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Abstract

The performance of biomolecular molecular dynamics (MD) simulations has

steadily increased on modern high performance computing (HPC) resources but

acceleration of the analysis of the output trajectories has lagged behind so that

analyzing simulations is increasingly becoming a bottleneck. To close this gap,

we studied the performance of parallel trajectory analysis with MPI and the

Python MDAnalysis library on three different XSEDE supercomputers where

trajectories were read from a Lustre parallel file system. We found that strong

scaling performance was impeded by stragglers, MPI processes that were slower

than the typical process and that therefore dominated the overall run time.

Stragglers were less prevalent for compute-bound workloads, thus pointing to file

reading as a crucial bottleneck for scaling. However, a more complicated picture

emerged in which both the computation and the ingestion of data exhibited

close to ideal strong scaling behavior whereas stragglers were primarily caused

by either large MPI communication costs or long times to open the single shared

trajectory file. We improved overall strong scaling performance by two different

approaches to file access, namely subfiling (splitting the trajectory into as many
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trajectory segments as number of processes) and MPI-IO with Parallel HDF5

trajectory files. Applying these strategies, we obtained near ideal strong scaling

on up to 384 cores (16 nodes). We summarize our lessons-learned in guidelines

and strategies on how to take advantage of the available HPC resources to gain

good scalability and potentially reduce trajectory analysis times by two orders

of magnitude compared to the prevalent serial approach.

Keywords: Python, MPI, HPC, MDAnalysis, MPI I/O, Global Arrays,

HDF5, Straggler, Molecular Dynamics, Big Data, Trajectory Analysis
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1. Introduction

Molecular dynamics (MD) simulations are a powerful method to generate

new insights into the function of biomolecules [1–5]. These simulations produce

trajectories—time series of atomic coordinates—that now routinely include mil-

lions of time steps and can measure Terabytes in size. These trajectories need5

to be analyzed using statistical mechanics approaches [6, 7] but because of the

increasing size of data, trajectory analysis is becoming a bottleneck in typical

biomolecular simulation scientific workflows [8]. Many data analysis tools and

libraries have been developed to extract the desired information from the out-

put trajectories from MD simulations [9–22] but few can efficiently use modern10

High Performance Computing (HPC) resources to accelerate the analysis stage.

MD trajectory analysis primarily requires reading of data from the file system;

the processed output data are typically negligible in size compared to the input

data and therefore we exclusively investigate the reading aspects of trajectory

I/O (i.e., the “I”). We focus on the MDAnalysis package [17, 18], which is an15

open-source object-oriented Python library for structural and temporal analy-

sis of MD simulation trajectories and individual protein structures. Although

MDAnalysis accelerates selected algorithms with OpenMP, it is not clear how

to best use it for scaling up analysis on multi-node supercomputers. Here we

discuss the challenges and lessons-learned for making parallel analysis on HPC20
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resources feasible with MDAnalysis, which should also be broadly applicable to

other general purpose trajectory analysis libraries.

Previously, we had used a parallel split-apply-combine approach to study

the performance of the commonly performed “RMSD fitting” analysis prob-

lem [23, 24], which calculates the minimal root mean squared distance (RMSD)25

of the positions of a subset of atoms to a reference conformation under optimiza-

tion of rigid body translations and rotations [7, 25, 26]. We had investigated

two parallel implementations, one using Dask [27] and one using the message

passing interface (MPI) with mpi4py [28, 29]. For both Dask and MPI, we

had previously only been able obtain good strong scaling performance within a30

single node. Beyond a single node performance had dropped due to straggler

tasks, a subset of tasks that had performed abnormally slower than the typi-

cal task execution times; the total execution time had become dominated by

stragglers and overall performance had decreased. Stragglers are a well-known

challenge to improving performance on HPC resources [30] but there has been35

little discussion of their impact in the biomolecular simulation community.

In the present study, we analyzed the MPI case in more detail to better un-

derstand the origin of stragglers with the goal to find parallelization approaches

to speed up parallel post-processing of MD trajectories in the MDAnalysis li-

brary. We especially wanted to make efficient use of the resources provided by40

current supercomputers such as multiple nodes with hundreds of CPU cores and

a Lustre parallel filesystem.

As in our previous study [23] we selected the commonly used RMSD al-

gorithm implemented in MDAnalysis as a typical use case. We employed the

single program multiple data (SPMD) paradigm to parallelize this algorithm45

on three different HPC resources (XSEDE’s SDSC Comet, LSU SuperMic,

and PSC Bridges [31]). With SPMD, each process executes essentially the

same operations on different parts of the data. The three clusters differed in

their architecture but all used Lustre as their parallel file system. We used

Python (https://www.python.org/), a machine-independent, byte-code50

interpreted, object-oriented programming language, which is well-established in
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the biomolecular simulation community with good support for parallel program-

ming for HPC [28, 32]. We found that communication and reading I/O were

the two main scalability bottlenecks, with some indication that read I/O might

have been interfering with the communications. We therefore focused on two55

different approaches to mitigate I/O bottlenecks: MPI parallel I/O (MPI-IO)

with the HDF5 file format and subfiling (trajectory file splitting). For subfiling,

we obtained good results with the Global Arrays package [32, 33], which pro-

vides a convenient layer to access and manage arrays over multiple MPI ranks.

Both MPI-IO and subfiling eliminated stragglers and improved the performance60

with near ideal scaling, S(N) = N , i.e., the speed-up S scaled linearly with the

number N of CPU cores while exhibiting a slope of one.

The paper is organized as follows: We first review stragglers and existing ap-

proaches to parallelizing MD trajectory analysis in section 2. We describe the

software packages and algorithms in section 3 and the benchmarking environ-65

ment in section 4. Section 5 explains how we measured performance. The main

results are presented in section 6, with section 7 demonstrating reproducibility

on different supercomputers. We provide general guidelines and lessons-learned

in section 8 and finish with conclusions in section 9.

2. Background and Related Work70

In our previous work we found that straightforward implementation of simple

parallelization with a split-apply-combine algorithm in Python failed to scale

beyond a single compute node [23] because a few tasks (MPI-ranks or Dask [27]

processes) took much longer than the typical task and so limited the overall

performance. However, the cause for these straggler tasks remained obscure.75

Here, we studied the straggler problem in the context of an MPI-parallelized

trajectory analysis algorithm in Python and investigated solutions to overcome

it. We briefly review stragglers in section 2.1 and summarize existing approaches

to parallel trajectory analysis in section 2.2.
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2.1. Stragglers80

Stragglers or outliers were traditionally considered in the context of MapRe-

duce jobs that consist of multiple tasks that all have to finish for the job to suc-

ceed: A straggler was a task that took an “unusually long time to complete” [34]

and therefore substantially impeded job completion. In general, any component

of a parallel workflow whose runtime exceeds a typical run time (for example,85

1.5 times the median runtime) can be considered a straggler [35]. Stragglers

are a challenge for improving performance on HPC resources [30]; they are

a known problem in frameworks such as MapReduce [34, 35], Spark [36–39],

Hadoop [34], cloud data centers [30, 40], and have a high impact on perfor-

mance and energy consumption of big data systems [41]. Both internal and90

external factors are known to contribute to stragglers. Internal factors include

heterogeneous capacity of worker nodes and resource competition due to other

tasks running on the same worker node. External factors include resource com-

petition due to co-hosted applications, input data skew, remote input or output

source being too slow, faulty hardware [34, 42], and node mis-configuration [34].95

Competition over scarce resources [35], in particular the network bandwidth,

was found to lead to stragglers in writing on Lustre file systems [43]. Garbage

collection [36, 37], Java virtual machine (JVM) positioning to cores [36], de-

lays introduced while the tasks move from the scheduler to execution [38], disk

I/O during shuffling, Java’s just-in-time compilation [37], output skew [37], high100

CPU utilization, disk utilization, unhandled I/O access requests, and network

package loss [30] were also among other external factors that might introduce

stragglers. A wide variety of approaches have been investigated for detecting

and mitigating stragglers, including tuning resource allocation and parallelism

such as breaking the workload into many small tasks that are dynamically sched-105

uled at runtime [44], slow Node-Threshold [34], speculative execution [34] and

cause/resource-aware task management [35], sampling or data distribution es-

timation techniques, SkewTune to avoid data imbalance [45], dynamic work

rebalancing [40], blocked time analysis [46], and intelligent scheduling [47].

In the present study, we analyzed large MD trajectories in parallel with MPI110
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and Python and observed large variations in the completion time of individual

MPI ranks. These variations bore some similarity to the straggler tasks ob-

served in MapReduce frameworks so we approached analyzing and eliminating

them in a similar fashion by systematically looking at different components of

the problem, including read I/O from the shared Lustre file system and MPI115

communication. Even though we specifically worked in with the MDAnalysis

package, all these principles and techniques are potentially applicable to MPI-

parallelized data analysis in other Python-based libraries.

2.2. Other Packages with Parallel Analysis Capabilities

Different approaches to parallelizing the analysis of MD trajectories have120

been proposed. HiMach [14] introduces scalable and flexible parallel Python

framework to deal with massive MD trajectories, by combining and extending

Google’s MapReduce and the VMD analysis tool [11]. HiMach’s runtime is re-

sponsible to parallelize and distribute Map and Reduce classes to assigned cores.

HiMach uses parallel I/O for file access during map tasks and MPI Allgather125

in the reduction process. HiMach, however, does not discuss parallel analysis of

analysis types that cannot be implemented via MapReduce. Furthermore, Hi-

Mach is not available under an open source license, which makes it difficult to

integrate community contributions and add new state-of-the-art methods.

Wu et. al. [48] present a scalable parallel framework for distributed-memory130

post-simulation data analysis. This work consists of an interface that allows a

user to write analysis programs sequentially, and the machinery that ensures

these programs execute in parallel automatically. The main components of the

proposed framework are (1) domain decomposition that splits computational

domain into blocks with specified boundary conditions, (2) HDF5 based parallel135

I/O (3) data exchange that communicates ghost atoms between neighbor blocks,

and (4) parallel analysis implementation of a real-world analysis application.

This work does not discuss analysis methods which cannot be implemented

using MapReduce and is limited to HDF5 file format.

