
Optimized Communication using the SOAP Infoset
For Mobile Multimedia Collaboration Applications

Sangyoon Oh1,2, Hasan Bulut1,2, Ahmet Uyar1,3, Wenjun Wu1, Geoffrey Fox1,2

1 Community Grids Computing Laboratory, Indiana University, USA
2 Computer Science Department, Indiana University, USA

3 Department of Electrical Engineering and Computer Science, Syracuse University, USA
{ohsangy, hbulut, wewu, gcf}@indiana.edu, auyar@syr.edu

Indiana University Research Park, 501 N Morton St. 222, Bloomington, IN, 47408, USA
Fax: 1-812-856-7972

ABSTRACT

Mobile computing is growing in popularity due to
continuing improvements in mobile devices and their
connectivity. Collaboration systems enable users at
geographically distributed locations to collaborate each
other. Community Grids Lab’s GlobalMMCS is a Web
Services based, integrated videoconferencing system that
allows heterogeneous clients to join the same session.
Integration of mobile devices into the Web Services based
collaboration system will give mobility to users and
heterogeneity to the system. However, there are
performance limitations if we use the current SOAP
approaches to integrate mobile applications with Web
Services based collaboration systems, especially for
multimedia applications. In this paper, we propose a SOAP
Infoset preserving Flexible Representation and its
specialization for mobile computing environment –
Handheld Flexible Representation (HHFR). We provide a
flexible representation of binary encoding with a
description file for message format and include a QoS
framework in the architecture, such as reliability and
security.

KEYWORDS
Mobile Computing, SOAP Infoset, Performance, XGSP,
Audio/Video Conferencing

1. INTRODUCTION

Mobile computing and Web Services are becoming popular
in collaboration systems, with mobile computing adding

heterogeneity to collaboration systems and Web Services
providing interoperability. Recently, information access
from mobile phones has become easier with the widespread
availability of packet-switched, always-on networks. As
cellular phones are getting "smarter" and PDAs are
becoming more "connected", more and more mobile
devices are sharing resources with other distributed
systems. Web Services technology helps us to integrate
independently developed collaboration system components
on various platforms in an interoperable distributed system.
By using open standards – SOAP and WSDL, process
invocations and data exchanges between software
applications can be written in different programming
languages.

However, the current SOAP approaches to Web
Services possess performance limitations in integrating
mobile applications with Web Services-based collaboration
systems, especially for multimedia applications. The
inevitable mobile computing characteristics – narrow
bandwidth, limited computation, and small memory space –
make processing SOAP messages (parsing, validation, and
transformation) consume valuable resources [1]. In
addition, multimedia applications need and consume
substantial resources because of their high rate data
exchange and media processing. High performance SOAP
encoding is an open research area [2], [3], [4], and Web
Services in mobile environment also need to overcome
such performance limitations.

We propose a SOAP Infoset [5] preserving Flexible

Representation and its specialization for mobile computing
environment – Handheld Flexible Representation (HHFR).
Our approach faithfully preserves the SOAP semantics
with a binary data format for high performance message

transmission and processing. DFDL [6] allows us to
generate any representation from binary data format
specified by the DFDL description language and processed
by the associated library. Alternatively conventional
SOAP/XML encoding is one of message representation
option to support conventional Web Services. In addition
to performance issues, HHFR includes a QoS framework in
the architecture to support reliability and security.

This paper describes a background of our project, our

proposed flexible representation in general terms, and gives
an overall architecture for our specific Handheld Flexible
Representation that is suitable for mobile application with a
stream of messages. Later, we give an example of an
Audio/Video mobile collaboration application in Flexible
Representation of Web Services. Conclusion and future
works are in the final section.

2. BACKGROUND

There are several important projects from academia and
industry that aim to overcome performance limitations of
the SOAP encoding. Extreme! Lab at Indiana University
researched SOAP negotiation and binary data transfers [2],
[3] for the scientific computing field. Large data sets
including arrays are common in scientific computing,
which is one of the most important areas of grid
computing. Thus, the condition they are facing with the
conventional Web Services is similar to the constraint of
mobile computing. Both need to overcome performance
limitations of SOAP.

