
Grids for Real Time Data Applications

Geoffrey C. Fox†‡, Mehmet S. Aktas†‡, Galip Aydin†‡, Hasan Bulut†‡,
Harshawardhan Gadgil†‡, Sangyoon Oh†‡, Shrideep Pallickara‡, Marlon E.

Pierce‡, Ahmet Sayar†‡, and Gang Zhai†‡

† Computer Science Department, School of Informatics
‡ Community Grids Laboratory

Indiana University
Bloomington, IN 47405 USA

{gcf@grids.ucs, maktas@cs, gaydin@cs, hbulut@cs, hgadgil@cs, ohsangy@cs,
spallick@grids.ucs, mpierce@cs, asayar@cs, gzhai@cs} .indiana.edu

Abstract. We describe our work in building support for streaming data
services for Geographical Information System Grid services. We examine
how streaming approaches may be used to increase data service per-
formance for transporting XML messages. Similarly, streaming versions
of traditional static map services may be combined with general au-
dio/video session management capabilities to build collaborative, an-
notatable shared maps. Distributed services linked through messaging
substrates require information and broker management capabilities, and
we describe our research here. Finally, we discuss efficient XML repre-
sentation techniques that can be used to increase performance of Web
Services and support Web enabled devices.

1 Introduction

The implications of messaging and real-time data streaming in the core standards
of Service Oriented Architectures [1] are just beginning to be investigated. SOAP
intermediaries and distributed messaging systems may potentially greatly alter
the nature of the Grid applications, creating an “Application Internet” on top
of the core Internet.

As we have reviewed elsewhere [2], service oriented systems (i.e. Grids) are
characterized by distinct, distributed services with well defined public interfaces.
These services communicate through the exchange of messages. Both service
definitions and message formats are expressible in XML using WSDL [3] and
SOAP [4], respectively. Perhaps underappreciated so far is the importance of
the message-based nature of service-oriented systems. Most applications have
focused on the “remote procedure call” view of Web Services, and this approach
has been successful in building file-system based scientific application Grids.
However, remote procedure call implementations are only a convention. We may
also exploit messaging approaches to handle streaming and real time data. One
of the primary characteristics of this approach is the use of messaging substrates
[5] to support the routing of the messages, as well as provide various qualities of
service such as reliability and security.



Fig. 1. Self-contained services, or collections of services, communicate through mes-
sages mediated by a messaging substrate. All communications (method invocation and
responses, event notifications, data exchanges, and data streams) are messages.

We illustrate the basic concepts in Fig. 1. We may consider the individual
services as distinct structures on a messaging foundation (Fig. 1 represents a
top-down view in our analogy). The individual services expose public interfaces
to the rest of the Grid services. Resource-specific internal interfaces and bridges
(i.e. access to a particular database or simulation application) are not public:
the service mediates access to these resources. All communication between ser-
vices uses distinct messages that are managed by the messaging substrate that
abstract network transport protocols (TCP/IP, UPD, etc.). Services publish or
subscribe to messaging channels, constructing or consuming messages as appro-
priate, but are not otherwise responsible for message routine or message quality
of service. Similar approaches have been used to manage inter-service commu-
nication of state changes and other notifications [6], but as we advocate in this
paper, the message substrate approach should apply to all messages. The system
may support several modes, including client-server and peer-to-peer (see 2.3)

Fig.1 is self-similar in that we may build Grids hierarchically, where each col-
lection of services that constitutes a particular subgrid may itself expose a single
external interface. Such systems are made possible through workflow and light-
weight information systems that together can be used to define these subgrids.
This work is described in more detail in Section 3.

In this paper, we describe our efforts to build service oriented, real time
systems based on the NaradaBrokering substrate [7]. NaradaBrokering is a dis-
tributed, topic-based publish/subscribe system that may be used to route arbi-
trary message payloads. We begin with an examination of several applications:
Geographical Information System (GIS)-based applications for accessing data
archives, using video collaboration techniques for developing streaming map
videos within collaborative sessions, and annotating video streams. We then



examine two fundamental services needed to support messaging Grids: infor-
mation management using WS-Context, stream and broker management using
HPSearch. We conclude with an examination of techniques for improving Web
Service performance by using more efficient XML representations.

