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ABSTRACT

Molecular dynamics (MD) simulations accelerated by high-performance computing (HPC) methods
are powerful tools to investigate and extract the microscopic mechanisms characterizing the properties
of soft materials such as self-assembled nanoparticles, virus capsids, confined electrolytes, and poly-
meric fluids. In this paper, we extend the idea developed in our earlier work of integrating machine
learning (ML) methods with HPC-accelerated MD simulations of soft materials in order to enhance
their predictive power and advance their applications for research and educational activities. Paral-
lelized MD simulations of self-assembling ions in nanoconfinement are employed to demonstrate our
approach. We find that an artificial neural network-based regression model successfully learns nearly
all the interesting features associated with the output ionic density profiles over a broad range of ionic
system parameters. The ML model generates predictions that are in excellent agreement with the
results from MD simulations. The inference time associated with the ML model is over a factor of
10,000 smaller than the corresponding parallel MD simulation time. Through this demonstration, we
introduce a “machine learning surrogate” for MD simulations of soft-matter systems. We develop and
deploy a web application on nanoHUB to realize the advantages associated with the ML surrogate.
The results demonstrate that the performance of MD simulations can be further enhanced by using
ML, enabling rapid and accurate simulation-driven exploration of soft material design space.

1. Introduction
Molecular dynamics simulations are powerful tools for

investigating the microscopic origins of the behavior of ma-
terials including soft matter. These simulations have enabled
the understanding of microscopic mechanisms underlying
the assembly of both biological and synthetic soft materi-
als such as virus capsids [47, 20], confined electrolytes [3],
polymeric liquids [40, 26], and self-assembled nanostruc-
tures [18, 10]. Themolecular dynamics (MD)method solves
Newton’s equation of motion for a system of many particles
and evolves the positions, velocities, and forces associated
with these particles at each time step. While MD simula-
tions are generalizable to study a broad range of phenomena
in soft matter, they incur high computational costs in several
applications where the computational complexity per time
step is proportional to the square of the total number of par-
ticles.

The high computational costs associated with MD simu-
lations are typicallymitigated by employing high-performance
computing (HPC) resources and utilizing parallel computing
techniques such as OpenMP andMPI. For example, in a typ-
ical MD simulation of electrolyte ions confined by material
surfaces [3, 32, 37], ≈ 1 nanosecond of dynamics of ≈ 500
ions on one processor takes ≈ 12 hours of runtime. This
timescale is prohibitively large to extract converged results
for ion distributions that generally require ≈ 5 nanoseconds
of simulated dynamics. Performing the same simulation on a
single node with 16 cores using OpenMP shared memory re-
duces the runtime by a factor of 10 (≈ 1 hour), enabling sim-
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ulations of the same system for longer physical times. Us-
ing MPI dramatically enhances the simulation performance:
for systems with thousands of ions, speedup of over 100 can
be achieved with 8 nodes and 16 cores per node, enabling
the generation of the needed data for evaluating converged
ionic distributions over a broad region of parameters char-
acterizing the ionic system design space. Further, a hybrid
OpenMP/MPI approach can provide an even higher speedup
of over 400 for systems of similar number of ions with 32
nodes and 16 cores per node, enabling MD simulations that
can explore the long-time dynamics of a large number of ions
with fewer controlled approximations [35].

In addition to enabling innovative research, the HPC-
accelerated MD simulations are useful educational tools for
teachingmaterials science and engineering courses [23]. How-
ever, despite the employment of the optimal parallelization
models suited for the size and complexity of the system,
simulations can often take hours or days to furnish accu-
rate output data and desired information. To expedite MD
simulation-driven design of advanced soft materials, it is
desirable to rapidly access trends associated with relevant
physical quantities that could be learned and predicted with
reasonable accuracy based on the history of data generated
from earlier simulation runs. Further, in the area of using
simulations in education, rapid access to simulation-driven
responses to student questions in classroom settings are de-
sirable. In the end, there is a critical need for new approaches
to accelerate simulations, leverage past simulations to gen-
erate accurate predictions, and expedite the analysis of sim-
ulation data to classify material properties.

