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Abstract—Designing low latency applications that can process
large volumes of data with higher efficiency is a challenging
problem. With limited time to process data, usage of online
algorithms is becoming important in big data applications.
Stream processing is a well-known area that has been studied
extensively for a long time. In this research, our objective is to
use state-of-the-art big data analytic engines to implement online
algorithms and compare the strengths and weaknesses in each
system. We use a streaming version of Support Vector Machines
(SVM) and KMeans to do the analysis. Apache Flink, Apache
Storm and Twister2 streaming frameworks are used to implement
these algorithms. Our study focuses on the efficiency of online
training of these algorithms, the results of which show higher
(better) performance in Twister2 framework overall.

Index Terms—Big Data, Streaming Machine Learning,
Dataflow

I. INTRODUCTION

In the modern information technology era, large amounts of
data collection is ubiquitous. This in turn means all such
collected data needs to be processed to discover meaningful
insights hidden within. Data sources range from that collected
in social media platforms to signal data collected from small
devices such as sensors. Even a simple data processing step
such as a filter which simply discards data based on some
predefined conditions has become a challenging task due to
the amount and the speed at which it is collected.
In recent years, stream processing has become one of the
most prominent modes of processing large volumes of data
with low latency. Among the applications which produce a
large volume of data, internet-of-things-related applications,
social media data processing applications, video processing
applications, and audio processing applications can be denoted
as the most prominent cases. In most such applications the
requirements for data processing go beyond simple filter op-
erations, therefore modern stream processing engines need to
be able to support more complex machine learning algorithms.
While many of the popular stream engines such as Apache
Spark, Apache Flink, and Apache Storm provide the basic
building blocks needed to develop streaming machine learning
applications, the approaches that have been taken by each
system vary, resulting in different programming models and
varying performance numbers. The objectives in this paper are

twofold; First, we aim to analyze the application development
styles in each stream processing system to identify subtle
differences in the various programming models adopted by
popular frameworks; Second, to showcase the performance of
each system using streaming machine learning applications.
We believe that applying HPC system design principles to big
data systems can make them more efficient. Twister2 is a data
processing framework with HPC design principles. The effi-
ciency of Twister2 for streaming applications is showcased in
the experiments and results shown in this paper by comparing
it with Apache Flink and Apache Storm. We use online K-
Means and Support Vector implementations to measure the
performance of these systems.
In Section II we discuss the role of stream processing in the
big data domain and its importance. Section III highlights two
streaming machine learning algorithms in detail. In Section
IV the experiments conducted to compare various streaming
engines are discussed and the results are presented. Section V
describes related work and Sections VI and VII conclude the
paper.

II. STREAM PROCESSING WITH BIG DATA STACK

Stream processing is mostly used with big data-related appli-
cations rather than high performance computing applications.
In the big data domain, the most prominent and well-known
stream processing engines are Apache Flink, Apache Storm
and Apache Spark. These stream processing engines have
been used by many application developers and researchers to
implement applications. Twister2-Streaming is another frame-
work developed by the authors for the same purpose. It can
leverage high performance networks and optimized collective
operations present in HPC systems for better performance.
Twister2 provides the core functionality of the mainstream
stream processing systems.

The programming model in Apache Storm is more flexible
than most of the other stream processing frameworks due to
the lower-level abstraction in its API. This was one of the core
features in Apache Storm until the release of version 2.0.0.
Still, the user has the capability of developing applications
and writing custom APIs on top of the core API. In Apache
Spark and Apache Flink, the programming model has been



designed on top of a high-level abstraction. This allows the
user to develop applications much faster. It also adds a certain
level of restriction in application development, which in turn
results in lower efficiencies. In Apache Spark, the only way to
write a dataflow model is to use a high level API abstraction.
Twister2 provides many levels of programming abstractions
for user to choose from in order to develop their applications
efficiently in terms of usability and performance.