2 Geographical Information System (GIS) Data Service
Applications

2.1 Improving Web Feature Service Performance:

The Open Geospatial Consortium (OGC) [8] standard specification Web Feature
Service (WFS) [9] defines standard interfaces for web-based clients and servers
to access geospatial feature data. WFS and other OGC based services use the
Geography Markup Language (GML) [10] to encode geospatial data, and this
provides a common language for both providers and consumers. The original
WFS specification is based on HTTP Get/Post methods, but this type of service
has several limitations such as the amount of the data that can be transported,
the rate of the data transportation, and the difficulty of orchestrating multiple
services for more complex tasks. Web Services help us overcome some of these
problems by providing standard interfaces to the tools or applications we develop.
We have developed a Web Service version of WFS and are testing in several
scenarios where scientific data analysis tools such as Pattern Informatics [11]
require fast access to large amount of data.

Our experience shows that although by using Web Services we can easily
integrate several GIS and other services into complex tasks, providing high-rate
transportation capabilities for large amounts of data remains a problem because
the pure Web Services implementations rely on SOAP messages exchanged over
HTTP. This conclusion has led us to an investigation of topic-based publish-
subscribe messaging systems for exchanging SOAP messages and data payload
between Web Services. We have used NaradaBrokering which provides several
useful features besides streaming data transport such as reliable delivery, abil-
ity to choose alternate transport protocols, security and recovery from network
failures.

Our streaming WFS uses standard SOAP messages for receiving queries from
the clients; however, the query results are published (streamed) to a NaradaBro-
kering topic as they become available. Our initial implementation uses MySQL
database for keeping geographic feature data, and we employ a capability in
MySQL that streams the results row by row, allowing us to receive individual
results and publish them to the messaging substrate instead of waiting for whole
result set to be returned. The initial performance results show that (especially
for smaller data sets) streaming removes a lot of overhead introduced by object
initializations. Table 1 gives a comparison of the streaming and non-streaming
versions of our WFS implementations. The data requested is the Southern Cali-
fornia seismic records for the eventful year of 1992, initially obtained from South-
ern California Earthquake data center [12] and converted into GML for our Web



Feature Service. The first column is the minimum magnitude of the earthquake,
the second column shows the data size of the query result. Timings for Streaming
WFS contains two columns; the first column shows the time it takes to generate
and stream out GML feature collection, the second column shows the total re-
sponse time. The fourth column shows the total response time for non-streaming
WFS. The difference between streaming and non-streaming WFS versions is that
streaming version does not accumulate the query results and stream as soon as
they become available. The timings are in milliseconds and include object ini-
tializations, query processing, database query and transport times.

Table 1. The performance of streaming and non-streaming versions of the Web Feature
Service is compared. Timings are in milliseconds. Numbers in parentheses are standard
deviations.

Event Magnitude Data Size Streaming WFS Response Time
Lower Bound (KB) Streaming the

result
Total-Response
Time

Non-Streaming WFS

3 880 2414 4570 (360) 5663 (31)

3.5 287 827 3405 (48) 4414 (39)

4 106 320 2945 (50) 4099 (71)

4.5 36 100 2661 (27) 3917 (38)

5 11 31 2425 (38) 3913 (77)

We can deduce from the table that for larger data sets when using streaming
our gain is about 25%. But for the smaller data sets this gain becomes about 40%
which is mainly because in the traditional Web Services the SOAP message has
to be created, transported and decoded the same way for all message sizes which
introduces significant overhead. We are investigating new methods for reducing
the overhead in the streaming WFS to further improve the performance.

2.2 Collaborative Map Videos through the Streaming Web Map
Services

The Web Map Service [13] is another HTTP GET/POST-based service that
we may convert into a Web Service. Map servers are useful for building Web
portal interfaces for geophysical Grid applications that integrate Web Feature
Service-based data services with remote executables. Examples of this work may
be found in [11]. We are also interested in going beyond static images to support
the displays of time-dependent geographic data.

In our initial investigation of this problem, we generate the video image as a
sequence of map images. After generating map images on the Web Map Server for
each time slice for the same data layer, the WMS then converts the sequence into
a video stream and publishes it to a Real Time Protocol (RTP) [14] session which



is represented as <IP Address, Port Number> pair. The supported video stream
formats are H.261 and H.263, which are widely used formats in videoconferencing
systems. A client capable of playing those formats can connect to the RTP session
and play the stream published. Map video stream can be played in collaborative
environments such as AccessGrid [15] and GlobalMMCS [16] sessions.

