

Abstract— The performance and efficiency of Web Services can

be greatly increased in conversational and streaming message
exchanges by streaming the message exchange paradigm. In this
paper, we describe our design and implementation of a novel
approach to the message exchange optimization. This area is
particularly important to applications in physically constrained
mobile computing environments but potentially has other
application areas. The verboseness of XML-based SOAP
representation imposes possible overheads in mobile Web Service
applications. We separate data content from the syntax and use
streaming message exchanges. The redundant or static massage
parts are stored in shared metadata space – the Context-store.
The streamed messages are not self descriptive. But the
combination of the message and the negotiation captured in the
Context-store is self descriptive. We describe our architecture and
evaluate our approach by testing the performance of the resulting
system. The empirical result shows that our framework
outperforms the conventional Web Services in conversational and
streaming message exchanges with mobile clients. We
demonstrate how to find the breakeven point at which our
methods overtake the conventional SOAP messaging, for a
particular application.

Index Terms—Grid/Web Service, Quality of Service, Web
Service Performance, Mobile Application

I. INTRODUCTION

eb Service-based Service Oriented
Architecture (SOA) have became a backbone

of Grid computing because of its interoperability
across the diverse services/application in a
distributed environment. The Open Grid Services
Architecture (OGSA) [1] [24] has defined the
environment for offering Grid computing as a Web
Service. Similarly, the simple interface and
interoperability of Web Service architecture make
mobile computing applications adopt Web Services
as a model of communicating.
 But the verbose nature of current XML-based
SOAP [2] requires an alternative and more efficient

solution for message exchanges in mobile
environment, which holds many physical constraints
like limited processing and batter power and slow
and intermittent connection. The conventional
SOAP communication model possesses major
characteristics that may affect messaging
performance. Serializing and de-serializing SOAP
message consumes lots of resources. In-memory
representation, for example floating point number,
must be converted from and to textual format of
SOAP message, which is an expensive process for
limited mobile computing. Also, the message size is
increased substantially by adding descriptive tags of
XML syntax and it is another problem for narrow
mobile connections.
 High performance SOAP encoding is an open
research area [4-6]. There have been many
investigations to address a performance issue of
mobile Web Service and to provide solutions. But
these proposals and solutions tackle small pieces of
the problem, rather than providing the system level
solution. In this paper we describe our novel
architecture for increasing a performance of message
exchanges in mobile Web Service environments.
Our Handheld Flexible Representation (HHFR)
architecture provides a complete system from a
representation of the message to the use of dynamic
metadata repository for guaranteeing semantic
consistency. The streamed messages are self
descriptive when it is combined with the captured
parts in the Context-store. Our system provides a
logical binding between messages and the
negotiation captured in the Context-store. As we
show in Section 5, our framework outperforms the
conventional SOAP messaging. We also
demonstrate how to find the breakeven point at
which our methods overtake the conventional SOAP

Optimizing Web Service Messaging
Performance in Mobile Computing

 Sangyoon Oh and Geoffrey C. Fox
Community Grids Lab, Indiana University, Bloomington, Indiana, 47404, USA

Computer Science Department, School of Informatics, Indiana University
{ohsangy, gcf}@cs.indiana.edu

W

messaging.
We organize this paper as follows. In Section 2, we

discuss background works. Section 3 reviews HHFR
architecture design. We illustrate implementation
details of the system in Section 4. In Section 5, we
discuss the performance evaluation based on our
performance model. We conclude in Section 6.

II. BACKGROUND

The report of the W3C Workshop [7] on Binary
Interchange of XML Information Item Sets (Infoset)
[8] is the result of the increasing demand of binary
form of XML-based communication. The report
includes conclusion of workshop meeting on
September 2003 as well as several dozens of position
papers from various institutes [5, 9, 10]. The purpose
of the workshop was to study methods to compress
XML documents and transmit pre-parsed and
schema specific object. It identified requirements of
binary XML Infoset, for examples a) maintaining
universal interoperability, b) producing a
generalized solution that is not limited to a specific
application domain, c) reducing process time
including a data binding time, and d) negotiation -
fall back to XML/SOAP text format if receiver can’t
understand binary. Web Service performance has
been more recently reviewed at the 15th Global Grid
Forum workshop (GGF 15) [11].