III. STREAMING MACHINE LEARNING ALGORITHMS

In our research, we use the online versions of two machine
learning algorithms, namely SVM and KMeans. In our analy-
sis, we portray how the streaming model is being implemented
with Apache Flink, Apache Storm and Twister2 stream pro-
cessing engines. Here we use the window processing API in
each framework to discretize the continuous stream of data.
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Fig. 1. Workflow of a Streaming ML Application

A standard streaming machine learning algorithm takes the
task architecture as shown in Figure 1. The data source can
be from a file, HDFS or a message broker like Apache Kafka
[1]. In all the experiments, a source task reads data from
the file system and performs the data pre-processing. Further
down the stream, a window task is designed with some hyper-
parameters. The main hyper-parameters involved in a stream-
ing machine learning algorithm include the number of itera-
tions. In KMeans this value was unity, and in SVM it is a finite
number set by the user. Window length and sliding window
length are important parameters for windowing. Windowing
type can be determined as count-based or time-based. In the
experiments conducted, we only used count-based windows.
Within the window task, a mini-batch is generated using
stream discretization which is then processed by the algorithm.
Here each algorithm provides a sub-optimal solution respective
to the corresponding batch algorithm. This will be further
discussed in III-A. Once the streaming algorithm is executed
on the windowed elements, the weights or models computed
in parallel workers must be globally reduced. The sink task
receives such a globally reduced input. Within the sink task,
the model evaluation is done using test data sets. Within the
sink function, the application developer can decide when to

release a stable model for production. This is not addressed
in this research, but the applications have been developed in
each framework to support it.

A. Motivation for Streaming Machine Learning

With access to a large amount of data, processing and re-
sponding with less latency is a significant challenge. Streaming
versions of a known batch mode machine learning algorithm
always enable the capability to run a model much faster rather
than collecting all the data and processing them as a batch.
But the main challenge is that all these streaming versions of
machine learning algorithms provide a sub-optimal solution.
An optimal solution would be the answer we obtain from
extensive experiments on a data set with a large number of
iterations on the complete batch of data. Most of the machine
learning algorithms are in an iterative mode, as they are trying
to optimize a set of parameters. In the streaming setting, the
model is designed by accepting the nature of having a sub-
optimal solution. This can be identified as one of the obstacles
in obtaining a better solution with a streaming ML setting. In
this research, we focus our work on the evaluation of the state-
of-the-art stream processing engines on static conditions to see
how each framework performs.

B. Streaming SVM

Support Vector Machine is one of the most prominent clas-
sification algorithm used in the machine learning domain.
In an online version of this algorithm, we first discretize a
stream of data points into a mini-batch or a window and do
an iterative computation on each window. Here a variable
number of iterations can be used in tuning the application
towards expected accuracy in the training period. The core of
the algorithm adopted is a stochastic gradient descent-based
model. For each window, the weight vector is updated and
synchronized to a global value by doing a model aggrega-
tion over the distributed setting. Once a model is globally
synchronized over all the processes, it is then tested for
accuracy. This implementation follows the principle of a batch
model developed to evaluate batch-size based performance on
SGD-SVM. We adopted the same approach to calculate the
weight vector or gradient in the discretized stream (windowed
elements) and globally synchronized the calculated weight
vector once the computation per window was completed.

S = {xi, yi}
where i = [1, 2, 3, ..., n], xi ∈ Rd, yi ∈ [+1,−1] (1)

α ∈ (0, 1) (2)
g(w; (x, y)) = max(0, 1− y〈w|x〉) (3)

J t = min
w∈Rd

1

2
‖w‖2 + C

∑
x,y∈S

g(w; (x, y)) (4)



Equations 1,2,3 and 4 denote the configurations of the sample
space, helper functions for gradient calculation and the loss
function.

Algorithm 1 Iterative SGD SVM
1: INPUT: [x, y] ∈ S,w ∈ Rd, t ∈ R+

2: OUTPUT: w ∈ Rd

3: procedure ISGDSVM(S,w, t)
4: for i = 0 to n do
5: if (g(w; (xi, yi)) == 0) then
6: ∇J t = w
7: else
8: ∇J t = w − Cxiyi
9: w = w − α∇J t

return w

In algorithm 1, the stochastic gradient descent-based step
to update the weights is described as a pseudo-code. This
algorithm shows the computation done per data point.

Algorithm 2 Iterative Streaming SVM
1: INPUT: X∞, Y∞ ∈ S∞, w ∈ Rd, l ∈ R+, s ∈ R+,m <
K,m ∈ R+

2: OUTPUT: w ∈ Rd

3: procedure ISSVM(S̄i, w, T, l, s)
4: In Parallel K Machines [S̄1, ..., S̄b] ⊂ S∞
5: procedure WINDOW(S̄m, w, l, s)
6: for t = 0 to T do
7: procedure ISGDSVM(S̄m, w, t)
8: All Reduce(w)

return w

Algorithm 2 shows the complete iterative algorithm with
windowing configurations. The l symbol in the algorithm
refers to the window length and the s symbol refers to the
sliding length. The algorithm encapsulates both tumbling and
sliding window-based computations.

