
Report to NIST January 2017 1 / 12

Scripting Deployment of NIST Use Cases
BADI’ ABDUL-WAHID1, HYUNGRO LEE1, GREGOR VON LASZEWSKI1, AND GEOFFREY FOX1,*

1School of Informatics and Computing, Bloomington, IN 47408, U.S.A.
*Corresponding authors: gcf@indiana.edu

January 20, 2017

This document summarizes the NIST Big Data Public Working Group (BDPWG) use-cases document: "Possible Big Data Use Cases Implementation
using NBDRA". Additional projects originated from classes taught at Indiana University. The focus of our current work is the development of
abstractions capturing the basic concepts we have seen and the development of a REST API implementing some of these ideas. We describe a few
of the underlying components for allocating and managing virtual clusters. Additionally, a summary of the ecosystem (Open Source via GitHub)
and Academic (via Indiana University classes) in which Big Data Software is used. There is a brief description of a few of the Use Cases, as well
as a description of the major components. In summary: we have implemented two of the NIST Use Cases, with several others under development.
Additionally, we are currently implementing DevOps support into Cloudmesh to facilitate scripting of Use Case deployment as started on an API to be
exposed as a web service for deployments. An ecosystem analysis of projects on GitHub and classes show a preference for C++, Python, and Java as
programming languages, as well as several popular packages as dependencies.

© 2017

Keywords: Cloud, Big Data

https://github.com/cyberaide/nist-report

1. OVERVIEW

The goal of our work has been to try to understand some com-
mon themes among Big Data processing pipelines, as well as
implement and use software allowing scripting to deploy, config-
ure, and run such pipelines across a range of resource providers.

To this end, we have implemented the Fingerprint Matching
and Face Detection use cases from the Big Data Working Group
proposed Use Cases document and are in the development stage
of several others: Twitter Analysis, Analytics for Healthcare
Informatics, and Spatial Big Data Analytics. Additionally, we
have investigated publicly available source code from GitHub
as well as relevant student projects from classes taught at Indi-
ana University to better understand the ecosystem of Big Data
Analytics.

Finally, we are currently developing a software layer to ex-
pose as a REST API an interface that allows a kind of “Big Data
as a Service” which takes advantage of the scripting capabilities
currently under development.

Automating deployments involves many components:

Support infrastructure. A platform for allocating necessary
compute, network, and storage resources. Examples in-
clude Amazon EC2 and Microsoft Azure, but may include
physical machines as well as virtual ones.

Resource allocations. Groups of machines (or a virtual cluster)
which can be configured to the desired state. These ma-
chines are provided by the support infrastructure.

Droops tools. By storing the desired state of the cluster in text
file, these definitions can be iteratively improved. Examples
include Ansible, Chef, and Puppet.

Domain knowledge. Important for having understanding con-
figuring various components of the software stack to ad-
equately support the task on hand. Additionally, domain
knowledge supports the verification of development of the
tools.

Pursuant to these components we are developing Cloudmesh
Client, which interfaces with various support infrastructure to
provide resource allocations. Current work focuses on creat-
ing abstractions to support an Application Programming Layer
(API) which may be exposed using Representation State Trans-
fer (REST) protocols. Key to this are the support of plugins,
deployers, and compositions, which are described next.
Plugins are intended to encourage code reuse and sharing. Pre-

viously we were developing a single Ansible repository
with the software modules such as Spark, HBase, Drill, etc.
We have come to understand that an improved approach
is to support a plugin-based architecture for deployment
components. These components can therefore more easily
be integrated from various sources.

Deployers are intended to allow the use of multiple DevOps
tools. We had previously settled on the use of Ansible for
deploying software components. While Ansible continues
to be the primary tool, we are designing in support for
other systems as well. This would allow users more familiar
with Chef or NixOps for example to take advantage of the
domain they know better.

Stack Compositions are intended to allow various components
of a software stack, which depend upon layers lower in
the stack, to be deployed together. A crucial component
of composition is the ability to link properties of the stack,

https://github.com/cyberaide/nist-report

Report to NIST January 2017 2 / 12

which may depend on values not known until deployment.

2. FOCUS OF CURRENT WORK

We are currently working on developing a an API for managing
the infrastructure and deploying software stacks to the cluster.
This API will be exposed as a REST service. A preliminary set
of components that has been developed as part of the API has
been used by students in classes in the Fall of 2016 and expect
even more to use these components in the Spring 2017 class [1].

3. ARCHITECTURE

To address the complexity of the development of the different
roles and scripts users must not only deliver them and present
them to the data scientists, but must be prepared based on De-
vOps founded principals that deploys and test the scripts in a
continuous or on an on demand fashion (in case significant re-
sources are used to test the application). Hence in addition to the
development of the scripts to deploy the software, we must also
develop scripts that automatically execute the application on
existing data sets to verify the functionality upon changes in the
application, data, operating system, or infrastructure services
such as hypervisors and containers.

design	&	
modification

Cloudmesh	
script

deployment

data

execution

verification

Continuous
improvement

Fig. 1. Continuous improvement while using cloudmesh
interactively.

Figure 1 depicts a high level overview of the cyclic work-
flow associated with a single application for a specific dataset.
Starting with a Cloudmesh Script that allocates resources and
then deploys the necessary software and desired dataset. The
analytics component executed is then executed. Upon verifica-
tion of the results and modification of components as needed
the process repeats. This continues iteratively until the desired
results are achieved. Tests at the end that verify certain results
will be used to verify if the resulting run was successful. If not
they are flagged and a notification is send to the maintaining
team. New big data tests can be integrated into the set of bench-
marks tested and the they can be evaluated based continuously
or upon change.