We divide current approaches of expediting
Grid/Web Service communication into following
categories. First, most proposals that follows the
XML Binary Characterization of the W3C have the
goal of producing a self-contained alternative to an
XML message, optimized for faster processing and
smaller packet size. The approaches in this category
replace a redundant vocabulary with indexes. Sun's
Fast Infoset project [6], XML Schema-based
Compression (XSBC) [12], XML Infoset Encoding
(XBIS) are examples of the category.

Secondly, there are non-self contained alternative
approaches, such as Sun's Fast Web Services [5], the
Indiana University Extreme! Lab’s recommendation
[4] and the HHFR presented here. The last category
includes message compression approaches.
Compressing an XML document reduces the size,
but increases processing time. Even XML-specific

compression like XMill [13] that achieves better
ratio than conventional compression utilities like
GZip [14] doesn’t improve performance much
because of the additional layer of processing,
compression and decompression. Information
external to a message is needed to interpret it.

The Global Grid Forum’s Data Format Description
Language (DFDL) [15] is a descriptive language that
is proposed to describe a file or a stream in a binary
format for Grid computing. Like the older
Extensible Scientific Interchange Language (XSIL)
[16], it is XML-based and comes with an extensible
Java Data model. DFDL architecture defines three
primary layers: the lower layer (Mapping), the
central layer (abstract Data Model), and the upper
layer (API). The mapping layer defines the mapping
between concrete representation and information
content. For example, it defines a number format of
data whether it is a big-endian or little-endian and a
complex data format such as an array. The Data
Model layer defines the data structure independent
of their physical representation. It supports most of
types that XML Schema Definition [17].

III. THE DESIGN PRINCIPLES

The key design goal of HHFR architecture is
optimizing conventional SOAP messages. Smaller
size messages reduce the transit time of message and
this is a big gain for high latency and slow wireless
connections. Also by simplifying the structure of
messages, the HHFR runtime system expects to
reduce parsing and serializing overhead that is
imposed from verbose nature of SOAP. The types
and structures of a SOAP message is syntax, which

Figure. 1. HHFR Architecture Overview

make the message content descriptive. We achieve
optimized representation of message contents by
separating message contents from its syntax and
streaming them in preferred representation. Figure 1
depicts the overview of HHFR architecture.

3.1. Replacement of XML Syntax With Optimized
Representation

HHFR provides message exchange option in a
preferred representation, other than the conventional
SOAP. An XML Based SOAP message itself is
syntax (structure and type) and its verbose nature
could impose performance bottleneck, which is
magnified in wireless computing environments.

The SOAP message has an outer-most element
SOAP Envelope in its XML Document and it is
composed optional headers and a body. The
architecture handles static information (unchanging
headers) of messages and dynamic information
(payloads and headers that are applied to the
individual message) differently.

The redundant or unchanging headers are stored in
the metadata repository, the Context-store. The
application can store static information either in the
negotiation stage or in the middle of the session.

The body element contains a payload that is
program instruction or data. Comparing to the
individual message conversion approach that
converts SOAP message into another
self-descriptive message format, our message stream
approach requires a data description written in a
DFDL-style data descriptive language and an
internal Data Model. So the data represented in
preferred format is not self-descriptive, but the Data
Model gotten from the data description uses. The
relationships between data formats and
representations are depicted in figure 2.

Among alternative, a binary representation
increases performance of HHFR architecture in
several reasons. First, we can save the bandwidth of
message exchanging. Since the descriptive tag of
XML syntax increases the size of exchange data,
having content data in binary format could save as
high as a factor of ten if the message structure is
especially redundant – for example in the case of
array. A very simple message with a single text

element can have its size reduced by half [3].
Secondly, the HHFR architecture can avoid a textual
conversion; the process converts non-textual data
into the text format and vice versa, by adopting a
binary representation. This is expensive process,
especially for relatively low-powered mobile
devices.

