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Abstract  

  
 Two characteristic run-time communication libraries of 

HPJava are developed as an application level library and 
device level library. A high-level communication API, 
Adlib, is developed as an application level communication 
library. This communication library supports collective 
operations on distributed arrays. The mpjdev API is a 
device level underlying communication library for 
HPJava. This library is developed to perform actual 
communication between processes.  

 
 
 
 
 
 
 
 
  
 The paper describes the novel issues in the 

implementation of device level library on different 
platforms, and gives comprehensive benchmark results on 
a parallel platform. All software developed in this project 
is available for free download from www.hpjava.org. 

 
 

 

  Procs2 p = new Procs2(P, P) ;  
  on(p) {  
    Range x = new BlockRange(M, p.dim(0)) ;  
    Range y = new BlockRange(N, p.dim(1)) ;  
 
    float [[-,-]] a = new float [[x, y]], b = new float [[x, y]],  
                       c = new float [[x, y]];  
 
    ... initialize values in `a', `b'  
 
    overall(i = x for :)  
      overall(j = y for :)  
        c [i, j] = a [i, j] + b [i, j] ;  
  } 
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1. Introduction 
 
HPJava [1, 2, 3] is the authors' environment for SPMD 
(Single Program, Multiple Data) parallel programming---
especially, for SPMD programming with distributed 
arrays---in Java. It includes a set of syntax extension to 
Java for dealing with multi-dimensional distributed 
arrays, plus a set of communication libraries. The HPJava 
language and the high-level collective library Adlib [4] 
has been described in several earlier papers. This paper 
will concentrate more on the implementation of device 
level underlying communication library on different 
platforms.  
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The mpjdev API is designed with the goal that it can be 
implemented portably on network platforms and 
efficiently on parallel hardware. Unlike MPI which is 
intended for the application developer, mpjdev is meant 
for library developers. In this paper we will illustrate how 
mpjdev can be naturally be implemented in terms of the  
Figure 1: A parallel matrix addition.
s of the HPJava language. The mpjdev API is a 
l Java messaging platform which has the 
 to be used as a common API for implementing 
like Adlib and its relatives. 

2 briefly reviews the HPJava language and 
 a few illustrative programming fragments. 
3 discussed collective communication in HPJava. 
4 describes the low-level communication library, 
In this section, three different implementations of 
are also discussed. Benchmark results for each 
ntation are discussed in Section 5. Conclusions 
n together in Section 6. 

ures of HPJava 

 is a simple HPJava program for a matrix 
 It illustrates much of the HPJava special syntax, 
tion of distributed arrays, and access to their 
. An HPJava program is started concurrently in 
t of processes that are named through grids 
The class Procs2 is a standard library class, and 
ts a two dimensional grid of processes. During 
ion of p, P by P processes are selected from the 
rocess group. The Procs2 class extends the 
ase class Group which represents a group of 

s and has a privileged status in the HPJava 
.  An object that inherits this class can be used in 
special places.  For example, it can be used to 



parameterize an on construct.  The on(p) construct is a 
new control construct specifying that the enclosed actions 
are performed only by processes in group p. 

 
 
 
  

The distributed array is the most important feature 
HPJava adds to Java. A distributed array is a collective 
array shared by a number of processes. Like an ordinary 
array, a distributed array has some index space and stores 

 
 
 
 
 a collection of elements of fixed type. The type signature 

of an r-dimensional distributed array involves double 
brackets surrounding r comma-separated slots. A hyphen 
in one of these slots indicates the dimension is distributed. 

 
 
 
 Asterisks are also allowed in these slots, specifying that 

some dimensions of the array are not to be distributed, i.e. 
they are “sequential” dimensions (if all dimensions have 
asterisks, the array is actually an ordinary, non-
distributed, Fortran-like, multidimensional array—a 
valuable addition to Java in its own right, as many people 
have noted [5, 6]). 

 
 
 
 
 
 
  

The variables a, b, and c are all distributed array 
variables. The creation expressions on the right hand side 
of the initializes specify that the arrays here all have 
ranges x and y—they are all M by N arrays, block-
distributed over p. We see that mapping of distributed 
arrays in HPJava is described in terms of the two special 
classes Group and Range. 

