
Fault-Tolerant Reliable Delivery of Messages in Distributed Publish/Subscribe
Systems

Shrideep Pallickara, Hasan Bulut and Geoffrey Fox
Community Grids Lab, Indiana University

(spallick, hbulut, gcf)@indiana.edu

Abstract

Reliable delivery of messages is an important problem
that needs to be addressed in distributed systems. In
this paper we briefly describe our basic strategy to
enable reliable delivery of messages in the presence of
link and node failures. This is facilitated by a
specialized repository node. We then present our
strategy to make this scheme even more failure
resilient, by incorporating support for repository
redundancy. Each repository functions autonomously.
The scheme enables updates to the redundancy scheme
depending on the failure resiliency requirements. If
there are N available repositories, reliable delivery
guarantees will be met even if N-1 repositories fail.

1. Introduction

In this paper we present a scheme for the fault-
tolerant, reliable delivery of messages issued over a
topic in publish/subscribe systems. Topics over which
authorized publishers and subscribers can have
reliable communications are referred to as reliable-
topics. In [1] we presented a scheme for the reliable
delivery of messages in the presence of node/link
failures and unpredictable links. Subscribers retrieve
messages issued over the reliable-topic during the
subscriber’s absence (either due to failures or
intentional disconnects). In this paper, we extend this
basic scheme to incorporate support for multiple
autonomous repositories, thus providing greater
redundancy & fault tolerance during reliable delivery.

We have implemented the scheme described in this
paper within the context of the NaradaBrokering
substrate [2], which is based on the publish/subscribe
paradigm. The NaradaBrokering substrate comprises a
set of cooperating router nodes known as brokers.
Entities are connected to one of the brokers within the
broker network, an entity uses this broker, which it is

connected to, to funnel messages to the broker
network and from thereon to other registered
consumers of that message.

2. Reliable Delivery of Messages

The scheme for reliable delivery of messages,
issued over a reliable-topic, needs to facilitate error
corrections, retransmissions and recovery from
failures. In our system, a specialized repository node
which manages this reliable-topic plays a crucial role
in facilitating this. The repository facilitates reliable
delivery from multiple publishers to multiple
subscribers over its set of managed reliable-topics.
The only requirement for the basic reliable delivery
scheme is that if a repository fails, it should recover
within a finite amount of time. There can be multiple
repositories within the system and a given repository
may manage multiple reliable-topics, however (in our
basic scheme) a given reliable-topic can only be
managed by exactly one repository.

Management of reliable-topics involves two key
components. First, the repository should facilitate the
registration (and de-registration) of authorized entities
for reliable communications over the reliable-topic.
Second, to support error-corrections, retransmissions,
and recovery from failures (including those of the
repository itself) a repository also needs to provision a
persistent storage (this function is typically provided
by a database) so that messages and other information
pertinent to the reliable delivery algorithm can be
stored. A repository stores messages issued over its
managed reliable-topics by any of the authorized
publishers. This persistent storage of messages
facilitates subsequent retrievals, should the need arise.

Reliable delivery of messages involves two key
components. The first one involves ensuring that
messages published by the publisher, over a reliable-
topic, are stored exactly-once, without gaps and in-
order at the repository managing this reliable-topic.
Second, for every such stored message, the repository

Fourth International Conference on Autonomic Computing (ICAC'07)
0-7695-2779-5/07 $20.00 © 2007

also has to compute the intended destinations and
ensure the reliable delivery of the stored message to
the computed destinations. Figure 1 summarizes
interactions in the basic reliable delivery scheme.

Figure 1: Interactions between entities

The reliable delivery algorithm involves
communications between various entities through the
exchange of control- events, where the term events is
used to distinguish it clearly from messages published
over reliable-topics. The control-events (simply
events, for brevity, hereafter) relate to intermediate
steps to facilitate reliable delivery, acknowledgements,
error-corrections, retransmissions and recovery related
operations. Our notation for events identifies the
source, the destination(s) and the type of the control-
event: Source2Destination-ControlType. We use the
starting alphabets of the entities involved in the
exchange. Thus, an acknowledgement issued by the
repository to the publisher is represented as R2P-ACK.
Multiple destinations are indicated by bold-face font.

3. Repository redundancy

In our basic reliable delivery scheme if there is a
failure at the repository, the clients interested in
reliable communications, over any of the managed
reliable-topics, need to wait for this repository to
recover prior to the reliable delivery guarantees being
met. We now extend this scheme to ensure that
reliable delivery guarantees are satisfied in the
presence of repository failures. To achieve this we
include support for multiple autonomous repositories –
- constituting a repository-bundle –-for a given
reliable-topic; topics managed by these repositories
need not be identical. A repository may be part of
multiple repository-bundles at the same time.

We support a flexible redundancy scheme with
easy addition and removal of repositories that manage

a given reliable-topic. There are no limits on the
number of repositories for a given reliable-topic. This
scheme can sustain the loss of multiple repositories: in
a system with N repositories for a given reliable-topic,
N-1 of these repositories can fail, and reliable delivery
guarantees are met so long as a repository is available.