3.2. Focus On Conversational Message Exchanges

HHFR works best for the Web Services, where
two participating endpoints exchange a stream of
messages like a conversation. For applications using
a specific service, message in the stream have the
same structure and the same data information.
Further much of the message header is identical.
Therefore the structure and type of SOAP message
contents in HHFR schema can be transmitted once,
and rest of the message in the stream has only
updated payloads. To establish such a message
stream, two endpoints should negotiate at the
beginning of the session. They negotiate the
preferred representation (for example, a binary
representation), transport characteristic (TCP or
UDP), and quality of service issues (reliable
messaging and/or security). The negotiation uses a
conventional SOAP message, so that two endpoints
fall back to the SOAP message based Web Service
communication, if they fail to negotiate.

3.3. Negotiation

The negotiation stage is required by the
architecture design to set up the stream
characteristics.

As discussed, HHFR architecture uses the

Figure. 2. Relationships between different forms of

SOAP messages and their defining context

non-self-contained representation to exchange
messages. So data, exchanging messages, should be
paired with description information to be processed
by the corresponding endpoint. Two participating
endpoints should exchange each other’s data
description information at the beginning of the
stream.

Negotiating the method of message exchanges is
also the essential role of the negotiation. It is well
known fact that Data streaming can increase the
message exchange performance in Web Services. So
some investigate using HTTP Persistent connection,
SMTP, or asynchronous messaging service, such as
MQSeries as a transport. K. Chiu et al. [3] suggest
using chunk overlaying and a pipelined sending over
HTTP persistent connection, which is not always
available for a network protocol implementation on
all mobile devices and all cellular networks.

The HHFR architecture provides fast
communication channel. The channel can be either
the same channel that is used for conventional SOAP
message exchange or a separate channel to the one.
If the fast communication option is implemented as a
separate channel, it is efficient in its performance
and also flexible to be implemented in various ways
including asynchronous messaging scheme. But it
also requires additional network resources –
additional ports – and software modules to establish
the connection. If the option is implemented as the
same SOAP channel, it is achieved in higher
interoperability, but also required to modify or adapt
transport layer implementation of a SOAP Server.
 Two participating endpoints negotiate all the
issues above: let corresponding endpoint know the
data format by exchanging description file, fast
communication channel information to set up the
connection, and related quality of service issues.

3.4 Context-store (Information Service)

WS-Context [18] compliant Information Service is
message-based interface to a DB. As we discussed,
the use of a Context-store reduces the bandwidth
usage, but it also ensure the system semantically
consistent. Note that the streamed messages are not
directly self descriptive. However the combination
of

the message and the negotiation captured in the
Context-store is self descriptive. For example, it
provides a fault-tolerance feature: when the service
endpoint is out-of-service, the service gets the
required context from the Context-store after the
recovery. The use of the Context-store guarantees
the system and participants semantically consistent:
if there is a third party who audits a session, it gets
contexts from the Context-store and understands a
session by filling up the missing SOAP parts saved at
the store.

IV. IMPLEMENTATION

To demonstrate the effectiveness of the HHFR
architecture, we have implemented a prototype
mobile Web Service framework based on the
architecture. The HHFR architecture consists of
HHFR Schema and processor, fast communication
channel with flexible representations, and the
Context-store. Steps of the normal session are as
follows: 1) HHFR-capable endpoint sends a
negotiation request to the intended endpoint. The
negotiation request is a conventional SOAP message
that includes characteristics of the following session.
2) In the negotiation message, a service client
endpoint – a negotiation initiator – sends an input
data description written in the HHFR schema, which
we describe later in this chapter, and a service
endpoint – a negotiation responder – sends an output
data description. 3) Two endpoint use second
transport channel for message exchange where they

Figure. 3. Simple Overview of Implementation

stream messages. Messages in the stream are in the
form of negotiated representation. 4) The redundant
or unchanging message parts – static metadata – are
stored into a dynamic metadata repository, the
Context-store during the session.

To focus on investigating optimizing message
exchanges, we use existing efforts to address and
implement issues that are out of our research
interests, such as a Web Service container, a SOAP
parser for mobile environment, and a metadata
repository. The overview of implementation is
depicted in figure 3.

4.1. Negotiation Scheme

A normal HHFR session is starting with a
negotiation stage, where two endpoints exchange
negotiation SOAP message. By design, a negotiation
stage is essential to establish characteristics of
following stream. During the stage, a service
endpoint returns characteristics that are suggested by
a negotiation initiator and selected and confirmed by
the service endpoint. In the prototype
implementation, the stage simply starts when the
initiator sends a SOAP request to an intended service
endpoint and ends when the initiator receives a
response from the service.

