
A Scalable Approach for the Secure and Authorized Tracking of the Availability of
Entities in Distributed Systems

Shrideep Pallickara, Jaliya Ekanayake and Geoffrey Fox

{spallick, jekanaya, gcf}@indiana.edu
Community Grids Lab, Indiana University

Abstract
As the scale and proliferation of distributed

applications continues to increase a need
often arises to track the availability of entities
that comprise the distributed system. An entity
that is part of such a distributed system could
be a resource, a service that provides a set of
exposed capabilities, an application or a user.
In this paper we present a transport-
independent scheme for tracking the
availability of entities in distributed systems.
The scheme enforces the authorized
generation and consumption of traces
(encapsulating entity availability). The
scheme also facilitates the secure distribution
of traces while coping with some classes of
denial of service attacks.

Keywords: availability tracking, distributed
systems, resource monitoring,
publish/subscribe systems, security and
authorization

1. Introduction
Over the past decade we have witnessed the

proliferation of distributed applications. This
is fuelled in part by advances in networking
technology combined with the advent of
cheaper and ever more powerful devices. An
entity that is part of such a distributed system
could be a resource, a service that provides a
set of exposed capabilities, an application or a
user.

Interactions, such as control messages,
protocol handshakes, actions and data
interchange, between entities that are part of a
distributed system are predicated on their
availability. For example, an application may

be interested in knowing the availability of a
resource at all times. Similarly, a user would
be interested in the availability of a given
service. Entities thus need to be aware of each
other’s availability at regular intervals. In
several cases remedial actions are taken in
response to the unavailability/failure of given
entity.

Before we proceed further, an explanation
of the terms used in this paper is in order. An
entity whose availability is being probed is
referred to as a traced entity. The entities
initiating a probe are referred to as trackers.
The process of probing, and subsequently
becoming aware of, the availability of an
entity is referred to as tracing. The different
states corresponding to a traced entity is
referred to as its traces.

There are two approaches to tracking the
availability of entities – push and pull. In the
push model the traced entity issues messages
to the trackers at regular intervals. Receipt of
such messages at the trackers signifies the
availability of the entity; the lack of receipt
indicates potential problems. A tracker may
deem a traced entity to have failed if it does
not receive such messages for a prolonged
duration of time. In the pull model the
trackers ping the traced entity at regular
intervals. Responses, or the lack thereof, from
the traced entity form the basis for
determining whether a traced entity is
available or not. In the push model the
complexity at the traced entity is higher since
it needs to send messages to every tracker at
regular intervals. In the pull model, on the
other hand, the complexity at the tracker is
higher since it needs to keep track of every
traced entity.

 1/13

In the simplest scheme, every entity would
issue messages at regular intervals when they
are present within the system. If there are N
entities within the system, with each of them
issuing one message at regular intervals,
every entity within the system receives (N-1)
messages. If every entity issues one such
message per second, there would be Nx(N-1)
messages within the system every second. As
the scale of the system increases, the
complexity and costs associated with this
approach increases, and the limits of this
approach become apparent since every entity
within the system would be inundated with
messages.

There are three other critical issues that
need to be addressed in these settings. First, in
large distributed systems the transport
protocols over which entities initiate
communications is large. If an entity is
required to cope with this in its message
exchanges with other entities, the complexity
at a given entity increases substantially.
Second, only authorized entities should be
part of the tracing process. The third issue is
that of security. Here, message exchanges
would need to be secured so that the
information contained therein is not used to
launch denial of service attacks.

In this paper, we present our solution to
this problem. The characteristics of this
solution are enumerated below.
1. Number of Messages: Messages are

issued only if there are entities interested
in tracking an entity. Additionally,
tracking entities may register only for
change notifications; here, traces will be
issued only if there is a change in the
status of the traced entity.

2. Transport Independent: Entities do not
have to deal with the complexity of the
underlying transports.

3. Authorization: Only authorized entities
would be allowed to track an entity.

4. Security: Message exchanges, related to
availability, are secured cryptographically.

Only entities in possession of the
appropriate security keys can decipher the
message contents.

5. Denial of Service attacks: The scheme
also copes with a few types of denial of
service attacks.

The remainder of this paper is organized as
follows. In section 2 we provide an overview
of the publish/subscribe systems and the
NaradaBrokering system which is based on
this paradigm. In section 3 we outline our
tracking. Sections 4 and 5 deal with the
authorization and security issues related to
this scheme. In section 6 we present our
performance benchmarks. Section 7 surveys
the related work in the area. Finally, in
section 8.0 we outline our conclusions and
future work.