The map video stream has several configurable parameters which affect the
quality of the produced map video stream: frame rate and video format of the
stream, update rate of the map images in the video stream. We use the H.261
codec and update map images every 0.5 seconds while we keep the video frame
rate at 10 frames per second. This provides sufficient quality for the video stream
displayed at the receiving side. The reason frame rate and image update rate are
different is that some clients might not be capable of visualizing video streams
with low frame rate or can visualize them with very low quality. Keeping frame
rate high will improve the quality of the video shown on the player while the
map image rate is kept at a different rate.

Map video streams can be published to unicast or multicast RTP sessions.
AccessGrid venues are multicast sessions. A video client listening a multicast ses-
sion can receive and play the stream as long as the underlying network lets client
receive multicast packets. GlobalMMCS also provides this map video stream to
its clients as unicast video stream.

2.3 Collaboration Tools for e-Annotation

Streaming map servers may be viewed by any compatible client, and by inte-
grating with GlobalMMCS, we may deliver streaming map video to a range of
systems (including Access Grid, Polycom, and RealPlayer); see [16]. We may also
build our own custom clients and services with extended capabilities for replay
and annotation.

The e-Annotation collaborative tools facilitate interactive collaboration and
distance education. The e-Annotation collaborative tools work in a peer-to-peer
fashion atop of the collaboration architecture based on publish-subscribe mes-
saging middleware. All the participating peers collaboratively work with each
other using the NaradaBrokering messaging overlay network to annotate a live
or archived video stream. The e-Annotation player is composed of the following
components, illustrated in Figure 2.

Stream List Panel: There are three stream lists in this panel: a list of real
time live streams, an archived video stream list, and a composite annotation
stream list. These three stream lists are dynamically updated from the RTSP
server by subscribing to the streaming control info topic from one of the brokers.
Each stream list is a topic.

Real time live video play panel: This panel contains a video player which
can play the selected real time live video stream that user selects in the real
time live stream list. All the real time live video streams are published by Glob-
alMMCS through different NaradaBrokering topics.

Streaming player panel: This panel has a video player to play the buffered
or archived video stream from the NaradaBrokering’s buffers and storage nodes.



Fig. 2. The e-Annotation user interface allows video image display, capture, annota-
tion, and playback. The image shown is LandSat imagery of the western United States,
obtained from the NASA OnEarth project, http://onearth.jpl.nasa.gov/.

This player supports pausing, forwarding and rewinding the video streams with
dynamic length (the buffered live video) or fixed length (the archived video
stream). It also supports taking snapshots from a playing video stream. When
taking a snapshot, the timestamp is associated with that snapshot. These snap-
shots are loaded to whiteboard to be annotated collaboratively and saved with
the original stream as a new composite stream.

Video annotation player panel: This panel contains a player to play the
new created composite annotation video stream. When the annotation stream is
played back, the original video stream is played in the streaming player panel,
and the annotated snapshots (which are streamed by RTSP server) are played
in this panel, synchronized with the original video stream by the timestamps
associated with them.

3 Web Intermediary and Service Management

3.1 Service and intermediary management

We are developing HPSearch [17] as script-based management console for con-
trolling services and NaradaBrokering intermediaries. HPSearch provides dual
functionality: 1) it provides a high-level language suitable for application devel-
opers to program workflows in a Grid that utilizes the messaging middleware,
and 2) it provides tools to manage the messaging middleware.

HPSearch enacts a simple distributed services model by leveraging the capa-
bilities of messaging middleware for routing data in streams between services.
WSProxy is a specialized component of the HPSearch system that wraps an



existing service or a program while providing a Web Service interface for steer-
ing the service. It also provides an interface to the NaradaBrokering messaging
system that transparently maps input / output streams to messages. Thus data
is sent between services by publishing the event containing the data on a pre-
determined topic. Topics are automatically created by the HPSearch engine thus
linking distributed services. WSProxy also presents a simple Web Service inter-
face to help steer the service. The HPSearch runtime steers the service while the
input / output is transparently managed by NaradaBrokering. NaradaBrokering
has been recently augmented with topic creation and discovery [18] and message-
level security. We plan on adding handlers in HPSearch to help automatically
register secure streams and issue tokens to participating services. This will allow
the application programmer to manage the security features of each stream that
links distributed services.

