
A DEVICE LEVEL COMMUNICATION LIBRARY FOR THE HPJAVA
PROGRAMMING LANGUAGE

Sang Boem Lim, Bryan Carpenter, Geoffrey Fox, and Han-ku Lee

{sblim, dbcarpen, gcf, hanklee}@indiana.edu

Pervasive Technology Labs at Indiana University
501 N. Morton St. Suite 224

Bloomington, IN 47404
U.S.A.

Abstract

 Two characteristic run-time communication libraries of

HPJava are developed as an application level library and
device level library. A high-level communication API,
Adlib, is developed as an application level communication
library. This communication library supports collective
operations on distributed arrays. The mpjdev API is a
device level underlying communication library for
HPJava. This library is developed to perform actual
communication between processes.

 The paper describes the novel issues in the

implementation of device level library on different
platforms, and gives comprehensive benchmark results on
a parallel platform. All software developed in this project
is available for free download from www.hpjava.org.

 Procs2 p = new Procs2(P, P) ;
 on(p) {
 Range x = new BlockRange(M, p.dim(0)) ;
 Range y = new BlockRange(N, p.dim(1)) ;

 float [[-,-]] a = new float [[x, y]], b = new float [[x, y]],
 c = new float [[x, y]];

 ... initialize values in `a', `b'

 overall(i = x for :)
 overall(j = y for :)
 c [i, j] = a [i, j] + b [i, j] ;
 }

primitive
low-leve
potential
libraries

Key Words

 Distributed Software Systems and Applications, Compiler
and Runtime Support, Parallel and Distributed Compiler,
Java.

Section
includes
Section
Section
mpjdev.
mpjdev
impleme
are draw

1. Introduction

HPJava [1, 2, 3] is the authors' environment for SPMD
(Single Program, Multiple Data) parallel programming---
especially, for SPMD programming with distributed
arrays---in Java. It includes a set of syntax extension to
Java for dealing with multi-dimensional distributed
arrays, plus a set of communication libraries. The HPJava
language and the high-level collective library Adlib [4]
has been described in several earlier papers. This paper
will concentrate more on the implementation of device
level underlying communication library on different
platforms.

2. Feat

Figure 1
addition.
like crea
elements
some se
objects.
represen
the creat
active p
special b
processe
language
various

The mpjdev API is designed with the goal that it can be
implemented portably on network platforms and
efficiently on parallel hardware. Unlike MPI which is
intended for the application developer, mpjdev is meant
for library developers. In this paper we will illustrate how
mpjdev can be naturally be implemented in terms of the
Figure 1: A parallel matrix addition.
s of the HPJava language. The mpjdev API is a
l Java messaging platform which has the
 to be used as a common API for implementing
like Adlib and its relatives.

2 briefly reviews the HPJava language and
 a few illustrative programming fragments.
3 discussed collective communication in HPJava.
4 describes the low-level communication library,
In this section, three different implementations of
are also discussed. Benchmark results for each
ntation are discussed in Section 5. Conclusions
n together in Section 6.

ures of HPJava

 is a simple HPJava program for a matrix
 It illustrates much of the HPJava special syntax,
tion of distributed arrays, and access to their
. An HPJava program is started concurrently in
t of processes that are named through grids
The class Procs2 is a standard library class, and
ts a two dimensional grid of processes. During
ion of p, P by P processes are selected from the
rocess group. The Procs2 class extends the
ase class Group which represents a group of

s and has a privileged status in the HPJava
. An object that inherits this class can be used in
special places. For example, it can be used to

parameterize an on construct. The on(p) construct is a
new control construct specifying that the enclosed actions
are performed only by processes in group p.

The distributed array is the most important feature
HPJava adds to Java. A distributed array is a collective
array shared by a number of processes. Like an ordinary
array, a distributed array has some index space and stores

 a collection of elements of fixed type. The type signature

of an r-dimensional distributed array involves double
brackets surrounding r comma-separated slots. A hyphen
in one of these slots indicates the dimension is distributed.

 Asterisks are also allowed in these slots, specifying that

some dimensions of the array are not to be distributed, i.e.
they are “sequential” dimensions (if all dimensions have
asterisks, the array is actually an ordinary, non-
distributed, Fortran-like, multidimensional array—a
valuable addition to Java in its own right, as many people
have noted [5, 6]).

The variables a, b, and c are all distributed array
variables. The creation expressions on the right hand side
of the initializes specify that the arrays here all have
ranges x and y—they are all M by N arrays, block-
distributed over p. We see that mapping of distributed
arrays in HPJava is described in terms of the two special
classes Group and Range.

Figure 2: Solution of Laplace equation by Jacobi
relaxation.