2. NaradaBrokering Overview
We have implemented our scheme in the

context of the NaradaBrokering substrate [1-
3], which is based on the publish/subscribe
paradigm (discussed in section 2.1). In
NaradaBrokering this middleware is itself, a
distributed infrastructure comprising a set of
cooperating router nodes known as brokers. A
broker performs the routing function by
routing content along to other brokers within
the broker network. Producers and consumers
don’t interact directly with each other.
Entities are connected to one of the brokers
within the broker network, an entity uses this
broker, which it is connected to, to funnel
messages to the broker network and from
thereon to other registered consumers of that
message. All messages contain topic
information within them; this topic
information forms the basis of routing of
messages. When a broker receives a message
from a producer, it checks to see the message
should be routed to any of the consumers that
are connected to it; this broker will then
proceed to route the message to other brokers
within the network that have consumers
interested in consuming this message.

 2/13

2.1 Publish/Subscribe Systems
The publish/subscribe paradigm is a powerful
one, in which there is a clear decoupling of
the message producer and consumer roles that
interacting entities/services might have. The
routing of messages from the publisher to the
subscriber is within the purview of the
message oriented middleware (MoM), which
is responsible for routing the right content
from the producer to the right consumers. In
publish/subscribe systems a subscriber
registers its interest in messages by
subscribing to topics. In its simplest form
these topics are typically “/” separated
Strings, for example
StockQuotes/Companies/Adobe. When a
publisher issues messages on a specific topic
the middleware substrate routes the messages
to all, and only those, subscribers that have
registered an interest in this topic.

2.2 The Topic Discovery Scheme
Interactions between entities in
publish/subscribe systems are predicated on
the knowledge of the topic that will be used
for communications; the publisher will
publish over this topic while the subscriber
registers a subscription to this topic. The topic
discovery and creation scheme [2] in
NaradaBrokering facilitates the creation,
advertisement and authorized discovery of
topics by entities within the system. The
discovery process is a distributed process and
is resilient to failures that might take place
within the system. Topic creators can
advertise their topics and can also enforce
constraints related to the discovery of these
topics. Specifically, a topic creator may
require the presentation of appropriate
credentials (a X.501 security certificate) prior
to being able to discover a topic. This
discovery scheme provides a solution for
issues such as
1. Provenance –- The system can verify

easily the owner of a certain topic.

2. Secure discovery –- A topic owner can
restrict the discovery of a topic only to
authorized entities or those that possess
the valid credentials.

These capabilities are provided by
specialized nodes – Topic Discovery Nodes
(TDNs) – within the system. Since a given
topic advertisement will be stored at multiple
TDN nodes, this scheme sustains the loss of
TDN nodes due to failures or downtimes.
Additional details regarding the topic
discovery scheme can be found in Ref [2].

3. The Tracing Scheme
In our scheme we use a combination of the
push and pull styles described in section 1.0.
In addition to the traced entity and the
trackers that are involved in the tracing there
is an additional component: the broker which
the traced entity is connected to. This broker
is responsible for polling – the pull part – the
traced entity at regular intervals and for
generating – the push part – traces for the
traced entity.

We leverage the pub/sub style of
communications in the exchange of traces
between the entities: trace information is
encapsulated in messages that have topic
information associated with them. This trace
information includes information related to
the traced entity’s state, state transitions,
network metrics and usage statistics. Not all
trackers would be interested in all the traces
related to a traced entity. The number,
frequency and volume of traces received at a
tracker vary with the type of trace information
that it is interested in. To facilitate greater
selectivity in the trace information at any
given tracker, traces related to an entity are
issued over different topics. Thus a tracker
may register to receive all traces or only state
transitions related to a traced entity.

We impose restrictions on who is
authorized to discover topics related to trace
information. Furthermore, we also impose
restrictions on the actions, either publish or

 3/13

subscribe, that are allowed over these topics.
Messages encapsulate trace information need
to also unambiguously establish the source of
the trace and the authorization to issue this
trace information. We also incorporate
strategies to cryptographically secure
individual traces and the secure distribution of
keys to decipher the encrypted contents.

3.1 Trace topic
In our scheme an entity will be traced only if
it specifically issues a request for this. There
is a sequence of actions that need to be taken
by an entity before it can be traced. An entity
must first create a topic corresponding to its
availability tracing. To do this, the entity must
create a topic creation request which is sent to
the TDN which is responsible for the
generation of the trace-topic. This topic
creation request includes four key
components. First, the entity includes its
credentials – a X.509 certificate – that is used
by the TDN to establish provenance for the
trace topic that it would create.

Second, the entity specifies the descriptor
to be associated with the topic. During topic
discovery, the queries are evaluated against
the topic descriptors associated with topics
stored at the TDN. The topic discovery
scheme provides support for variety of query
formats, for purposes of simplicity to enable
discovery of trace topics, a traced entity
specifies the topic descriptor for the trace
topic to be Availability/Traces/Entity-ID. Where
Entity-ID corresponds to the identifier
associated with the entity in question. This
topic descriptor also ensures that trackers can
construct appropriate discovery queries to
discover the trace topic simply by utilizing the
Entity-ID of the traced entity.