HPSearch uses NaradaBrokering to route data streams between distributed
services. Accessing a single broker over-and-over usually results in inefficient
routing of data due to over loading. To assuage this problem we deploy a set
of co-operating broker nodes that together form a virtual broker network. This
broker network usually has multiple routes connecting peripheral brokers, thus
providing alternate routes avoiding congestion at a single broker node. The dis-
tributed services connect to the peers at the periphery of this network. Thus,
the brokering network can route data between peers much more efficiently, also
providing different quality of service to each peer if required.

The scripting architecture also allows us to aggregate performance metrics in
the system. These would allow us to determine congested paths and help decide
alternate routes to create. The management architecture may be extended to
manage remote brokers and provide means to try alternate configurations for
creating links that span firewalls.

Management of such a set of multiple broker nodes and creating links be-
tween them poses a scalability issue. To address this issue, we are developing
a specialized Web Service called the Broker Service Adapter. The Broker Ser-
vice Adapter helps us deploy brokers on distributed nodes and setup links be-
tween them. Further broker nodes or the links between them may fail. HPSearch
provides a scripting interface to instantiate new brokers at runtime and create
links between brokers. The routing characteristics may be completely changed
by tearing down an existing broker network and instantiating a completely new
network.

Recently, management of systems has gained much research interest within
the Web Service community. WS-Management [19] and WS-Distributed Man-
agement [20] are two competing Web Service specifications that propose man-
agement of remote resources based on the Web Service architecture. We plan
on extending the Broker Service Adapter architecture to incorporate a simple
WS-Management based interaction while fault-tolerance and scalability is auto-
matically handled by the underlying Broker Service Adapter architecture.



3.2 Managing dynamic information with WS-Context

Collections of services such as Geographic Information System and collaboration
services, such as described in Section 2, may be thought of as an actively collab-
orating set of grid/web services where services are put together for a particular
goal. Each interaction with a set of services (including both workflows described
in [11] and video collaboration sessions described in 2.3) can be modeled as a
session. Each session is associated with a life time and maintains rapidly up-
dated information known as context. Simply restated, this means that context
plays an important role in enabling services to correlate their activities. We use
the term “gaggle” for dynamically assembled grid/web services for a particular
functional collection [21]. Gaggles may be gathered at any one time and can be
considered as very small part of the whole grid.

We have designed and implemented information services [22] that support dy-
namically generated context to meet with aforementioned requirements of rich
interacting systems. We have extended existing WS-Context Specifications [23]
and provided with an implementation of XML metadata services supported by a
MySQL database as backend storage. The WS-Context Metadata Service keeps
track of context information shared between multiple participants in grid/web
service interactions. It maintains user profiles, application specific metadata, in-
formation regarding sessions and state of entities in these sessions. In order to
provide fault tolerance and scalability, we have also designed distributed meta-
data management architecture to support dynamically assembled Grid applica-
tions where metadata is widely-scattered and dynamically generated [24]. Addi-
tional applications of WS-Context services are described in Section 4.

4 High Performance XML Transfer

In a conventional Web Service environment, XML is the presentation format,
which provides interoperability to the heterogeneous participating nodes. But
in some constrained computing environments, such as mobile computing and
real-time computing, processing verbose XML-based messages becomes a per-
formance bottleneck. These performance overheads consist of parsing to retrieve
information from its structured representation, more transmission time with in-
creased document size over a narrow-bandwidth mobile connection and conver-
sion overheads from in-memory representation to textual format.

The high-performance XML encoding is an open research area [25] [26] [27].
Related work on solving these problems can be categorized as individual message
optimization or message stream optimization. An individual message approach
produces a simplified, efficient, and self-contained message that has different rep-
resentation of XML content – XML Infoset information. XBIS [28] falls on to this
category. The message stream approach optimizes a whole sequence of messages
– a session. Participating nodes negotiate the characteristics of the session and
the message format in the session. Fast Web Services [29] and Handheld Flexible
Representation [30] [31] (described below) fall on this category.



To achieve high-performance SOAP message processing and exchange in
constrained environments, we are designing Handheld Flexible Representation
(HHFR) and have implemented a prototype. We focus initially on handheld ap-
plications but we see important extensions to both Web enabled sensor devices
and to data-centric Web Services in general. The architecture provides the pre-
ferred representation for applications (target services, client services, or message
receivers) by separating SOAP message contents from the XML syntax of the
message. The architecture targets a message stream and negotiates character-
istics of the stream that includes the structure and types of SOAP message,
reliability and security issues, and a preferred representation. To achieve the
goal, the architecture design should address several issues.