 Procs2 p = new Procs2(P, P) ;
 on(p) {
 Range x = new ExtBlockRange(M, p.dim(0), 1) ;
 Range y = new ExtBlockRange(N, p.dim(1), 1) ;

 float [[-,-]] a = new float [[x, y]] ;

 ... initialize edge values in 'a'

 float [[-,-]] b = new float [[x, y]], r = new float [[x, y]] ;

 do {
 Adlib.writeHalo(a) ;

 overall(i = x for 1 : N - 2)
 overall(j = y for 1 : N - 2) {
 float newA = 0.25 * (a[i - 1, j] + a[i + 1, j] +
 a[i, j - 1] + a[i, j + 1]);

 r[i,j] = Math.abs(newA - a[i,j]);
 b[i,j] = newA ;
 }

 HPutil.copy(a,b) ; // Jacobi relaxation.
 } while(Adlib.maxval(r) > EPS);
 }

The method Adlib.writeHalo() is a collective
communication operation. This particular one is used to
fill the ghost cells or overlap regions surrounding the
“physical segment” of a distributed array. A call to a
collective operation must be invoked simultaneously by
all members of some active process group (which may or
may not be the entire set of processes executing the
program). The effect of writeHalo() is to overwrite the
ghost region with values from processes holding the
corresponding elements in their physical segments. More
general forms of writeHalo() may specify that only a
subset of the available ghost area is to be updated, or may
select cyclic wraparound for updating ghost cells at the
extreme ends of the array.

The Range is another special class with privileged status.
It represents an integer interval 0, ... , N - 1, distributed
somehow over a process dimension (a dimension or axis
of a grid like p). The class BlockRange is a particular
subclass of Range. The arguments in the constructor of
BlockRange represent the total size of the range and the
target process dimension. Thus, x has M elements
distributed over first dimension of p and y has N elements
distributed over second dimension of p.

A second new control construct, overall, implements a
distributed parallel loop. It shares some characteristics of
the forall construct of HPF. The symbols i and j scoped
by these constructs are called distributed indexes. The
indexes iterate over all locations (selected here by the
degenerate interval “:”) of ranges x and y.

Besides writeHalo(), Adlib includes a family of related
regular collective communication operations (remaps,
shifts, skews, and so on). It also incorporates a set of
collective gather and scatter operations for more irregular
communications, and a set of reduction operations.
Reduction operations combine the elements of two
distributed arrays to produce one or more scalar values, or
arrays of lower rank.

3. High-level Communication Library

Adlib library has been described in earlier paper in depth.
Here we briefly review usage of high-level
communication library in HPJava programs using a
simple program.

Currently our collective communication library is built on
top of device level communication library called mpjdev.

Figure 2 is a HPJava program for the Laplace program
that uses ghost regions. It illustrates the use the library
class ExtBlockRange to create arrays with ghost
extensions. In this case, the extensions are of width 1 on
either side of the locally held ``physical'' segment.

4. A low-level communication library for
Java HPC

 The mpjdev API is designed with the goal that it can be
implemented portably on network platforms and

.

receive queue

.
send queue

message

message

receive waiting setsend waiting set

send request

receive request

if receive request is found

else

copy message

Send thread

store send request
else

copy message

Receive thread

if send request is found

store recive request

wake wake

Java version of Adlib APIs
Other application−leve l

mpjdev

Pure Java

MPJ and

(e.g. IBM SP3, Sun HPC)
Parallel Hardware

Native MPI

Networks of PCs
SMPs or

Figure 3: An HPJava communication stack. Figure 4: Multithreaded implementation.

 efficiently on parallel hardware. It needs to support
communication of intrinsic Java types, including
primitive types, and objects. It should transfer data
between the Java program and the network while keeping
the overheads of the Java Native Interface as low as
practical.

message vectors and other information that is used for
operation on the message vector: information like original
capacity, current capacity, and current write and read
position of vector.

Message elements of all data types other than Object are
stored as C char [] array. This architectural decision
means actual communication takes place only with
MPI_BYTE data type. Before sending, we extract char []
array from the C object and store the total number of data
bytes of the array into the Primary header. This size
information is used to make sure capacity of receive side
vector is large enough to hold incoming data. For
elements of Object type, the serialized data are stored into
a Java byte [] array. We can send this array by copying
into the existing message vector if it has space to hold
serialized data array, or by using separate send if the
original message vector is not large enough.

Unlike MPI which is intended for the application
developer, mpjdev is meant for library developers.
Application level communication libraries like the Java
version of Adlib, or MPJ [7] might be implemented on
top of mpjdev. mpjdev itself may be implemented on top
of Java sockets in a portable network implementation,
or—on HPC platforms---through a JNI interface to a
subset of MPI. The positioning of the mpjdev API is
illustrated in Figure 3.