Zazen [49] is a novel task-assignment protocol to overcome the I/O bottleneck140
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for many I/O bound tasks. This protocol caches a copy of simulation output files

on the local disks of the compute nodes of a cluster, and uses co-located data

access with computation. Zazen is implemented in a parallel disk cache system

and avoids the overhead associated with querying metadata servers by reading

data in parallel from local disks. This approach has also been used to improve145

the performance of HiMach [14]. It, however, advocates a specific architecture

where a parallel supercomputer, which runs the simulations, immediately pushes

the trajectory data to a local analysis cluster where trajectory fragments are

cached on node-local disks. In the absence of such a specific workflow, one would

need to stage the trajectory across nodes, and the time for data distribution is150

likely to reduce any gains from the parallel analysis.

VMD [11, 50] provides molecular visualization and analysis tool through

algorithmic and memory efficiency improvements, vectorization of key CPU al-

gorithms, GPU analysis and visualization algorithms, and good parallel I/O

performance on supercomputers. It is one of the most advanced programs for155

the visualization and analysis of MD simulations. It is, however, a large mono-

lithic program, that can only be driven through its built-in Tcl interface and

thus is less well suited as a library that allows the rapid development of new

algorithms or integration into workflows.

CPPTraj [19] offers multiple levels of parallelization (MPI and OpenMP)160

in a monolithic C++ implementation. CCPTraj allows parallel reads between

frames of the same trajectory but is especially geared towards processing an

ensemble of many trajectories in parallel.

pyPcazip [51] is a suite of software tools written in Python for compression

and analysis of MD simulation data, in particular ensembles of trajectories.165

pyPcazip is MPI parallelised and is specific to PCA-based investigations of MD

trajectories and supports a wide variety of trajectory file formats (based on the

capabilities of the underlying mdtraj package [20]). pyPcazip can take one or

many input MD trajectory files and convert them into a highly compressed,

HDF5-based pcz format with insignificant loss of information. However, the170

package does not support general purpose analysis.
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In situ analysis is an approach to execute analysis simultaneously with the

running MD simulation so that I/O bottlenecks are mitigated [52, 53]. Malakar

et al. studied the scalability challenges of time and space shared modes of

analyzing large-scale MD simulations through a topology-aware mapping for175

simulation and analysis using the LAMMPS code [52]. Similarly, Taufer and

colleagues [53] presented their own framework for in situ analysis, which is

based on the fast on-the-fly calculation of metadata that characterizes protein

substructures via maximum eigenvalues of distance matrices. These metadata

are used to index trajectory frames and enable targeted analysis of trajectory180

subsets. Both studies provide important ideas and approaches towards moving

towards online-analysis in conjunction with a running simulation but are limited

in generality.

All of the above frameworks provide tools for parallel analysis of MD trajec-

tories. These frameworks, however, tend to fall short in providing parallelism in185

the context of a general and flexible library for the analysis of MD trajectories.

Although straggler tasks are a common challenge arising in parallel analysis and

are well-known in the data analysis community (see Section 2.1), there is, to

our knowledge, little discussion about this problem in the biomolecular simu-

lation community. Our own experience with a MapReduce approach in MD-190

Analysis [23] suggested that stragglers might be a somewhat under-appreciated

problem. Therefore, in the present work we want to better understand require-

ments for efficient parallel analysis of MD trajectories in MDAnalysis, but to

also provide more general guidance that could benefit developments in other

libraries inside and outside of the scope of analysis of MD simulations.195

3. Algorithms and Software Packages

For our investigation of parallel trajectory analysis we focus on using MPI

as the standard approach to parallelization in HPC. We employ the Python

language, which is widely used in the scientific community because it facilitates

rapid development of small scripts and code prototypes as well as development200
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of large applications and highly portable and reusable modules and libraries.

We use the MDAnalysis library to calculate a “RMSD timeseries” (explained

in section 3.1) as a representative use case. Further details on the software

packages are provided in sections 3.2–3.4.

3.1. RMSD Calculation with MDAnalysis205

Simulation data exist in trajectories in the form of time series of atom posi-

tions and sometimes velocities. Trajectories come in a plethora of different and

idiosyncratic file formats. MDAnalysis [17, 18] is a widely used open source li-

brary to analyze trajectory files with an object oriented interface. The library

is written in Python, with time critical code in C/C++/Cython. MDAnaly-210

sis supports most file formats of simulation packages including CHARMM [54],

Gromacs [55], Amber [56], and NAMD [57] and the Protein Data Bank [58] for-

mat. At its core, it reads trajectory data in different formats and makes them

available through a uniform API; specifically, coordinates are represented as

standard NumPy arrays [59].215

As a test case that is representative of a common task in the analysis of

biomolecular simulation trajectories we calculated the timeseries of the minimal

structural root mean square distance (RMSD) after rigid body superposition

[7, 26]. The RMSD is used to show the rigidity of protein domains and more

generally characterizes structural changes. It is calculated as a function of time

t as

RMSD(t) = min
R,t

√√√√ 1

N

N∑
i=1

[
(R · xi(t) + t)− xref

i

]2
(1)

where xi(t) is the position of atom i at time t, xref
i is its position in a refer-

ence structure and the distance between these two is minimized by finding the

optimum 3× 3 rotation matrix R and translation vector t. The optimum rigid

body superposition was calculated with the QCPROT algorithm [25, 60] (im-

plemented in Cython and available through the MDAnalysis.analysis.rms220

module [18]).

The RMSD trajectory analysis was parallelized as outlined in the flow chart
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Figure 1: Flow chart of the MPI-parallelized RMSD algorithm, Algorithm 1. (a) Each MPI
process performs the same steps but reads trajectory frames from different blocks of the
trajectory. The color scheme and labels in italics correspond to the colors and labels for
measured timing quantitities in the following graphs (e.g., Figs. 2c and 2d). The names of the
corresponding timing quantitities from Table 3 are listed next to each step. (b) Steps that
access the shared Lustre file system with read I/O are included in the black bars; steps that
communicate via the shared InfiniBand network are included in the gray bars. The Lustre file
system is accessed through the network and hence all I/O steps also use the network.

in Figure 1, with further details available in Algorithm 1. Each MPI process

loads the core MDAnalysis structure (called the Universe), which includes

loading a shared “topology” file with the simulation system information and225

opening the shared trajectory file. Each process operates on a different block of

frames and iterates through them by reading the coordinates of a single frame

into memory and performing the RMSD computation with them. Once all

frames in the block are processed, the trajectory file is closed and results are

communicated to MPI rank 0 using MPI Gather().230

The RMSD was determined for a subset of protein atoms, the N = 214 Cα

atoms of our test system (see section 4.3 for details). The time complexity for

the RMSD Algorithm 1 is O(T ×N2) [25] where T is the number of frames in

the trajectory and N the number of particles included in the RMSD calculation.
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Algorithm 1 MPI-parallel Multi-frame RMSD Algorithm
Input: size: Total number of frames
ref : mobile group in the initial frame which will be considered as reference
start & stop: Starting and stopping frame index
topology & trajectory: files to read the data structure from
Output: Calculated RMSD arrays

1: procedure Block RMSD(topology, trajectory, ref , start, stop)
2: u ← Universe(topology, trajectory) . u hold all the information of the physical system
3: g ← u.frames[start:stop]
4: for ∀iframe in g do
5: results[iframe]← RMSD(g, ref)
6: end for
7: return results
8: end procedure
9:

10: MPI Init
11: rank ← rank ID
12: index ← indices of mobile atom group
13: xref0 ← Reference atom group's position
14: out ← Block RMSD(topology, trajectory, xref0, start=start, stop=stop)
15:
16: Gather(out, RMSD data, rank ID=0)
17: MPI Finalize

3.2. MPI for Python (mpi4py)235

MPI for Python (mpi4py) is a Python wrapper for the Message Passing

Interface (MPI) standard and allows any Python program to employ multi-

ple processors [28, 29]. Performance degradation due to using mpi4py is not

prohibitive [28, 29] and the overhead is far smaller than the overhead associ-

ated with the use of interpreted versus compiled languages [32]. Overheads in240

mpi4py are small compared to C code if efficient raw memory buffers are used

for communication [28], as used in the present study.

3.3. Global Arrays Toolkit

The Global Arrays (GA) toolkit provides users with a language interface that

allows them to distribute data while maintaining the type of global index space245

and programming syntax similar to what is available when programming on a

single processor [33]. Global Arrays is implemented with Fortran-77 and C bind-

ings and provides C++ and Python interfaces. It allows manipulating physically

distributed dense multi-dimensional arrays without explicitly defining communi-

cation and synchronization between processes. The underlying communication250

is determined by a runtime environment, which defaults to the Communica-

tion runtime for Extreme Scale (ComEx) [61]. ComEx uses shared memory

for intra-node communication and inter-node communication employs ComEx
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with MPI. Global Arrays in NumPy (GAiN) extends GA to Python through

Numpy [32]. The Global Arrays toolkit provides functions to create global ar-255

rays (ga create()) and to copy data to (ga put()) and from (ga get())

such a global array, as well as additional functions for copying between arrays

and freeing them [32]. When a global array is created (ga create()) each

process will create an array of the same shape and size, physically located in

the local memory space of that process [33]. The GA library maintains a list260

of all these memory locations, which can be queried with the ga access()

function. Using a pointer returned by ga access(), one can directly modify

the data that is local to each process. When a process tries to access a block

of data the request is first decomposed into individual blocks representing the

contribution to the total request from the data held locally on each process (B.265

J. Palmer and J. Daily, personal communication). The requesting process then

makes individual requests to each of the remote processes.

GA allows independent, asynchronous, and efficient access to logical blocks

of physically distributed arrays, with no need for explicit cooperation by other

processes; in particular, it allows data locality to be explicitly specified and used270

[62]. We investigated if communication cost could be reduced by using Global

Arrays. Algorithm 2 describes the RMSD algorithm with Global Arrays instead

of MPI.

Algorithm 2 MPI-parallel Multi-frame RMSD using Global Arrays
Input:size: Total number of frames assigned to each rank Nb

g a: Initialized Global Arrays
xref0 : mobile group in the initial frame which will be considered as reference
start & stop: that tell which block of trajectory (frames) is assigned to each rank
topology & trajectory: files to read the data structure from
Include: Block RMSD() from Algorithm 1

1: bsize ← ceil(trajectory.number frames / size)
2: g a ← ga.create(ga.C DBL, [bsize*size,2], ”RMSD”)
3: buf ← np.zeros([bsize*size,2], dtype=float)
4: out ← Block RMSD(topology, trajectory, xref0, start=start, stop=stop)
5: ga.put(g a, out, (start,0), (stop,2))
6: if rank == 0 then
7: buf ← ga.get(g a, lo=None, hi=None)
8: end if
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3.4. MPI and Parallel HDF5

HDF5 is a structured self-describing hierarchical data format which is the275

standard mechanism for storing large quantities of numerical data in Python

(http://www.hdfgroup.org/HDF5, [63]). Parallel HDF5 (PHDF5) typi-

cally sits on top of a MPI-IO layer and can use MPI-IO optimizations. In

PHDF5, all file access is coordinated by the MPI library; otherwise, multiple

processes would compete over accessing the same file on disk. MPI-based appli-280

cations launch multiple parallel instances of the Python interpreter that commu-

nicate with each other via the MPI library. Implementation is straightforward

as long as the user supplies a MPI communicator and takes into account some

constraints required for data consistency [63]. HDF5 itself handles nearly all

the details involved with coordinating file access when the shared file is opened285

through the mpio driver.