Third, a traced entity must also specify
discovery restrictions that should be
associated with the trace topic. These
discovery restrictions specify who is
authorized to discover the trace topic
associated with the entity’s availability.

Discovery requests initiated by entities that
have not been authorized to discover a given
topic will be ignored by the TDN.

Finally, the topic creation request also
specifies the lifetime associated with the trace
topic. Lifetimes enable an entity to control the
duration for which the trace topic should be
valid.

Upon receipt of this topic creation request
containing the credentials, the topic
descriptor, the discovery restrictions, and the
topic lifetime the TDN generates a UUID
which is trace topic associated with the entity.
The UUID is a 128-bit identifier that is
guaranteed to be unique in space and time.
Generation of the UUID is done at the TDN
so that no entity is able to claim some other
entity’s topic as its own. The TDN then
proceeds to create a cryptographically signed
topic advertisement that includes the newly
created topic, along with the credentials,
descriptors, discovery restrictions and
lifetime. This advertisement establishes the
ownership of the topic. This advertisement is
stored at the various TDNs and is also routed
back to the traced entity.

The TDN guarantees that discovery
requests, targeted at discovering the trace
topic associated with an entity, will not be
satisfied unless these requests demonstrate
possession of valid credentials that are
conformant with the discovery restrictions
specified in the original topic creation request.
3.1.1 Leveraging the trace topic

This trace topic is then used to construct
derivative topics related to tracing the entity
in question. The derivate topics are a
combination of a static prefixes and suffixes
that are combined with a given trace topic; an
example of a derived topic is
Constrained_Publish/Broker/Traces/Trace-
Topic/ChangeNotifications. These derivative
topics are used to publish different types of
trace information corresponding to the traced
entity. Furthermore, in some cases actions
(such as publishing) on a given derived topic

 4/13

still require the traced entity’s authorization:
this is typically delegated by the traced entity
through the creation of cryptographic security
token that demonstrates the delegation.
Having multiple derived topics is also
beneficial since it allows trackers to be
selective about the trace information that they
are interested in.
3.1.2 Constrained topics

These are equivalent of systems topics. The
structure of the constrained topic reveals the
constraints associated with the topic. These
constraints correspond to limits on performed
actions, proof of authorization for performing
the action, security and propagation of these
actions. The structure of a constrained topic is
the following:
/Constrained/{Event Type}/{Constrainer}/
{Allowed Actions }/{Distribution}/{Other “/”
separated Suffixes}

We now include a discussion of each of
these elements
{Constrained}: This elements takes only one
value: Constrained. This keyword at the very
beginning of a topic structure identifies that
topic as a constrained topic.
{Event Type}: This element identifies the
content of messages issued over this topic,
default value: RealTime
{Constrainer}: This element identifies either
the Broker (default) or the entity (in which
case, the Entity-ID would be specified) that is
allowed to perform the actions outlined in the
{Allowed Actions} element.
{Allowed Actions}: This element describes the
actions that can ONLY be performed by the
constrainer. The values that this element can
take include Publish, Subscribe or
PublishSubscribe [default]. In the case of a
PublishOnly constraint, entities are allowed to
subscribe to messages issued over this topic.
In the case of SubscribeOnly constraint, no
entities are allowed to subscribe to the topic.
Finally, in the case of PublishSubscribe no
entities are authorized to perform any actions
over the corresponding constrained topic:

typically brokers would exchange
administrative messages using such
constrained topics.
{Distribution}: This element imposes
restrictions pertaining to the distribution of
allowed actions over this topic. The two
values this element can take are Suppress and
Disseminate (default). In the case of
Publish_Only actions combined with Suppress
distributions, messages issued by the
constrainer are not distributed to other brokers
within the broker network. Similarly, in the
case of a Subscribe_Only action combined
with Suppress distribution, the constrainer’s
subscriptions are not propagated within the
broker network.

An example of a constrained topic is
/Constrained/Traces/Broker/Subscribe_Only/Limi
ted/Trace-Topic. In cases, where the elements
do not appear in the constrained topic
structure, default values for that element are
assumed: thus
/Constrained/Traces/Broker/Publish
Subscribe/Limited and
/Constrained/Traces/Limited are equivalent
topics.

3.2 Registration of the traced entity
In the section we describe the steps taken by
an entity interested in being traced to initiate
the tracing process. Once an entity is ready to
be traced, it creates the corresponding trace
topic as specified in the previous section. The
entity then proceeds to securely discover a
valid broker within the broker network using
the broker discovery scheme described in Ref
[3]. The entity then needs to register with a
broker and specify an interest in being traced.
This trace registration message is issued over
the following constrained topic
/Constrained/Traces/Broker/Subscribe-
Only/Registration/. In this registration message
the traced entity includes the following:
1. Its identifier and credentials.
2. The trace topic advertisement, which

establishes the trace topic provenance

 5/13

3. The request identifier associated with the
message. This is used to correlate any
response that would be received for this
message.