The negotiation stage distinguishes whether the
service endpoint is the HHFR-capable or not. Since
the negotiation stage is performed over the
conventional SOAP protocol, this interoperable
method enables the service endpoint (the negotiation
responder) to reject a HHFR session and uses a
conventional SOAP based Web Service
communication. The client (the SOAP initiator)
must fall back if it receives a SOAP fault, which
means the responding service doesn’t have proper
(exported) method in it and doesn’t understand the
negotiation SOAP message.

4.2. HHFR Schema: Data Description Language

To map non-XML based data – separated message
contents and XML data – SOAP message or any
preferred representation, we define a DFDL-style
data descriptive language, the HHFR schema. It is a
small subset of XSD with some additions. The
architecture of HHFR schema is similar to that of

DFDL: the HHFR Schema describes data format, a
Schema Processor (DSParser) builds a HHFR Data
Model, and the Streamer converts data content from
and to a preferred presentation format data.

HHFR Schema defines a subset of XSD
components: simple type definition, complex type
definition, element declaration, and attribute
declaration. HHFR Schema defines limited number
of simple type built-in to XML Schema. They are
string, int, byte, float, Boolean. Current
version of HHFR Schema doesn’t support
user-defined sympleType. The complexType
element of the HHFR Schema can have mixed
content, but can not have simple content and empty
content. So we declare complexType element
without mixed attribute. The following is an
example:

<xs:element name="HHFR">
 <xs:complexType>

 <xs:element name="String1" type="string"/>
 <xs:element name="String2" type="string"/>

 </xs:complexType>
</xs:element>

The HHFR Schema processing involves several
modules as depicted in figure 4. The HHFR Schema
processor, DSParser, gets a HHFR Schema, which is
contained in the negotiation request and response
SOAP message as depicted as step 1) of figure 4, as
an input and produces a internal HHFR Data Model
as an output as depicted as step 2). The relation
between the HHFR Schema and HHFR Data Model
is similar to the relation between an XML Document
and its Java DOM Object.

After two steps, the HHFR runtime is ready to start

Figure. 4. HHFR Schema processing and interactions
between related modules.

a fast communication option, which is discussed in
the following section and to process input data
through streamer. The streamer is an
interpret-style stub object [19], which is popular
design style in many data marshalling
implementation. Compare to more efficient
compiled-style stub [19], which is popular in many
client and server RPC implementation, the
interpret-style stub is more flexible to dynamic
representation of input data. The stub doesn’t need to
be re-complied to different data representation. The
stub reads and writes message packets, which is a
unit of message in a preferred representation,
through switch statements. In the prototype, the
binary representation that is a sequence of byte is a
default representation format for the message packet.

4.3. Data Streaming

The data streaming is the key feature of our HHFR
Prototype design and it enables the system to achieve
efficient message exchange in mobile Web Service
environment. Through streaming, message
exchanges overcome the wireless network problems,
such as high latency and slow connection. Especially
in flexible representation, we shorten the message
transit time and reduce the bandwidth usage.

A fast communication channel of the HHFR
Prototype provides an alternative to the default
HTTP communication method that is asynchronous
and optimized. As described, the negotiation
response from the service must contain the endpoint
address (IP and port number). The second
communication channel is initiated by the service
client.

The fast communication channel layer for the TCP
receptor is shown in figure 5. On the service
provider, StreamConnectionFactory waits for an
incoming connection on a server socket and creates a
StreamConnection that holds all streaming related
classes, such as a StreamReader, StreamWriter,
and Streamer. Data that an application attempts to
send is queued in a StreamWriter. The path
includes HHFRHandler and StreamConnection.
Received data follows the opposite path and is
delivered to the onMessage method.