MPI has two flavors of operation: collective (all processes have to participate

in the same order) and independent (processes can perform the operation in any

order or not at all) [63]. With PHDF5, modifications to file metadata must be

performed collectively and although all processes perform the same task, they do290

not need to be synchronized [63]. Other tasks and any type of data operations

can be performed independently by processes. In the present study, we use

independent operations.

4. Benchmark Environment

Our benchmark environment consisted of three different XSEDE [31] HPC295

resources (described in section 4.1), the software stack used (section 4.2), which

had to be compiled for each resource, and the common test data set (section 4.3).

4.1. HPC Resources

The computational experiments were executed on standard compute nodes

of three XSEDE [31] supercomputers, SDSC Comet, PSC Bridges, and LSU300

SuperMIC (Table 1). SDSC Comet is a 2 PFlop/s cluster with 2,020 compute

13

http://www.hdfgroup.org/HDF5


nodes in total. It is optimized for running a large number of medium-size

calculations (up to 1,024 cores) to support the most prevalent type of calculation

on XSEDE resources. PSC Bridges is a 1.35 PFlop/s cluster with different

types of computational nodes, including 16 GPU nodes, 8 large memory and305

2 extreme memory nodes, and 752 regular nodes. It was designed to flexibly

support both traditional (medium scale calculations) and non-traditional (data

analytics) HPC uses. LSU SuperMIC offers 360 standard compute nodes with a

peak performance of 557 TFlop/s. The parallel filesystem on all three machines

is Lustre (http://lustre.org/) and is shared between the nodes of each310

cluster.

Name Nodes
Number
of Nodes

CPUs RAM Network Topology
Scheduler and

Resource Manager
parallel

filesystem

SDSC Comet Compute 6400
2 Intel Xeon (E5-2680v3)
12 cores/CPU, 2.5 GHz

128 GB DDR4 DRAM 56 Gbps IB SLURM Lustre

PSC Bridges RSM 752
2 Intel Haswell (E5-2695 v3)

14 cores/CPU, 2.3 GHz
128 GB, DDR4-2133Mhz 12.37 Gbps OPA SLURM Lustre

LSU SuperMIC Standard 360
2 Intel Ivy Bridge (E5-2680)

10 cores/CPU, 2.8 GHz
64 GB, DDR3-1866Mhz 56 Gbps IB PBS Lustre

Table 1: Configuration of the HPC resources that were benchmarked. Only a subset of the
total available nodes were used. IB: InfiniBand; OPA: Omni-Path Architecture.

4.2. Software

Table 2 lists the tools and libraries that were required for our computational

experiments. Many domain specific packages are not available in the standard

software installation on supercomputers. We therefore had to compile them,315

which in some cases required substantial effort due to non-standard building

and installation procedures or lack of good documentation. Because this is

a common problem that hinders reproducibility we provide detailed version

information, notes on the installation process, as well as comments on the ease

of installation and the quality of the documentation in Table 2. For the MPI320

implementation we used Open MPI release 1.10.7 (https://www.open-mpi.

org/) consistently everywhere. Detailed instructions to create the computing

environments together with the benchmarking code can be found in the GitHub

repository. Carefully setting up the same software stack on the three different

supercomputers allowed us to clearly demonstrate the reproducibility of our325
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results and showed that our findings were not dependent on machine specifics.

Package Version Description Ease of Installation Documentation Installation Dependencies

GCC 4.9.4 GNU Compiler Collection 0 ++

via configuration
files, environment
or command line options,
minimal configuration
is required

–

Open MPI 1.10.7 MPI Implementation 0 ++

via configuration
files, environment
or command line options,
minimal configuration
is required

–

Global Arrays 5.6.1 Global Arrays − +

via configuration files,
environment
or command line options,
several optional configuration
settings available

MAMA, ARMCI
MPI 1.x/2.x/3.x
implementation like
Open MPI
built with shared/dynamic
libraries, GCC

Python 2.7.13 Python language + ++ Conda Installation –

MPI4py 3.0.0 MPI for Python + ++ Conda Installation

Python 2.7 or above,
MPI 1.x/2.x/3.x
implementation like
Open MPI
built with shared/dynamic
libraries, Cython

GA4py 1.0 Global Arrays for Python 0 0 Python Setuptools

Global Arrays, Python 2 only,
MPI 1.x/2.x/3.x
implementation like
Open MPI
built with shared/dynamic
libraries, Cython,
MPI4py, Numpy

PHDF5 1.10.1 Parallel HDF5 − ++

via configuration files,
environment
or command line options,
several optional configuration
settings available

MPI 1.x/2.x/3.x
implementation like
Open MPI
GNU, MPIF90,
MPICC, MPICXX

H5py 2.7.1 Pythonic wrapper around the HDF5 + ++ Conda Installation
Python 2.7, or above,
PHDF5, Cython

MDAnalysis 0.17.0
Python library to analyze
trajectories from MD simulations

+ ++ Conda Installation
Python >=2.7, Cython,
GNU, Numpy

Table 2: Detailed comparison on the dependencies and installation of different software pack-
ages used in the present study. Software was built from source or obtained via a package
manager and installed on the multi-user HPC systems in Table 1. Evaluation of ease of in-
stallation and documentation uses a subjective scale with “++” (excellent), “+” (good), “0”
(average), and “−” (difficult/lacking) and reflects the experience of a typical domain scien-
tist at the graduate/post-graduate level in a discipline such as computational biophysics or
chemistry.

4.3. Data Set

The test system contained the protein adenylate kinase with 214 amino acid

residues and 3341 atoms in total [64] and the topology information (atoms

types and bonds) was stored in a file in CHARMM PSF format. The test330

trajectory was created by concatenating 600 copies of a MD trajectory with

4,187 time frames (saved every 240 ps for a total simulated time of 1.004 µs) in

CHARMM DCD format [65] and converting to Gromacs XTC format trajectory,

as described for the “600x” trajectory in Khoshlessan et al. [23]. The trajectory

had a file size of about 30 GB and contained 2,512,200 frames (corresponding335

to 602.4 µs simulated time). The file size was relatively small because water
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molecules that were also part of the original MD simulations were stripped to

reduce the original file size by a factor of about 10; such preprocessing is a

common approach if one is only interested in the protein behavior. Thus, the

trajectory represents a small to medium system size in the number of atoms and340

coordinates that have to be loaded into memory for each time frame. The XTC

format is a format with lossy compression [66, 67], which also contributed to

the compact file size. XTC trades lower I/O demands for higher CPU demands

during decompression and therefore performed well in our previous study [23].

Although 2,512,200 frames represents a long simulation for current standards,345

such trajectories will become increasingly common due to the use of special

hardware [68, 69] and GPU-acceleration [55, 70, 71].

5. Methods

Documentation and benchmark codes are made available in

the code repository https://github.com/hpcanalytics/350

supplement-hpc-py-parallel-mdanalysis under the GNU General

Public License v3.0 (code) and the Creative Commons Attribution-ShareAlike

(documentation). These materials should enable users to recreate the com-

putational environment on the tested XSEDE HPC resources (SDSC Comet,

PSC Bridges, LSU SuperMIC ), prepare data files, and run the computational355

experiments.

In the following we define the quantities and approach used for our perfor-

mance measurements, with a full summary of all definitions in Table 3. We

evaluated MPI performance of the parallel RMSD timeseries algorithm 1 by

timing the total time to solution as well as the execution time for different parts360

of the code for individual MPI ranks with the help of the Python time.time()

function.

5.1. Timing Observables

We abbreviate the timings in the following as variables tLn where Ln refers

to the line number in algorithm 1. We measured in the function block rmsd()365
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Quantity Definition

Nb N total
frames/N

tend loop tL6

topening trajectory tL2 + tL3

tcomp

∑Nb

frame=1 t
frame
comp

tI/O

∑Nb

frame=1 t
frame
I/O

tall frame tL4 + tL5 + tL6

tRMSD tL1 + ...+ tL8

tcomm/MPI tL16

tcomm/GA tL5 + tL6 + tL7 + tL8

tcomm tcomm/MPI (Alg. 1) or tcomm/GA (Alg. 2)
tOverhead1 tall frame − tI/O − tcomp − tend loop

tOverhead2 tRMSD − tall frame − topening trajectory

tN tRMSD + tcomm

tcomp
1
N

∑N
rank=1 tcomp

tI/O
1
N

∑N
rank=1 tI/O

tcomm
1
N

∑N
rank=1 tcomm

ttotal max tN

Table 3: Summary of measured timing quantitities. Timings are collected for the specified line
numbers in the code, labelled as tLn where Ln refers to the line number in the corresponding
algorithm. tcomm/MPI (in Algorithm 1) and tcomm/GA (in Algorithm 2) are both referred
to as tcomm in the text. Variables in the top half of the table refer to measurements of an
individual MPI rank. Variables in the bottom half are aggregates such as averages over all
ranks or the total time to solution.

the read I/O time for ingesting the data of one trajectory frame from the file

system into memory, tframe
I/O = tL4, and the compute time per trajectory frame

to perform the computation, tframe
comp = tL5. The total read I/O time for a MPI

rank, tI/O =
∑Nb

frame=1 t
frame
I/O , is the sum over all I/O times for all the Nframes

frames assigned to the rank; similarly, the total compute time for a MPI rank370

is tcomp =
∑Nb

frame=1 t
frame
comp . The time delay between the end of the last iteration

and exiting the for loop is tend loop = tL6. The time topening trajectory = tL2+tL3

measures the problem setup, which includes data structure initialization and

opening of topology and trajectory files. The communication time, tcomm = tL16,

is the time to gather all data from all processor ranks to rank zero. The total375

time (for all frames) spent in block rmsd() is tRMSD =
∑8
i=1 tLi. There are

parts of the code in block rmsd() that are not covered by the detailed timing

information of tcomp and tI/O. Unaccounted time is considered as overhead. We

17



define tOverhead1 and tOverhead2 as the overheads of the calculations (see Table 3

for the definitions); both are expected to be negligible, which was the case in all380

our measurements. Finally, the total time to completion of a single MPI rank,

when utilizing N cores for the execution of the overall experiment, is tN , and

as a result tRMSD + tcomm ≡ tN .