This behavior is augmented in Figure 2 with the integration
of the data repositories that are used to manage and maintain
the scripts, the playbooks and the data. While the scripts are
simple cloudmesh scripts to drive a particular application, we

result data

github

ansible
galaxy

data

deployment

verification/
Result tests

Cloudmesh
script

test

calls

verifies

design &
modification

execution
produces

chef
cookbooks

heat
scripts

…

Fig. 2. Interaction of the continuous improvement steps with
various databases while using Ansible deployment scripts.

envision that most roles are published as Ansible roles to be
integrated in application specific playbooks. Playbooks exists
for the phases of the execution
Phase 0: start of the integrated application verification
Phase 1: setup of the infrastructure
Phase 2: deployment of the platform and application
Phase 3: running a test on a specific data set.
Phase 4: verification of the result

4. SOFTWARE STACKS

We will be describing multiple software components in later
sections. To put them into better context we provide a brief
overview here.
Support infrastructure. Systems such as OpenStack, Amazon

EC2, Amazon Azure, Google Compute Engine, Chameleon
Cloud, Jetstream, San Diego Supercomputer Cluster’s
Comet. These are platforms that support allocating re-
sources for computation, storage, and network.

DevOps. Tools such as Ansible, Puppet, Chef, and others listed
in Table 1 provide the ability to install software on and
configure a virtual cluster allocated by the support infras-
tructure.

Cloudmesh. A client program which interfaces with multiple
support infrastructure providers, allowing allocation of vir-
tual clusters across multiple providers. This greatly aids
the goal of scripting deployments. Additionally, pursuant
of the same goal, Cloudmesh is beginning to use DevOps
tools to configure the allocated resource.

Big Data Stack. A collection of curated Ansible playbooks for
deploying common Big Data software such as Hadoop,
Spark, or HBase. It is developed the Cloudmesh group and
is used to support the DevOps portion of the Cloudmesh
codebase.

5. PROVISIONING MACHINES

The first step in a data processing pipelines is the provision-
ing/allocation of compute resources. These can be physical
machines or, increasingly common and accessible, virtual ma-
chines. There are several major technologies that support this
infrastructure as a service paradigm. Some notable ones include
Amazon EC2, Microsoft Azure, Google Compute Engine, and
Chameleon Cloud.

Report to NIST January 2017 3 / 12

Part of our work has been in developing the cloudmesh client,
which is a lightweight client interface of accessing heterogeneous
clouds, clusters, and work- stations right from the users com-
puter. The user can man- age her own set of resources she would
like to utilize. Thus the user has the freedom to customize their
cyber-infrastructure they use. Cloudmesh client includes an
API, a command-line client, and a command-line shell. It strives
to abstract backends to databases that are used to manage the
workflow utilizing the different infrastructure and also the ser-
vices. Switching for example to stage virtual machines from
OpenStack clouds to amazon is as simple as specifying the name
of the cloud. Moreover, cloudmesh client can be installed on
Linux, MacOSX, and in future Windows. Currently cloudmesh
supports backends to SLURM, SSH, OpenStack, Amazon EC2,
and Azure. Using Cloudmesh, users can migrate across infras-
tructure service providers relatively seamlessly.

Access

Ex
pe

rim
en

t

Cloudmesh Client

HPC Abstraction Container IaaS Abstraction

Cloudmesh Portal

PaaS
O

th
er

s

Sp
ar

k

Ha
do

op
NIST Applications

O
pe

nS
ta

ck

Do
ck

er

AW
S

Az
ur

e

EC
2

O
th

er
s

Co
m

et

O
th

er
s

SL
UR

M

TO
RQ

UE

M
au

i

O
pe

nP
BS

O
th

er
s

Fig. 3. Cloudmesh layered architecture.

Figure 3 describes the architecture of Cloudmesh Client.

6. DEPLOYMENT AND CONFIGURATION

The second step of the pipelines consists of deploying the desired
software onto newly allocated resources. At this point, nodes
may be available, but are in their initial state, which needs to be
updated by installing and configuring software.

DevOps tools aim to support this component. One significant
benefit is the conceptualization of /em code-as-infrastructure,
that is the definitions of the desired state of the clusters are
defined in text files that can be checked into a version control
system and tested.

A. DevOps Tools
The following table provides a short overview of several no-
table DevOps tools. These tools allows the state of a cluster
to be defined at various levels. Some (such as Ansible, Salt
Stack) primarily operate at the level of software deployment
and configuration of a preexisting cluster, while others (i.e. Juju,
NixOps) additionally provide support for allocating the com-
pute resources. Another factor is the interaction with the cluster
via pushing the desired state to the nodes, or having the nodes
run an agent that pulls the state definition and then evaluates it
locally. Finally, the desired state is either declaratively defined,
where the tools determines the steps required to achieve the
state, or imperatively, where the user/developer is responsible.

Several of these tools may be used to showcase different
capabilities:
Ansible is a YAML-based declarative descriptions of the de-

sired state of the system. The description is used to generate
a Python program that is pushed over SSH to each node,
where it is then run to modify the system.

Chef is a Ruby Domain Specific Language for defining sets of
actions (or /em recipes). These recipes are pulled onto the
managed nodes from a configuration server.

Juju focuses on connecting services together, using arbitrary
tools to bring a system to the desired state.

NixOps+NixOS provide resource allocation (EC2, GCE, Azure)
for NixOS nodes as well as DevOps deployment. Once
started, the nodes are brought to the desired state by inter-
preting a configuration file which declaratively defines the
desired state of the node.

B. Concepts
One of our design principles is to allow the user to use whichever
technologies they are most familiar with. Therefore we do not
wish to constrain them into using a specific DevOps technology
such as Ansible or Chef. Additionally, there are many deploy-
ment definitions for various technologies publicly available for
these deployment software, as well as private definitions housed
by whichever company developed them.
Cluster A cluster is a collection of virtual machines that can be

references as a group. Methods acting on the virtual cluster
are restricted to adding and removing instances. This layer
is responsible for allocating and deallocating resources (i.e.
starting and stopping the instances).