Besides additional redundancy, and the
accompanying fault-tolerance, a highly-available,
distributed repository scheme enables clients to exploit
geographical and network proximities. Closer
repositories ensure reduced latencies.

3.1. Steering repository

A publisher or subscriber to a reliable-topic can
interact with exactly one repository within the
repository-bundle for that reliable-topic; this
repository is referred to as the steering repository for
that publisher/subscriber. At any time, a client is
allowed to replace its steering repository with any
other repository from the repository bundle.

Every repository within the bundle keeps track of a
client’s delivery sequences passively and actively. For
a given entity, at any given time, there will be one
steering repository operating in active mode by
initiating error-corrections & retransmissions. Passive
mode repositories do not initiate these actions.

At every repository, within the repository-bundle
for a given reliable-topic, the list of registered clients
is divided into two sets –- those that the repository
steers and those that it does not. The repository
operates in the active mode for steered clients and in
the passive mode for clients that it does not steer. In
the active mode, a repository performs all functions
outlined in section 2. In the passive mode, a repository
listens to all events initiated by the publishers and
subscriber; however, the repository will not issue
control events to clients that it does not steer.
Operating in the passive mode, allows a repository to
take over as the steering repository for any client.

When a client is ready to initiate reliable
communications, it designates a steering repository
from the set of repositories within the repository-
bundle associated with the reliable-topic. This is based
on network proximity by computing network round-
trip delays to the repositories. The client then issues an
event over the repository’s communications-topic
designating it as the steering repository.

3.2. Ordered storage of published messages

For every published message, the publisher issues a
P2R-Order event (where R is the repository-bundle),
which is received by all repositories within the
repository-bundle. This allows all repositories within

Fourth International Conference on Autonomic Computing (ICAC'07)
0-7695-2779-5/07 $20.00 © 2007

the repository-bundle to keep track of published
messages. However, only the steering repository
(operating in active mode) for this publisher is allowed
to issue the R2P-ACK and R2P-NAK events to
acknowledge receipt of messages and to initiate
retransmissions respectively. Retransmissions issued
in response to the R2P-NAK event are sent to all
repositories using the P2R-Retransmit event.

3.3. Generation of Persistence Notification

Once a published message is ready for persistent
storage at the repository, the message is assigned a
sequence number and is stored onto persistent storage
along with the published message. Each repository is
autonomous, and thus maintains its own sequencing
information. This implies that a message published by
a publisher, MAY have different sequence numbers at
different repositories. It follows naturally that the sync
associated with a given subscriber can be different at
different repositories. However, the catenation number
(local ordering) associated with a publisher is identical
at every repository within the repository-bundle.

A repository computes destinations associated with
every published message based on the registered
subscriptions for the reliable-topic. The repository
then proceeds to issue a persistence notification. The
topic associated with the R2S*-Persistent event is
such that it is routed only to the subset S* of its
steered subscribers with subscriptions that are satisfied
by the topic in the original message.

3.4. Acknowledgements, Errors and Syncs

Upon receipt of R2S*-Persistent events from its
steering repository, a subscriber proceeds to issue
acknowledgements. This acknowledgement, the S2R-
ACK is issued over the repository-bundle
communications topic. Since, the message is received
by the repository-bundle, all repositories are aware of
delivery sequences at different subscribers. The S2R-
ACK event contains sequence numbers corresponding
to its steering repository and also includes the
identifier associated with the steering repository. Error
correction, and sync advancements, for a given
subscriber is initiated by its steering repository
through the R2S-Rectify event. Retransmission
requests by a subscriber are targeted to its steering
repository in the S2R-NAK event.

3.5. Gossips between repositories

Repositories within a repository-bundle gossip
with each other. Repositories within a repository-
bundle need to exchange information about the
registration/de-registration of clients to the managed

reliable-topic. Additional, and removal, of
subscriptions to this reliable-topic are also exchanged
between all repositories within the bundle. A given
repository stores each of these actions.

3.5.1 Processing stored messages. A repository
assigns monotonically increasing sequence numbers to
each message that it stores. At regular intervals or
after the persistent storage of a certain number of
messages, the repository issues a Gossip-ACK event,
which contains an array of entries related to persistent
storage of messages. Each entry contains the publisher
identifier, the catenation number, the message
identifier and the sequence number assigned by the
repository.

Every repository also maintains a repository-table.
In this table for every publisher-catenation number
pair, the repository maintains the sequence number
assigned to it by every repository (including itself)
within the bundle. For every message that it stores, a
repository adds an entry in the repository-table. Upon
receipt of the Gossip-ACK event from a repository, this
entry is modified to reflect the sequence numbers
assigned at different repositories. The repository table
thus allows a repository to correlate sequence numbers
assigned to a given message at every other repository.
Tracking messages not received by other repositories
allows a repository to support repository recovery.