5.2. Performance Parameters

We measured the total time to solution ttotal(N) with N MPI processes on

N cores, which is effectively ttotal(N) ≈ max(tN ). Strong scaling was quantified

by the speed-up

S(N) =
ttotal(1)

ttotal(N)
, (2)

relative to performance on a single core (ttotal(1)), and the efficiency

E(N) =
S(N)

N
. (3)

Averages over ranks were calculated as

tcomp =
1

N

N∑
rank=1

tcomp =
1

N

N∑
rank=1

Nb∑
frame=1

tframe
comp , (4)

tI/O =
1

N

N∑
rank=1

tI/O =
1

N

N∑
rank=1

Nb∑
frame=1

tframe
I/O , (5)

and

tcomm =
1

N

N∑
rank=1

tcomm. (6)

Additionally, we introduced two performance parameters that we found to

be indicative of the occurrence of stragglers. We defined the ratio of compute

time to read I/O time for the serial code as

Rcomp/IO =
tcomp

tI/O
=
tcomp/N

total
frames

tI/O/N
total
frames

=
tframe
comp

tframe
I/O

(7)
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where the last equality shows that the ratio can also be computed from the av-

erage times per frame, tframe
comp and tframe

I/O . Rcomp/IO was calculated with the serial

versions of our algorithms (on a single CPU core) in order to characterize the

computational problem in the absence of parallelization. The ratio of compute

to communication time was defined by the ratio of average total compute time

to the average total communication time

Rcomp/comm =
tcomp

tcomm
. (8)

Because tcomm cannot be measured for a serial code, we estimated Rcomp/comm385

from the rank-averages (Eqs. 4 and 6) for a given number of MPI ranks.

6. Computational Experiments

We had previously measured the performance of the MPI-parallelized RMSD

analysis task on two different HPC resources (SDSC Comet and TACC Stam-

pede) and had found that it only scaled well up to a single node due to high390

variance in the runtime of the MPI ranks, similar to the straggler phenomenon

observed in big-data analytics [23]. However, the ultimate cause for this high

variance could not be ascertained. We therefore performed more measurements

with more detailed timing information (see section 5) on SDSC Comet (de-

scribed in this section) and two other supercomputers (summarized in section395

7) in order to better understand the origin of the stragglers and find solutions

to overcome them.

6.1. RMSD Benchmark

We measured strong scaling for the RMSD analysis task (Algorithm 1) with

the 2,512,200 frame test trajectory (section 4.3) on 1 to 72 cores (one to three400

nodes) of SDSC Comet (Figures 2a and 2b). We observed poor strong scaling

performance beyond a single node (24 cores), comparable to our previous results

[23]. A more detailed analysis showed that the RMSD computation, and to a

lesser degree the read I/O, considered on their own, scaled well beyond 50 cores
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(yellow and blue lines in Figure 2c). But communication (sending results back405

to MPI rank 0 with MPI Gather(); red line in Figure 2c) and the initial

file opening (loading the system information into the MDAnalysis.Universe

data structure from a shared “topology” file and opening the shared trajectory

file; gray line in Figure 2c) started to dominate beyond 50 cores. Communication

cost and initial time for opening the trajectory were distributed unevenly across410

MPI ranks, as shown in Figure 2d. The ranks that took much longer to complete

than the typical execution time of the other ranks were the stragglers that hurt

performance.

We qualitatively denoted by straggler any MPI rank that took at least about

twice as long as the group of ranks that finished fastest, roughly following the415

original description of a straggler as a task that took an “unusually long time to

complete” [34]. The fast-finishing ranks were generally clearly distinguishable

in the per-rank timings such as in Figures 2d and A.11d. Such a qualitative

definition of stragglers was sufficient for our purpose to identify scalability bot-

tlenecks, as shown in the following discussion.420

Identification of Scalability Bottlenecks

In the example shown in Figure 2d, 62 ranks out of 72 took about 60 s (the

stragglers) whereas the remaining ranks only took about 20 s. In other instances,

far fewer ranks were stragglers, as shown, for example, in Figure A.11d. The

detailed breakdown of the time spent on each rank (Figure 2d) showed that425

the computation, tcomp, was relatively constant across ranks. The time spent

on reading data from the shared trajectory file on the Lustre filesystem into

memory, tI/O, showed variability across different ranks. The stragglers, however,

appeared to be defined by occasionally much larger communication times, tcomm

(line 16 in Algorithm 1), which were on the order of 30 s, and by larger times430

to initially open the trajectory (line 2 in Algorithm 1). tcomm varied across

different ranks and was barely measurable for a few of them. Although the

data in Figure 2d represented one run and in other instances different number

of ranks were stragglers, the averages over all ranks in five independent repeats
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Figure 2: Performance of the RMSD task parallelized with MPI on SDSC Comet. Results
were communicated back to rank 0. Five independent repeats were performed to collect statis-
tics. (a-c) The error bars show standard deviation with respect to the mean. In serial, there
is no communication and no data points are shown for N = 1 in (c). (d) Compute tcomp,
read I/O tI/O, communication tcomm, ending the for loop tend loop, opening the trajectory
topening trajectory, and overheads toverhead1, toverhead2 per MPI rank; see Table 3 for defini-
tions. These are data from one run of the five repeats. MPI ranks 0, 12–27 and 29–72 are
stragglers.

(Figure 2c) showed that increased tcomm were generally the reason for large435

variations in the run time for each rank. This initial analysis indicated that

communication was a major issue that prevented good scaling beyond a single
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node but the problems related to file I/O also played an important role in

limiting scaling performance.

Influence of Hardware440

We ran the same benchmarks on multiple HPC systems that were equipped

with a Lustre parallel file system [XSEDE’s PSC Bridges (Fig. A.11) and LSU

SuperMIC (Fig. A.12)], and observed the occurrence of stragglers, in a manner

very similar to the results described for SDSC Comet. There was no clear

pattern in which certain MPI ranks would always be a straggler, and neither445

could we trace stragglers to specific cores or nodes. Therefore, the phenomenon

of stragglers in the RMSD case was reproducible on different clusters and thus

appeared to be independent from the underlying hardware.

6.2. Effect of Compute to I/O Ratio on Performance

The results in section 6.1 indicated opening the trajectory, communication,450

and read I/O to be important factors that appeared to correlate with stragglers.

In order to better characterize the RMSD task, we computed the ratio between

the time to complete the computation and the time spent on I/O per frame. The

average values were tframe
comp = 0.09 ms, tframe

IO = 0.3 ms, resulting in a compute-to-

I/O ratio Rcomp/IO ≈ 0.3 (Eq. 7). Because Rcomp/IO � 1, the RMSD analysis455

task was characterized as I/O bound.

As we were not able to achieve good scaling beyond a single node, we hy-

pothesized that decreasing the I/O load relative to the compute load would

interleave read I/O with longer periods of computation, thus reducing the im-

pact of I/O contention and the impact of stragglers. We therefore set out to460

measure compute bound tasks, i.e. ones with Rcomp/IO � 1. To measure the

effect of the Rcomp/IO ratio on performance but leaving other parameters the

same, we artificially increased the computational load by repeating the same

RMSD calculation (line 10, algorithm 1) 40, 70 and 100 times in a loop, result-

ing in forty-fold (“40×”), seventy-fold (“70×”), and one hundred-fold (“100×”)465

load increases.
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6.2.1. Effect of Increased Compute Workload

For an X-fold increase in workload, we expected the workload for the com-

putation to scale with X as tcomp(X) = N total
framesXt

frame
comp while the read I/O

workload tI/O(X) = N total
framest

frame
I/O (number of frames times the average time to470

read a frame) should remain independent of X. Therefore, the ratio for any

X should be Rcomp/IO(X) = tcomp(X)/tI/O(X) = XRcomp/IO(X = 1), i.e.,

Rcomp/IO should just linearly scale with the workload factor X. The measured

Rcomp/IO ratios of 11, 19, 27 for the increased computational workloads agreed

with this theoretical analysis, as shown in Table 4.475

Workload X tcomp (s) tI/O (s) Rcomp/IO

measured theoretical

1× 226 791 0.29
40× 8655 791 11 11
70× 15148 791 19 20

100× 21639 791 27 29

Table 4: Change in Rcomp/IO ratio with change in the RMSD workload X. The RMSD
workload was artificially increased in order to examine the effect of compute to I/O ratio on
the performance. The reported compute and I/O time were measured based on the serial
version using one core. The theoretical Rcomp/IO (see text) is provided for comparison.
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Figure 3: Effect of Rcomp/IO ratio on performance of the RMSD task on SDSC Comet. We
tested performance for Rcomp/IO ratios of 0.3, 11, 19, 27, which correspond to 1× RMSD, 40×
RMSD, 70× RMSD, and 100× RMSD respectively. (a) Effect of Rcomp/IO on the speed-up.
(b) Change in speed-up with respect to Rcomp/IO for different processor counts. (c) Change
in the efficiency with respect to Rcomp/IO for different processor counts.

We performed the experiments with increased workload to measure the effect
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of theRcomp/IO ratio on performance (Figure 3). The strong scaling performance

as measured by the speed-up S(N) improved with increasing Rcomp/IO ratio

(Figure 3a). The calculations consistently showed better scaling performance

to larger numbers of cores for higher Rcomp/IO ratios, e.g., N = 56 cores for the480

70× RMSD task. The speed-up and efficiency approached their ideal value for

each processor count with increasing Rcomp/IO ratio (Figures 3b and 3c). Even

for moderately compute-bound workloads, such as the 40× and 70× RMSD

tasks, increasing the computational workload over I/O reduced the impact of

stragglers even though they still contributed to large variations in timing across485

different ranks and thus irregular scaling.

We also investigated the influence of the ratio of compute to communication

costs (Rcomp/comm, Eq. 8) on performance in Appendix B. We found evidence

to support the hypothesis that a larger ratio was beneficial, provided I/O costs

could also be reduced. However, read I/O ultimately seemed to be the key490

determinant for performance, as discussed in the next sections.