Stack. A stack defines how a particular technology is to be
deployed. This uses deployer plugins to support using
Ansible Roles, Chef Recipes, NixOS configurations, etc. The
core concept is that a Stack represents a single technology,
such as Hadoop, or Spark, or HBase. One of the desired
properties of Stack evaluation is idempotence. Evaluating a
given Stack on a node multiple times should have the exact
same effect on the state of the system as evaluating it once.

Composition. A Composition is a group of Stacks that as a
whole represent the deployment of a group of technologies.
For instance Figure 4 shows that in order to provide Finger-
print Matching as a service, one would need a Web stack, a
Fingerprint stack, and the Hadoop stack.
Figure 4. Fingerprint Stack composed with Hadoop and
Web stacks to provide Fingerprinting-as-a-Service. Note
that Stacks can also be Compositions
One crucial concept is that Stacks and Compositions are
mutually recursive: a Composition is composed of at least
one Stack, and each stack itself be a composition.

Link. A Link allows services to introspect properties of the vir-
tual cluster and other Stacks at the time of deployment.
For example, during the deployment of Apache Hadoop,
the Hadoop Stack needs to determine the address of the
nodes running the Zookeeper service, as well as the port
on which Zookeeper is exposed. Currently this information
is maintained by hand, which causes deployments to be
very sensitive to how dependent compositions are config-
ured. The goal for Linking is to propagate this information
throughout the Stack Composition dependency graph as
needed.

Deployment/Evaluation. A Deployment defines DevOps
application-specific interface to evaluate Compositions. Fig-
ure 5 shows how the sample Fingerprint service stack

Report to NIST January 2017 4 / 12

Table 1. List of notable DevOps tools.
Tool Developer License Method Approach

Ansible Ansible Inc. GPLv3 Push Declarative

Chef Chef Apache v2 Pull Imperative

Puppet Puppet GPL, Apache Pull Declarative

CFEngine CFEngine AS GPLv3 Pull Declarative

SaltStack Thomas Hatch Apache v2 Push+Pull Declarative+Imperative

Sup Pressly, Inc MIT Push Imperative

Fabric Jeffrey Forcier Open Source Push Imperative

Otter Inedo Proprietary Push Declarative+Imperative

Juju Canonical Affero GPL, LGPL Push Declarative

NixOps NixOS Community GPLv3 Push Declarative

Hadoop

Fingerprint

Web

Spark

HBase

Drill

Fingerprint

Additional
Layers

Fig. 4. Multiple stacks may be composed. Here, the Fingerprint
stack is a composition of the Apache Drill, HBase, and Spark

stacks. The Fingerprint stack is then included as a layer withing
another composition built upon Hadoop and extended with the

Web layers. The Web layer itself may be composed of other
layers.

shown in Figure 4 may be evaluated. First the Daemon
Watcher stack is deployed, as it is required by Hadoop. Al-
though Java Stack is required for Hadoop, Spark, HBase,
and Drill, it should only be evaluated once per node. The
Fingerprint and Web stack may potentially be evaluated in
parallel. The semantics of the parallel evaluation is not well
understood at the moment though.
Figure 5. Evaluation of a Stack shown as a dependency
graph.

C. Design Principles
Client based. As a client, the cloudmesh program requires no

special privileges to run. This adheres to the principle of
least privilege in an attempt to minimize security issues.
The program runs locally end exits completely once the
user terminates it.

Command Shell and Command Line Interface. The enables
scripting with cloudmesh as a way of automating virtual
cluster deployment and tear down.

Plugin Architecture. The purpose of the plugins is to allow
users to use the deployment tools they are most familiar
with, without constraining them to a specific technology.
Additionally, a desired outcome of this design is increased

Hadoop

Fingerprint

Spark HBase Drill

Web

Apache
server

MySQL

My Analytics Stack

java
Daemon
watcher

E
va

lu
at

io
n

1 2

3

4 5 6

7 8 9

10

11 12

13

Fig. 5. Evaluation of a stack. The My Analytics Stack is
composed of the Fingerprint and Web layers. These in turn are

themselves compositions. Numbers indicate order of evaluation.
While spark, hbase, and drill depend on java, re-evaluation (4 - 6)

is not problematic due to the idempotency property.

code sharing and reuse.
REST API. The goal here is that the client may be used to sup-

port service-based deployments, in scenarios that warrant
it.

Layered Architecture. The layered architecture, as shown in
Figure 3, is intended to facilitate development and inte-
gration of different components that are not currently sup-
ported. For example, adding Docker support exposes a
Docker layer that may be used to launch containers in a
similar fashion to OpenStack virtual machines.

Management Framework. The supports management of allo-
cated resources, allowing starting, stopping, restarting,
reinitializing, etc.

Database Agnostic. The state of various components is stored
in a database. Currently this is an SQLite database, but
access to the database all passes through a dedicated mod-
ule. The hope is that, if needed, the database backend may
be parameterized to support others such as MariaDB, Post-
greSQL, MongoDB, etc.

D. REST API Development
As described elsewhere, one of our goals is to provide a Repre-
sentational State Transfer (REST) API for cloudmesh. This would
enable web services to more easily use Cloudmesh to provide
users with the ability to use and manage virtual clusters. REST
is a well understood and widely used approach for designing
and developing service-based APIs. Additionally the semantics

Report to NIST January 2017 5 / 12

of HTTP methods in a REST context are defined.
Table 2 shows an initial draft of the Cloudmesh REST API.