4. The entity also demonstrates possession of
its credentials (and tamper evidence) by
signing the message. The signing is done
by computing the checksum (or hash
codes) for the message and encrypting the
aforementioned message digest with its
private key.

Upon receipt of this message, the broker
cryptographically verifies the message
contents. First, the broker checks for proof of
possession of the corresponding private key;
here, we should be able to access decrypt the
message signature with the entity’s public
key. If the decryption process is successful,
we have access to the message digest. We
then check the message digest for tamper-
evidence; this is done by checking to see if
the checksums/digest of the message content
matches the one that was retrieved. If there is
any error in the verification process, an error
message is returned back to the entity.

If the verification process is successful, the
broker then proceeds to generate a session
identifier, and issue a successful registration
response. This response includes the
following

1. The request identifier contained in the
original message.

2. The newly generated session identifier.
The response message is encrypted with a
randomly generated secret key, and this secret
key is encrypted using the entity’s public key.
This way, only the entity in question is able to
decipher the contents of the message.

The broker also proceeds to subscribe to
the following topic.
/Constrained/Traces/Broker/Subscribe-
Only/Limited/Trace-Topic/SessionId. Upon
receipt of the response message at the traced
entity, the entity proceeds to subscribe to the
following constrained topic
/Constrained/Traces/Entity-ID/Subscribe-
Only/Trace-Topic/SessionId.

3.3 Broker operations
The broker is responsible for failure detection
of the traced entity and reporting the status of
the traced entity to the trackers. The traces
reported by the broker to the trackers, and
summarized in Table 1, include the following
• Constant updates on the continued

availability of a traced resource
• Information about individual pings

initiated by a broker
• Change in the status of a traced entity
• State transition information about a

traced entity
• Information pertaining to network

usage and the load at a given traced
entity

Messages issued by a traced entity to the
tracing broker are published over
/Constrained/Traces/Broker/Subscribe-
Only/Limited/Trace-Topic/SessionId, while
messages issued by a tracking broker to the
traced entity are issued over
/Constrained/Traces/Entity-ID/Subscribe-
Only/Trace-Topic/SessionId.

Table 1: Traces reported by a broker to the
trackers

Trace type Description
INITIALIZING,
RECOVERING, READY or
SHUTDOWN

This is the state information
reported by a traced entity
to a broker.

FAILURE_SUSPICION,
FAILED, DISCONNECT

Broker generated traces
about an entity’s failure
detection

GUAGE_INTEREST Trace to gauge interest
among trackers in tracing an
entity

JOIN,
REVERTING_TO_
 SILENT_MODE

Trace issued when an entity
has requested tracing, and
when it has decided to
disable tracing.

ALLS_WELL Heartbeats issued at regular
intervals indicating that an
entity is still active

LOAD_INFORMATION Indicates the load
information at an entity:
CPU Info, Memory Usage
and Workload

NETWORK_METRICS Metrics about the network
realm in which an entity
operates: Loss rates, transit
delay and bandwidth

 6/13

3.3.1 Pings, Ping Responses and network
metrics

A broker issues pings at regular intervals to
the traced entity. Upon receipt of this ping
message, the traced entity is expected to issue
a ping response back to the broker. The ping
message issued by a broker contains a
monotonically increasing message number
and the timestamp (at the broker) at which it
was issued. A ping response associated with a
ping must include both the message number
and timestamp contained in the original ping.
The message number allows a broker to keep
track of message losses and out-of-order
delivery, while the timestamp allows the
broker to compute network latencies.
3.3.2 Determining failure at a traced entity

For every traced entity, a broker maintains
information about the previous pings that it
had issued. This includes information about
when the traced entity was last pinged, and
the response times (and loss rates) associated
with the last 10 pings. An entity is pinged
based on whether the ping interval has
elapsed. Depending on the history of the past
pings and the duration for which a traced
entity has been active, this ping interval is
varied. If consecutive pings do not have
responses associated with them, the ping
interval is reduced to hasten the failure
detection of the entity.

If a ping response is not received for a set
of successive pings issued at the established
ping intervals, a FAILURE SUSPICION trace is
reported to the trackers. Lack of responses,
from a failure suspected traced entity, for
additional pings issued is taken as a sign that
the traced entity has failed, and a FAILED trace
is issued to the trackers.
3.3.3 State information from a traced entity

A given entity could be in one several states
during its presence within the system. These
states include INITIALIZING, RECOVERING,
READY or SHUTDOWN. A traced entity notifies
the broker whenever the state transitions

occur, which in turn reports this to the
trackers.
3.3.4 Load Information and Network metrics

A traced entity can also issue reports about
changes in the load utilization on the machine
that is hosting it. The load metrics reported
can include changes in both memory and CPU
utilization. Depending on the distributed
application in question, knowledge of such
information can enable trackers to arrive at
better decisions while determining the entity
to leverage in distributed settings.