The W3C Workshop on Binary Interchange of XML
Information Item Sets (Infoset) [7] lists dozens of position
papers from various institutes [4], [8], [9]. The purpose of
the workshop is to study methods to compress XML
documents. Sun's Fast Web Services [4] uses a binary
encoding for the SOAP payload. The higher level protocols
(WSDL for contract definition of service etc.) remain
unchanged, thus you could use standard SOAP-XML for
development, and have a switch that turns on the binary
protocol for production deployment. DFDL [6] is a
descriptive language that is proposed to describe a file or
content in a binary format for Grid computing. The
language is being designed to be processable via
standardized parsers that read a DFDL description, along
with a file or a stream of binary data, to produce structured
output - XML. Description files in DFDL and associated
library provide us to encode/decode binary data into/from
XML or any preferred representation.

Handheld Message Service (HHMS) [10] is a general

mobile communication framework that we developed to

help mobile application developers. HHMS provides a core
subset API of JMS for mobile application, allowing them to
be seamlessly connected to a conventional
publish/subscribe system using a small foot-print user
library and a server-side gateway. An advantage of using
publish/subscribe system in wireless environment is studied
in many projects [11], [12]. It decouples message sender
and receiver by delivering messages to a topic not a static
address. Message queuing in conjunction with the
publish/subscribe paradigm of HHMS provides a reliable
message delivery mechanism. HHFR is a part of HHMS
programming model that provides a base communication
protocol for mobile devices. The session chooses its
transport protocol at the beginning, and the stream of
messages is transmitted over the chosen transport.
Currently our HHMS implementation provides two
transport protocol choices - TCP and HTTP.

Oracle Web Conferencing is a real-time web

conferencing system offered by Oracle Real Time
Collaboration (RTC) software [13]. It provides co-
browsing between collaborators, whiteboard usage, polling,
chatting, and voice streaming. It is a good example of
current collaboration systems movement towards Web
Services. By integrating disparate and independently
developed applications using Web Services, collaboration
systems will have rich features while avoiding redundant
developments. RTC Integration Services uses Web
Services paradigm of sending XML messages to facilitate
easy integration between existing business applications.

We have developed XML based General Session

Protocol (XGSP) [14], [15], a Web Services based
conference control framework, to integrate various
videoconferencing systems such as H.323-based systems,
AccessGrid [16], and SIP [17] -based systems. Any
MBONE tool can join a XGSP session to send/receive A/V
stream. In addition to real-time videoconferencing clients,
XGSP also supports streaming media clients so that those
streaming media clients can receive real-time
videoconferencing streams. RealPlayers on cellular phones
can receive streams in videoconferencing sessions in
RealMedia format.

3. GENERAL FLEXIBLE
REPRESENTATION

A data model and its representation is a key factor for
interchanging complex data format in distributed
application developments. There is “no silver bullet”
representation for every application domain. Thus, in
application developments, it is important to have a good
balance between data transparency for interoperability and

data format efficiency for the performance. For instance,
XML is a human-readable, ubiquitous, and self-descriptive
form of the data representation. SOAP provides the
message architecture to allow independently developed
disparate software modules (components) interact
seamlessly. It, however, imposes serious performance
overheads such as data conversions from/to textual format
and parsing the structure, particularly in applications, such
as A/V conferencing, mobile applications, and high-
performance parallel computing. It is hard to address this
problem on the individual message level, but it appears to
be possible to combine SOAP structure and binary message
format in high performance stream processing.

3.1 Flexible Representation of Data

Our Flexible Representation for a SOAP Infoset defines a
collection of schemes that includes a binary encoding
scheme of SOAP message, a reliable messaging scheme, a
security model and a negotiation specification. It
demonstrates an efficient and reliable way of transmitting
messages in Web Services. The Handheld Flexible
Representation (HHFR) is a specialization of this for
mobile computing environment. Representations are
transformed by filters. Filter F12 transforms Representation
A1 to A2. For instance, a white board application in Web
Services needs a pair of points to draw a line while if you
draw a wire-line trace, you might need a sequence of point
data. An example XML representation of wire-line trace
data for a white board application, which we name it as
representation A1, can be as follows:

<wb:wireline>
 <wb:points>
 <wb:x>0</wb:x>
 <wb:y>0</wb:y>
 </wb:points>

 <wb:points>
 <wb:x>100</wb:x>
 <wb:y>100</wb:y>
 </wb:points>
</wb:wireline>

A binary format representation with tokens could be

&$0$0......$1100100$1100100& – a representation A2
(after removing some zeros). A description file of the filter
F12 transforms the representation A1 to A2 using some well
defined scheme. For example, a description file in DFDL
for the above XML data can be as follows:

<xs:complexType name="Wireline">
 <xs:annotation><xs:appinfo>

<representation repType="binary"
 byteOrder="bigEndian"/>

 </xs:appinfo></xs:annotation>
 <xs:sequence minOccurs="number of points"
 maxOccurs="number of points">
 <xs:element name="x" type="dfdl:binaryInt"/>
 <xs:element name="y" type="dfdl:binaryInt"/>
 </xs:sequence>
</xs:complexType>

 The idea works best in a series of messages – a stream
in Web Services. They have a data representation that has a
WSDL schema and includes a SOAP message header that
is largely unchanged (except for message label/number)
throughout the stream in many cases. By separating
representation and data, only the changing data and this in
a high-performance binary representation is exchanged.
The representation – DFDL structure of the data, and the
unchanging parts of the SOAP message header are
transported only at the beginning of stream. This is
analogous to process in WS-SecureConversation where all
messages in a stream share a security approach negotiated
at the start of the stream.

3.2 Negotiation of Session Characteristics

The initial negotiation is a stage where two end-points
exchange characteristics of the following stream where a
stream for us is a special case of a session. For example, in
a HHFR session between a mobile device and a gateway,
the mobile device that is capable of Flexible Representation
initiates negotiation with the mobile gateway. Then,
Flexible Representation-capable HHMS Gateway receives
the negotiation in a conventional SOAP message format
over the HHMS transport. Subsequently, the gateway
responds to the negotiation request with its capability in
SOAP format. A capability response includes a data format
for exchange, a reliable messaging scheme, and a security
model. The agreed message format is used throughout the
session. In addition to negotiating stream configuration, the
header of stream is stored in Context Store. Currently, we
use an ad-hoc scheme to store Context information. We
intend to use the OASIS WS-Context [18] or any
specification that the community adopts for such dynamic
meta-data.

4. HANDHELD FLEXIBLE
REPRESENTATION SOFTWARE
ARCHITECTURE

In this section, we will briefly describe the software
architecture of HHFR. Since binary messages are
exchanged as a stream in the HHFR session, we need to

change the representation of conventional Web Service
specifications in areas like reliable messaging. Thus, we
use customized HHFR schemes to ensure reliability and
security model as well as SOAP Infoset encoding. At the
beginning of a session, two end-points negotiate the desired
quality of services (QoS) such as a reliable messaging
scheme and security as well as an encoding/decoding
format for binary messages. Fig. 1 is an overview of HHFR
implemented as a part of HHMS in Web Services.

4.1 Anatomy of Message in Flexible
Representation

 Message in our proposed binary form of SOAP Infoset
achieves SOAP conformance using DFDL encoder/decoder
and one-time transport of the SOAP message header. Later,
the SOAP header, locally stored in gateway context server,
is bound together with SOAP encoded body part to form a
conventional SOAP message. The message encoding and
decoding depend on a message format description file in
DFDL. The message generation components are shown in
Fig. 2. Each context block has a “pointer” to the place
where context is stored (URI in the context store) that is
different by each stream. The context has another “pointer”
to the particular Flexible Representation used (URI -
<xmlns:xs=http://grids.ucs.indiana.edu/FlexRep/>). It is
similar to XML/SOAP namespace [19] and includes the
description of data structure and negotiating scheme. Fig. 3
shows the context block.

 HHFR uses two different level of message structure.
The first is a low level application independent HHMS-
level structure. The IPv4 [20] packet header is defined by
bits, such as the first 4 bits for version. Our HHMS
implementation defines a message format similar to the
way IPv4 defines header. It defines the first integer as
session ID, the second integer as state flag, and so on.

Hence, the format can not be changed without new system
deployment.