6.2.2. Effect of Absence of Read I/O on Communication
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Figure 4: Comparison of the performance of the RMSD task with I/O (Rcomp/IO ≈ 0.3) and
without I/O (Rcomp/IO = +∞) on SDSC Comet. Five repeats were performed to collect
statistics. (a) Speed-up. The error bars show standard deviation with respect to the mean.
(b) Compute tcomp, read I/O tI/O = 0, communication tcomm, ending the for loop tend loop,
opening the trajectory topening trajectory, and overheads toverhead1, toverhead2 per MPI rank.
(See Table 3 for definitions.)

In order to study an extreme case of a compute-bound task, we eliminated
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all I/O from the RMSD task by randomly generating artificial trajectory data

in memory; the data had the the same size as if they had been obtained from495

the trajectory file. The time for the data generation was excluded and no file

access was necessary. Without any I/O, performance improved markedly (Fig-

ure 4), with reasonable scaling up to 72 cores (3 nodes). No stragglers were

observed because overall communication time decreased and showed less vari-

ability; nevertheless, an increase in communication time prevented ideal scaling500

performance. Although in practice I/O cannot be avoided, this experiment

demonstrated that accessing the trajectory file on the Lustre file system is at

least one cause for the observed stragglers.

6.3. Reducing I/O Cost

In order to improve performance we needed to employ strategies to avoid the505

competition over file access across different ranks when the Rcomp/IO ratio was

small. To this end, we experimented with two different ways for reducing the

I/O cost: 1) splitting the trajectory file into as many segments as the number of

processes, thus using file-per-process access, and 2) using the HDF5 file format

together with MPI-IO parallel reads instead of the XTC trajectory format. We510

discuss these two approaches and their performance improvements in detail in

the following sections.

6.3.1. Splitting the Trajectories (“subfiling”)

Subfiling is a mechanism previously used for splitting a large multi-

dimensional global array to a number of smaller subarrays in which each smaller515

array is saved in a separate file. Subfiling reduces the file system control over-

head by decreasing the number of processes concurrently accessing a shared

file [72, 73]. Because subfiling is known to improve programming flexibility and

performance of parallel shared-file I/O, we investigated splitting our trajectory

file into as many trajectory segments as the number of processes. The trajectory520

file was split into N segments, one for each process, with each segment having

Nb frames. This way, each process would access its own trajectory segment file
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without competing for file accesses.

We ran a benchmark up to 8 nodes (192 cores) and observed rather better

scaling behavior with efficiencies above 0.6 (Figure 5b and 5c) with the delay525

time for stragglers reduced from 65 s to about 10 s for 72 processes. However,

scaling was still far from ideal due to the MPI communication costs. Although

the delay due to communication was much smaller than compared to parallel

RMSD with shared-file I/O [compare Figure 5d (tStraggler
comm � tcomp + tI/O) to

Figure 2d (tStraggler
comm ≈ tcomp + tI/O)], it was still delaying several processes530

and resulted in longer job completion times (Figure 5d). These delayed tasks

impacted performance so that speed-up remained far from ideal (Figure 5c).

The subfiling approach appeared promising but it required preprocessing of

trajectory files and additional storage space for the segments. We benchmarked

the necessary time for splitting the trajectory in parallel using different number535

of MPI processes (Table 5); in general the operation scaled well, with efficien-

cies > 0.8 although performance fluctuated, as seen for the case on six nodes

where the efficiency dropped to 0.34 for the run. These preprocessing times were

not included in the estimates because we focused on better understanding the

principal causes of stragglers and we wanted to make the results directly com-540

parable to the results of the previous sections. Nevertheless, from an end user

perspective, preprocessing of trajectories can be integrated in workflows (espe-

cially as the data in Table 5 indicated good scaling) and the preprocessing time

can be quickly amortized if the trajectories are analyzed repeatedly.

Nseg Np nodes time (s) S E

24 24 1 89.9 1.0 1.0
48 48 2 46.8 1.9 0.96
72 72 3 33.7 2.7 0.89
96 96 4 25.1 3.6 0.89

144 144 6 43.7 2.1 0.34
192 192 8 13.5 6.7 0.83

Table 5: The wall-clock time spent for writing Nseg trajectory segments using Np processes
using MPI on SDSC Comet. One set of runs was performed for the timings. Scaling S and
efficiency E are relative to the 1 node case (24 MPI processes).
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Figure 5: Comparison of the performance of the RMSD task on SDSC Comet when the
trajectories are split (subfiling). The communication step used either MPI collective commu-
nications (“MPI”, with MPI Gather()) or Global Arrays (“ga”, as described in Section 6.4).
In the case of Global Arrays, all ranks updated the global RMSD array (ga put()) and rank
0 accessed the whole RMSD array through the global memory address (ga get()). Five re-
peats were performed to collect statistics. (a) Compute and I/O scaling versus number of
processes. In serial, there is no communication and no data points are shown for N = 1. (b)
Total time scaling versus number of processes. (c) Speed-up. (a-c) The error bars show stan-
dard deviation with respect to the mean. (d-e) Compute tcomp, read I/O tI/O, communication
tcomm, access to the whole global RMSD array by rank 0, tAccess Global Array, ending the for
loop tend loop, opening the trajectory topening trajectory, and overheads toverhead1, toverhead2
per MPI rank; see Table 3 for the definitions.

Often trajectories from MD simulations on HPC machines are produced and545

kept in smaller files or segments that can be concatenated to form a full contin-

uous trajectory file. These trajectory segments could be used for the subfiling

approach. However, it might not be feasible to have exactly one segment per

MPI rank, with all segments of equal size, which constitutes the ideal case for

subfiling. MDAnalysis can create virtual trajectories from separate trajectory550
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segment files that appear to the user as a single trajectory. In Appendix C we

investigated if this so-called ChainReader functionality could benefit from the

subfiling approach. We found some improvements in performance but discov-

ered limitations in the design of the ChainReader (namely that all segment files

are initially opened) that will have to be addressed before equivalent perfor-555

mance can be reached.

6.3.2. MPI-based Parallel HDF5

In the HPC community, parallel I/O with MPI-IO is widely used in order to

address I/O limitations. We investigated MPI-based Parallel HDF5 to improve

I/O scaling. We converted our XTC trajectory file into a simple custom HDF5560

format so that we could test the performance of parallel I/O with the HDF5

file format. The code for this file format conversion can be found in the GitHub

repository. The time it took to convert our XTC file with 2, 512, 200 frames into

HDF5 format was about 5,400 s on a local workstation with network file system

(NFS).565

We ran our benchmark on up to 16 nodes (384 cores) on SDSC Comet and we

observed near ideal scaling behavior Figures 6a and 6b) with parallel efficiencies

above 0.8 on up to 8 nodes (Figure A.13a) with no straggler tasks (Figure 6d).

The trajectory reading I/O (tI/O) was the dominant contribution, followed by

compute (tcomp), but because both contributions scaled well, overall scaling570

performance remained good, even for 384 cores. We observed a low-performing

outlier for 12 nodes (288 cores) with slower I/O than typical but did not further

investigate. Importantly, the trajectory opening cost remained negligible (in

the millisecond range) and the cost for MPI communication also remained small

(below 0.1 s, even for 16 nodes). Overall, parallel MPI with HDF5 appeared to575

be a robust approach to obtain good scaling, even for I/O-bound tasks.

6.4. Testing the Global Arrays Toolkit

The Global Arrays (GA) toolkit [33] is a convenient layer to represent and

access arrays across multiple MPI ranks and nodes. Because of its convenience
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Figure 6: Performance of the RMSD task with MPI-based parallel HDF5 (MPI-IO) on SDSC
Comet. Data are read from the file system from a shared HDF5 file format instead of XTC
format (independent I/O) and results are communicated back to rank 0. Five repeats were
performed to collect statistics. (a-c) The error bars show standard deviation with respect to
the mean. In serial, there is no communication and no data points are shown for N = 1 in
(c). (d) Compute tcomp, read I/O tI/O, communication tcomm, ending the for loop tend loop,
opening the trajectory topening trajectory, and overheads toverhead1, toverhead2 per MPI rank;
see Table 3 for definitions. These are typical data from one run of the five repeats.

and possibly reduced communications overhead due to its use of shared memory580

on a physical node and MPI for inter-node communication (see Section 3.3)

we wanted to compare parallel trajectory analysis with GA to the MPI-based

implementation that was discussed in the previous sections.
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Figure 7: Performance of the RMSD task using Global Arrays on SDSC Comet. All ranks
updated the global RMSD array (ga put()) and rank 0 accesseed the whole RMSD array
through the global memory address (ga get()). Five repeats were performed to collect
statistics. (a-c) The error bars show standard deviation with respect to the mean. In serial,
there is no communication and not data points are shown for N = 1 in (c). In (d), compute
tcomp, read I/O tI/O, communication tcomm, access to the whole global array by rank 0,
tAccess Global Array, ending the for loop tend loop, opening the trajectory topening trajectory,
and overheads toverhead1, toverhead2 per MPI rank are shown; see Table 3 for definitions.
These are typical data from one run of the five repeats. MPI ranks 20 and 56 were stragglers.

With GA, one large RMSD array called the global array was defined and

each MPI rank updated its associated block in the global RMSD array us-585

ing ga put() (Algorithm 2). At the end, when all the processes exited the

block rmsd() function and updated their local block in the global array, rank

30



0 accessed the whole global array using ga access(). In GA, the time for

communication is tga put() + tga access(). We tested that the approach with GA

(Algorithm 2) gave the same results as the previously discussed approach with590

MPI Gather() (Algorithm 1).

Shared file. Using GA improved the strong scaling performance (Figures 7a

and 7b) by reducing the communication time. Nevertheless, the remaining

variation in the trajectory I/O part of the calculation and in particular the

initial opening of the trajectory prevented ideal scaling (Figure 7c). Stragglers595

were primarily due to the fact that all ranks had to open the same trajectory

file at the beginning of the execution (Figure 7d). In this case, these slow

processes took about 50 s, which was slower than the mean execution time of all

other ranks of 17 s. Trajectory opening was already problematic in the initial

test (Figure 2c), which was still dominated by the communication cost. By600

substantially reducing communication cost, the simultaneous trajectory opening

by multiple ranks emerged as the next dominant cause for stragglers.