C. Streaming KMeans

KMeans is another popular clustering algorithm in the machine
learning domain. We apply an online version of this algorithm
in our research. In the streaming setting, we use the stream
discretization by means of a window operation. In Algorithm
3 we have implemented a basic version of the online-KMeans
algorithm. V refers to the cluster centroids, k refers to the
number of centroids, and n refers to the number of total data
points observed down the stream. The number of data points
observed must be at least equal to the number of cluster
centroids. In this algorithm, a single data point is observed
only once and the closest centroid is located by calculating the
euclidean distance. The new centroid is calculated as shown
in the algorithm. But in the initialization step, the centroids
can be either handpicked from the data set or randomly
selected. Here we select it as shown in the algorithm. Our
objective is to see how each framework works on global model
synchronization when working with machine learning models.

Note that an iterative computation is not conducted. In imple-
menting this algorithm we followed the state-of-the-art time
notion-based window-less streaming KMeans implemented in
Apache Spark. Once the computation related to a window fin-
ishes, a global model synchronization is performed. Unlike in
a classification algorithm, there is no cross-validation involved
during the model generation step.

Algorithm 3 Online KMeans
1: INPUT:X = {x1, ..., xm}, xi ∈ Rm

2: V = {v1, ..., vk}vi ∈ Rm, k ≤ n
3: OUTPUT: V
4: procedure STREAMING-KMEANS(X,V )
5: procedure WINDOW(X̄, V̄ )
6: for xj in X̄ do
7: if j ≤ k then
8: vi = xj
9: ki = 1

10: i = i+ 1
11: else
12: vi = argmini||xj − vi||
13: vi = vi +

1

ni + 1
[xj − vi]

14: ni = ni + 1

15: All Reduce(V)
return V

IV. EXPERIMENTS

For the experiments, we use a distributed cluster with 8
physical nodes. We schedule 16 tasks per node to run the
experiments. Each node consists of Intel(R) Xeon(R) Platinum
8160 CPU @ 2.10GHz with 250GB of RAM capacity. For
running an experiment in a finite period, a stream of 49,000
records for training and a stream of 90,000 records for testing
are applied. For the experiments, we only test a finite stream
to evaluate the training accuracy and performance. In a real
world setting, training termination criteria have to be set
by considering the objectives of the application. Windowing
handles the stream discretization in all the systems. Window-
ing with the notion of the count of elements then tests the
performance of each system. In every framework, the data
was loaded from a file source and processing is performed
in a distributed manner with overall parallelism of 128. All
the experiments were carried out considering tumbling and
sliding windowing. Tumbling windowing refers to windowing
with non-overlapping elements, and sliding windows refers to
windowing with overlapping elements. In the experiments, we
adopted a count-based windowing mechanism to conduct a
stress test on each framework. For the conducted experiments,
the releases used were Apache Storm 1.2.8, Apache Flink 1.9.0
and Twister 0.3.0 (for the basic testing done on Apache Spark,
version 2.4.4 was used). Each framework was tested under
different internal configurations and we selected configurations
that minimized any performance lag. The experiments were
conducted for 10-20 rounds and the average results taken to
draw our conclusions.



A. Model Synchronization

In the distributed setting, generating a synchronized model is
vital. For implementing the online versions of the machine
learning algorithms, we adopted strategies specific to each
framework. In Apache Flink, the reduce function handles
synchronization of the models. This is the only possible way
to get an approximation to the all-reduce model as Apache
Flink does not support an all-reduce-equivalent communica-
tion for synchronizing models globally. For Apache Spark, the
reduce function and RDD broadcast performed the synchro-
nization. With Apache Storm, all-grouping was used, while
the Twister2-HPC model employed MPI-AllReduce collective
communication. Twister2-Dataflow model uses a variation
of all-reduce communication with a tree-like communication
model. The model synchronization is thus carried out in
Twister2.