The currently specified API for mpjdev is small compared
to MPI. It only includes point-to-point communications.
Currently the only messaging modes are standard
blocking mode (like MPI_SEND, MPI_RECV) and
standard non-blocking mode (like MPI_ISEND,
MPI_IRECV), together with a couple of “wait”
primitives.

In latter case there will be two different sends from the
sender side. The receiver side will have to expect a
second message.

4.2 Multithreaded Implementation
 Currently we have three different implementations of

mpjdev: mpiJava-based, multithreaded, and LAPI-based. In this implementation, the processes of an HPJava
program are mapped to the Java threads of a single JVM.
This allows debugging and demonstrating HPJava
programs without facing the ordeal of installing MPI or
running on a network. A single JVM is used to debug
programs before launching them on a network or parallel
computer. If an HPJava program is written for execution
on distributed memory parallel computers then it may be
possible to run the program in this implementation and
have behave the same way. As a by-product, it also means
we can run HPJava programs on shared memory parallel
computers. These kinds of machines are quite widely
available today---sold, for example, as high-end UNIX
servers. Because the Java threads of modern JVMs are
usually executed in parallel on this kind of machine, it is
possible to get quit reasonable parallel speedup running
HPJava programs in the multithreaded mode.

4.1 mpiJava-based Implementation

The mpiJava-based implementation assumes C binding of
native method calls to MPI from mpiJava [8] as basic
communication protocol. This implementation can be
divided into two parts: Java APIs (Buffer and Comm
classes) and C native methods that construct the message
vector and perform communication. The Java-side
methods of communicator class Comm and message
buffer class Buffer are used to call native methods via
JNI. The C stubs that bind the mpjdev communication
class to the underlying native MPI implementation are
created using JNI, which Java can call and thus pass
parameters to and from a native API.
 To optimize the performance of this version, we maintain
the message buffer inside the C code. Instances of a C
struct type (lightweight object) Buffer (different from the
Java side Buffer class) is used for maintain message
vector. This lightweight object stores a pointer to the

Figure 4 illustrates multithreaded implementation. In this
implementation, communications are involved between
Java threads. The set of all threads is stored as an array.
Each index in this array represents node id.

LAPI_Amsend Completion Handler
message

.

send queue

.
receive queue

Send Request

message

message

waiting set

message

message receive buffer

receive buffer

send reuest handler receive request

Origin Process Target Process

if receive request is found

else

copy message

Java

C

store send request

if send request is found

else

store recive request
wake

Figure 5: LAPI implementation with Active Message
Call.

Two different static queues send and receive queue are
maintained to store early arrival of send and receive
requests. Each thread also maintains a wait set in the
Request class. Communication of any thread that is
stored in this set will be blocked until complete
transaction. If tasks of a non-blocking send or receive are
not completed by the time to call completion method of
non-blocking communication, like iwait() or iwaitany(),
that particular send or receive is stored into the wait set
and is blocked for its completion.

Current version of send() and recv() methods are
implemented using isend() and irecv() with iwait()
method call. When a send request is created by the send
thread, it looks for a matching receive request in the
receive queue. If a matching receive request is exist, it
copies data from the send buffer to the receive request
buffer. It also checks if any other thread is iwait-ing on
“matching receive” and removes all requests from wait
set, and signal the waiting thread. This signal makes the
waiting thread awake and continues its operation. The
send request will be added into the send queue if it fails to
find matching receive queue. A receive request work
similarly as the send request. The receive request searches
the send queue instead of receive queue for a matching
request.

4.3 LAPI Implementation

The Low-level Application Programming Interface
(LAPI) is a low level communication interface for the
IBM Scalable Powerparallel (SP) supercomputer Switch.
This switch provides scalable high performance
communication between SP nodes.

Figure 5 illustrates LAPI implementation with active
message function (LAPI_Amsend). The active message
infrastructure allows programmers to write and install
their own set of handlers that are invoked and executed in
a target process on behalf of the process originating the
active message.

This implementation stores and manages message buffer
in C, like in mpiJava-based implementation. This
implementation uses Java thread synchronization to
implement waiting in the MPI and uses two static

objects—“send queue” and “receive queue”—to maintain
early arrived send and receive requests.

When source process receives a send request, it issues
active message to target process. This active message
contains message information like length, source and
destination id, tag, and actual messages. Those
information are used to identify matching send by the
target process. Since the messages are sent out when
active message call is made, the source process does not
have to wait for completion of communication.