Subfiling. We tested subfiling (see Section 6.3.1) with GA to reduce the initial

delay due to trajectory opening. Under otherwise identical conditions as in the

previous section we now observed near ideal scaling behavior with efficiencies605

above 0.9 (Figure 5b and 5c) without any straggler tasks (Figure 5e). Although

the reason why in our case GA appeared to be more efficient than direct MPI-

based communication remained unclear, these results showed that contention

for file access clearly impacted performance. By removing the contention, near

ideal scaling could be achieved.610

6.5. Likely Causes of Stragglers

The data indicated that increases in the duration of both MPI communica-

tion and trajectory file access lead to large variability in the run time of indi-

vidual MPI processes and ultimately poor scaling performance beyond a single

node. A discussion of likely causes for stragglers begins with the observation615
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that opening and reading a single trajectory file from multiple MPI processes

appeared to be at the center of the problem.

In MDAnalysis, individual trajectory frames are loaded into memory, which

ensures that even systems with tens of millions of atoms can be efficiently an-

alyzed on resources with moderate RAM sizes. The test trajectory (file size620

30 GB) had 2, 512, 200 frames in total so each frame was about 0.011 MB in

size. With tI/O ≈ 0.3 ms per frame, the data were ingested at a rate of about

40 MB/s for a single process. For 24 MPI ranks (one SDSC Comet node), the

aggregated reading rate would have been about 1 GB/s, well within the avail-

able bandwidth of 56 Gb/s of the InfiniBand network interface that served the625

Lustre file system, but nevertheless sufficient to produce substantial constant

network traffic.

Furthermore, in our study the default Lustre stripe size value was 1 MB,

i.e., the amount of contiguous data stored on a single Lustre object storage tar-

get (OST). Each I/O request read a single Lustre stripe but because the I/O630

size (0.011 MB) was smaller than the stripe size, many of these I/O requests

were likely just accessing the same stripe on the same OST but nevertheless had

to acquire a new reading lock for each request. The reason for this behavior

is related to ensuring POSIX consistency that relates to POSIX I/O API and

POSIX I/O semantics, which can have adverse effects on scalability and per-635

formance. Parallel file systems like Lustre implement sophisticated distributed

locking mechanisms to ensure consistency. For example, locking mechanisms

ensures that a node can not read from a file or part of a file while it might be

being modified by another node. In fact, when the application I/O is not de-

signed in a way to avoid scenarios where multiple nodes are fighting over locks640

for overlapping extents, Lustre can suffer from scalability limitations [74]. Con-

tinuously keeping metadata updated in order to have fully consistent reads and

writes (POSIX metadata management), requires writing a new value for the

file’s last-accessed time (POSIX atime) every time a file is read, imposing a sig-

nificant burden on parallel file system [75]. It was observed that contention for645

the interconnect between OSTs and compute nodes due to MPI communica-
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tion may lead to variable performance in I/O measurements [76]. Conversely,

our data suggest that single-shared-file I/O on Lustre can negatively affect MPI

communication as well, even at moderate numbers (tens to hundreds) of concur-

rent requests, similar to recent network simulations that predicted interference650

between MPI and I/O traffic [77]. This work indicated that MPI traffic (inter-

process communication) can be affected by increasing I/O, and in particular,

a few MPI processes were always delayed by one to two orders of magnitude

more than the median time. In summary, these observations in the context of

the work by Brown et al. [77] suggest that our observed stragglers with large655

variance in the communication step might be due to interference of MPI com-

munications with the I/O requests on the same network.

7. Reproducibility and Performance Comparison on Different Clus-

ters

In this section we compare the performance of the RMSD task on different660

HPC resources (Table 1) to examine the robustness of the methods we used

for our performance study and to ensure that the results are general and inde-

pendent from the specific HPC system. Scripts and instructions to set up the

computational environments and reproduce our computational experiments are

provided in a git repository as described in section 5.665

In Appendix A, we demonstrated that stragglers occur on PSC Bridges (Fig-

ure A.11) and LSU SuperMIC (Figure A.12) in a manner similar to the one

observed on SDSC Comet (section 6.1). We performed additional comparisons

for several cases discussed previously, namely (1) splitting the trajectories with

blocking collective communications in MPI, (2) splitting the trajectories with670

Global Arrays for communications, and (3) MPI-based parallel HDF5.

7.1. Splitting the Trajectories

Figure 8 shows the strong scaling of the RMSD task on different HPC re-

sources. Splitting the trajectories with Global Arrays for communication re-

sulted in very good scaling performance on LSU SuperMIC, similar to the results675
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obtained on SDSC Comet. The results with MPI blocking collective communica-

tion (instead of Global Arrays) were also comparable between the two clusters,

with scaling far from ideal due to the communication cost (see section 6.3.1 and

Figures 5d and A.14). Overal, the scaling of the RMSD task is better on LSU

SuperMIC than on SDSC Comet and the performance gap increased with in-680

creasing core number. The results on LSU SuperMIC confirmed the conclusion

obtained on SDSC Comet that at least in this case Global Arrays performed

better than MPI blocking collective communication.

MPI MPI

(a) Scaling total

MPI MPI

(b) Speed-up

MPI
MPI

MPI

(c) Scaling of tcomp and tI/O.

Figure 8: Comparison of the performance of the RMSD task across different clusters (SDSC
Comet, LSU SuperMIC ) when the trajectories are split (subfiling). Results were communi-
cated back to rank 0 either with MPI collective communications (label “MPI”) or using Global
Arrays (label “GA”). Five repeats were performed to collect statistics. The error bars show
the standard deviation with respect to the mean.
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7.2. MPI-based Parallel HDF5

Figure 9 shows the scaling on SDSC Comet, LSU SuperMIC, and PSC685

Bridges using MPI-based parallel HDF5. Performance on SDSC Comet and

LSU SuperMIC was very good with near ideal linear strong scaling. The per-

formance on PSC Bridges was sensitive to how many cores per node were used.

Using all 28 cores in a node resulted in poor performance but decreasing the

number of cores per node and equally distributing processes over nodes improved690

the scaling (Figure 9), mainly by reducing variation in the I/O times.

The main difference between the runs on PSC Bridges and SDSC

Comet/LSU SuperMIC appeared to be the variance in tI/O (Figure 9c). The

I/O time distribution was fairly small and uniform across all ranks on SDSC

Comet and LSU SuperMIC (Figures 10b and 6d). However, on PSC Bridges695

the I/O time was on average about two and a half times larger and the I/O

time distribution was also more variable across different ranks (Figure 10a).

7.3. Comparison of Compute and I/O Scaling Across Different Clusters

A full comparison of compute and I/O scaling across different clusters for

different test cases and algorithms is shown in Table 6. For MPI-based paral-700

lel HDF5, both the compute and I/O time on Bridges were consistenly larger

than their corresponding values on SDSC Comet and LSU SuperMIC. For exam-

ple, with one core the corresponding compute and I/O time were tcomp = 387 s,

tI/O = 1318 s versus 225 s, 423 s on SDSC Comet and 273 s, 503 s on LSU Super-

MIC. This performance difference became larger with increasing core number.705

When the trajectories were split and Global Arrays was used for communication

both SDSC Comet and LSU SuperMIC showed similar performance.

Overall, the results from SDSC Comet and LSU SuperMIC are consistent

with each other. Performance on PSC Bridges seemed sensitive to the exact al-

location of cores on each node but nevertheless the approaches that decreased710

the occurence of stragglers on SDSC Comet and LSU SuperMIC also improved

performace on PSC Bridges. Thus, the findings described in the previous sec-

tions are valid for a range of different HPC clusters with Lustre file systems.
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Figure 9: Comparison of the performance of the RMSD task across different clusters (SDSC
Comet, PSC Bridges, LSU SuperMIC ) with MPI-IO. Data were read from a shared HDF5
file instead of an XTC file, using MPI independent I/O in the PHDF5 library. Results were
communicated back to rank 0. NP/Nnodes indicates that number of processes used for the
task were equally distributed over all compute nodes. Five repeats were performed to collect
statistics. The error bars show standard deviation with respect to mean. In (b) only results
up to 100 cores are shown to simplify the comparison; see Fig. 6b for SDSC Comet and
Fig. A.13c for LSU SuperMic data.

8. Guidelines for Improving Parallel Trajectory Analysis Perfor-

mance715

Although the performance measurements were performed with MDAnalysis

and therefore capture some details of this library such as the sepecific timings

for file reading, we believe that the broad picture is fairly general and applies

to any Python-based approach that uses MPI for parallelizing trajectory access
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Figure 10: Examples of timing per MPI rank for the RMSD task with MPI-based parallel
HDF5 on (a) PSC Bridges and (b) LSU SuperMIC. Five repeats were performed to col-
lect statistics and these were typical data from one run of the five repeats. Compute tcomp,
read I/O tI/O, communication tcomm, ending the for loop tend loop, opening the trajectory
topening trajectory, and overheads toverhead1, toverhead2 per MPI rank; see Table 3 for defini-
tions.

with a split-apply-combine approach. Based on the lessons that we learned, we720

suggest the following guidelines to improve strong scaling performance:

Heuristic 1 Calculate compute to I/O ratio (Rcomp/IO, Eq. 7) and compute

to communication ratio (Rcomp/comm, Eq. 8). Rcomp/IO determines whether

the task is compute bound (Rcomp/IO � 1) or IO bound (Rcomp/IO � 1).

Rcomp/comm determines whether the task is communication bound (
tcomp

tcomm
�725

1) or compute bound (Rcomp/IO � 1).

As discussed in Section 6.2, for I/O bound problems the interference between

MPI communication and I/O traffic can be problematic [50, 77] and the per-

formance of the task will be affected by the straggler tasks that delay job

completion time.730

Heuristic 2 For Rcomp/IO ≥ 1, single-shared-file I/O can be used and will not

decrease performance. One may consider the following cases:

Heuristic 2.1 If Rcomp/comm � 1, the task is compute bound and will scale

well as shown in Figure 3.

Heuristic 2.2 If Rcomp/comm � 1, one might consider using Global Arrays735

to improve scaling by utilizing efficient distribution of data via the shared
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arrays (section 6.4).

Heuristic 3 For Rcomp/IO ≤ 1 the task is I/O bound and single-shared-file I/O

should be avoided to remove unnecessary metadata operations. One might

want to consider the following steps:740

Heuristic 3.1 If there is access to HDF5 format, use MPI-based Parallel

HDF5 (Section 6.3.2).