Context and
DFDL

Based Mapping

NaradaBrokering
Optimized Communication

Context Generation on
First Message :
DFDL
SOAP Header
Stream(Session) Info

Preferred View on Mobile Application
In Memory version of HHFR

XML/SOAP
for

Interoperability Optional

HHFR

Pointer (URI)

Figure. 2. Relationship of different forms
of SOAP messages and their defining context

Web service interface/Grid

Web Service
Provider

HHMS
Gateway

SOAP over
HTTP / JMS

Web Service
Requestor

Handheld Flexible
Representation

Web Service
Provider

Web Service
Provider

Figure. 1. Flexible Representation for mobile

devices

For the higher level structure, however, we use a
descriptive way to represent the application SOAP Infoset
as a binary message. A ContextHandler - a filter which
utilizes DFDL reader/writer (encoder/decoder) - transforms
a SOAP message or message capturing SOAP Infoset in
any representation to a binary message format with the
message format described in a DFDL file. During a
message generation, a transformed binary SOAP message
is put in a message block as a payload. Fig. 4 shows an
example of message block in our design. Defining a
message format by a description file provides a flexible
way of changing message format in dynamic fashion that
we can hardly expect from the base HHMS data encoding
scheme. Of course processing a description file involves a
possible parsing and validating error check.

Representation
Specification

(uri)

Payload

SessionID

State Flag

EventID

Context
Block

MessageID

TopicID

Figure. 3. Context block Figure. 4. Message block

Mobile clients of any application that could be bound
to a JMS (Java Message Service) [21] or a
NaradaBrokering [22] transport are capable of using
HHFR. The current HHMS API provides a core subset of
the JMS API. Therefore, applications where a message
format has a payload and zero or more properties are

naturally supported by our architecture. Subscribing to a
JMS or NaradaBrokering topic and later unsubscribing
defines joining and leaving sessions or starting and
stopping streams.

4.2 HANDLERS

Handlers are system modules in the architecture that
implement a context mapping (encoding/decoding
message) and QoS issues. ContextHandler is implemented
as a filter. It encodes and decodes messages based on the
context in the context store. The conventional SOAP is one
encoding option in ContextHandler. DFDL generates
reader/writers from associated library for transforming
representation between formats specified by the DFDL
syntax file. A dynamic generation of mapping code is
important to support general Web Services applications and
their mobile applications without any new static code
deployment.

WS-ReliableMessaging [23] is a quality of service

specification from IBM and Microsoft. It is a transport
independent SOAP specification and the implementation of
this specification traces messages and assures delivery. We
implement WS-RM on the message stream so that
ReliabilityHandler traces each message block and ensures
the guaranteed message delivery. The basic idea is
optimized use of ACK (positive acknowledgement of
receiving message) and NAK (negative acknowledgement
of receiving message), reducing ACK and sending NAK
when receiver detects a missing message ID. Each endpoint
needs to have an RM processor and this must be
compatible with overall reliable messaging so that the
message sender can send message without prior knowledge
about one type of receivers.

SOAP inherits few intrinsic weaknesses of XML [24],

[25]. The new Web Service security proposal – WS-
Security [26] describes how to authenticate two end-points
to each other and to check the message integrity and
message confidentiality. In our Flexible Representation, we
have to be careful to apply XML level security - WS-
Security - because there is no XML message format
exchange throughout the session except the initial
negotiation stage. We simplify a complex transaction
model of WS-Security. The SecurityHandler use current
existing Internet protocols and transport level encryption
mechanisms to secure a session between the gateway and
the mobile application. It participates in the negotiation and
authenticates with HTTP-based authentication, such as
HTTP Basic and HTTP Digest. And for the message
encryption, the HTTP session use a HTTPS support from
J2ME MIDP 2.0 [27]. For the non-HTTPS device, custom

authentications and encryptions can be used with a
lightweight encryption library [28].

5. EXAMPLE: A/V CONFERENCING IN
MOBILE COMPUTING ENVIRONMENT

Global Multimedia Collaboration System (GlobalMMCS)
is a prototype system designed to verify and refine our
XGSP conference control framework. GlobalMMCS with
mobile clients depicts a good example of our approach - the
Flexible Representation for a SOAP Infoset and HHFR.
Since its videoconferencing has utilized the idea when it is
designed, the session integrated with HHFR is an example
of a Flexible Representation system. In particular it uses a
modification of the RTP data format (adding a topic
pointer) as an optimized flexible representation.

Fig. 5 shows overall architecture of GlobalMMCS.
GlobalMMCS prototype is built on the NaradaBrokering
middleware. NaradaBrokering nodes route audio/video
events to various communities and collaboration clients.