After the initial active message arrives at the target
process, it calls the completion handler. In this handler, all
the active message information are extracted and passed
to the JVM by calling Java static method from JNI. In this
static method, the posted receive queue is searched to see
if receive has already been posted with matching the
message description. If a matching receive is found, target
copies messages to receive buffer. It wakes any user
thread that is waiting for this receive by issuing a local
notify signal. If there is no matching receive, it will store
all the information into the send queue for later use.

A receive request on the target process behaves similarly
to the target side of a sending active message call. The
difference is it searches send queue instead of receive
queue. And it stores to the receive queue when a matching
send is not found.

We will see in section 5.2 that our LAPI implementation
was not faster than the SP MPI implementation. We
believe this was due to reliance on Java-side thread
synchronization, which appears to be slow. We believe
that this problem could be overcome by doing thread
synchronization on the C side using POSIX mechanisms,
but didn't have time to test this.

5. Benchmarks

The results of our benchmarks use an IBM SP3 running
with four Power3 375MHz CPUs and 2GB of memory on
each node. This machine uses AIX version 4.3 operating
system and the IBM Developer Kit 1.3.1 (JIT) for the
Java system. We are using the shared ``css0'' adapter with
User Space (US) communication mode for MPI setting
and -O compiler command for Java. For comparison, we
also have completed experiments for sequential Java,
Fortran and HPF version of the HPJava programs. For the
HPF version of program, it uses IBM XL HPF version 1.4
with xlhpf95 compiler commend and -O3 and -qhot flag.
And XL Fortran for AIX with -O5 flag is used for Fortran
version.

Figure 6 show result of four different versions (HPJava,
sequential Java, HPF and Fortran) of red-black relaxation
of the two dimensional Laplace equation with size of 512
by 512. In our runs HPJava can out-perform sequential
Java by up to 17 times. On 36 processors HPJava can get
about 79% of the performance of HPF. It is not very bad

1 4 9 16 25 36
Number of Processors

0

250

500

750

1000

1250

1500

M
fl

op
s

pe
r

se
co

nd

HPF
HPJava
Fortran
Java

Laplace Equation using Red-black Relaxation
512 x 512

CFD
Processors 2 4 8 16

1282 1.84 3.34 5.43 7.96
2562 2.01 3.90 7.23 12.75

Table 2: Speedup of CFD.

the Java AWT and other Java graphical packages to
support a GUI and visualize graphical output of the
parallel application. Visualization of the collected data is
a critical element in providing developers or educators
with the needed insight into the system under study.

For test and demonstration of multithreaded version of
mpjdev, we implemented computational fluid dynamics
(CFD) code using HPJava which simulates 2 dimensional
inviscid flow through an axisymmetric nozzle (Figure 7).
The demo consists of 4 independent Java applets
communicating through the Adlib communication library
which is layered on top of mpjdev. Applet 1 is handling
all events and broadcasting control variables to other

Figure 6: Red-black relaxation of two dimensional
Laplace equation with size of 512 x 512

2D Laplace Equation
Processors 4 9 16 25 36

2562 2.67 3.73 4.67 6.22 6.22
5122 4.03 7.70 10.58 12.09 16.93

10242 4.41 8.82 13.40 19.71 25.77

applets. Each applet has the responsibility to draw its own
portion of the data set into the screen, as we can see in the
figure. This demo also illustrates usage of Java object in
our communication library. We are using writeHalo()
method to communicate Java class object between
threads. You can view this demonstration and source code
at http://www.hpjava.org/demo.html.

Table 1: Speedup of HPJava benchmarks as compared
with 1 processor HPJava.

performance for the initial benchmark result without any
serious optimization. Performance of the HPJava will be
increased by applying optimization strategies as described
in a previous paper [3]. Scaling behavior of HPJava is
slightly better then HPF, though this mainly reflects the
low performance of a single Java node compared to
Fortran. We do not believe that the current
communication library of HPJava is faster than the HPF
library because our communication library is built on top
of the portability layers, mpjdev and MPI, while IBM
HPF is likely to use a platform specific communication
library. But future versions of Adlib could be optimized
for the platform.

For the performance test, we removed the graphic part of
the CFD code and did performance tests on the
computational part only. For this we also changed a 2
dimensional Java object distributed array into a 3
dimensional double distributed array and stored fields of
the Java object into the collapsed 3rd dimension of
double array. This change was to improve performance,
because if we are using Java object to communicate
between processors, there is an object serialization
overhead which is not required for primitive data types.
Also we are using HPC implementation of underlying
communication to run the code on an SP.