These show resources and how the HTTP methods may be used
to manage virtual clusters, stack compositions and deployments,
and HPC experiments.

7. ECOSYSTEM ANALYSIS

We believe that big data ecosystem consists of various software,
applications and datasets on different platforms. To understand
current activities on big data projects and provide recommended
software components (roles) in big data, we conduct analysis
on big data projects 1) from community (i.e. github), 2) and
academia (i.e. Indiana University) regarding to the following
entities:

• development language preference
• library/package/tool dependencies
• sectors of public dataset source
This effort will result in building recommended software

components (roles) which supports most of functionalities in a
given big data applications.

A. Analysis on Big Data Projects from Community
Github.com has been used to provide version control and man-
age source code development along with diverse collaborators
across countries. The popularity of github as a collaboration tool
has been significantly increased and 4,995,050 repositories exist
as of 12/27/2016 with 20-30 thousands daily added repositories.
To understand trends on big data software development from
community, we conducted a survey of github repositories regard-
ing to big data applications and tools. Every github repository
has a description of a project and we searched them using topic
keywords. For example, we collected github repositories for Face
Detection with search keywords; face detection, face recognition,
human detection, and person detection to conduct a survey on
a series of questions regarding to 1) A development language
distribution, 2) dependency of libraries and packages, and 3)
sectors of public dataset. Actual source code of public github
repositories are evaluated with the survey query data available
on https://github.com/lee212/bd_stats_from_github. There are six
topics of NIST Collection used in this analysis where N1: Fin-
gerprint Matching, N2: Face Detection, N3: Twitter Analysis,
N4: Data Warehousing, N5: Geographic Information Systems,
and N6: Healthcare Data. In addition, a list of recommended
components (roles) is created based on the survey results.

A.1. Language Preference

The repository statistics indicate that C++, Python and Java are
most common languages among the NIST collection (Table 3),
although Matlab is dominant in the fingerprint.

A.2. Package/Library/Tool Dependencies

We also notice that scientific python packages are commonly
used to enable numerical computation, data analysis and visual-
ization for these big data applications (Figure 6), whereas there
are dependent packages for each project (Table 4). Tweepy, twit-
ter API, is used in the twitter live analysis projects with NLTK,
the natural language processing toolkit to complete sentiment
analysis with streaming data, tweets. Similarly, GIS projects use
particular libraries for spatial analysis such as geopy and shapely.
New trends in software development packages and libraries are
observed, for example, deep learning python packages e.g. caffe
or theano have added recently to github repositories. Statistics

Fig. 6. Python Packages used in NIST Collection (collected from
Github)

(tables5) show that popular github repository examples related
to the six NIST projects started in 2016. Each github project has
different language preferences with various libraries and pack-
ages however similar trends are observed, for example, deep
learning software such as Keras, Theano, mxnet and Caffe are
adopted among multiple projects.

Additional packages (table 4) are not required in a default set
of big data ecosystem but it is necessary to indicate the depen-
dency with a particular application.

A.3. Datasets

Finding relevant datasets for particular applications is another
challenge for the big data ecosystem because of its difficulty of
collecting data from multiple sources (Kim, Trimi, and Chung,
2014), complexity and diversity (Hashem et al., 2015). Commu-
nity contributed lists of public datasets (Cohen and Lo,2014)
provide structured information with a specific location to ac-
cess data and a category to describe itself. We intend to gen-
erate linked json data for datasets and applications in big data
ecosystem based on these lists because it connects scattered
data and software in an organized way. Table 6 shows the data
source from different sectors, academia(.edu or .ac), govern-
ment(.gov), organization(.org), industry(.com or .net), and inter-
national(country code in suffix), among the seven topics of the
lists. Entire topics are available online: https://github.com/lee212/
bd_datasets.

B. Analysis on Big Data Projects from Academia

At Indiana University, Big Data Analytics and Applications
(BDAA) and Big Data Open Source Software Projects (BDOSSP)
have been offered in 2015 and 2016 accordingly. During these
semesters, students have asked to complete a course project with
big data software, tools and datasets. The choice of languages,
software, and dataset are surveyed in this section.

B.1. Language Preference

Table 7 shows the language distribution for Big Data Classes
from Indiana University.

https://github.com/lee212/bd_stats_from_github
https://github.com/lee212/bd_datasets
https://github.com/lee212/bd_datasets

Report to NIST January 2017 6 / 12

Table 2. Selected Service Description. Items prefixed with a colon (:) indicate parameters e.g. :id, :?.

Resource REST Method Description

Virtual Cluster: /cluster

/ GET List available clusters

/ POST Launch a cluster on the provider

/ DELETE Delete all available clusters

/:id DELETE Delete and destroy a cluster

/:id GET View the status of a cluster (nodes, node type, etc)

/:id/properties/:property GET, PUT Get/set a property (provider, name, description) of the cluster

/:id/inventory/:format GET Obtain an inventory of the cluster

Stack Composition: /stack

/ GET List available compositions

/ POST Create a new composition

/:id GET Show information about the composition

/:id DELETE Delete a composition

/:id/name GET, PUT Get/set the name of the composition

/:id/add?deployer=:?&source=:? POST Add a layer to the composition

/:id/layers GET List layers of the composition

/:id/layers/:id DELETE Delete the layer of the composition

Stack Deployment: /stack

/ GET List the available stacks with description

/:id/deployments/:cluster POST Deploy a stack onto a cluster

/:id/status GET Current status

/:id/deployments/:cluster GET Current status on given cluster

Batch Experiments: /hpc

/ GET List all jobs started with the run command

/:id DELETE Deletes the experiment with the given id

/run?script=:?&cluster=:? POST Submits an experiment to the named cluster

/:id/status GET Returns the status of the job started with the run command

B.2. Package/Library/Tool Dependencies

We had 37 final projects from Big Data Open Source Project
Spring 2016 and Table 9 shows that packages/tools/libraries
used in the class projects. Apache Hadoop is mostly used in
conducting data analysis with a database support from HBase,
Hive and HDFS. Python was the most preferred language in
the course projects which resulted in high use of Spark in data
processing with the python library, pyspark. One another obser-
vation is that Ansible, software deployment tool, had offered as
a method of project deployment to ensure reproduceability.