Replacement of XML Syntax with Optimized Representation: The
HHFR architecture and its framework supports message exchanging in the pre-
ferred representations, which is an optimized (or binary) format in most cases.
The architecture separates SOAP message contents from the XML syntax. It
is responsible to build the message in the preferred format (or representation)
using internal DataStructure object and the separated contents stored in the
HHFR data model. The internal DataStructure is created by parsing the HHFR
schema document, which is a surrogate of separated structure and types of the
SOAP message. We restrict the XML Schema definition for the HHFR Schema
definition. These restrictions, such as a single schema document, no facets like
minInclusive and maxInclusive, no references, make parsing a HHFR Schema
document produce a single structure.

Focus on Message Streams: The HHFR works best for the Web Services,
where two participating nodes exchange a stream of messages. For applications
using a specific service, messages in the stream share the same data structure and
data type for information items in it. Most of message headers are not changing in
the stream session. Therefore, the structure and type of SOAP message contents
in HHFR schema format and unchanging-SOAP headers can be transmitted only
once, and the rest of the messages in the stream has only payloads.

Context-store as a Repository: In the HHFR architecture, a context-store
module holds a static data of the message stream including the unchanging-
SOAP headers, HHFR schema as a data representation, and other stream charac-
teristics. These characteristics are captured by a negotiation stage. WS-Context
(see 3.2) is well suited for this purpose. Information is defined with a URI. For
example, we derived the HHFR scheme itself as URI-S. The current representa-
tion of the message in the stream is URI-R and the choice of transport protocol
is URI-T.

Negotiation of Characteristics: To use the preferred representation and
set up characteristics of the stream, the HHFR uses a conventional SOAP mes-
sage in the beginning of the stream like the negotiation in the WS-SecureConversation
[32] specification. The SOAP message, which has a Negotiation Schema defined
with the HHFR Schema definition, is sent to request to start a HHFR session.
It contains a HHFR Schema document of the SOAP message and any available
quality of service issues.



To demonstrate the effectiveness of HHFR architecture, we have implemented
a prototype mobile Web Service framework based on the HHFR architecture
design. The prototype implements core design features of the design, such as
the representation conversion, a fast transport option for a message streaming,
the negotiation stage, and a simple HHFR data model. We choose Java as a
language platform for both mobile and conventional computing and we limit
the mobile node as the service client. Since the HHFR design doesn’t cover the
SOAP Engine feature, we utilize existing efforts – Apache AXIS and kSOAP.

We experiment benchmarks to compare the performance of the HHFR proto-
type with the performance of the conventional Web Service framework – AXIS.
The details of the experiments and results can be found in [31] and we sum-
marize them here. We develop two applications, a string array concatenation
application and a floating number array addition application. Both applications
use TCP transport for benchmarking. A string array concatenation service pro-
duces a single concatenated string of all string in a message. We measure a Round
Trip Time (RTT) of the session, which includes multiple messages of given array
length. The other application is a float number addition service that returns a
summation of all float numbers of an array in a message. In this benchmark,
RTT of the conventional SOAP application contains an OS level float-to-text
conversion overhead, while RTT of the HHFR doesn’t.

From the experiments, we observe a bigger performance savings on a longer
session. The string concatenation benchmark and the float addition benchmark
show that HHFR communication out-performs a conventional SOAP and the
gap is fast-increasing as the number of messages in a session grows. These per-
formance gaps are mainly caused by high latency of the cellular network, which
uses the SprintPCS Vision service (speed up to 14.4kbps). The second observa-
tion we did is from the float number adding service and it is an efficient memory
space usage of the HHFR prototype implementation by avoiding text conver-
sions for building SOAP messages. During the benchmark, the runtime system
of the prototype processes a larger size array in the message.

The high-performance XML can be achieved in many ways. For example, a
binary data attachment in the SOAP message, such as MTOM [33] and XOP
[34], is very popular solution to avoid a redundant encoding for already-encoded
multimedia data or to preserve data integrity of the encrypted data. However
the approach can be applied to only fixed data format and cannot cover user
defined data structure such as the array. Another example is compressing SOAP
documents. Compressing is reducing the size of the document for narrow band-
width connected Web Service nodes. The XML specific XMill [35] can reduce
the document size in half or more. But because of another layer of processing
– a compression and a decompression, the compression approach is not saving
overall performance overhead in many data domains.



