., Newcomer, E.,

Web-ber, J., and Swenson, K, WS-Coordination Framework (WS-CF) ver 1.0

http://www.arjuna.com/library/specs/ws_caf_1-0/WS-CF.pdf. July 2003.

85. Bunting, B., Chapman, M., Hurley, O., Little M,, Mischinkinky, J., Newcomer, E.,

Web-ber, J., and Swenson, K. , WS-Transaction Management (WS-TXM) ver 1.0

http://www.arjuna.com/library/specs/ws_caf_1-0/WS-TXM.pdf. July 2003.

86. Pallickara, S., H. Gadgil, and G. Fox. On the Discovery of Topics in Distributed

Publish/Subscribe systems. in Proceedings of the IEEE/ACM GRID 2005 Workshop,

http://pat.jpl.nasa.gov/public/grid2005/ pp 25-32. Seattle, WA. 2005.

87. Happner, M., Burridge, R., Sharma, R., Java Message Service Specification available

at http://java.sun.com/products/jms. 2000, Sun Microsystems.

88. Box, D., Cabrera, L., Crithchley, C., Curbera, F., Ferguson, D., Geller, A., Graham,

S., Hull, D., Kakivaya, G., Lewis, A., Lovering, B., Mihic, M., Niblett, P., Orchard,

D., Saiyed, J., Samdarshi, S., Schlimmer, J., Sedukhin, I., Shewchunk, J., Smith, B.,

Weerawarana, S., Wortendyke, D. , Web Service Eventing available at

http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf. 2004, Microsoft, IBM &

BEA.

89. Pallickara, S. and G. Fox. NaradaBrokering: A Middleware Framework and

Architecture for Enabling Durable Peer-to-Peer Grids. in Lecture Notes in Computer

Science. 2003: Springer-Verlag.

90. Pallickara, S., et al., A Framework for Secure End-to-End Delivery of Messages in

Publish/Subscribe Systems. 2005.

91. Pallickara, S., et al., Support for High Performance Real-time Collaboration within

the NaradaBrokering Substrate. 2005.

92. Fox, G., S. Pallickara, and X. Rao. A scaleable event infrastructure for peer to peer

grids. in JGI '02: Proceedings of the 2002 joint ACM-ISCOPE conference on Java

Grande. 2002: ACM.

93. Fox, G. and S. Pallickara, Deploying the NaradaBrokering substrate in aiding

efficient web and grid service interactions. Proceedings of the IEEE, 2005. 93(3): p.

564-577.

94. Carriero, N., Gelernter, D., Linda in Context. Commun. ACM, 32(4): 444-458, 1989.

95. Sun_Microsystems, JavaSpaces Specification Revision 1.0, 1999 available at

http://www.sun.com/jini/specs/js.ps.

 241

96. Wyckoff, P., Lehman, T. J., McLaughry, S., T Spaces. IBM Systems Journal, 1998.

37(3): p. 454-474.

97. Khushraj, D., Lassila, O., Finin, T. sTuples:Semantic Tuple Spaces. in IEEE

Proceedings of the First Annual International Conference on Mobile and Ubiquitous

Systems:Networking and Services (MobiQuitous'04). 2004.

98. Krummenacher, R., Strang, T., Fensel, D. Triple Spaces for and Ubiquitous Web of

Services. in W3C Workshop on the Ubiquitous Web. March 2005. Tokyo, Japan.

99. Tolksdorf, R., Nixon, L., Liebsch, F., Nguyen, M.D., Bontas, P.E., Semantic Web

Spaces, in Technical Report B-04-11. July 2004, Freie Univesitat Berlin, Institut fur

Informatik: Berlin, Germany.

100. Sun_Microsystems, Sun Microsystems Inc., web site available at

http://www.sun.com.

101. Coleman, r., Bhardwaj, A., Dellucca, A., Finke, G., Sofia, A., Jutt, M., Batra, S.,

MicroSpaces software with version 1.5.2 available at

http://microspaces.sourceforge.net/. 2004.