B.3. Datasets

There were 49 class project in Big Data Analytics and applica-
tions Fall 2015, and use of 27 dataset are observed. Public dataset
from industry was mainly used (44%) due to the interest on an-
alytics from kaggle and twitter and availability e.g. amazon
reviews and yelp reviews.

8. COMPLETED APPLICATIONS

A. Fingerprint Matching

Implementation repository
https://github.com/cloudmesh/example-project-nist-fingerprint-matching

A.1. Description

Fingerprint recognition refers to the automated method for veri-
fying a match between two fingerprints and that is used to iden-
tify individuals and verify their identity. Fingerprints (Figure 7)
are the most widely used form of biometric used to identify
individuals.

The automated fingerprint matching generally required the
detection of different fingerprint features (aggregate characteris-
tics of ridges, and minutia points) and then the use of fingerprint
matching algorithm, which can do both one-to- one and one-to-
many matching operations. Based on the number of matches a
proximity score (distance or similarity) can be calculated.

The goal for this project is: given a set of probe and gallery im-
ages, compare the probe images to the gallery images, and report
the matching scores. The dataset used comprises 54,000 images
along with their metadata. Provided tools include MINDTCT

https://github.com/cloudmesh/example-project-nist-fingerprint-matching

Report to NIST January 2017 7 / 12

Table 3. Language Distribution of Topics related to those in the NIST collection on Github
Topic C++ Python Java Matlab JS C# C R Ruby Scala Count*

Fingerprint 15% 11% 13% 20% 3% 16% 8% 0% 1% 5% 43

Face 26% 21% 12% 9% 7% 5% 2% 2% 1% .02% 538

Twitter 2% 35% 15% .6% 9% 2% 1% 10% 3% 1% 1429

Warehousing 3% 27% 18% 2% 10% 3% 1% 10% 4% 1% 3435

Geographic 5% 15% 27% 4% 15% 3% 5% 7% 3% 16% 6487

Healthcare 2% 13% 19% 2% 14% 5% 1% 10% 6% 2% 132
* Count: average number of github.com repositories.

Table 4. Additional Python packages found in NIST Collection

Python
Package Description Fi

ng
er

pr
in

t

Fa
ce

Tw
it

te
r

W
ar

eh
ou

si
ng

G
eo

gr
ap

hi
c

H
ea

lt
hc

ar
e

cv2 OpenCV 3 3

skimage Image Processing 3

PIL Python Imaging 3

caffe Deep Learning 3

nltk Natural Language
Toolkit

3

tweepy Twitter 3

Beautiful
Soup Screen scraping 3 3

gensim Topic Modelling 3 3

geopy Geocoding library 3

shapely Geometric Analy-
sis

3

django Web framework 3 3

and BOZORTH3, which are part of the NIST Biometric Image
Software (NBIS) release. These two tools form the core of the
application: MINDTCT preprocesses the images to identify min-
utae which is used by BOZORTH3 to compute a match.

The implemented solution uses stack of HDFS, YARN,
Apache Spark, Apache HBase, and Apache drill. A Hadoop
cluster is deployed and YARN used to schedule Spark jobs that
load the images into HBase, process the images, and compute
the matches. Apache Drill, with the HBase plugin, can then be
used to generate reports.

A.2. Software Stack

• Big Data software packages:
– Apache Hadoop (YARN)
– Apache Spark
– Apache HBase
– Apache Drill

• Datasets:
– NIST Special Database 14 - Mated Fingerprint Card

Pairs 2.
• Domain Specific code (NBIS):

– MINDTCT

Fig. 7. Example Fingerprints.

– BOZORTH3
• Other tools and technologies:

– Scala

A.3. Deployment Approach

The resource allocation can be done using Cloudmesh Client.
Next, Cloudmesh Big Data Stack is used to deploy the Big Data
software packages. Finally, some Ansible playbooks deploy and
compile a Scala program that integrates the Big Data infrastruc-
ture with running the domain specific code.

B. Face Detection
Implementation repository:
https://github.com/futuresystems/pedestrian-and-face-detection

B.1. Description

Human detection and face detection have been studied during
the last several years and models for them have improved along
with Histograms of Oriented Gradients (HOG) for Human De-
tection [2]. OpenCV is a Computer Vision library including the
SVM classifier and the HOG object detector for pedestrian de-
tection and INRIA Person Dataset [3] is one of popular samples
for both training and testing purposes. This example shows
how to deploy the NIST Human and Face Detection with INRIA
Person Dataset to the cluster where we deployed Apache Spark
on Mesos to train and apply detection models from OpenCV
using Python API. OpenCV Python code runs with Spark Map
function to perform distributed job processing on the Mesos
scheduler.