Heuristic 3.2 If the trajectory file is not in HDF5 format then one can

consider subfiling and split the single trajectory file into as many tra-

jectory segments as the number of processes. Splitting the trajectories745

can be easily performed in parallel and trajectory conversion may be in-

tegrated into the beginning of standard workflows for MD simulations.

Alternatively, trajectories may be kept in smaller chunks if they are al-

ready produced in batches; for instance, when running simulations with

Gromacs [55], the gmx mdrun -noappend option produces individual750

trajectory segments instead of extending an existing trajectory file.

Heuristic 3.3 In case of Rcomp/comm � 1, use of Global Arrays may be

considered to potentially improve scaling (Section 6.3.1).

9. Conclusions

We analyzed the strong scaling performance of a typical task when analysing755

MD trajectories, the calculation of the time series of the RMSD of a protein,

with the widely used Python-based MDAnalysis library. The task was par-

allelized with MPI following the split-apply-combine approach by having each

MPI process analyze a contiguous segment of the trajectory. This approach did

not scale beyond a single node because straggler MPI processes exhibited large760

upward variations in runtime. Stragglers were primarily caused by either in-

creased MPI communication costs or increased time to open the single shared

trajectory file whereas both the computation and the ingestion of data exhib-

ited close to ideal strong scaling behavior. Stragglers were less prevalent for
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compute-bound workloads (i.e., Rcomp/IO � 1), suggesting that file read I/O765

was responsible for poor MPI communication. In particular, artifically removing

all I/O substantially improved performance of the communication step and thus

brought overall performance close to ideal (i.e., linear increase in speed-up with

processor count with slope one). By performing benchmarks on three different

XSEDE supercomputers we showed that our results were independent from the770

specifics of the hardware and local environment. Our results hint at the possi-

bility that stragglers might be due to the competition between MPI messages

and the Lustre file system on the shared InfiniBand interconnect, which would

be consistent with other similar observations [50] and theoretical predictions by

Brown et al. [77]. One possible interpretation of our results is that for a suf-775

ficiently large per-frame compute workload, read I/O interferes much less with

communication than for an I/O bound task that almost continuously accesses

the file system. This intepretation suggested we needed to improve read I/O to

reduce interference.

We investigated subfiling (splitting of the trajectories into separate files, one780

for each MPI rank) and MPI-based parallel I/O. Subfiling improved scaling, es-

pecially when combined with the Global Arrays toolkit. Somewhat surprisingly,

Global Arrays reduced the communication cost compared to MPI collective com-

munications even though it only acts as programming layer to access data across

multiple nodes in a convenient array form and also uses MPI for its inter-node785

data exchange. Subfiling with Global Arrays achieved nearly ideal scaling up

to 192 cores (8 nodes on SDSC Comet). When we used MPI-based parallel I/O

through HDF5 together with MPI for communications we achieved nearly ideal

performance up to 384 cores (16 nodes on SDSC Comet) and speed-ups of two

orders of magnitude compared to the serial execution. The latter approach ap-790

pears to be a promising way forward as it directly builds on very widely used

technology (MPI-IO and HDF5) and echoes the experience of the wider HPC

community that parallel file I/O is necessary for efficient data handling.

The biomolecular simulation community suffers from a large number of tra-

jectory file formats with very few being based on HDF5, with the exception of795
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the H5MD format [78] and the MDTraj HDF5 format [20]. Our work suggests

that HDF5-based formats should be seriously considered as the default for MD

simulations if users want to make efficient use of their HPC systems for anal-

ysis. Alternatively, enabling MPI-IO for trajectory readers in libraries such as

MDAnalysis might also provide a path forward to better read performance.800

We summarized our findings in a number of guidelines for improving the

scaling of parallel analysis of MD trajectory data. We showed that it is feasible

to run an I/O bound analysis task on HPC resources with a Lustre parallel

filesystem and achieve good scaling behavior up to 384 CPU cores with an

almost 300-fold speed-up compared to serial execution. Although we focused805

on the MDAnalysis library, similar strategies are likely to be more generally

applicable and useful to the wider biomolecular simulation community.
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E. Lindahl, GROMACS: High performance molecular simulations

through multi-level parallelism from laptops to supercomputers, Soft-

wareX 1–2 (2015) 19 – 25. doi:10.1016/j.softx.2015.06.001.

56. D. A. Case, T. E. Cheatham, 3rd, T. Darden, H. Gohlke, R. Luo, K. M.1050

Merz, Jr, A. Onufriev, C. Simmerling, B. Wang, R. J. Woods, The amber

biomolecular simulation programs, J Comput Chem 26 (2005) 1668–1688.

doi:10.1002/jcc.20290.

57. J. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa,

C. Chipot, R. Skeel, L. Kale, K. Schulten, Scalable molecular dynamics1055

with NAMD, J Comput Chem 26 (2005) 1781–1802. doi:10.1002/jcc.

20289.

58. S. K. Burley, H. M. Berman, C. Bhikadiya, C. Bi, L. Chen, L. D. Costanzo,

C. Christie, J. M. Duarte, S. Dutta, et al., Protein Data Bank: the single

global archive for 3D macromolecular structure data, Nucleic Acids Re-1060

search 47 (2018) D520–D528. URL: http://dx.doi.org/10.1093/

nar/gky949. doi:10.1093/nar/gky949.

59. S. Van Der Walt, S. C. Colbert, G. Varoquaux, The numpy array: a

structure for efficient numerical computation, Computing in Science &

Engineering 13 (2011) 22–30. doi:10.1109/MCSE.2011.37.1065

60. D. L. Theobald, Rapid calculation of RMSDs using a quaternion-based

characteristic polynomial, Acta Crystallogr A 61 (2005) 478–80. doi:10.

1107/S0108767305015266.

61. J. Daily, A. Vishnu, B. Palmer, H. van Dam, D. Kerbyson, On the

suitability of MPI as a PGAS runtime, in: 2014 21st International1070

Conference on High Performance Computing (HiPC), 2014, pp. 1–10.

doi:10.1109/HiPC.2014.7116712.

49

http://dx.doi.org/10.1002/jcc.21287
http://dx.doi.org/10.1016/j.softx.2015.06.001
http://dx.doi.org/10.1002/jcc.20290
http://dx.doi.org/10.1002/jcc.20289
http://dx.doi.org/10.1002/jcc.20289
http://dx.doi.org/10.1002/jcc.20289
http://dx.doi.org/10.1093/nar/gky949
http://dx.doi.org/10.1093/nar/gky949
http://dx.doi.org/10.1093/nar/gky949
http://dx.doi.org/10.1093/nar/gky949
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1107/S0108767305015266
http://dx.doi.org/10.1107/S0108767305015266
http://dx.doi.org/10.1107/S0108767305015266
http://dx.doi.org/10.1109/HiPC.2014.7116712


62. J. Nieplocha, R. J. Harrison, R. J. Littlefield, Global arrays: A non-

uniform-memory-access programming model for high-performance com-

puters, Journal of Supercomputing 10 (1996) 169–189.1075

63. A. Collette, Python and hdf5, in: M. Blanchette, R. Roumeliotis (Eds.),

Python and HDF5, O’Reilly Media, Inc., 1005 Gravenstein Highway

North, Sebastopol, CA 95472., 2014.

64. S. L. Seyler, O. Beckstein, Sampling of large conformational transitions:

Adenylate kinase as a testing ground, Molec. Simul. 40 (2014) 855–877.1080

doi:10.1080/08927022.2014.919497.

65. S. Seyler, O. Beckstein, Molecular dynamics trajectory for bench-

marking MDAnalysis, online, 2017. URL: https://figshare.

com/articles/Molecular_dynamics_trajectory_for_

benchmarking_MDAnalysis/5108170. doi:10.6084/m9.1085

figshare.5108170.

66. E. Lindahl, B. Hess, D. van der Spoel, Gromacs 3.0: A package for molec-

ular simulation and trajectory analysis, J. Mol. Mod. 7 (2001) 306–317.

URL: http://www.gromacs.org. doi:10.1007/s008940100045.

67. D. Sp̊angberg, D. S. D. Larsson, D. van der Spoel, Trajectory NG:1090

portable, compressed, general molecular dynamics trajectories, J Mol

Model 17 (2011) 2669–85. doi:10.1007/s00894-010-0948-5.

68. D. E. Shaw, R. O. Dror, J. K. Salmon, J. P. Grossman, K. M. Macken-

zie, J. A. Bank, C. Young, M. M. Deneroff, B. Batson, K. J. Bowers,

E. Chow, M. P. Eastwood, D. J. Ierardi, J. L. Klepeis, J. S. Kuskin,1095

R. H. Larson, K. Lindorff-Larsen, P. Maragakis, M. A. Moraes, S. Piana,

Y. Shan, B. Towles, Millisecond-scale molecular dynamics simulations

on anton, in: SC ’09: Proceedings of the Conference on High Perfor-

mance Computing Networking, Storage and Analysis, ACM, New York,

NY, USA, 2009, pp. 1–11. doi:10.1145/1654059.1654099.1100

69. D. E. Shaw, J. P. Grossman, J. A. Bank, B. Batson, J. A. Butts, J. C.

Chao, M. M. Deneroff, R. O. Dror, A. Even, C. H. Fenton, A. Forte,

J. Gagliardo, G. Gill, B. Greskamp, C. R. Ho, D. J. Ierardi, L. Iserovich,

50

http://dx.doi.org/10.1080/08927022.2014.919497
https://figshare.com/articles/ Molecular_dynamics_trajectory_for_benchmarking_MDAnalysis/ 5108170
https://figshare.com/articles/ Molecular_dynamics_trajectory_for_benchmarking_MDAnalysis/ 5108170
https://figshare.com/articles/ Molecular_dynamics_trajectory_for_benchmarking_MDAnalysis/ 5108170
https://figshare.com/articles/ Molecular_dynamics_trajectory_for_benchmarking_MDAnalysis/ 5108170
https://figshare.com/articles/ Molecular_dynamics_trajectory_for_benchmarking_MDAnalysis/ 5108170
http://dx.doi.org/10.6084/m9.figshare.5108170
http://dx.doi.org/10.6084/m9.figshare.5108170
http://dx.doi.org/10.6084/m9.figshare.5108170
http://www.gromacs.org
http://dx.doi.org/10.1007/s008940100045
http://dx.doi.org/10.1007/s00894-010-0948-5
http://dx.doi.org/10.1145/1654059.1654099


J. S. Kuskin, R. H. Larson, T. Layman, L. Lee, A. K. Lerer, C. Li,

D. Killebrew, K. M. Mackenzie, S. Y. Mok, M. A. Moraes, R. Mueller,1105

L. J. Nociolo, J. L. Peticolas, T. Quan, D. Ramot, J. K. Salmon,

D. P. Scarpazza, U. B. Schafer, N. Siddique, C. W. Snyder, J. Spen-

gler, P. T. P. Tang, M. Theobald, H. Toma, B. Towles, B. Vitale, S. C.