NaradaBrokering XGSP
Clients

Media
Server

Session
Server

 NB Link
RTP Link

XGSP
Gateways

(H.323, SIP,
Streaming,

HHMS)

H.323, SIP,
Streaming,

Mobile
Clients

AccessGrid
Venues

Web
Server

Client - Gateway
Communication

Figure. 5. GlobalMMCS architecture

A/V processing components such as video mixer,

audio mixer and image grabber servers are developed using
Java Media Framework [29] (JMF). We use the protocol
stacks OpenH323 [30] and NIST-SIP [31] to implement the
H.323 gateway and SIP gateway. The XGSP Session
Server manages real-time A/V sessions. It receives
messages from gateways and web server through different
control topics on the NaradaBrokering. The XGSP web
server provides an easy-to-use web interface to schedule
meetings, join XGSP conferences and for administrators to
perform the tasks of the system management. The
NaradaBrokering infrastructure provides a scalable
distributed messaging platform for RTP communications in
these A/V collaboration applications. Any RTP client or
server who wants to join XGSP session can

subscribe/publish to the provided topics to receive and send
A/V streams.

In order to integrate mobile devices to

videoconferencing sessions the HHMS Gateway plays an
important role as a Web Service interpolating between
mobile and desktop Grids. Due to the limited capabilities of
mobile devices, such as limited bandwidth, processing and
memory capability, we cannot expect them to function with
the power of a A/V client on a desktop PC and the HHMS
Gateway provides the illusion to GlobalMMCS that the
mobile clients are fully functional.

Web Services Interface
(NaradaBrokering)

HHMS
Gateway

Media
Server

Session
Server

SOAP over NB

RTP over NB

HHFR

Mobile Device
(Camera Application)

Figure. 6. Interactions between HHMS gateway

and GlobalMMCS

A cell phone camera application for cellular phones
can be provided as an example for this. Fig. 6 depicts a
scenario that includes mobile device, HHMS Gateway and
other components in GlobalMMCS. We developed a
camera application to develop, implement and refine
HHFR. We used Nokia 3650 [32] which has an embedded
camera and MIDP 1.0 installed on it. Taking a picture and

sending it to a server take several seconds. The image size
is also 160x120 pixels. In order to send them to a
videoconferencing session, we need to provide these
pictures as continues video stream. We developed an
application using JMF library to achieve image-to-stream
conversion. This module also resizes the images by a factor
of 2 before the conversion. The result video stream will be
320x240 pixels in size. The application then pushes the
stream to the media server. The steps can be summarized as
follows:

1. Camera application sends a SOAP message to HHMS

gateway including ID of the session which client wants
to join, including client ID. These are required to send
JoinSession message to XGSP Session Server. HHMS
gateway sends JoinSession message.

2. Upon receiving the reply from XGSP Session Server,
HHMS Gateway replies to the camera application

3. Camera application takes pictures at predefined time
intervals and put the image data inside message block
as a payload. Session ID, client ID, topic ID and event
ID are included as well. Event ID is used as a sequence
number for images.

4. HHMS gateway takes the payload and forwards the
image data to the corresponding image-to-stream
converter module. The converter module is configured
by HHMS gateway during the initialization step.

5. When the camera application wants to leave the
session, it sets the state flag in message block to tell
HHMS gateway that user wants to leave the session. In
that case, camera application can leave the payload
empty.

6. If the state flag is set, HHMS gateway sends
LeaveSession message to XGSP Session Server.

7. Session Server releases resources dedicated on Session
Server and Media Server after receiving LeaveSession

(a) (b) (c)
Figure. 7. A/V mobile prototype demo pictures

message from HHMS Gateway.

A similar scenario can be followed to send images

from streams in the videoconferencing sessions to the
mobile device. But this one requires a filter similar to
XGSP Streaming Gateway to convert streams into a
sequence of images.

Image shown in Fig. 7a shows a RealMedia stream

played in RealPlayer on cellular phone. The original stream
is a stream in XGSP session and the stream played on the
cellular phone is converted by XGSP Streaming Gateway.
Fig. 7b and 7c show the stream produced from the images
captured by the camera application on the cellular phone.
Fig. 7b shows it in VIC (Videoconferencing Tool used in
AccessGrid) panel which shows all of the streams in that
AccessGrid session. Fig. 7c shows only the stream
produced from the images received from the camera
application in a VIC frame. The captured images produced
by the camera application on the cellular phone are
converted into H.263 video stream format by an image-to-
stream converter module developed using JMF library.