B.2. Software Stack

• Big Data software packages:
– Apache Spark
– Apache Mesos
– Apache Zookeeper
– OpenCV (with Python)

https://github.com/futuresystems/pedestrian-and-face-detection

Report to NIST January 2017 8 / 12

Table 5. Example Projects Recently Created Regarding to Face Detection
Title Description Language Start Date Popularity Dependency

OpenFace an open source facial behavior analysis
toolkit

c++ March, 2016 725 (305) OpenCV, dlib, boost,
TBB

Picasso face de-
tection transfor-
mation

An Android image transformation li-
brary providing cropping above Face De-
tection (Face Centering) for Picasso

Java July, 2016 528(56) Square Picasso

MTCNN face
detection align-
ment

Joint Face Detection and Alignment us-
ing Multi-task Cascaded Convolutional
Neural Networks

Matlab September, 2016 226(162) Caffe, Pdollar toolbox

facematch Facebook Face Recognition wrapper JavaScript January, 2016 132 (41) fbgraph, request, body-
parser, express

mxnet mtcnn
face detection

MTCNN face detection Python October, 2016 99 (47) OpenCV, mxnet

Table 6. Public Dataset of Academia, Government,
Organization, Industry and International from Community

Category A
ca

de
m

ia

G
ov

er
nm

en
t

O
rg

an
iz

at
io

n

In
du

st
ry

In
te

rn
at

io
na

l

Total

GIS 1 3 5 9 5 23

Healthcare 0 6 3 1 1 11

Image Processing 11 0 4 2 5 18

Natural Language 7 0 8 7 6 26

Social Networks 8 0 7 5 5 24

Climate/Weather 2 6 3 2 4 16

Energy 2 2 5 1 5 15

Table 7. Language Distribution for Big Data Classes from
Indiana University

Class Java Python R C# Projects Count

Fall ’15 6 29 10 1 49

Spring ’16 11 16 1 0 37

Fall ’16 1 73 3 0 77

• Datasets:
– INRIA Person Dataset

B.3. Deployment Approach

Mesos role is installed with two Ansible inventory groups; mas-
ters and slaves where Mesos-master runs on the masters group
and Mesos-slave runs on the slaves group. Apache Zookeeper
is included in the Mesos role and Mesos slaves find an elected
Mesos leader from the zookeeper. Spark, as a data processing
layer, provides two options for distributed job processing, batch
job processing via a cluster mode and real-time processing via a
client mode. The Mesos dispatcher runs on a masters group to
accept a batch job submission and Spark interactive shell, which
is the client mode, provides real-time processing on any node
in the cluster. Either way, Spark is installed after a scheduler
layer i.e. Mesos to identify a master host for a job submission.

Table 8. List of Top 15 Tools/Libraries/Packages used in Big
Data Class Fall 2015

Package Type Use Language Count

Numpy library data management Python 13

Pandas library data management Python 10

Matplotlib library visualization Python 8

Scipy library data management Python 6

Mongodb database NoSQL C++ 10

Hadoop framework parallel processing Java 6

Nltk library NLP Python 5

ggplot2 library visualization R 4

scikit-learn library machine learning Python 7

IPython Tool Web Interface & Notebook Python 4

Tableau Tool visualization C++ 4

rstudio Tool development IDE R 3

seaborn library visualization Python 3

Spark framework in-memory processing Scala 3

Randomforest library classification R 2

Hbase database NoSQL Java 2

Folium library visualization Python 2

MPI framework parallel processing C, C++, Fortran 2

Pig language data processing Java 2

Count: a number of class projects in a given tool/library/-
package

Installation of OpenCV, INRIA Person Dataset and Human and
Face Detection Python applications are followed.

9. APPLICATIONS UNDER DEVELOPMENT

A. Twitter Analysis
A.1. Description

Social messages generated by Twitter have been used with var-
ious applications such as opinion mining, sentiment analysis
(Pak and Paroubek, 2010), stock market prediction (Bollen, Mao,
and Zeng, 2011), and public opinion polling (Cody et al., 2016)
with the support of natural language tool-kits e.g. nltk (Bird,
2006), coreNLP (Manning et al., 2014) and deep learning sys-
tems (Kim, 2014). Services for streaming data processing are
important in this category. Apache Storm is widely used with
the example of twitter sentiment analysis, and Twitter Heron,
Google Millwheel, LinkedIn Samza, and Facebook Puma, Swift,

Report to NIST January 2017 9 / 12

Table 9. List of Top 15 Tools/Libraries/Packages used in Big
Data Class Spring 2016

Package Type Use Language Count*

Hadoop framework parallel processing Java 31

Ansible tool deployment Python 26

Spark framework in-memory processing Scala 14

HBase database NoSQL Java 12

Pig language data abstraction Java 11

Hive database SQL Java 7

MongoDB database NoSQL C++ 7

Mahout library machine learning, data mining Java 4

MLLib library machine learning Java 4

OpenCV library computer vision C++ 3

Zookeeper framework directory service Java 3

Tableau tool visualization C++ 3

D3.js tool visualization Javascript 2

MySQL database SQL C++ 2

HDFS database distributed filesystem Java 2
* Count: a number of class projects in a given tool/library/package

Fig. 8. Human Detection, original image (left), processed image
(right)

and Stylus are available as well [4].

A.2. Software Stack

Big Data software stack:

• Apache Hadoop
• Apache Lucene
• Twitter Heron
• Apache Storm
• Apache Flume
• Natural Language Toolkit (Python)
• gensim NLP library

Fig. 9. Face and Eye Recognition with Human Detection (face:
blue box, eye: red box, human: green box)

Table 10. List of Top 15 Tools/Libraries/Packages used in Big
Data Class Fall 2016

Package Type Use Language Count*

Matplotlib library visualization python 88

Pandas library data management python 79

Numpy library data management python 65

Scipy library data management python 24

Requests library http tool Python 22

xlrd library MS Excel Python 10

pillow library imaging library Python 9

scikit-learn library machine learning Python 9

seaborn library visualization Python 8

nltk library language processing Python 6

geopy library geospatial tool Python 5

pyOpenSSL library OpenSSL Python 5

patsy library statistics Python 5

bokeh library visualization Python 4

ploty library visualization Python 4
* Count: a number of class projects in a given tool/library/package