 
 
 
 
 
 
 

Figure 2: Solution of Laplace equation by Jacobi 
relaxation.

  Procs2 p = new Procs2(P, P) ;  
  on(p) {  
    Range x = new ExtBlockRange(M, p.dim(0), 1) ;  
    Range y = new ExtBlockRange(N, p.dim(1), 1) ;  
 
    float [[-,-]] a = new float [[x, y]] ; 
 
    ... initialize edge values in 'a' 
 
    float [[-,-]] b = new float [[x, y]], r = new float [[x, y]] ; 
 
    do { 
      Adlib.writeHalo(a) ; 
       
      overall(i = x for 1 : N - 2)  
        overall(j = y for 1 : N - 2) { 
          float newA = 0.25 * (a[i - 1, j] + a[i + 1, j] +  
                               a[i, j - 1] + a[i, j + 1]); 
           
          r[i,j] = Math.abs(newA - a[i,j]); 
          b[i,j] = newA ; 
        } 
 
      HPutil.copy(a,b) ; // Jacobi relaxation. 
    } while(Adlib.maxval(r) > EPS); 
  } 

The method Adlib.writeHalo() is a collective 
communication operation. This particular one is used to 
fill the ghost cells or overlap regions surrounding the 
“physical segment” of a distributed array. A call to a 
collective operation must be invoked simultaneously by 
all members of some active process group (which may or 
may not be the entire set of processes executing the 
program). The effect of writeHalo() is to overwrite the 
ghost region with values from processes holding the 
corresponding elements in their physical segments. More 
general forms of writeHalo() may specify that only a 
subset of the available ghost area is to be updated, or may 
select cyclic wraparound for updating ghost cells at the 
extreme ends of the array. 

 
The Range is another special class with privileged status. 
It represents an integer interval 0, ... , N - 1, distributed 
somehow over a process dimension (a dimension or axis 
of a grid like p). The class BlockRange is a particular 
subclass of Range. The arguments in the constructor of 
BlockRange represent the total size of the range and the 
target process dimension. Thus, x has M elements 
distributed over first dimension of p and y has N elements 
distributed over second dimension of p. 
 
A second new control construct, overall, implements a 
distributed parallel loop. It shares some characteristics of 
the forall construct of HPF. The symbols i and j scoped 
by these constructs are called distributed indexes. The 
indexes iterate over all locations (selected here by the 
degenerate interval “:”) of ranges x and y. 

 
Besides writeHalo(), Adlib includes a family of related 
regular collective communication operations (remaps, 
shifts, skews, and so on). It also incorporates a set of 
collective gather and scatter operations for more irregular 
communications, and a set of reduction operations. 
Reduction operations combine the elements of two 
distributed arrays to produce one or more scalar values, or 
arrays of lower rank. 

 
3. High-level Communication Library  
 
Adlib library has been described in earlier paper in depth. 
Here we briefly review usage of high-level 
communication library in HPJava programs using a 
simple program.   

Currently our collective communication library is built on 
top of device level communication library called mpjdev. 

 
Figure 2 is a HPJava program for the Laplace program 
that uses ghost regions. It illustrates the use the library 
class ExtBlockRange to create arrays with ghost 
extensions. In this case, the extensions are of width 1 on 
either side of the locally held ``physical'' segment. 

 
4. A low-level communication library for 
Java HPC 
 

 The mpjdev API is designed with the goal that it can be 
implemented portably on network platforms and   
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Figure 3: An HPJava communication stack. Figure 4: Multithreaded implementation. 

  efficiently on parallel hardware. It needs to support 
communication of intrinsic Java types, including 
primitive types, and objects.  It should transfer data 
between the Java program and the network while keeping 
the overheads of the Java Native Interface as low as 
practical. 

message vectors and other information that is used for 
operation on the message vector: information like original 
capacity, current capacity, and current write and read 
position of vector.  
 
Message elements of all data types other than Object are 
stored as C char [] array. This architectural decision 
means actual communication takes place only with 
MPI_BYTE data type. Before sending, we extract char [] 
array from the C object and store the total number of data 
bytes of the array into the Primary header. This size 
information is used to make sure capacity of receive side 
vector is large enough to hold incoming data. For 
elements of Object type, the serialized data are stored into 
a Java byte [] array. We can send this array by copying 
into the existing message vector if it has space to hold 
serialized data array, or by using separate send if the 
original message vector is not large enough.  

