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Introduction 
Big Data is a dominant theme both academically and commercially. Notable recent events include a 
National Academy study [1], a Big Data program at NIST [2] and several other federal initiatives including 
a Big Data to Knowledge program at NIH [3]. Remarkable statistics [4] include over 500 million images 
uploaded each day in 2013, the cost of gene sequencing decreasing a factor of 1000 more than cost of 
computing since 2007 [5] and almost 8 zettabytes (8 million petabytes) of digital information to be stored 
and shared by 2015 [6]. The latter number can be contrasted with Cisco’s estimate [7] that total IP traffic in 
2015 will “only” be 1 zettabyte per year in 2015. Total information stored is growing faster than Moore’s law 
while IP traffic is increasing but surprisingly slower than Moore’s law. This highlights a grand challenge of 
Big Data emphasized at a recent NITRD MAGIC meeting [8] by Jim Pepin of Clemson [9]. Current network 
architectures do not allow the needed computing to be brought to this growing data deluge in an effective 

fashion. This computing is essential to enable the 
transformations (data analytics) that transform data to 
information to knowledge and then wisdom, policy and 
decisions. In this white paper, we suggest addressing this 
challenge using terabit networks together with software defined 
computing systems (virtual clusters) as shown in fig. 1(c). The 
software defined systems combine the growing number of 
dynamic provisioning tools for clusters and clouds with software 
defined networks. The traditional data analytics architectures in 
fig. 1(a) and 1(b) can only be used when data is copied to a 
common repository; as discussed below this is often unrealistic. 

 
Software Defined Systems 
Recently several tools have emerged to dynamically build computing environments at the level of individual 
nodes. These environments can be based on Bare Metal or Virtual machines and the software build 
includes IaaS (Infrastructure as a Service e.g. operating system) or that plus PaaS (Platform as a Service 
e.g. MPI and data libraries) and SaaS (Software as a Service e.g. full data analytics). These tools include 
templated image libraries [10], authentication and authorization, accounting and metrics [11], user 
interfaces (dashboards like Nimbus Phantom or OpenStack Horizon), DevOps (e.g. Salt, Chef, Puppet), 
dynamic provisioning [11] and higher level tools at scheduling level and above. These can be combined 
with tools like Rocks to manage clusters and support software defined (virtual) clusters. Further at the NaaS 
(Network as a Service) layer [12], technologies like OpenFlow and projects like GENI support software 
defined networks that allow higher performance interconnections; combining these ideas, we find software 
defined systems. We consider here the case of a software defined system that includes localized computing 
(e.g. a cluster, cloud) linked using software defined networks to distributed data. 
 
Big Data Grand Challenge 

Consider the architecture of a data repository which often in the past focused on storage and 
access to the data. However many researchers now need systems that manage both the (big) data and 
provide computing (data analytics) on the data. Here we are often told to bring the computing to the data 
to avoid overheads of data transport. Indeed recent commercial systems such as those at Google, 
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Facebook, Amazon, and Twitter are architected as clouds supporting analytics with co-located storage and 
satisfy the principle of bringing computing to the data. However, this is not universally applicable for data-
intensive science, which features a diversity of distributed data analyzed by a distributed research team. 
The growing NIST Use Case collection [13] is a good source of academic, government and commercial 
challenges in this area and other resources are [14] and [15]. We can find examples in the LHC data 
analysis system with 15 petabytes of data per year distributed and analyzed across the world soon after it 
is first collected in a single underground cavern near Geneva, Switzerland (the LHC experiment CMS has 
3,600 people, representing 183 scientific institutes and 38 countries). The primary data analysis of LHC 
uses compute-data affinity in a grid to produce event parameters, but also needs to access data across the 
globe, making it more efficient (as only parts of distributed files are needed) than transferring files. However, 
this model is not obviously sufficient in other disciplines where one traditionally uses repositories like 
GENBank (Biology), NSIDC (Polar data) and EOSDIS (Earth Satellite data), which do not always have 
enough attached computing to support science analysis. We can imagine adding a cluster (cloud) in front 
of each discipline repository but how do we determine the right size and scalability for it? How can it be 
elastic if it is single use? Further suppose we want to do environmental genomics; we need genomics as 
well as environmental data, which are typically not in same repository as they are gathered by 
multidisciplinary studies. One solution would be to locate all data next to the same giant compute 
environment – Amazon, Azure or Google or an exascale supercomputer. One might expect this to be used 
in some fields but it does not seem to be a general solution. It’s hard to get all data co-located. 