Trackers may also be interested in tracing
network realm in which the entity operates.
Since all interactions from an entity are
funneled by the broker that it is connected to,
the behavior of the link connecting the broker
and the traced entity is extremely important.
The nature of the pings and the corresponding
responses allow a broker to determine the loss
rates, latency and out-of-order delivery rates
over the link.
3.3.5 Publishing Trace Information

To enable trackers greater selectivity in the
trace information that it chooses to receive,
the tracing broker publishes traces on
different constrained topics (summarized in
Table 2). Furthermore, as we discuss in
section 3.5, these traces are issued only if
there are trackers interested in receiving these
traces.

The first time a traced entity registers with
a broker, the broker issues a JOIN trace on
/Constrained/Traces/Broker/Publish-Only/Trace-
topic/ChangeNotifications. Other traces
published on this topic include
FAILURE_SUSPICION, FAILED, DISCONNECT and
REVERTING_TO_SILENT_MODE.

Upon receipt of Ping responses from a
traced entity, a broker issues the
ALLS_WELL trace on the following topic:
/Constrained/Traces/Broker/ Publish-Only/Trace-
topic/AllUpdates. It is expected that the number
of entities interested in receiving these traces
would be quite small.

 7/13

State transition information reported by a
traced entity, are reported by the broker on the
following topic: /Constrained/Traces/Broker/

Publish-Only/Trace-topic/StateTransitions. Load
and network metrics associated with a traced
entity are issued over
/Constrained/Traces/Broker/Publish-Only/Trace-
topic/Load and /Constrained/Traces/Broker/
Publish-Only/ Trace-topic/NetworkMetrics
respectively.

Trace type Topic Information
INITIALIZING,
RECOVERING,
READY or
SHUTDOWN

/Constrained/Traces/Broker/
Publish-Only/Trace-
topic/StateTransitions

FAILURE_SUSPICION
, FAILED,
DISCONNECT

/Constrained/Traces/Broker/
Publish-Only/Trace-
topic/ChangeNotifications

GUAGE_INTEREST /Traces/Trace-topic/Request-
Response

JOIN,
REVERTING_TO_SILE
NT_MODE

/Constrained/Traces/Broker/
Publish-Only/Trace-
topic/ChangeNotifications

ALLS_WELL /Constrained/Traces/Broker/
Publish-Only/Trace-
topic/AllUpdates.

LOAD_INFORMATIO
N

/Constrained/Traces/Broker/
Publish-Only/Trace-
topic/Load

NETWORK_METRICS /Constrained/Traces/Broker/
Publish-Only/ Trace-
topic/NetworkMetrics

Table 2: Topics associated with various traces

3.4 Registering to receive traces
Trackers interested in received traces,
corresponding to an entity, it must first
discover the trace topic that has been
registered by that entity. A tracker needs to
include its credentials in the discovery
request; the discovery query has the form
/Liveness/Entity-ID, where Entity-ID
corresponds to the entity identifier. If the
tracker is not authorized to discover the trace
topic no response would be received to this
query, and the tracker cannot proceed further.

If this discovery request is successful, the
tracker can proceed to subscribe to the
appropriate constrained topics over which
different types of trace information is
published.

3.5 When to publish the traces
In our scheme, traces are issued by a broker
only if there are entities that are interested in
receiving traces corresponding to a traced
entity. To determine if there are any such
trackers, the tracing broker issues a
GUAGE_INTEREST message on
/Constrained/Traces/Broker/Publish-Only/Trace-
topic/ Interest. Trackers interested in tracing
the entity respond by outlining their interests
in any combination of change notifications,
all-updates, state transitions, load information
or network metrics. This response is
published over
/Constrained/Traces/Broker/Subscribe-
Only/Trace-topic/Interest

4. Authorization
In this section we discuss issues related to
authorization in our framework; specifically,
we outline how actions related to the tracing
process are restricted. In our authorization
scheme we cover the generation, consumption
and the routing of these trace messages.

4.1 Subscribing to trace information
Information about traces related to an entity
are published on topics comprised of static
information, and the trace topic previously
registered by the entity. Since the trace topic
is based on a randomly generated 128-bit
UUID it is extremely difficult to determine or
“guess” this information. Thus, it is very
difficult for unauthorized trackers to receive
trace information about an entity. Since the
broker network routes trace messages only to
those trackers that previously registered an
interest in them, the trace messages are
received only by the authorized trackers.

4.2 Individual trace messages

As discussed in section 3.2 an entity needs to
demonstrating possession of valid credentials
during registration. These credentials are
used by a broker to check the validity of other
trace messages initiated by the entity. Since

 8/13

our scheme is independent of the underlying
transport, we require individual trace
messages initiated by a traced entity to
demonstrate possession of credentials. For
every trace message (including ping
responses) initiated at a traced entity, this
entity cryptographically signs the trace
message. This allows the broker, with which
it interacts, to verify both the source of the
message as well as whether the message has
been tampered with.