6. COMPARISON

Our Flexible Representation for SOAP Infoset tries to
make more general and higher quality-of-service solution:
W3C’s MTOM [33] and XOP [34] preserve the basic
structure of XML documents. It keeps tagged data model in
the MIME format and only document contents are encoded
in any binary format. Thus, it removes a data conversion
problem of the conventional SOAP. It, however, imposes
the same parsing overhead because it preserves hierarchical
structure of its contents. We rather serialize SOAP/XML
structure in binary format with tokens, but still keep data
transparency with the data description file. Sun’s Fast Web
Services uses Abstract Syntax Notation 1 (ASN .1) [35]. Its
schemas allow defining various binary or textual formats,
still it doesn’t use universal format of data model - XML
schemas. Extreme! Lab shares the idea of negotiated binary
protocol for scientific data with our Flexible
Representation in an efficient way. Though, since their
current implementation is focusing on high-performance
scientific data processing, it is lack of general schema
model for binary data format.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a new paradigm of Web Services
for mobile computing in collaboration systems. We
describe our approach to SOAP Infoset encoding that
preserves the SOAP semantic with a binary format for high
performance message transmission and processing in

collaboration systems while avoiding performance
bottlenecks of SOAP, such as data conversion and parsing.
The quality of services in the software architecture
provides reliability and security model. Handheld Flexible
Representation addresses specialized issues, like reliability
and security model in intermittent and vulnerable wireless
communications. Generally, HHFR scheme offers
performance advantages in most of collaboration
applications that is session based including Audio/Video
Conferencing and shared Whiteboard.

Handheld Flexible Representation is currently partially
implemented. The negotiation prototype is implemented
over HHMS. Handlers are going to be implemented. The
performance measurements are expected to show
effectiveness of HHFR will be followed.

XGSP framework and its implementation

GlobalMMCS enable multiple communities to collaborate
with each other. Integrating mobile devices to
GlobalMMCS expands collaboration systems to mobile
environment. Mobile clients are able to send data (audio,
video, etc.) to real-time collaboration sessions.

A dynamic resource discovery and a dynamic

generation of Web Service client interface which would be
generated by WSDL (Web Services description language)
is out of scope of this paper. We assume that mobile clients
have enough knowledge of Web Services to generate
proper SOAP message. Currently, we use an adhoc scheme
to store Context information. We intend to use the OASIS
WS-Context or whatever the community adopts for such
dynamic meta-data. Since a negotiation stage and a binary
message reading/writing add certain overhead, we need a
close investigation on the threshold of the architecture.
This benchmark will lead us to the domain that we can get
advantages of using Flexible Representation. Additionally,
we need to investigate how much overhead introduced by
adding QoS features with the same reason.

REFERENCES

[1] J. Kobielus, “Wrestling XML Down To Size: Reducing The

Burden On Networks And Servers”, Business
Communications Review, Dec. 2003, p. 35-38.

[2] K. Chiu, M. Govindaraju, and R. Bramley, “Investigating the

Limits of SOAP Performance for Scientific Computing”,
Proc. of 11th IEEE International Symp on High Performance
Distributed Computing HPDC-11 2002, July 2002, p. 256.

[3] M. Govindaraju, A. Slominski, V. Choppella, R. Bramley, D.

Gannon, “Requirements for and Evaluation of RMI Protocols
for Scientific Computing”, Proc. of SC2000, Nov. 2000.

[4] P. Sandoz, S. Pericas-Geertsen, K. Kawaguchi, M. Hadley,

and E Pelegri-Llopart, “Fast Web Services”, Aug. 2003,
http://java.sun.com/developer/technicalArticles/WebServices
/fastWS/

[5] World Wide Web Consortium, XML Information Set, Feb.