Speedup of HPJava for the Laplace equation is
summarized in Table 1. Different sizes of problems are
measured on different numbers of processors. For the
reference value, we are using the result of the single-
processor HPJava version. As we can see on the table we
are getting up to 25.77 times speedup on Laplace equation
using 36 processors with problem size of 10242. Many
realistic applications with more computation for each grid
point (for example CFD which will be discussed in next
section) will be more suitable for the parallel
implementation than simple benchmarks described in this
section.

Speedup of HPJava is also summarized in Table 2. As we
are expected speed up of CFD is more scalable then
partial differential equation examples which described in
the previous section. As we can see on the table we are
getting up to 12.75 times speedup (4.68 times speed up on
Laplace equation) using 16 processors with problem size
of 2562.

5.2 LAPI
Figure 8 show same benchmark results of an
implementation of underlying communication library
using LAPI. As we can see from the figure, the results of
the sample benchmark indicate, unfortunately, that LAPI
version of library is slower then MPI version. After

5.1 HPJava with GUI

By adding pure Java version of the mpjdev to the Adlib
communication library, it gives us the possibility to use

1 2 4 8 16
Number of Processors

0

200

400

600

800

M
fl

op
s

pe
r

se
co

nd

HPJava - Using MPI
HPJava - Using LAPI
Java

CFD
256 x 256

Figure 8: Comparison of the mpjdev communication
library using MPI vs. LAPI.

Java Thread POSIX Thread

57.49 10.68

Table 3: Timing for a wait and wake-up function calls
on Java thread and POSIX thread in microseconds.

careful investigation of the time consuming parts of the
library, we found that current version of Java thread
synchronization is not implemented with high
performance.

The Java thread consumes more then five times a long as
POSIX thread, to perform wait and wake-up thread
function calls (Table 3). This result suggests we should
look for a new architectural design for mpjdev using
LAPI. In this section we will not discuss in detail the new
architecture design. However, we briefly introduce our
thoughts. To eliminate major problem of current design,
we consider using POSIX threads by calling JNI to the C
instead of Java threads. This would force us to move any
synchronized data from the Java to the C side. In this
design, work for the Java side of the mpjdev is to call C
functions via JNI. All the actual communication and data
processing parts including maintain send and receive
queue, protection of any shared data, and thread waiting
and awaking will be done in C. Implementation is a future
project.

6. Conclusion

We have described how an underlying, low-level
communication library for HPJava can be implemented in
various platforms, plus some collective communication
library primitives. We discussed format of a message and
three different implementations of mpjdev: mpiJava-
based, multithreaded, and LAPI-based.

To evaluate current communication libraries, we did
various performance tests. We developed small kernel

level applications and a full application for performance
test. We got reasonable performance on simple
applications without any serious optimization. As we
mentioned in section 5.2, we would also like a better
design for LAPI implementation of mpjdev to avoid the
overheads of Java thread operation.

7. Acknowledgement

This work was supported in part by the National Science
Foundation Division of Advanced Computational
Infrastructure and Research, contract number 9872125.

References

[1] B. Carpenter, G. Fox, H.-K. Lee, and S. Lim,
Translation of the HPJava Language for Parallel
Programming. The 14th annual workshop on Languages
and Compilers for Parallel Computing (LCPC2001), May
2002.

[2] HPJava home page. http://www.hpjava.org.

[3] H.-K. Lee, B. Carpenter, G. Fox, and S. B. Lim,
Benchmarking HPJava: Prospects for Performance. Sixth
Workshop on Languages, Compilers, and Run-time
Systems for Scalable Computers (LCR2002), March 2002.

[4] S. B. Lim, B. Carpenter, G. Fox, and H.-K. Lee,
Collective Communication for the HPJava Programming
Language. Concurrency and Computation: Practice and
Experience, 2003

[5] J. Moreira and S. Midkiff and M. Gupta, A
comparison of three approaches to language, compiler and
library support for multidimensional arrays in Java. ACM
2001 Java Grande/ISCOPE Conference. ACM Press,
June 2001.

[6] J. Moreira, S. Midkiff, M. Gupta, and R. Lawrence,
High Performance Computing with the Array Package for
Java: A Case Study using Data Mining. Supercomputing
99, Nov. 1999.

[7] B. Carpenter, V. Getov, G. Judd, A. Skjellum, and G.
Fox, MPJ: MPI-like message passing for Java.
Concurrency: Practice and Experience, 12(11):1019—
1038, 2000.

[8] B. Carpenter, V. Getov, G. Judd, A. Skjellum, and G.
Fox, MPI for Java—Position Document and Draft API
Specification. Technical Report JGF-TR-03, Java Grande
Forum, November 1998.