102. Sivasubramanian, S., Szymaniak, M., Pierre, G., Steen, M., Replication for Web

Hosting Systems. ACM Computing Surveys, 36(3):291--334, 2004.

103. Tanenbaum, A., Van Steen, M., Distributed Systems Principles and Paradigms.

2002. Cited in page 326.

104. Rabinovich, M., Rabinovich, I., Rajaraman, R., Aggarwal, A. A Dynamic Object

Replication and Migration Protocol for an Internet Hosting Service. in Proc. 19th Int'l

Conf. Distributed Computing Systems. 1999.

105. Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., and Weihl, B., Globally

distributed content delivery. IEEE Internet Computing, 2002: p. pp 50-58.

106. Rodriguez, P., Sibal, S. , SPREAD: Scalable Platform for Reliable and Efficient

Automated Distribution. Computer Networks, 2000. vol. 33, nos. 1-6: p. pp. 33-49.

107. Rabinovich, M., Aggarwal, A. RaDaR: A Scalable Architecture for a Global Web

Hosting Service. in WWW8. May 1999.

108. Aktas, M.S., et al., Information Services for Grid/Web Service Oriented Architecture

(SOA) Based Geospatial Applications, Technical Report. 2005.

109. Rabinovich, M. Issues in Web Content Replication. in Bulleting of the IEEE

Computer Society Technical Committee on Data Engineering. 1998.

110. Pallickara, S., Fox, G. NaradaBrokering: A Distributed Middleware Framework and

Architecture for Enabling Durable Peer-to-Peer Grids. in Proceedings of

ACM/IFIP/USENIX International Middleware Conference Middleware-2003. 2003.

Rio Janeiro, Brazil.

111. GLUE Schema Collaboration. The GLUE Schema homepage.

http://infnforge.cnaf.infn.it/glueinfomodel/.

112. Rahm, E., Bernstein, P., A survey of approaches to automatic schema matching. .

VLDB Journal10 (2001) 334-350.

113. Bernstein, P., Applying model management to classical meta data problems In Proc.

CIDR (2003) 209-220.

114. Sun_Microsystems, Java(TM) 2 SDK, Standard Edition, version 1.4.2 available at

http://java.sun.com/javase.

115. Axis, Apache Axis Web Service Development Platform, web site is available at

http://ws.apache.org/axis/.

 242

116. Community_Grids_Lab, NaradaBrokering Messaging Infrastructure available at

http://www.naradabrokering.org/software.htm.

117. Viens, S., Cutright, A., Saldhana, A. , jUDDI, A free, open source and java

implementation the Universal Description, Discovery, and Integration (UDDI)

specification for Web Services http://ws.apache.org/juddi/.

118. Aktas, M.S., Fault Tolerant High Performance Information Service - FTHPIS -

Hybrid WS-Context Service web site, available at

http://www.opengrids.org/wscontext.

119. Bulut, H., S. Pallickara, and G. Fox. Implementing a NTP-Based Time Service

within a Distributed Brokering System. in ACM International Conference on the

Principles and Practice of Programming in Java, June 16-18, 2004 Las Vegas, NV.

2004.

120. Leach, P., Salz, R., UUIDS and GUIDS. Internet Draft, available at

http://ftp.ics.uci.edu/pub/ietf/webdav/uuid-guid/draft-leach-uuids-guids-01.txt. . 1998.

121. Kermarrec, A., Kuz, I., Van Steen, M., and Tanenbaum, A. A Framework for

Consistent, Replicated Web Objects. in Proc. 18th Int'l Conf. on Distributed

Computing Systems, IEEE, 1998. pp. 276-284. Cited on page 115. 1998.

122. Gwertzman, J.a.S., M. The Case for Geographical Push-Caching. in Proc. Fifth

Workshop Hot Topics in Operating Systems, IEEE, 1996. pp. 51-55. Cited on page

327. 1996.

123. Aktas, M.S., Extended UDDI XML Metadata Service web site, available at

http://www.opengrids.org/extendeduddi.

124. XPATH, XPATH XML query language, more information is available at

http://www.w3.org/TR/xpath.