 
Unlike MPI which is intended for the application 
developer, mpjdev is meant for library developers. 
Application level communication libraries like the Java 
version of Adlib, or MPJ [7] might be implemented on 
top of mpjdev. mpjdev itself may be implemented on top 
of Java sockets in a portable network implementation, 
or—on HPC platforms---through a JNI interface to a 
subset of MPI. The positioning of the mpjdev API is 
illustrated in Figure 3. 
 
The currently specified API for mpjdev is small compared 
to MPI. It only includes point-to-point communications.  
Currently the only messaging modes are standard 
blocking mode (like MPI_SEND, MPI_RECV) and 
standard non-blocking mode (like MPI_ISEND, 
MPI_IRECV), together with a couple of “wait” 
primitives. 

 
In latter case there will be two different sends from the 
sender side. The receiver side will have to expect a 
second message. 
 
4.2 Multithreaded Implementation  
 Currently we have three different implementations of 

mpjdev: mpiJava-based, multithreaded, and LAPI-based. In this implementation, the processes of an HPJava 
program are mapped to the Java threads of a single JVM. 
This allows debugging and demonstrating HPJava 
programs without facing the ordeal of installing MPI or 
running on a network. A single JVM is used to debug 
programs before launching them on a network or parallel 
computer. If an HPJava program is written for execution 
on distributed memory parallel computers then it may be 
possible to run the program in this implementation and 
have behave the same way. As a by-product, it also means 
we can run HPJava programs on shared memory parallel 
computers. These kinds of machines are quite widely 
available today---sold, for example, as high-end UNIX 
servers. Because the Java threads of modern JVMs are 
usually executed in parallel on this kind of machine, it is 
possible to get quit reasonable parallel speedup running 
HPJava programs in the multithreaded mode. 

 
4.1 mpiJava-based Implementation 
 
The mpiJava-based implementation assumes C binding of 
native method calls to MPI from mpiJava [8] as basic 
communication protocol. This implementation can be 
divided into two parts: Java APIs (Buffer and Comm 
classes) and C native methods that construct the message 
vector and perform communication. The Java-side 
methods of communicator class Comm and message 
buffer class Buffer are used to call native methods via 
JNI. The C stubs that bind the mpjdev communication 
class to the underlying native MPI implementation are 
created using JNI, which Java can call and thus pass 
parameters to and from a native API.  
  To optimize the performance of this version, we maintain 
the message buffer inside the C code. Instances of a C 
struct type (lightweight object) Buffer (different from the 
Java side Buffer class) is used for maintain message 
vector. This lightweight object stores a pointer to the  

Figure 4 illustrates multithreaded implementation. In this 
implementation, communications are involved between 
Java threads. The set of all threads is stored as an array. 
Each index in this array represents node id.  
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Figure 5: LAPI implementation with Active Message 
Call. 
 

Two different static queues send and receive queue are 
maintained to store early arrival of send and receive 
requests. Each thread also maintains a wait set in the 
Request class. Communication of any thread that is 
stored in this set will be blocked until complete 
transaction. If tasks of a non-blocking send or receive are 
not completed by the time to call completion method of 
non-blocking communication, like iwait() or iwaitany(), 
that particular send or receive is stored into the wait set 
and is blocked for its completion.  

 
Current version of send() and recv() methods are 
implemented using isend() and irecv() with iwait() 
method call. When a send request is created by the send 
thread, it looks for a matching receive request in the 
receive queue. If a matching receive request is exist, it 
copies data from the send buffer to the receive request 
buffer. It also checks if any other thread is iwait-ing on 
“matching receive” and removes all requests from wait 
set, and signal the waiting thread. This signal makes the 
waiting thread awake and continues its operation. The 
send request will be added into the send queue if it fails to 
find matching receive queue. A receive request work 
similarly as the send request. The receive request searches 
the send queue instead of receive queue for a matching 
request. 
 
4.3 LAPI Implementation 
 
The Low-level Application Programming Interface 
(LAPI) is a low level communication interface for the 
IBM Scalable Powerparallel (SP) supercomputer Switch. 
This switch provides scalable high performance 
communication between SP nodes.  
 