B. Streaming SVM

For streaming SVM model, we used a dataset with two classes
with 22 elements per data point. For the experiments, an iter-
ative computation on windowed elements was deployed. This
operation is supported by Apache Flink, Apache Storm and
Twister2. We tried this model using Apache Spark streaming
engine. With the provided APIs and system constraints, we
were able to design an approximate model to that designed
with the aforementioned frameworks. The main constraint is
that it only provides windowing considering the notion of time.
This makes it hard to do a stress test on the stream engine be-
cause, by the notion of time, the minimum number of elements
that can be set per batch is in millisecond level. Furthermore, it
does not support iterative streaming models. This feature is not
directly supported with DStream in Apache Spark streaming
engine. With the approximate model, the accuracy obtained
was comparatively quite low in regard to the other frameworks.
A workaround is to use structured streaming in Apache Spark.
This implementation works on the SQL engine of Spark, and
it only considers the notion of time. We did not implement
that model in this research as it is a very different implemen-
tation compared to the others. In the conclusion section, this
will be explained in detail. Figure 2 shows the experiment
results for tumbling window. From these results, it is clear
that the Twister2 models outperform both Apache Storm and
Apache Flink implementations. Figure 3 illustrates the sliding
window related experiments. Similar to tumbling windowing,
with sliding windows, Twister2 implementations outperform
Apache Flink and Apache Storm implementations. Twister2
possesses a faster stream processing capability through a
strong MPI-based backend. This provides a scalable solution
for iterative stream processing on a window. With Apache
Flink, the main bottleneck is the reduce task doing the model
synchronization. In Twister2 and Apache Storm, the all-reduce
and all-grouping mechanisms are involved in providing all-
to-all model synchronization capability. But in Apache Flink,
this process becomes all-to-one and makes a bottleneck in
processing the data. In this case, both Twister2 and Apache
Storm outperform Apache Flink.

Fig. 2. Streaming SVM with Linear Kernel-based experiments for tumbling
window is recorded for both HPC and Dataflow programming models. The
time recorded is the streaming training time until expected convergence.

Fig. 3. Streaming SVM with Linear Kernel-based experiments for sliding
window is recorded for HPC model and Dataflow programming models. The
time recorded is the streaming training time until expected convergence. The
x-axis in the figure is labeled with the pair of (window length, sliding length).

From all implementations in Apache Flink, Apache Storm
and Twister2, 90.49% of test accuracy was obtained after a
finite length of the stream was processed. With Apache Spark
implementation, we were able to get an average accuracy of
40%-50% with the same number of iterations. We did not
include the graphs here since the number of iterations required
to get the same accuracy is much higher. The main issue for
this is that Spark streaming API is not designed with iteration
compatibility. Also, it does not provide a window function to
capture the elements belonging to a window. This functionality
is available in Apache Storm, Apache Flink and Twister2.
Apache Spark only provides basic element operators like
map, flatmap, etc. If this was attempted with a forEachRDD
function, the user has no capability to synchronize the model
as it is a sink function. In addition, Spark only provides a
windowing functionality with the notion of time and has no
support for windowing based on the count of elements.



C. Streaming KMeans

For the streaming KMeans model, the dataset we used contains
23 elements per data point. Here a non-iterative computation
is done. Apache Flink, Apache Storm and Twister2 support the
windowing functions to implement an algorithm like this. With
Apache Spark streaming, a non-iterative application can be de-
veloped, but the count-based notion is not available in the API.
In this research, we have only conducted windowed streaming
with the notion of the number of elements per window. In
achieving the current goal, we used the streaming systems
which provide this functionality. Figure 4 shows the tumbling
window-based experiments carried out on streaming KMeans
model. Figure 3 shows the sliding window-based experiments
carried out on streaming KMeans model. Similar to streaming
SVM results, Twister2 models outperform both Apache Spark
and Apache Flink. Twister2 model synchronization with an
all-reduce mechanism provides faster execution than that of
regular all-to-all communication in Apache Storm. In Apache
Flink, there is no all-to-all communication; the model syn-
chronization happens in an all-to-one setting. This is the same
bottleneck as observed in streaming SVM applications. But
Apache Flink outperforms Apache Storm. This model is a non-
iterative model and the pressure exerted on communication
is lower. This leads to much faster data progress from the
windowing task to the reduce task.

Fig. 4. Streaming KMeans Results for 1000 cluster-based experiments for
tumbling window is recorded for both HPC and Dataflow programming
models. The time recorded is the streaming training time until expected
convergence.