Wang, C. Young, Anton 2: Raising the bar for performance and pro-

grammability in a special-purpose molecular dynamics supercomputer,1110

in: SC ’14: Proceedings of the International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis, 2014, pp. 41–53.

doi:10.1109/SC.2014.9.
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Appendix A. Additional Data

Figure A.11 shows performance of the RMSD task on PSC Bridges.
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Figure A.11: PSC Bridges: Performance of the RMSD task. Results are communicated back
to rank 0. Five independent repeats were performed to collect statistics. (a-c) The error
bars show standard deviation with respect to the mean. In serial, there is no communication
and hence no data point is shown for N = 1 in (c). (d) Compute tcomp, read I/O tI/O,
communication tcomm, ending the for loop tend loop, opening the trajectory topening trajectory,
and overheads toverhead1, toverhead2 per MPI rank; see Table 3 for definitions. These are data
from one run of the five repeats. MPI ranks 0 and 70 are stragglers.

Figure A.12 shows performance of the RMSD task on LSU SuperMIC.

Figure A.13 shows comparison of the parallel efficiency of the RMSD task

between different test cases on SDSC Comet, PSC Bridges, and LSU SuperMIC.1155

Figure A.14 shows how RMSD task scales with the increase in the number
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Figure A.12: LSU SuperMIC : Performance of the RMSD task with MPI. Results are com-
municated back to rank 0. Five independent repeats were performed to collect statistics.
(a-c) The error bars show standard deviation with respect to mean. In serial, there is no
communication and hence the data points for N = 1 are not shown in (c). (d) Compute
tcomp, read I/O tI/O, communication tcomm, ending the for loop tend loop, opening the tra-
jectory topening trajectory, and overheads toverhead1, toverhead2 per MPI rank; see Table 3 for
definitions. These are data from one run of the five repeats.

of cores when the trajectories are split using Global Arrays for communication

compared to using MPI for communications on LSU SuperMIC.

Appendix B. Effect of Rcomp/comm on Performance

In Section 6.3, we improved scaling limitations due to read I/O by splitting1160

the trajectory, but scaling remained far from ideal when MPI communication

was used; somewhat surprisingly, using Global Arrays lead to better scaling (see
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Figure A.13: Comparison of the parallel efficiency between different test cases on (a) SDSC
Comet (data for “MPI Parallel IO” are only shown up to 192 cores for better comparison
across different scenarios, see Fig. 6b for equivalent scaling data up to 384 cores), (b) PSC
Bridges, and (c) LSU SuperMIC. Five repeats were performed to collect statistics and error
bars show standard deviation with respect to mean.
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Figure A.14: LSU SuperMIC : Comparison of the performance of the RMSD task with subfiling
and using either using MPI (“MPI”) or Global Arrays (“ga”) for communication. For Global
Arrays, all ranks update the global array (ga put()) and rank 0 accesses the whole RMSD
array through the global memory address (ga get()). Five repeats were performed to collect
statistics. (a) Compute and I/O scaling versus number of processes. (b) Total time scaling
versus number of processes. (c) Speed-up. (a-c) The error bars show standard deviation with
respect to mean.

Section 6.4) because the effective communication cost was reduced. Although

we were not able to identify the reason for the better performance of Global

Arrays (it still uses MPI as a communicator), the results motivated an analysis1165

in terms of the communication costs. In addition to the compute to I/O ratio

Rcomp/IO discussed in Section 6.2 we defined another performance parameter

called the compute to communication ratio Rcomp/comm (Eq. 8).

We analyzed the data for variable workloads (see Section 6.2) in terms of the
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Rcomp/comm ratio. The performance clearly depended on the Rcomp/comm ratio1170

(Figure B.15). Performance improved with increasing Rcomp/comm ratios (Figure

B.15b and B.15a) even if the communication time was larger (Figure B.15c). Al-

though we still observed stragglers due to communication at larger Rcomp/comm

ratios (70× RMSD and 100× RMSD), their effect on performance remained

modest because the overall performance was dominated by the compute load.1175

Evidently, as long as overall performance is dominated by a component such as

compute that scales well, then performance problems with components such as

communication will be masked and overall acceptable performance can still be

achieved (Figures B.15a and B.15b).

Communication was usually not problematic within one node because of the1180

shared memory environment. For less than 24 processes, i.e., a single compute

node on SDSC Comet, the scaling was good and Rcomp/comm � 1 for all RMSD

loads (Figures B.15a and B.15b). However, beyond a single compute node (> 24

cores), scaling appeared to improve with increasing Rcomp/comm ratio while the

communication overhead decreased in importance (Figures B.15a and B.15b).1185
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Figure B.15: Effect of the ratio of compute to communication time Rcomp/comm on scaling
performance on SDSC Comet. (a) Scaling for different computational workloads. (Same as
Figure 3a.) (b) Change in Rcomp/comm with the number of processes N for different workloads.
(c) Comparison of communication time for different RMSD workloads. Five repeats were
performed to collect statistics and error bars show standard deviation with respect to mean.
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Appendix C. Performance of the ChainReader for Split Trajectories

In section 6.3.1 we showed how subfiling (splitting the trajectories) would

help to overcome I/O and improve scaling. However, the number of trajec-

tories may not necessarily be equal to the number of processes. For example,

trajectories from MD simulations on supercomputers are often kept in small seg-1190

ments in individual files that need to be concatenated later to form a trajectory

that can be analyzed with common tools. For subfiling such segments might be

useful but making sure that the number of processes is equal to the number of

trajectory files will not always be feasible. MDAnalysis can transparently repre-

sent multiple trajectories as one virtual trajectory using the ChainReader. This1195

feature is convenient for serial analysis when trajectories are maintained as seg-

ments. In the current implementation of ChainReader, each process opens all

the trajectory segment files but I/O will only happen from a specific block of

the trajectory specific to that process only.

We wanted to test if the ChainReader would benefit from the gains measured1200

for the subfiling approach. Specifically, we measured if the MPI-parallelized

RMSD task (with Np ranks) would benefit if the trajectory was split into Nseg =

Np trajectory segments, corresponding to an ideal scenario.

In order to perform our experiments we had to work around an issue with

the XTC format reader in MDAnalysis that was related to the XTC random-1205

access functionality that the MDAnalysis.coordinates.XTC.XTCReader

class provides: The Gromacs XTC format [66, 67] is a lossy-compression, XDR-

based file format that was never designed for random access and the compressed

format itself does not support fast random seeking. The XTCReader stores per-

sistent offsets for trajectory frames to disk [18] in order to enable efficient access1210

to random frames. These offsets will be generated automatically the first time a

trajectory is opened and the offsets are stored in hidden ∗.xtc offsets.npz files.

The advantage of these persistent offset files is that after opening the trajectory

for the first time, opening the same file will be very fast, and random access is

immediately available. However, stored offsets can get out of sync with the tra-1215
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Figure C.16: Comparison on the performance of the MDAnalysis ChainReader for the RMSD
task on SDSC Comet when the trajectories are split; for the communication step either
collective MPI (“MPI”) or Global Arrays (“ga”) was used. In case of Global Arrays, all ranks
update the global array (ga put()) and rank 0 accesses the whole RMSD array through the
global memory address (ga get()). Five repeats were performed to collect statistics. (a)
Compute and I/O scaling versus number of processes. (b) Total time scaling versus number
of processes. (c) Speed-up. (a-c) The error bars show standard deviation with respect to the
mean. (d-e) Compute tcomp, read I/O tI/O, communication tcomm, access to the whole global
array by rank 0 tAccess Global Array, ending the for loop tend loop, opening the trajectory
topening trajectory, and overheads toverhead1, toverhead2 per MPI rank. (See Table 3 for the
definitions.)

jectory they refer to. To prevent the use of stale offset data, trajectory file data

(number of atoms, size of the file and last modification time) are also stored

for validation. If any of these parameters change the offsets are recalculated. If

the XTC changes but the offset file is not updated then the offset file can be

detected as invalid. With ChainReader in parallel, each process opens all the1220

trajectories because each process builds its own MDAnalysis.Universe data

structure. If an invalid offset file is detected (perhaps because of wrong file mod-
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ification timestamps across nodes), several processes might want to recalculate

these parameters and rebuild the offset file, which can lead to a race condition.

In order to avoid the race condition, we removed this check from MDAnaly-1225

sis for the purpose of the measurements presented here, but this comes at the

price of not checking the validity of the offset files at all; future versions of MD-

Analysis may lift this limitation. We obtained the results for the ChainReader

with this modified version of MDAnalysis that eliminates the race condition by

assuming that XTC index files are always valid.1230

Figure C.16 shows the results for performance of the ChainReader for the

RMSD task using either collective MPI or Global Arrays (GA) for the commu-

nication step. With GA good strong scaling performance was observable up to

144 cores (Figure C.16c); without GA, strong scaling plateaued for more than

92 cores. In both cases, strong scaling performance was worse than what was1235

achieved when each MPI process was assigned its own trajectory segment as

described in in Section 6.3.1. The strong scaling performance did not suffer be-

cause of the computation and the read I/O because both tcomp and tI/O showed

excellent strong scaling up to 196 cores (Figure C.16a). Instead the time for

ending the for loop tend loop, which includes the time for closing the trajectory1240

file, and opening the trajectory topening trajectory appeared to be the scaling bot-

tleneck. These results differed from the subfiling results (section 6.3.1) where

neither tend loop nor topening trajectory limited scaling (Figures 5d and 5e).

Although we did not further investigate the deeper cause for the reduced scal-

ing performance of the ChainReader, we speculate that the primary problem is1245

related to each MPI rank having to open all trajectory files in their ChainReader

instance even though they will only read from a small subset. For Np ranks and

Nseg file segments, in total, NpNseg file opening/closing operations have to be

performed. Each server that is part of a Lustre filesystem can only handle a

limited number of I/O requests (read, write, stat, open, close, etc.) per second.1250

A large number of such requests, from one or more users and one or more jobs,

can lead to contention for storage resources. For Np = Nseg = 100, the Lus-

tre file system has to perform 10,000 of these operations almost simultaneously,
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which might degrade performance.
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