Figure 5 illustrates LAPI implementation with active 
message function (LAPI_Amsend). The active message 
infrastructure allows programmers to write and install 
their own set of handlers that are invoked and executed in 
a target process on behalf of the process originating the 
active message.  
 
This implementation stores and manages message buffer 
in C, like in mpiJava-based implementation. This 
implementation uses Java thread synchronization to 
implement waiting in the MPI and uses two static 

objects—“send queue” and “receive queue”—to maintain 
early arrived send and receive requests. 
  
When source process receives a send request, it issues 
active message to target process. This active message 
contains message information like length, source and 
destination id, tag, and actual messages. Those 
information are used to identify matching send by the 
target process. Since the messages are sent out when 
active message call is made, the source process does not 
have to wait for completion of communication. 

After the initial active message arrives at the target 
process, it calls the completion handler. In this handler, all 
the active message information are extracted and passed 
to the JVM by calling Java static method from JNI. In this 
static method, the posted receive queue is searched to see 
if receive has already been posted with matching the 
message description. If a matching receive is found, target 
copies messages to receive buffer. It wakes any user 
thread that is waiting for this receive by issuing a local 
notify signal. If there is no matching receive, it will store 
all the information into the send queue for later use. 

A receive request on the target process behaves similarly 
to the target side of a sending active message call. The 
difference is it searches send queue instead of receive 
queue. And it stores to the receive queue when a matching 
send is not found. 
 
We will see in section 5.2 that our LAPI implementation 
was not faster than the SP MPI implementation. We 
believe this was due to reliance on Java-side thread 
synchronization, which appears to be slow. We believe 
that this problem could be overcome by doing thread 
synchronization on the C side using POSIX mechanisms, 
but didn't have time to test this. 
 
5. Benchmarks 
 
The results of our benchmarks use an IBM SP3 running 
with four Power3 375MHz CPUs and 2GB of memory on 
each node. This machine uses AIX version 4.3 operating 
system and the IBM Developer Kit 1.3.1 (JIT) for the 
Java system. We are using the shared ``css0'' adapter with 
User Space (US) communication mode for MPI setting 
and -O compiler command for Java. For comparison, we 
also have completed experiments for sequential Java, 
Fortran and HPF version of the HPJava programs. For the 
HPF version of program, it uses IBM XL HPF version 1.4 
with xlhpf95 compiler commend and -O3 and -qhot flag. 
And XL Fortran for AIX with -O5 flag is used for Fortran 
version. 
 
Figure 6 show result of four different versions (HPJava, 
sequential Java, HPF and Fortran) of red-black relaxation 
of the two dimensional Laplace equation with size of 512 
by 512. In our runs HPJava can out-perform sequential 
Java by up to 17 times. On 36 processors HPJava can get 
about 79% of the performance of HPF. It is not very bad  
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CFD 
Processors 2 4 8 16 

1282 1.84 3.34 5.43 7.96 
2562 2.01 3.90 7.23 12.75 

Table 2: Speedup of CFD. 

 
the Java AWT and other Java graphical packages to 
support a GUI and visualize graphical output of the 
parallel application. Visualization of the collected data is 
a critical element in providing developers or educators 
with the needed insight into the system under study. 
 
For test and demonstration of multithreaded version of 
mpjdev, we implemented computational fluid dynamics 
(CFD) code using HPJava which simulates 2 dimensional 
inviscid flow through an axisymmetric nozzle (Figure 7). 
The demo consists of 4 independent Java applets 
communicating through the Adlib communication library 
which is layered on top of mpjdev. Applet 1 is handling 
all events and broadcasting control variables to other  

 
Figure 6: Red-black relaxation of two dimensional 
Laplace equation with size of 512 x 512 
 

2D Laplace Equation 
Processors 4 9 16 25 36 

2562 2.67 3.73 4.67 6.22 6.22 
5122 4.03 7.70 10.58 12.09 16.93 

10242 4.41 8.82 13.40 19.71 25.77 
 
applets. Each applet has the responsibility to draw its own 
portion of the data set into the screen, as we can see in the 
figure. This demo also illustrates usage of Java object in 
our communication library. We are using writeHalo() 
method to communicate Java class object between 
threads. You can view this demonstration and source code 
at http://www.hpjava.org/demo.html. 