3.6. Subscriber acknowledgements

When a repository receives a S2R-ACK event from
a subscriber, it checks to see if it steers the subscriber.
If it does, the repository simply proceeds to update its
dissemination table to reflect receipt of the message at
the repository. If the repository does not steer the
subscriber that issued the acknowledgement, the
repository retrieves the sequence number
corresponding to the original message from the
repository-table. It then proceeds to update the
dissemination-table for that sequence number to
confirm receipt from the subscriber in question. This
scheme allows all repositories are aware of delivery
sequences at all subscribers. Furthermore, based on the
S2R-ACK acknowledgements from a subscriber, every
repository computes its sync for that subscriber.
Additionally, at regular intervals, a repository gossips
about sync advancements for its steered subscribers.

3.7. Dealing with repository failures

Once a client detects a repository failure, it
discovers a new steering repository. A publisher
exchanges information about its catenation number
with the replacement repository. If there is a mismatch

Fourth International Conference on Autonomic Computing (ICAC'07)
0-7695-2779-5/07 $20.00 © 2007

wherein the steering repository’s catenation is lower
than that at the publisher, the repository proceeds to
retrieve this message from another repository.

3.8. Recovery of a repository

Upon recovery from a failure, it needs to discover
an assisting-repository: this is a repository within the
repository bundle that is willing to assist the repository
in the recovery process. The recovering repository first
retrieves updates to the list of registered clients and
subscriptions. Next, the repository proceeds to retrieve
the list of catenation numbers associated with the
publishers. Based on these catenation numbers, the
repository computes the number of missed messages
and proceeds to set aside the corresponding number of
sequences. For messages (missed and real-time) that it
stores, a recovering-repository issues Gossip-ACK
acknowledgements at regular intervals.

The recovering-repository proceeds to do two
things in parallel. First, it proceeds to retrieve missed
messages, and the corresponding dissemination list,
from the assisting repository. This allows a repository
to keep track of the subscribers that have not
acknowledged these messages. Additionally, the
repository-table entries corresponding to each message
are also retrieved. A repository cannot be the steering
repository for any entity till such time that all the
missed messages are retrieved. Second, it registers to
start receiving messages published in real-time.

3.9. Addition/Removal of a repository

Addition of a repository is very similar to the
recovery process described in the preceding section.
When a repository is ready to leave a repository
bundle, it proceeds to issue an event to its active
steered clients, requesting them to migrate to another
repository. Once a repository has confirmed that all
messages published by its previously steered publisher
have been received at one of the repositories within
the bundle, it simply issues a Gossip-LEAVE event.

4. Experimental Results

For our benchmarks, we setup a broker network
comprising 3 brokers hosted on different machines. In
Topology A, we measured the costs for best effort
delivery. In topology B, we setup a repository at the
intermediate broker. In topology C, we setup
repositories (constituting a bundle) at each of the
brokers. All processes executed within Sun’s
Hotspot™ JVM 1.6 on Linux (2.4.22). In each case,
we had 20 subscribers. Also, there is a publisher and a
measuring subscriber, which reported the delays

involved in communications. The publisher and
subscriber were hosted on the same machine, and were
connected to different brokers, with the publisher
being 3 broker hops away from the measuring
subscriber. Machines involved in the benchmark have
the following profile: 2 CPU (Quad Core, 2.4 GHz), 8
GB RAM on a 100 Mbps LAN. MySQL 5.0 was used.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 100 1000 10000

Ti
m

e
(M

ill
is

ec
on

ds
)

Payload Size (Bytes)

Delivery overheads in different Topologies
for different message payload sizes

 3 Brokers, Best effort
 3 Brokers, 1 Repository

 3 Brokers, 3 Repositories

Figure 2: Reliable Delivery Overheads

The overheads (see Figure 2) involved in reliable
delivery pertain to the cost of persisting a message to
storage, and for the corresponding persistence event to
traverse from the repository to the subscriber. The
results also demonstrate that the overheads introduced
by our repository redundancy scheme are acceptable,
since it is identical to the single repository case.

5. Conclusions & Future Work

The scheme for the fault-tolerant, reliable delivery
of messages in publish/subscribe systems presented
here introduces acceptable overheads. As part of our
future work we plan to research issues related to
repository placement schemes to ensure that average
latencies for reliable communications are reduced.

6. Acknowledgment

This research is supported by a grant from the
National Science Foundation’s Division of Earth
Sciences project number EAR-0446610.

References

[1] S. Pallickara and G. Fox. A Scheme for Reliable
Delivery of Events in Distributed Middleware Systems.
Proceedings of the IEEE International Conference on
Autonomic Computing. NY. pp 328-329. 2004.

[2] S. Pallickara and G. Fox. NaradaBrokering: A
Middleware Framework and Architecture for Enabling
Durable Peer-to-Peer Grids. Proc of the ACM/IFIP/
USENIX Middleware Conference 2003. pp 41-61.

Fourth International Conference on Autonomic Computing (ICAC'07)
0-7695-2779-5/07 $20.00 © 2007