4.4. Context-store
The redundant message parts may be treated as

metadata and placed in a metadata store. We adapt
an Information Service (metadata catalog system)
for storing transitory metadata needed to describe
distributed shared information. The Information
System, Fault Tolerant High Performance
Information Service (FTHPIS) [20 - 21] which use
and extend WS-Context Specification [18], is
developed by Community Grids Laboratory of
Indiana University and is being used as a third party
transitory metadata store to store redundant parts of
the SOAP messages which are being exchanged
between Two endpoint. This way, the size of SOAP
messages is being minimized to make the service
communication much faster. The redundant parts of
a SOAP message can be considered as XML
fragments which are encoded in every SOAP
message exchanged among two services. These
XML elements are stored as “context”, i.e. metadata
associated to a conversation”, into the Information
Service. Each context is referred with a system
defined URI where the uniqueness of the URI is
ensured by the Information Service. The
corresponding URI replaces the redundant XML
elements in the SOAP messages, which in turn
reduces the size of the message for faster message
transfer. Upon receiving the SOAP message, the
corresponding parties interact with the WS-Context
compliant Information Service to retrieve the context
associated with the URIs listed in the SOAP

Figure. 5. Fast Communication Channel Layer

message.
As depicted in figure 6, the two primary

WS-Context related functionalities of Information
Services are getContent() and setContent()
methods, which provide access and store operations
Method can be called whenever context needs to
create, update, or retrieve context in Context-store
(Information service). The Context-store client 1)
first, create ContextServiceHandler object with
the Context Service URl, 2) second, store given
context of any type paired with an unique identifier,
and 3) retrieve context. ContextServiceHandler
object is a wrapper class and provides
getContent() and setContent() methods.

V. EVALUATION

We perform benchmark tests to evaluate our
investigated framework. The comparison between
the performance results of the conventional SOAP
and the results of our system shows how much
performance gains we have.

5.1. Performance Cost Analyze Modeling

We propose a cost analysis model for HHFR
runtime system. We assume following basic system
parameter to analyze the cost.

• t1 : cost (time delay) per message for HHFR

session
• t2 : cost (time delay) per message for the

conventional SOAP session
• Oa : overhead time for accessing Context-store
• Ob : overhead time for negotiation stage
• Oc : overhead time for Design HHFR Schema

document.

Assume we have n messages in a session. The cost
of message exchanges in HHFR session consists of
message exchange cost (t1n) and overheads (Oa + Ob
+ Oc).

Chhfr = t1n + Oa + Ob + Oc (1)

The cost of message exchanges in the conventional
SOAP session consists of message exchange cost
(t2n).

Csoap = t2n (2)

 t1, t2, Oc are the parameters that depend on the size
of message. Oa could depend on the size of message.

Even though we define the overhead for designing
HHFR Schema, it is zero value for current
framework because it is implemented as ad-hoc
method.

5.2 Configurations

The host running our benchmark applications are
installed on the server machine and they use Axis as
a Web Service container. HHFR Clients are installed
on the Treo 600 machine.
System.currentTimeMillis() call of MIDP

[22], which has 10 millisecond precision, is used for
timing measurements. Table 1 contains a summary
of testing environments.

Table 1 Summary of Machine Configurations

Axis and Context-store: GridFarm 8

Processor Intel® Xeon™ CPU (2.40GHz)
RAM 2GB total

Bandwidth 100Mbps
OS GNU/Linux (kernel release 2.4.22)

Java Version Java 2 platform, Standard Edition (1.5.0-06)
SOAP Engine AXIS 1.2 (in Tomcat 5.5.8)

Service Client: Treo 600

Processor ARM (144MHz)
RAM 32MB total, 24MB user available

Bandwidth 14.4Kbps
OS Palm 5.2.1.H

Java Version Java 2 platform, Micro Edition
CLDC 1.1 and MIDP 2.0

Figure. 6. Context-store operation overview

5.3 Parameter Evaluation

We perform tests to get Oa by measuring Round
Trip Times (RTTs) of the Context-store (Information
Service) accessing. The message used in the test is a
 sample SOAP header document in a WS-Reliable
Messaging [23] Specification. The size of WSRM
header is 847 bytes and the size of the entire SOAP
request message for accessing Context-store is
1.58KB.