V. RELATED WORK

Apache Spark [2] considers stream processing as a related
event of small-batch computations. It collects the records
from the stream in a buffer which is called mini-batch. The
main advantage of this technique is to provide effortless
fault tolerance. However, a disadvantage is higher latency due
to the micro-batch scheduling mechanism. Apache Flink [3]
processes the streaming events using the dataflow runtime
model rather than processing as micro-batches, which provides
lower processing latency. However, a significant disadvantage

Fig. 5. Streaming KMeans for 1000 cluster-based experiments for sliding
window is recorded for both HPC and Dataflow programming models. The
time recorded is the streaming training time until expected convergence. The
x axis in the figure is labeled with the pair of (window length,sliding length).

of this model emerges when implementing the fault tolerance
mechanism. Apache Storm [4] is a real-time distributed stream
processing engine which provides a fault-tolerant and scalable
system to process the streaming data. It is implemented with
two important processing semantics, namely ”at least once”
and ”at most once”, that provide the guarantee of the data
which processes it. Twister: Net [5] is a standalone highly
optimized dataflow library that defines the dataflow model
for big data to process streaming and batch data. Based on
the evaluation, it is acknowledged that the communication
requirements of big data have been written in a separate
library without the integration of any big data framework.
Using this library, the user may design highly efficient big
data applications. TSet [6] is the highest level of abstraction
provided in Twister2 [7] framework which is similar to RDD’s
in Apache Spark and DataSets in Apache Flink. S4 (Simple
Scalable Streaming System) [8] is a distributed model for
processing streaming which has been designed to solve the
data mining and machine learning algorithms. It is designed
with a simple programming interface along with decentralized
and symmetric architecture in which nodes share the same
functionalities and responsibilities and there is no overhead
to a single node. They have demonstrated the performance
of tuning an online search advertising system. Qian et al [9]
designed a distributed system known as TimeStream which
specifically processes continuous big stream data with low
latency. It has provided a powerful abstraction called resilient
substitution which is responsible for handling the failure
recovery and dynamic reconfiguration corresponding to the
load. TimeStream is implemented with a fine-grained data de-
pendency mechanism to enable a re-computation-based failure
recovery mechanism that achieves ”at least once” semantics.
Derek G. Murray et al [10] designed a timely dataflow system
that executes the data-parallel and cyclic dataflow program
in a distributed manner. It achieves high throughput batch
processing and low latency stream processing using the Timely



Dataflow model. It also enhances the dataflow computation
and provides the base for an efficient, lightweight coordination
mechanism. Online classification on large scale data sets has
also been discussed by Street et al [11] in the early stage of the
streaming machine learning research. Hazan et al [12] describe
two ways of designing an online SGD algorithm: an adaptive
algorithm with a better convergence rate and a standard online
algorithm with a descent convergence rate. Zhong et al [13]
propose an online version of Kmeans clustering by observing
a data point once in the model generation step and assigning it
to the closest centroid. Yahoo [14] provides a state-of-the-art
stream processing-related benchmark showing the capabilities
in each stream processing engine. It uses Apache Storm,
Apache Spark and Apache Flink as the streaming engines
to draw the comparisons. Krimov et al [14] provide another
benchmark on analyzing the capabilities in Apache Storm,
Apache Flink and Apache Spark.

VI. CONCLUSION

Twister2 streaming engine provides state-of-the-art perfor-
mance for streaming machine learning algorithms. Processing
large amounts of data with low latency is critical to stream-
ing frameworks. This paper presented two important ma-
chine learning algorithms and showcased their performance.
Twister2 outperformed Apache Storm and Apache Flink in all
the scenarios considered for both algorithms. With Apache
Spark streaming engine, we were only able to design a
streaming model based on time. This was not the area of
focus in our research. A time-based windowing makes it much
harder to run a stress test on the streaming engine. In addition,
we observed the importance of windowing functions avail-
ability in Apache Storm, Flink and Twister2 for implementing
advanced algorithms in the streaming setting. In Apache Spark
streaming, we were not able to use the notion of a windowing
function. When it comes to doing an iterative computation,
the notion of a window-function is highly essential, although
Apache Spark provides a solution for this based on the SQL
engine. The structured streaming with Apache Spark SQL
provides a possible avenue to develop such applications. This
involves channeling the capabilities in the SQL engine which
can add an overhead to the application. In this research, we
paid more attention to the very basic components in a stream
engine itself and evaluated the performance for different
experiment settings.

VII. FUTURE WORK

For future work, we are expecting to design time-notion based
experiments. The idea is to analyze event-time and process-
time-based stream discretization on state-of-the-art stream
processing engines.
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