Table 1: Speedup of HPJava benchmarks as compared 
with 1 processor HPJava. 

 
performance for the initial benchmark result without any 
serious optimization. Performance of the HPJava will be 
increased by applying optimization strategies as described 
in a previous paper [3]. Scaling behavior of HPJava is 
slightly better then HPF, though this mainly reflects the 
low performance of a single Java node compared to 
Fortran. We do not believe that the current 
communication library of HPJava is faster than the HPF 
library because our communication library is built on top 
of the portability layers, mpjdev and MPI, while IBM 
HPF is likely to use a platform specific communication 
library. But future versions of Adlib could be optimized 
for the platform.  

 
For the performance test, we removed the graphic part of 
the CFD code and did performance tests on the 
computational part only. For this we also changed a 2 
dimensional Java object distributed array into a 3 
dimensional double distributed array and stored fields of 
the Java object into the collapsed 3rd dimension of 
double array. This change was to improve performance, 
because if we are using Java object to communicate 
between processors, there is an object serialization 
overhead which is not required for primitive data types. 
Also we are using HPC implementation of underlying 
communication to run the code on an SP.  

Speedup of HPJava for the Laplace equation is 
summarized in Table 1. Different sizes of problems are 
measured on different numbers of processors. For the 
reference value, we are using the result of the single-
processor HPJava version. As we can see on the table we 
are getting up to 25.77 times speedup on Laplace equation 
using 36 processors with problem size of 10242. Many 
realistic applications with more computation for each grid 
point (for example CFD which will be discussed in next 
section) will be more suitable for the parallel 
implementation than simple benchmarks described in this 
section. 

 
Speedup of HPJava is also summarized in Table 2. As we 
are expected speed up of CFD is more scalable then 
partial differential equation examples which described in 
the previous section. As we can see on the table we are 
getting up to 12.75 times speedup (4.68 times speed up on 
Laplace equation) using 16 processors with problem size 
of 2562. 
 
5.2 LAPI 
Figure 8 show same benchmark results of an 
implementation of underlying communication library 
using LAPI. As we can see from the figure, the results of 
the sample benchmark indicate, unfortunately, that LAPI 
version of library is slower then MPI version. After  

 
5.1 HPJava with GUI 
 
By adding pure Java version of the mpjdev to the Adlib 
communication library, it gives us the possibility to use   
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Figure 8: Comparison of the mpjdev communication 
library using MPI vs. LAPI. 

 
Java Thread POSIX Thread 

57.49 10.68 

Table 3: Timing for a wait and wake-up function calls 
on Java thread and POSIX thread in microseconds. 

 
careful investigation of the time consuming parts of the 
library, we found that current version of Java thread 
synchronization is not implemented with high 
performance. 
 
The Java thread consumes more then five times a long as 
POSIX thread, to perform wait and wake-up thread 
function calls (Table 3). This result suggests we should 
look for a new architectural design for mpjdev using 
LAPI. In this section we will not discuss in detail the new 
architecture design. However, we briefly introduce our 
thoughts. To eliminate major problem of current design, 
we consider using POSIX threads by calling JNI to the C 
instead of Java threads. This would force us to move any 
synchronized data from the Java to the C side. In this 
design, work for the Java side of the mpjdev is to call C 
functions via JNI. All the actual communication and data 
processing parts including maintain send and receive 
queue, protection of any shared data, and thread waiting 
and awaking will be done in C. Implementation is a future 
project. 
 
6. Conclusion 
 
We have described how an underlying, low-level 
communication library for HPJava can be implemented in 
various platforms, plus some collective communication 
library primitives. We discussed format of a message and 
three different implementations of mpjdev: mpiJava-
based, multithreaded, and LAPI-based. 
 
To evaluate current communication libraries, we did 
various performance tests. We developed small kernel 

level applications and a full application for performance 
test. We got reasonable performance on simple 
applications without any serious optimization. As we 
mentioned in section 5.2, we would also like a better 
design for LAPI implementation of mpjdev to avoid the 
overheads of Java thread operation. 
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