The test setup is depicted in figure 7 and the figure
8 shows results.
 To get t1 and t2 parameters, we measure a total
session time of given applications. We benchmark
two application performances. The first application
is a string concatenation service. It produces a single
string, concatenated from all strings in an array – a
pure-text data domain. The second application is a
floating point number addition service that

calculates

the summation of all floating point numbers of an
array in a message. The floating point numbers are
representing a float data domain, where the
conventional Web Services message processing
includes a float-to-text conversion that consumes
many process cycles. We also measure the
conventional SOAP-based Web Service
performance measurement of two given applications
with the same setup, which give us the t2 parameter
measurement.
 As depicted in figure 9, the connection setup for
the test is partly wireless and partly wired. The test
scenario is as follows: 1) a service client prepares a
message with a given array size. 2) it sends one
message to a service provider. 3) the service provider
processes the message and returns a result in a
message to the client. 4) repeat step 1-3 for each
message.
 The table 2 and 3 shows the benchmarking results
of the string concatenation application. The
comparisons of the result are depicted in figure 14,
15, 16. The table 4 and 5 shows the benchmarking
results of the floating point number addition
application. The comparisons of the result are
depicted in figure 11, 12, 13. The total session time
in tables and graphs are including negotiation
overhead (Ob). We plot only partial results of the
total session time of SOAP test on the graph, since
some results are too big and comparison graphs
would be less meaningful.

Figure. 9. Connection Setup for Performance
Evaluation

0 5 10 15 20 25 30 35 40 45 50
0

1000

2000

3000

4000

5000

6000

Tests (Sessions)

R
ou

nd
 T

rip
 T

im
e

(m
se

c)

Figure. 8. Round Trip Time of
Context-store accessing Tests

Figure. 7. Context-store operation overview

0 1 5 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 104

Number of Messages Per Session

To
ta

l S
es

si
on

 T
im

e
(m

se
c)

HHFR: 5 Floats Per Message
SOAP: 5 Floats Per Message

0 1 2 4 8

0

0.5

1

1.5

2

2.5

3

3.5
x 104

Number of Messages Per Session

To
ta

l S
es

si
on

 T
im

e
(m

se
c)

HHFR: 2 Strings Per Message
SOAP: 2 Strings Per Message

Figure. 11. Comparisons of floating point number
addition test results (5 Floats Per Message)

Figure. 14. Comparisons of string concatenation test
results (2 Strings Per Message)

0 1 5 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 104

Number of Messages Per Session

To
ta

l S
es

si
on

 T
im

e
(m

se
c)

HHFR: 10 Floats Per Message
SOAP: 10 Floats Per Message

0 1 2 4 8

0

0.5

1

1.5

2

2.5

3

3.5
x 104

Number of Messages Per Session

To
ta

l S
es

si
on

 T
im

e
(m

se
c)

HHFR: 4 Strings Per Message
SOAP: 4 Strings Per Message

Figure. 12. Comparisons of floating point number
addition test results (10 Floats Per Message)

Figure. 15. Comparisons of string concatenation test
results (4 Strings Per Message)

0 1 5 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 104

Number of Messages Per Session

To
ta

l S
es

si
on

 T
im

e
(m

se
c)

HHFR: 15 Floats Per Message
SOAP: 15 Floats Per Message

0 1 2 4 8 0

0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Number of Messages Per Session

To
ta

l S
es

si
on

 T
im

e
(m

se
c)

HHFR: 8 Strings Per Message
SOAP: 8 Strings Per Message

Figure. 13. Comparisons of floating point number
addition test results (15 Floats Per Message)

Figure. 16. Comparisons of string concatenation test
results (8 Strings Per Message)

Table 2 Total Session Time (msec) of String Concatenation
Application Tests over HHFR

Number of Messages Per Session Message Size
n = 1 n = 2 n = 4 n = 8

2 Strings 5580 5710 5730 6100
4 Strings 5660 6010 6030 6470
8 Strings 5950 6310 6530 7070

64 Strings 11890 13570 19730 29660
Table 3 Total Session Time (msec) of String Concatenation

Application Tests over SOAP

Number of Messages Per Session Message Size
n = 1 n = 2 n = 4 n = 8

2 Strings 3440 6060 14720 26040
4 Strings 3670 6710 15050 28490
8 Strings 4260 9590 16390 30790

64 Strings 6510 15640 28020 54200

Table 4 Total Session Time (msec) of Floating Point
Number Addition Application Tests over HHFR