Table 11. Dataset Sectors of academia, government,
organization, industry and international from Big Data Classes

at Indiana University

Class A
ca

de
m

ia

G
ov

er
nm

en
t

O
rg

an
iz

at
io

n

In
du

st
ry

In
te

rn
at

io
na

l

Total

Fall ’15 7 3 5 12 0 27

Spring ’16 6 6 8 10 1 30

B. Analytics for Healthcare Data and Informatics

B.1. Description

Several attempts have been made to apply Big Data framework
and analytics in health care with various use cases. Medical
image processing, signal analytics and genome wide analysis
are addressed to provide efficient diagnostic tools and reduce
healthcare costs (Belle et al., 2015) with big data software such as
Hadoop, GPUs, and MongoDB. Open source big data ecosystem
in healthcare is introduced [5] with examples and challenges to
satisfy big data characteristics; volume, velocity, and variety [6].
Cloud computing framework in healthcare for security is also
discussed with concerns about privacy [7].

B.2. Software Stack

Big Data software stack:
• Apache Hadoop
• Apache Spark/mllib
• Apache Mahout
• Apache Lucene/Solr
• Theano deep learning library

Report to NIST January 2017 10 / 12

C. Spatial Big Data/Statistics/Geographic Information Sys-
tems

C.1. Description

The broad use of geographic information system (GIS) has been
increased over commercial and scientific communities with the
support of computing resources and data storage. For exam-
ple, Hadoop-GIS citeaji2013hadoop, a high performance spatial
data warehousing system with Apache Hive and Hadoop, of-
fers spatial query processing in parallel with MapReduce, and
HadoopViz [8], a MapReduce framework for visualizing big
spatial data, supports various visualization types of data from
satellite data to countries borders.

C.2. Software Stack

• Apache Hadoop
• Apache Spark/mllib
• GIS-tools
• Apache Mahout
• GDAL - Geospatial Data Abstraction Library
• S2 Geometry Library
• geopy geocoding python library

D. Data Warehousing and Mining
D.1. Description

Researches in data warehousing, data mining and OLAP have
investigated current challenges and future directions over big
data software and applications [9] due to the rapid increase
of data size and complexity of data models. Apache Hive, a
warehousing solution over a hadoop [10], has introduced to deal
with large volume of data processing with the other research
studies [11, 12] and NoSQL platforms [13] have discussed with
data warehouse ETL pipeline [14].

D.2. Software Stack

Big Data software stack:
• Apache Hadoop
• Apache Spark/mllib
• MongoDB
• Hive
• Pig
• Apache Mahout
• Apache Lucene/Solr
• MLlib
• Google BigQuery

10. APPLICATION STATUS

A. Deployment Approach
The resource allocation can be done using Cloudmesh Client.
Next, Cloudmesh Big Data Stack is used to deploy the Big Data
software packages. Finally, some Ansible playbooks deploy
and compile additional packages that integrates the Big Data
infrastructure with running the domain specific code.

B. Development Status
Fingerprint Matching: implementation completed complete re-

porting in desired NIST WG report format.
Facetetection: implementation completed, complete reporting

in desired NIST WG report format.
Twitter analysis: prototyped Cloudmesh integration of De-

vOps approach, virtual cluster command implemented,
Ansible plugin in development, Hadoop deployment proto-
typed and tested with students, application implementation

under development. Multiple prototypes submitted by stu-
dents

Analytics for healthcare data and Informatics: prototyped
Cloudmesh integration of DevOps approach, virtual cluster
command implemented, Ansible plugin in development,
Hadoop deployment prototyped and tested with students,
application implementation under development. A
prototype submitted by students

Spacial big data / statistics / geographic information systems:
prototyped Cloudmesh integration of DevOps approach,
virtual cluster command implemented, Ansible plugin
in development, Hadoop deployment prototyped and
tested with students, application implementation under
development. Prototype for earthquake data analysis
propagating through seismic sensors.

Data warehousing and mining: prototyped Cloudmesh inte-
gration of DevOps approach, virtual cluster command im-
plemented, Ansible plugin in development, Hadoop de-
ployment prototyped and tested with students, application
implementation under development. An prototype applica-
tion to analyze Uber data is under review.

11. COMPONENTS (ROLES)

Based on the analysis from community and academia, we ob-
served that there are crucial software, dataset and analytics in
big data ecosystem. We, therefore, offer deployable first-class
roles which enable major functionalities on big data process-
ing and analysis. The software deployment is accommodated
with Cloudmesh, Ansible, Chef, Puppet, Salt, OpenStack Heat,
Microsoft Azure Template, and Amazon Cloudformation.

• Framework
– Hadoop
– Mesos

• Processing
– Spark
– Storm

• Language
– Pig
– R

• Database
– HBase
– Hive
– MongoDB
– MySQL

• Library
– Mahout
– nltk
– MLlib
– Lucene/Solr
– OpenCV

• Tools
– Ganglia
– Nagios
– Zookeeper

Table 12) compares dataset Sectors of academia, government,
organization, industry and international from Big Data Classes
at Indiana University.

ACKNOWLEDGMENTS

This work was in part supported by the NIST project NIST-
70NANB15H247.