4.3 Publishing trace information
Trace information are published on
constrained topics of the form
/Constrained/Traces/Broker/ Publish-Only/.
Publishing over these topics is within the
purview of the brokers: no entity can publish
over these topics. Furthermore, the broker
generating these trace messages needs to
demonstrate that it is indeed authorized by the
traced entity to do so.

A given traced entity needs to explicitly
authorize a broker to publish its trace
information. To do this, after the entity
completes the registration process, the entity
also generates an asymmetric key pair. The
entity then proceeds to generate an
authorization token which includes the
1. Trace-topic information
2. The randomly generate public key.
3. The rights associated with the traces

(either publish or subscribe). In the case
of the broker, this is set to publish.

4. The duration for which these rights are
valid. A traced entity will typically keep
this duration short enough to correspond
to its expected presence within the system.
An entity can generate a new token, once
a token is closer to expiration.

The entity then proceeds to sign this token
to provide tamper-evidence and to enable
verification of the creator of this token. The
entity’s signature is also part of this
authorization token.

One reason why we use randomly
generated key-pairs within the token is to
ensure that no other broker within the network
is aware of the broker that a given traced
entity is connected to. Inclusion of the
broker’s credential within the token can
possibly compromise this information.

All trace messages generated by a broker
needs to include the token. Messages received
at broker, from a neighboring broker, are
discarded if they do not posses this
authorization token. A broker will also verify
the validity of the token. The broker will
check to see if the token was signed by the
owner of the trace topic, check to see if the
token has expired (Use of NTP timestamp
ensures that timestamps are within 30-100
milliseconds of each other). If the validity
check fails, the message is discarded and not
routed within the network.

5. Security
In this section, we describe the security
related aspects of our approach. Specifically,
our discussion covers ensuring the
confidentiality of trace messages and coping
with denial of service attacks. We do not
address (and consider it out of our research
scope) cryptographic attacks.

5.1 Ensuring confidentiality

An entity may choose to ensure that its
traces are cryptographically secured. This
section deals with the case where an entity
needs to secure its traces. Here, the entity is
first responsible for the generation of a secret
symmetric key that will be used for
encrypting the traces. The entity then securely
routes this secret key, along with information
about the encryption algorithm and padding
scheme, to the broker that it is connected to.

When the broker issues a gauge interest
request, it also sets a flag indicating that the
traces will be secured. The broker also needs
to include its authorization token within this
request. Interested trackers, after confirming

 9/13

the validity of the security token, then
respond to this gauge interest request by
including their credentials and the topic over
which it expects responses. The broker then
proceeds to publish a secure payload over the
topic contained in the response.

To create this secure payload, the broker
first creates a message containing the secret
trace key, the encryption algorithm and the
padding scheme that will be used. The broker
uses a combination of the tracker’s credential
and a randomly generated secret key to secure
the payload (this is described in section 4.3).
Only the tracker in possession of the private
key associated with its credentials can
decipher the contents of the message and
retrieve the secret trace key.

All trace messages, published by the
broker, are encrypted using the secret trace
key. Only the trackers in possession of the
trace key can decipher the contents of the
trace messages.

5.2 Denial of Service attacks
In some cases, an attacker may wish to

spurious trace information about an entity.
However, since trace information is published
over constrained topics, and since the routing
brokers expect these published traces to also
include valid authorization tokens, brokers
will not route such spurious traces. In the case
of multiple bogus attempts by a malicious
entity, the broker will terminate
communications with such an entity.

In some cases, a malicious entity may wish
to launch a denial of service attack directly on
a traced entity. Except the broker that a given
traced entity is connected to, no other entity
within the system is aware of the actual
physical location of a given traced entity. All
communications with a traced entity are based
on communications over topics that include
the 128-bit UUID contained in its trace topic.
Since discovery of this trace topic is itself
restricted to the authorized entities, launching
attacks is quite difficult. In the unlikely event

that this trace topic was compromised, a trace
entity can register another trace topic.

6. Performance Benchmarks
We have measured several aspects of our

tracking framework, so that the reader has a
precise idea of the costs involved. In all our
benchmarks that are reported in this section,
all processes executed within version 1.4.2 of
Sun’s Hotspot™ JVM, and the cryptography
package used was BouncyCastle (http://www.
bouncycastle.org) v1.3. All machines (4 CPU
Xeon, 2.4GHz, 2GB RAM) involved in the
benchmarks had Linux as the OS, and were
hosted on a 100 Mbps LAN.

6.1 Costs for Tracking with multiple
hops

In our benchmarks (depicted in Figure 1)
we have measured costs involved in tracking
entities that are 2, 3 and 4 hops away from the
trackers. The intermediate brokers were all
hosted on different machines. In all cases, to
obviate the need for clock synchronizations,
the traced entity and the measuring tracker
(which reports the results) were hosted on the
same machine though they were all connected
to different brokers.