Number of Messages Per Session Message Size

n = 1 n = 5 n = 10 n = 100
5 Floats 5440 5790 6500 20360

10 Floats 5650 6210 7870 22780
15 Floats 5700 6500 8790 24510

Table 5 Total Session Time (msec) of Floating Point

Number Addition Application Tests over SOAP

Number of Messages Per Session Message Size
n = 1 n = 5 n = 10 n = 100

5 Floats 3260 17620 35960 330750
10 Floats 3480 20890 37720 353340
15 Floats 3800 22100 42790 387840

In addition to measuring t1, t2, we also measure the

negotiation to get Ob overheads by measuring RTTs.
The size of HHFR Schema used in the test is 326
bytes and the size of the entire SOAP request
message for Negotiation is 1.07 KB. The results are
shown in figure 10. As table 6 shows, values for
overhead parameters are similar. Presumably, the
similarity comes from the fact that the physically
constrained mobile environment is a major factor of
the overhead. So we can differentiate overhead
parameters of mobile environments and
conventional Web Service environments as O
(mobile) and O(ws). For example, Oa(ws) from

measurements independent from our experiments in
this paper shows Oa(ws) = 20 msec.

Table 6 Overhead Parameters and Values

Parameter Value
Oa(mobile) 4120 (msec)
Ob(mobile) 4800 (msec)

5.4 Performance Comparisons

We compare the performance of HHFR and
conventional SOAP message exchange using our
proposed performance model and parameters we get
from the benchmark tests. The table 6 shows the
overhead parameters and values. We get t1 and t2.
Then using those numbers to calculate breakeven
points nbe.

The parameters for each application are different.
So we calculate both breakpoints. Using the test
result of 10 floats per message, we get following
parameters:

t1 = 250, t2 = 3780, Oa = 4500, Ob = 4800, Oc = 0

Then break even point is:

t1nbe + Oa + Ob + Oc = t2nbe

nbe= 2.88

Thus, if we have more than three messages per our
floating point number addition session, HHFR
performs more efficiently than the conventional

0 5 10 15 20 25 30 35 40 45 50
0

1000

2000

3000

4000

5000

6000

Tests (Sessions)
R

ou
nd

 T
rip

 T
im

e
(m

se
c)

Figure. 10. Round Trip Time of
Negotiation Stage

SOAP.
Similar to the floats case, to calculate a breakeven

point of string concatenation application, we use the
test result of 4 strings per message, we get following
parameters:

t1 = 120, t2 = 3580, Oa = 4500, Ob = 4800, Oc = 0

Then break even point is:

nbe= 2.68

If we have more than three messages per our string
concatenation session, HHFR performs more
efficiently than the conventional SOAP.

VI. CONCLUSION

We investigate a novel approach to Web Service
performance, in which the system 1) separates
message contents from XML syntax, 2) chooses a
preferred representation, and 3) exchanges messages
in a streaming fashion. This approach implemented
as a single complete system can increase efficiency
of message exchanging, since applications can avoid
the textual conversion and conventional
serializing/parsing. Reduced message size by storing
static parts of message and having optimal
representation helps applications save network
bandwidths. The streamed messages are not directly
self descriptive. However the combination of the
message and the negotiation captured in the
Context-store is self descriptive. Our presentation is
particularly focused on applications in mobile
computing environments, but the approach may be
more general.

We compare our system with the conventional
SOAP communication model and as expected
empirical results based on our performance model
shows substantial performance gains by adapting the
approach. As well, we demonstrate how to find the
breakeven point at which our HHFR architecture
overtakes the conventional SOAP messaging, for
controlled application. The breakeven points are
different from applications to applications, but the
general methodology can be applied to any
application domains that define its messaging style
as conversational or streaming.

REFERENCES
[1] I. Foster, C. Kesselman, J. Nick, S. Tuecke, “ The physiology of the Grid:

An Open Grid Services Architecture for Distributed Systems Integration,”
IEEE Computer Vol. 35, pp. 37-46, 2002.

[2] World Wide Web Consortium, “ Simple Object Access Protocol (SOAP)
1.1,” http://www.w3c.org/TR/soap/

[3] K. Chiu, M. Govindaraju, and R. Bramley, “Investigating the Limits of
SOAP Performance for Scientific Computing”, In Proceedings of 11th
IEEE International Symposium on High Performance Distributed
Computing HPDC-11 2002, July 2002.