Note that in genomics, data is now gathered by a multitude of distributed low cost “individual” 
sequencers such as the Illumina MiSeq which has an instrument cost of ~$100K and can produce many 
gigabytes of data a day where distributed data to be presented to the analytics as a virtually co-located 
data system perhaps set up as virtual Hadoop file system running BLAST.  
 
Disaster Recovery, HPC and Real-time Management Challenges 

Another challenge that would benefit from terabit networks is that of moving large software systems 
from one location (e.g. datacenter) to another (due to disaster, security breaches, etc). This challenge 
requires large amounts of bits (describing virtual machines, data, management information, etc.) to be 
transferred in short periods of time, particularly in cases where one wants to keep services running. If, in 
addition, one needs to transfer (big) data in these moves, the bandwidth requirements will be daunting even 
if Terabit connections are available, unless systems are designed differently. This is also the case for 
distributed systems that try to emulate centralized systems that use high-speed networks possible within 
racks or local clusters. For example, MPI-based systems deployed on WANs fail to deliver acceptable 
performance whenever significant communication requirements are present; systems that use remote 
memory access are unrealistic in a WAN context, and delay-sensitive communication protocols do not 
function well in WANs.  While speed-of-light limitations bound achievable latencies due to physical links, 
other additional latencies are due to bandwidth limitations along and at the ends of the links. These 
additional latencies will have to be addressed by terabit networks. 

From the perspective of end nodes, significant improvements to the I/O subsystem will be needed: 
currently, Intel's fastest QPI performance is about 256Gbps and at least a 4x improvement is needed. Faster 
memory devices will be also needed - current DRAM technology has latencies on the order of 10ns, while 
cache memory has latencies on the order of 1ns. The notion of switching/routing and store-and-forward 
model of networks - i.e., the need for packet inspections - calls for network devices with extremely fast 
processors and memory. In terms of OS/application interface to the network, RDMA would make sense 
(instead of socket's send/receive model, and avoid unnecessary buffers). One could consider CPUs with 
network interfaces integrated into the core, alongside memory controllers. This would require redesign of 
MMUs and how OS manages memory (considering remote memory space). In this scenario, process or 
VM migration could be accomplished by simply changing the memory maps of source and destination 
machines. Regarding reliable lossless data transfer, can a terabit optical infrastructure offer 
lossless/congestion free network? If so, UDP-like low overhead protocols can be developed. Regarding low 
latency access to network, applications will need low latency communication mechanisms - i.e., avoid 
multiple bufferings and OS overheads. Applications should have access to network much like they have 
access to memory. Advanced RDMA mechanisms from optical infrastructure can make applications access 
remote data simply by issuing load/store instructions. Regarding better signaling/synchronization, CPU 
interrupts and/or polling are high latency mechanisms for synchronization. If a terabit optical infrastructure 
could offer advanced synchronization/notification mechanisms, significant advances on distributed/parallel 



applications can be expected (e.g., improvements to MPI barrier and allgather). When considering parallel 
streams, bulk data transfers can rarely fully utilize 10Gb bandwidth. In many cases, parallel streams are 
used to utilize as much as possible the available bandwidth. In terabit networks, improved control of streams 
and help from the infrastructure will be needed (e.g., monitoring the network for feedback-based control). 
 
Project 
We suggest support of a suite of experiments that compare this streaming virtualized data model of fig. 1(c) 
with the traditional models of fig. 1(a,b) where files are copied from distant to local storage. One should 
consider multiple data architectures including databases, virtualized data stores (virtual disk images), HDFS 
(data parallel storage like Hbase), Lustre (wide area file systems) and the object stores exemplified by 
Amazon S3 and OpenStack Swift. The analytics needed include some pleasing parallel as in sensor data 
analysis (Cisco [16] predicts that The Internet of Things will have 50 billion devices by 2020; these are 
typically naturally networked to a cloud); some with weak coupling as in Genomic sequence comparison as 
with BLAST; others with interactive browsing as with Geographic Information Systems in Earth Science and 
closely coupled clustering seen in Genomics and Network Science. These analytics span performance 
issues including I/O dominated and communication intensive applications. Other follow-on projects could 
include software defined networks supporting (cloud) bursting to cope with temporary overloads, and 
investigation of the impact of terabit networks on cloud infrastructures (how terabit performance is exposed 
to virtualized resources; fast migration of a large, number of large virtual machines and storage; 
send/receive vs. load/store networking; and real-time constraints) 
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