Report to NIST January 2017 11 / 12

Table 12. Dataset Sectors of academia, government, organization, industry and international from Big Data Classes at Indiana
University

Role Name Description Type Requirement
(Installation) Dependencies Distributed Example

Spark In-memory data process-
ing application

processing JDK 7+ Maven
3.3.9

Hadoop (op-
tional)

Cluster Man-
ager/Executor
(Worker node)

Hadoop
Map/Reduce dis-
tributed processing
framework

framework JDK
Resource Man-
ager/Node
Manager

WordCount

Storm
a real time fault-tolerant
and distributed stream
data processing system

processing OpenJDK ZooKeeper Master/Worker

Zookeeper Synchronization service
for distributed processes

tool JDK 6+
Ensemble (3
servers mini-
mum)

HBase NoSQL database for real-
time processing

database JDK Zookeeper Master / Re-
gionServer

Twitter REST APIs Reading Twitter data library OAuth

D3, tableau Javascript visualization
library

visualization

Nltk Natural Language
Toolkit

library Python2.7 or
3.2+

Numpy (op-
tional)

AlchemyAPI Collecting Tweets library Mongodb, R
(ggplot2)

OpenCV Computer Vision Li-
braries

library

Mahout Machine learning appli-
cations

library JDK Maven hadoop-client
Via Hadoop,
Spark, H20 or
Flink

Naive Bayes
(Classifica-
tion) K-Means
(Clustering)
Recommender

Lucene/Solr Search engine frame-
work

library JRE 1.8+ SolrCloud

MLlib Machine Learning Li-
brary from Spark

library Spark

Logistic regres-
sion (Classifica-
tion) K-means
(Clustering)

MongoDB Document-oriented
database

application mongos/shard

Hive
Database SQL query
interface to apache
hadoop

application JDK Hadoop Hadoop

Pig High level scripting lan-
guage for Hadoop

Application
Hadoop JDK
Ant (optional)
JUnit (optional)

RethinkDB
NoSQL, distributed
document-oriented
(JSON) database

application sharding, repli-
cation

TextBlob
Natural language pro-
cessing (NLP) Python li-
brary

Analytics NLTK corpora

Pattern Web mining python li-
brary

Analytics
Numpy (for
LSA; Latent se-
mantic analysis)

Python 2.5+
only, no support
on 3

Report to NIST January 2017 12 / 12

REFERENCES

[1] Gregor von Laszewski and Badi Abdul-Wahid, “Big Data Classes,”
Web Page, Indiana University, Jan. 2017. [Online]. Available:
https://cloudmesh.github.io/classes/

[2] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), vol. 1. IEEE, 2005, pp.
886–893.

[3] ——, “Inria person dataset,” 2005.
[4] G. J. Chen, J. L. Wiener, S. Iyer, A. Jaiswal, R. Lei, N. Simha, W. Wang,

K. Wilfong, T. Williamson, and S. Yilmaz, “Realtime data processing
at facebook,” in Proceedings of the 2016 International Conference on
Management of Data. ACM, 2016, pp. 1087–1098.

[5] W. Raghupathi and V. Raghupathi, “Big data analytics in healthcare:
promise and potential,” Health Information Science and Systems, vol. 2,
no. 1, p. 1, 2014.

[6] P. Zikopoulos, C. Eaton et al., Understanding big data: Analytics for
enterprise class hadoop and streaming data. McGraw-Hill Osborne
Media, 2011.

[7] V. Stantchev, R. Colomo-Palacios, and M. Niedermayer, “Cloud com-
puting based systems for healthcare,” The Scientific World Journal, vol.
2014, 2014.

[8] A. Eldawy, M. Mokbel, and C. Jonathan, “Hadoopviz: A mapreduce
framework for extensible visualization of big spatial data,” in IEEE Intl.
Conf. on Data Engineering (ICDE), 2016.

[9] A. Cuzzocrea, L. Bellatreche, and I.-Y. Song, “Data warehousing and
olap over big data: current challenges and future research direc-
tions,” in Proceedings of the sixteenth international workshop on Data
warehousing and OLAP. ACM, 2013, pp. 67–70.

[10] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy, “Hive: a warehousing solution over a map-
reduce framework,” Proceedings of the VLDB Endowment, vol. 2, no. 2,
pp. 1626–1629, 2009.

[11] S. Chen, “Cheetah: a high performance, custom data warehouse on
top of mapreduce,” Proceedings of the VLDB Endowment, vol. 3, no.
1-2, pp. 1459–1468, 2010.

[12] Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang, and Z. Xu, “Rcfile:
A fast and space-efficient data placement structure in mapreduce-based
warehouse systems,” in 2011 IEEE 27th International Conference on
Data Engineering. IEEE, 2011, pp. 1199–1208.

[13] M. Chevalier, M. El Malki, A. Kopliku, O. Teste, and R. Tournier,
“Implementing multidimensional data warehouses into nosql,” in
17th International Conference on Enterprise Information Systems
(ICEIS’15), Spain, 2015.

[14] K. Goodhope, J. Koshy, J. Kreps, N. Narkhede, R. Park, J. Rao, and
V. Y. Ye, “Building linkedin’s real-time activity data pipeline.” IEEE Data
Eng. Bull., vol. 35, no. 2, pp. 33–45, 2012.

https://cloudmesh.github.io/classes/

	Overview
	Focus of Current Work
	Architecture
	Software Stacks
	Provisioning Machines
	Deployment and Configuration
	DevOps Tools
	Concepts
	Design Principles
	REST API Development

	Ecosystem Analysis
	Analysis on Big Data Projects from Community
	Language Preference
	Package/Library/Tool Dependencies
	Datasets

	Analysis on Big Data Projects from Academia
	Language Preference
	Package/Library/Tool Dependencies
	Datasets

	Completed Applications
	Fingerprint Matching
	Description
	Software Stack
	Deployment Approach

	Face Detection
	Description
	Software Stack
	Deployment Approach

	Applications Under Development
	Twitter Analysis
	Description
	Software Stack

	Analytics for Healthcare Data and Informatics
	Description
	Software Stack

	Spatial Big Data/Statistics/Geographic Information Systems
	Description
	Software Stack

	Data Warehousing and Mining
	Description
	Software Stack

	Application Status
	Deployment Approach
	Development Status

	Components (Roles)