[4] M. Govindaraju, A. Slominski, V. Choppella, R. Bramley, and D.
Gannon, “Requirements for and evaluation of RMI protocols for scientific
computing,” In Proceedings of Supercomputing 2000 (SC2000), Dallas,
TX, Nov. 2000.

[5] P. Sandoz, S. Pericas-Geertsen, K. Kawaguchi, M. Hadley, and E
Pelegri-Llopart, “Fast Web Services”, Aug. 2003,
http://java.sun.com/developer/technicalArticles/WebServices/fastWS/

[6] P. Sandoz and S. Pericas-Geertsen, “Fast Infoset @ Java.net,” In
Proceedings of XTech 2005,
http://www.idealliance.org/proceedings/xtech05/papers/04-01-01/

[7] World Wide Web Consortium, “Report from the W3C Workshop on
Binary Interchange of XML Information Item Sets”, Sep. 2003,
http://www.w3.org/2003/08/binary-interchange-workshop/

[8] World Wide Web Consortium, “XML Information Set”,
http://www.w3.org/TR/xml-infoset/

[9] J. H. Gailey, “Sending Files, Attachments, and SOAP Messages Via
Direct Internet Message Encapsulation”, Dec. 2002,
http://msdn.microsoft.com/msdnmag/issues/02/12/DIME/default.aspx

[10] D. Brutzman, and A. D. Hudson, “Cross-Format Schema Protocol
(XFSP)”, Sep. 2003,
http://www.movesinstitute.org/openhouse2003slides/XFSP.ppt

[11] Global Grid Forum 15 Community Activity, ”Web Services Performance:
Issues and Research”
http://www.gridforum.org/GGF15/ggf_events_schedule_WSPerform.ht
m

[12] E. Serin and D. Brutzman, “XML Schema-Based Compression (XSBC)”,
http://www.movesinstitute.org/xmsf/projects/XSBC/03Mar_Serin.pdf

[13] H. Liefke and D. Suciu, “XMill: an efficient compressor for XML data,”
In Proceedings of the 2000 ACM SIGMOD International Conference on
Management of Data (SIGMOD2000), pp. 153-164, 2000.

[14] P. Deutsch, “GZIP file format specification version 4.3,” May 1996,
http://www.ietf.org/rfc/rfc1952.txt.

[15] M. Beckerle, and M. Westhead, “GGF DFDL Primer”,
http://www.gridforum.org/Meetings/GGF11/Documents/DFDL_Primer_
v2.pdf

[16] R. Williams, “XSIL: Java/XML for Scientific Data”, Jun. 2000,
http://www.cacr.caltech.edu/projects/xsil/xsil_spec.pdf

[17] World Wide Web Consortium, “XML Schema Definition (XSD),”
http://www.w3.org/XML/Schema

[18] B. Bunting, M. Chapman, O. Hurley, M. Little, J. Mischinkinky, E.
Newcomer, J. Webber, and K. Swenson, “Web Services Context
(WS-Context),”

 http://www.arjuna.com/library/specs/ws_caf_1-0/WS-CTX.pdf
[19] L. Peterson and B. Davie, Computer Networks: A System Approach 3rd

Edition. Morgan Kaufmann Publishers, 2003
[20] M. S. Aktas, G. C. Fox, and M. Pierce, “Managing Dynamic Metadata as

Context,” in Proceedings of The 2005 Istanbul International
Computational Science and Engineering Conference (ICCSE2005), Data
Istanbul, Turkey, Jun. 2005.

[21] Community Grids Lab, “Extended UDDI and Fault Tolerant and High
Performance Context Service,” http://www.opengrids.org

[22] Sun Microsystems, Mobile Information Device Profile (MIDP)
http://java.sun.com/products/midp/

[23] R. Bilorusets et al., “Web Services Reliable Messaging Protocol
(WS-ReliableMessaging), Feb. 2005,
ftp://www6.software.ibm.com/software/developer/library/ws-reliablemes
saging200502.pdf

[24] Global Grid Forum, Open Grid Services Architecture Working Group
(OGSA-WG), https://forge.gridforum.org/projects/ogsa-wg1.