Figure 1: Benchmark Topology

Table 3 summarizes the costs involved in

our scheme. We performed our benchmarks
under different conditions. First, we did
measurements where all communications

 10/13

within the system we based either on TCP or
UDP. For each transport, we also measured
the costs involved in the tracing scheme when
individual traces have messages authorization
information (and assorted processing) and
cases where the trace messages have
authorization information and are also
secured. In our experiments for the purposes
of signing we used 1024-bit RSA with 160-bit
SHA-1 and PKCS#1Padding. For symmetric
encryptions and decryptions we used 192-bit
AES keys.

Table 3: Summary of costs involved in the tracking
framework: All results in milliseconds.
Operation Mean Standard

Deviation
Standard
Error

Trace Routing Overhead for different hops (TCP)
Authorization Only
2 hops 72.68 4.14 0.41
3 hops 79.45 4.08 0.41
4 hops 86.4 4.9 0.49
5 hops 93.99 4.33 0.43
6 hops 100.81 4.36 0.44
Trace Routing Overhead for different hops (TCP)
Authorization & Security
2 hops 90.29 4.41 0.44
3 hops 98.12 5.63 0.56
4 hops 105.06 6.17 0.62
5 hops 110.89 7.38 0.74
6 hops 116.21 4.3 0.43
Trace Routing Overhead for different hops (UDP)
Authorization Only
2 hops 70.24 3.45 0.34
3 hops 76.47 3.95 0.4
4 hops 84.02 4 0.4
5 hops 89.78 3.69 0.37
6 hops 96.79 4.61 0.46
Trace Routing Overhead for different hops (UDP)
Authorization & Security
2 hops 88.86 4.52 0.45
3 hops 95.19 5.59 0.56
4 hops 101.76 5.13 0.51
5 hops 107.99 5.81 0.58
6 hops 114.33 4.53 0.45
Security and Authorization Overheads
Token
Generation and
Signing

27.19 2.99 0.3

Verifying
Authorization
Token

2.01 1.04 0.1

Encrypting
Trace Message

0.25 0.73 0.07

Decrypting
Trace Message

1.15 0.68 0.07

Sign Trace
Message

24.51 1.81 0.18

Verify Signature
in Trace
Message

6.83 1.81 0.18

Sign Encrypted
Trace Message

24 1.37 0.14

Verify Signature
in Encrypted
Trace Message

5.31 1.09 0.11

Key Distribution Overhead
2-hops 81.53 36.59 8.18
3-hops 114.16 39.29 8.79
4-hops 140.79 40.12 8.97

Figure 2 depicts the costs involved in the
tracing process. Communications over UDP
have lower latencies than communications
over TCP. Also, when trace message routing
based on authorization and security is more
expensive than the scheme which involves
only authorization since the
encryption/decryption costs are not
encountered in the latter scheme.

Figure 2: Trace Routing Overhead vs. Number of

Hops

In NaradaBrokering the per-hop
communications latency is around 1-2
milliseconds in cluster settings. Additional
hops, thus do not significantly increase the
routing overhead. Most of the costs for
routing of traces are a result of the overheads
related to cryptographic operations (also
outlined in the table) pertaining to
authorization and security related processing.

6.2 Tracing while increasing number of
trackers

We also measured the overheads related to
increasing the number of trackers. We did this

 11/13

based on the topology depicted in Figure 3.
Here we increased the number of trackers
gradually by introducing 10 trackers at a time.
The groups of 10 trackers were hosted on
different machines.

Figure 3: Topology for measuring effect of
increasing number of trackers

Figure 4 summarizes our results; as can be
seen the trace time increases very slowly with
an increase in the number of trackers. This
demonstrates the capability of proposed
system to track entities without overloading
the brokers.

Figure 4: Trace Time vs. Number of Trackers

(Measured for UDP)

6.3 Reduction of Signing Costs
In our scheme when a traced entity exchanges
messages with its hosting broker, all messages
initiated by the traced entity are signed. The
broker then constructs the appropriate trace
messages with the valid authorization tokens
and proceeds to sign the message. To reduce
the costs associated with signing of trace

messages we introduced an optimization
where we eliminate the signing of messages
issued by the traced entity to its hosting
broker. The traced entity generates a secret
symmetric key, and proceeds to securely
exchange this key with its host broker. Instead
of signing every trace message that it
generates, the entity simply encrypts it with
its symmetric key. Since only the entity and
the broker are in possession of this secret key
the broker accepts messages encrypted with
this key as having originated by the entity in
question. One of the reasons why we did this
is that the encryption/decryption costs are
cheaper than the corresponding
signing/verification cost. Our results in Figure
5 depict the results of using this optimization.
As can be seen the authorization enhancement
has reduced the tracing costs involved.