5 Summary and Conclusion

We have described several research efforts to investigate problems in managing
streaming data, with an emphasis on applications to earth science data and col-
laboration through our SERVOGrid project. As we have discussed, streaming
approaches are capable of increasing Web Service performance for data-centric
services such as the Web Feature Service. Similarly, static Web Map Services
may be transformed into video streaming services that can be further integrated
with shared collaboration tools for annotation and playback. Underlying these
systems is the need to manage both the services and the brokers (or, messag-
ing intermediaries) that constitute the system. We described our efforts here in
developing HPSearch and WS-Context. Performance is one of the key problems
facing Web Service applications. As we discussed, efficient and flexible XML
representation is one possible solution. We have initially investigated this for
hand-held collaboration devices but see obvious extensions web enabled sensor
devices and to more conventional data services (particularly the Web Feature
Service). Several open areas for additional research are described within Sections
2, 3, and 4.

This work is supported in part by a grant from the NASA Advanced Infor-
mation Systems Technology program.

6 References

1. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C.,
and Orchard, D. “Web Service Architecture.” W3C Working Group Note,
11 February 2004. Available from http://www.w3c.org/TR/ws-arch

2. G. Fox, S. Pallickara and S. Parastatidis Towards Flexible Messaging for
SOAP Based Services Proceedings of the IEEE/ACM Supercomputing Con-
ference November 2004. Pittsburgh, PA.

3. M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, and H. F. Nielsen,
“SOAP Version 1.2 Part 1: Messaging Framework.” W3C Recommendation
24 June 2003. Available from http://www.w3.org/TR/soap/.

4. R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana, “Web Service
Descrption Language (WSDL) Version 2.0 Part 1: Core Language.” W3C
Working Draft 3 August 2005.

5. G. Fox, S. Pallickara, M. Pierce, H. Gadgil, Building Messaging Substrates
for Web and Grid Applications to be published in special Issue on Scientific
Applications of Grid Computing in Philosophical Transactions of the Royal
Society of London 2005.

6. I. Foster, “Globus Toolkit Version 4: Software for Service-Oriented Sys-
tems.” IFIP International Conference on Network and Parallel Computing,
Springer-Verlag LNCS 3779, pp 2-13, 2005.

7. S. Pallickara and G. Fox. NaradaBrokering: A Middleware Framework and
Architecture for Enabling Durable Peer-to-Peer Grids.
Proceedings of ACM/IFIP/USENIX International Middleware Conference
Middleware-2003.



8. The Open Geospatial Consortium, Inc. see: http://www.opengeospatial.org/.
9. Vretanos, P (ed.) (2002), Web Feature Service Implementation Specification,

OpenGIS project document: OGC 02-058, version 1.0.0.
10. Cox, S., Daisey, P., Lake, R., Portele, C., and Whiteside, A. (eds) (03),

OGC Geography Markup Language (GML) Implementation Specification.
OpenGIS project document reference number OGC 02-023r4, Version 3.0.

11. G. Aydin, M. S. Aktas, G. C. Fox, .H. Gadgil, M. Pierce, and A. Sayar
SERVOGrid Complexity Computational Environments (CCE) Integrated
Performance Analysis.” Technical report June 2005 accepted as poster and
short paper in Grid2005 Workshop, 2005.

12. Southern California Earthquake Data Center see: http://www.data.scec.org.
13. de La Beaujardière, J. editor, 2002. Web Map Service Implementation Spec-

ification, Version 1.1.1, OGC 01-068r3.
http://www.opengis.org/techno/specs/01-068r3.pdf.

14. H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, RTP: A Trans-
port Protocol for Real-Time Applications. Internet Engineering Task Force
Request for Comments 3550 (2003). http://www.ietf.org/rfc/rfc3550.txt

15. Access Grid, http://www.accessgrid.org
16. W. Wu, G. Fox, H. Bulut, A. Uyar, and H. Altay “Design and Implementa-

tion of A Collaboration Web-services system”, Journal of Neural, Parallel &
Scientific Computations (NPSC), Vol. 12, 04. http://www.globalmmcs.org.