2004, http://www.w3.org/TR/xml-infoset/

[6] M. Beckerle, and M. Westhead, “GGF DFDL Primer”,

http://www.gridforum.org/Meetings/GGF11/Documents/DF
DL_Primer_v2.pdf

[7] W3C Consortium, Report from the W3C Workshop on

Binary Interchange of XML Information Item Sets, Sep.
2003, http://www.w3.org/2003/08/binary-interchange-
workshop/

[8] J. H. Gailey, “Sending Files, Attachments, and SOAP

Messages Via Direct Internet Message Encapsulation”, Dec.
2002.

[9] D. Brutzman, and A. D. Hudson, “Cross-Format Schema

Protocol (XFSP)”, Sep. 2003.

[10] S. Oh, G. C. Fox, and S. Ko, “GMSME: An Architecture for

Heterogeneous Collaboration with Mobile Devices”, Proc. of
MWCN2003, Oct. 2003.

[11] P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec, “The

Many Faces of Publish/Subscribe,” ACM Computing
Surveys, vol. 35, no. 2, Jun. 2003, pp. 114-131.

[12] M. Caporuscio, A. Carzaniga, and A. Wolf, “Design and

Evaluation of a Support Service for Mobile, Wireless
Publish/Subscribe Applications,” IEEE Trans. on Software
Engineering, vol. 29, no. 12, Dec. 2003, pp. 1059 – 1071.

[13] Oracle White Paper, “Oracle Web Conferencing Real-Time

Collaboration System Architecture Overview”, Oct. 2003.

[14] W. Wu, G. Fox, H. Bulut, A. Uyar, H. Altay “Design and

Implementation of a Collaboration Web-services System”,
Special issue on Grid comp. in Journal of Neural Parallel
and Scientific Computations, Vol 12. No. 3 ,Sep. 2004

[15] G. Fox, W. Wu, A. Uyar, H. Bulut, and S. Pallickara,

“Global Multimedia Collaboration System”, 1st
International Workshop on Middleware for Grid Computing,
Rio de Janeiro, Brazil, June 2003.

[16] AccessGrid, http://www.accessgrid.org

[17] Session Initiation Protocol (SIP), RFC 2543,

http://www.ietf.org/rfc/rfc2543.txt

[18] M. Little at al, “Web Services Context (WS-Context) version

1.0”, July 2003.

[19] World Wide Web Consortium, Namespaces in XML 1.1, Feb.

2004, http://www.w3.org/TR/xml-names11/

[20] Information Science Institute at University of Southern

California, RFC 791, http://www.ietf.org/rfc/rfc791.txt

[21] M. Hapner et al, “Java Message Service Specification”,

version 1.1, Sun Microsystems Inc., Apr. 2002.

[22] S. Pallickara and G. Fox, “NaradaBrokering: A Middleware

Framework and Architecture for Enabling Durable Peer-to-
Peer Grids,” Proc. of ACM/IFIP/USENIX International
Middleware Conference Middleware, 2003, pp 41-61.

[23] IBM, BEA, Microsoft, and TIBCO Software, “Web Services

Reliable Messaging Protocol, Mar. 2004.

[24] B. Siddiqui, “Web Services Security”, Mar. 2003,

http://webservices.xml.com/pub/a/ws/2003/03/04/security.html

[25] B. Schneier, “Crypto-Gram News Letter - SOAP”, June 2000,

http://www.schneier.com/crypto-gram-0006.html

[26] IBM, Microsoft, and Verisign, Web Services Security, Apr.

2002, http://www-
106.ibm.com/developerworks/webservices/library/ws-secure/

[27] Sun Microsystems, Mobile Information Device Profile

(MIDP) http://java.sun.com/products/midp/

[28] Bouncy Castle, http://www.bouncycastle.org

[29] Sun Microsystems, Java Media Framework 2.1, 2001

http://java.sun.com/products/javamedia/jmf/2.1.1/index.html

[30] The OpenH323 Project, http://www.openh323.org/

[31] National Institute of Standards and Technology,

http://dns.antd.nist.gov/proj/iptel/

[32] Nokia 3650, http://www.nokia.com/nokia/0,,2273,00.html

[33] World Wide Web Consortium, SOAP Message Transmission

Optimization Mechanism (MTOM), Nov. 2004.

[34] World Wide Web Consortium, XML-binary Optimized

Packaging (XOP), Aug. 2004.

[35] International Telecommunication Union, Abstract Syntax

Notation One (ASN 1), http://asn1.elibel.tm