Figure 5: Trace Time vs. Number of Hops With

Authorization Enhancement (Measured for UDP)

7. Related Work
The Network Weather System (NWS) [4]
collects end-to-end throughput and latency
information and uses that information to
forecast future performance. Metrics are
collected by sensors, which are organized as a
hierarchy of sensor sets called cliques in order
to prevent contention and also to provide
scalability. In addition to network metrics,
collected over the TCP/IP transport protocol,
NWS also accumulates CPU and available
non-paged memory information from various

 12/13

nodes. Remos [5] provides a query based
interface for applications to obtain
information about their execution
environment including network state. Remos
maintains both static and dynamically
changing information and is based on SNMP
measurements on the network router nodes.

Vogels, in Ref [6] provides an excellent
overview of the need for failure detection in
large distributed systems. Issues related to
failure detection and improving the failure
detection through the use of process
checkpoints and process Upcalls are also
outlined.

Renesse, Minsky and Hayden described the
first gossip based failure detection service in
Ref [7]. In gossip systems, a give node
gossips (and passes information) to a set of
randomly selected nodes. Gossip system tends
to scale well and have no single point of
failures. However, systems based on gossip
schemes need to address the consistency issue
which results from uneven propagation of the
gossips. The GEMS (Gossip Enabled
Monitoring Service) [8] system provides a
scaleable resource monitoring service. Nodes
within the GEMS system gossip with each
other about information related to resource
monitoring. The approach taken here is that of
a layered gossip scheme, where nodes are
organized into gossip trees. Since gossiping
can sometimes lead to uneven spread of
failure information, the system relies on
consensus: a majority is needed for deeming a
failure.

Log-Based Receiver-reliable Multicast
(LBRM) [9] protocol describes a scheme to
provide scalable and timely dissemination of
state updates, that satisfy the needs of
multicast sources within Distributed
Interactive Simulations. The variable heart-
beat scheme in LBRM clusters heartbeat
transmissions in the time period after a data-

transmission rather than evenly distributing
these heartbeats during idle times when data
is not being transmitted.

8. Conclusions
A scaleable and secure tracking scheme is
important in several loosely-couple
distributed systems. In this paper we
described our scheme for tracking the
availability of entities in distributed systems
in a secure and authorized fashion. This work
leveraged the publish/subscribe paradigm to
achieve this. Our experiments confirm the
suitability of this scheme.

References
[1] S. Pallickara and G. Fox. NaradaBrokering: A

Middleware Framework and Architecture for Enabling
Durable Peer-to-Peer Grids. Proceedings of the
ACM/IFIP/USENIX Middleware Conference
Middleware-2003. pp 41-61.

[2] S. Pallickara, G. Fox and H. Gadgil. On the Creation &
Discovery of Topics in Distributed Publish/Subscribe
Systems. Proc. of IEEE/ACM GRID 2005. Seattle, WA.

[3] S.Pallickara, H. Gadgil and G. Fox. On the Discovery of
Brokers in Distributed Messaging Infrastructures.
Proceedings of the IEEE Cluster 2005 Conference.
Boston.

[4] R. Wolski. Forecasting network performance to support
dynamic scheduling using the network weather service.
Proceedings of the 6th IEEE Symp. On High
Performance Distributed Computing, 1997.

[5] B. Lowecamp et al. A resource query interface for
network-aware applications. In Proc. 7th IEEE Symp. On
High Performance Distributed Computing, 1998.

[6] Werner Vogels: World wide failures. ACM SIGOPS
European Workshop 1996: 115-120

[7] R. Van Renesse, R. Minsky, and M. Hayden, “A
Gossip-style Failure Detection Service,” Proc. of the
IFIP International Conference on Distributed Systems
Platforms and Open Distributed Processing Middleware,
England, 1998, pp. 55-70.

[8] R. Subramaniyan et al, GEMS: Gossip-Enabled
Monitoring Service for Scalable Heterogeneous
Distributed Systems, Cluster Computing, Vol. 9, No. 1,
Jan. 2006, pp. 101-120.

[9] Holbrook, H., Singhai, S. And Cheriton, D., “Log-Based
Receiver-Reliable Multicast for Distributed Interactive
Simulation”, Proceedings of ACM SIGCOMM'95,
September 1995

 13/13

	Abstract
	Introduction
	NaradaBrokering Overview
	Publish/Subscribe Systems
	The Topic Discovery Scheme

	The Tracing Scheme
	Trace topic
	Leveraging the trace topic
	Constrained topics

	Registration of the traced entity
	Broker operations
	Pings, Ping Responses and network metrics
	Determining failure at a traced entity
	State information from a traced entity
	Load Information and Network metrics
	Publishing Trace Information

	Registering to receive traces
	When to publish the traces

	Authorization
	Subscribing to trace information
	Individual trace messages
	Publishing trace information

	Security
	Ensuring confidentiality
	Denial of Service attacks

	Performance Benchmarks
	Costs for Tracking with multiple hops
	Tracing while increasing number of trackers
	Reduction of Signing Costs

	Related Work
	Conclusions
	References