17. H. Gadgil, G. Fox, S. Pallickara, M. Pierce, and R. Granat,
”A Scripting based Architecture for Management of Streams and Services
in Real-time Grid Applications.” In proceedings of the IEEE/ACM Cluster
Computing and Grid 2005 Conference, CCGrid 2005, Cardiff, UK

18. S. Pallickara, G. Fox, and H. Gadgil , “On the Discovery of Topics in Dis-
tributed Publish/Subscribe Systems.” (To appear) Proceedings of the 6th
IEEE/ACM International Workshop on Grid Computing Grid 2005 Confer-
ence, Seattle, WA.

19. R. McCollum (ed), “Web Services for Management (WS-Management June
2005).” see: http://msdn.microsoft.com/library/en-us/dnglobspec/html/-
ws-management.pdf.

20. W. Vambenepe (ed), “Web Service Distributed Management: Management
Using Web Services (MUWS 1.0) Part 1.” OASIS Standard, 9 March 2005.
see: http://docs.oasis-open.org/wsdm/2004/12/wsdm-muws-part1-1.0.pdf

21. M. S. Aktas, G. Fox, M. Pierce, “Managing Dynamic Metadata as Context.”
In proceedings of Istanbul International Computational Science and Engi-
neering Conference (ICCSE2005) June 2005, see: http://www.opengrids.org

22. B. Plale, P. Dinda, and G. Von Laszewski., Key Concepts and Services of a
Grid Information Service. In Proceedings of the 15th International Confer-
ence on Parallel and Distributed Computing Systems (PDCS 2002), 2002

23. Bunting, B., Chapman, M., Hurlery, O., Little M., Mischinkinky, J., New-
comer, E., Webber J., and Swenson, K., Web Services Context (WS-Context),
see: http://www.arjuna.com/library/specs/ws caf 1-0/WS-CTX.pdf

24. M. S. Aktas, G. C. Fox, and M. Pierce, “An Architecture for Supporting
Information in Dynamically Assembled Semantic Grids”, 1st International
Conference on Semantics, Knowledge and Grid, November 2005



25. O. Goldman, “XML Binary Characterization”, W3C Working Group Note,
Mar. 2005, http://www.w3.org/TR/xbc-characterization/

26. K. Chiu, M. Govindaraju, and R. Bramley, “Investigating the Limits of
SOAP Performance for Scientific Computing”, Proc. Of 11th IEEE Int. Sym-
posium on High Performance Distributed Computing HPDC-11 2002, July
2002, pp. 256.

27. Fast Infoset, http://asn1.elibel.tm.fr/xml/finf.htm
28. XBIS XML Information Set Encoding, http://xbis.sourceforge.net/
29. P. Sandoz, S. Pericas-Geertsen, K. Kawaguchi, M. Hadley, and E. Pelegri-

Llopart, “Fast Web Services”, Aug. 2003,
http://java.sun.com/developer/technicalArticles/Web Services/FastWS/

30. S. Oh, H. Bulut, A. Uyar, W. Wu, and G. C. Fox, “ Optimized Communica-
tion using the SOAP Infoset For Mobile Multimedia Collaboration Applica-
tions”, Proc. Of the IEEE 2005 International Symposium on Collaborative
Technologies and Systems (CTS 2005), St. Louis, Missouri, USA, May. 2005.

31. S. Oh and G. C. Fox, “HHFR: A new architecture for Mobile Web Services
Principles and Implementations”, Comm. Grids Technical Paper, Sep. 2005.

32. S. Anderson, at al, “Web Services Secure Conversation Language (WS-
SecureConversation), May. 2004, ftp://www6.software.ibm.com/software/-
developer/library/ws-secureconversation052004.pdf

33. M. Gudgin, N. Mendelsohn, M. Nottingham, H. Ruellan, “SOAP Message
Transmission Optimization Mechanism”, W3C Proposed Recommendation,
Nov. 2004, http://www.w3.org/TR/2004/PR-soap12-mtom-20041116/

34. M. Gudgin, N. Mendelsohn, M. Nottingham, H. Ruellan, “XML-binary Op-
timized Packaging”, W3C Recommendation, Jan. 2005,
http://www.w3.org/TR/2004/PR-soap12-mtom-20041116/

35. H. Liefke and D. Suciu, “XMill: an efficient compressor for XML data”,
Proc. of the 2000 ACM SIGMOD International Conference on Management
of Data, Dallas, TX, USA, May. 2000.