Machine learning (ML) has the potential to address this
critical need directly. Accordingly, there has been a surge in
the use of ML to accelerate computational techniques aimed
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at understanding material phenomena [16]. ML has been
used to predict parameters, generate configurations in mate-
rial simulations, and classify material properties [52, 49, 42,
45, 13, 5, 7, 43, 16, 19, 35]. Motivated by the advancements
inML and by the challenges in employingMD simulations in
research and education, in a recent paper [36], we introduced
the idea of integrating ML methods with MD simulations to
enhance their performance and overall usability. We demon-
strated that an artificial neural network (ANN) based regres-
sion model, trained on data generated via MD simulations,
successfully learns a small number of pre-identified features
associated with the simulation output. The ML model in-
stantaneously generated predictions in excellent agreement
with results obtained from explicit MD simulations [36].

In this paper, we extend the original idea to solve the
problem of capturing nearly all the interesting features of the
desired simulation output. We utilize the MD simulations
of ions in nanoconfinement employed in our earlier work
[32, 36] to demonstrate the extension of the idea. While
the earlier paper showed a relatively small number (3) of
ML-generated predictions for the ionic distribution, we now
demonstrate that the ANNmodel trained on the same dataset
yields accurate predictions for ≈ 150 output parameters, en-
abling the estimation of almost all the interesting features of
the ionic density profile for a wide range of system parame-
ters. The inference time associated with the ML method is
over a factor of 10, 000 smaller than the corresponding MD
simulation time. Through this demonstration, we introduce
a first-of-its-kind “machine learning surrogate” for MD sim-
ulations of soft-matter systems.

These ML surrogates for MD simulations expand the re-
search explorations to a much broader set of model parame-
ters, enabling the rapid identification of interesting regimes
and reliable estimates of soft material properties. In addition
to expediting research, real-time access to simulation-driven
responses to student questions enables a dynamic environ-
ment for using simulation for educational activities in class-
room settings. To realize these advantages, we integrated
the ML surrogate with a web application on nanoHUB: Ions
in nanoconfinement. The ML-enhanced GUI delivers a dy-
namic and responsive environment to users, providing in-
stantaneous and accurate predictions of the ionic density pro-
file over a wide range of ionic attributes.

The organization of the paper is as follows. Sec. 2 pro-
vides the background and related work. Sec. 3 describes the
ML surrogate approach. Sec. 4 presents the results of the
application of the ML surrogate to the example soft-matter
framework of self-assembling ions in nanoconfinement. Fi-
nally, Sec. 5 provides a brief discussion and summary in-
cluding our plans for future work. For the sake of clarity
and continuity, we review some important findings from the
original conference paper [36] as preliminary results in Sec.
4. Similarly, some of the content in the background and re-
lated work in the original paper is repeated here.

2. Background and Related Work
MD simulations serve as essential tools for understand-

ing diverse self-assembly phenomena in nanoscale materials
[27, 30, 18], predicting material behavior in practical appli-
cations [25], and isolating interesting regions of parameter
space for experimental exploration [9]. As in our original
conference proceedings [36], we focus specifically on MD
simulations of ions in nanoconfinement in this work to illus-
trate the idea of ML surrogates.

2.1. MD simulations of ions in nanoconfinement
Electrolyte ions drive key processes involved in the gen-

eration and function of soft materials such as the morpho-
logical changes in proteins, stabilization of colloids, pattern
formation in nanostructures, and emulsion-based extraction
of metal ions from wastewater. As a result, investigating
the self-assembly of ions and extracting their distributions
in nanoconfinement created by surfaces of materials such
as nanoparticles, colloids, or biological macromolecules has
been the focus of many experimental, theoretical, and com-
putational studies [44, 4, 27, 29, 51, 28, 46, 15]. Confined
electrolyte solutions themselves are important soft-matter sys-
tems that are ubiquitous in biology and modern technologi-
cal devices such as supercapacitors [3, 44, 2, 50, 32].

From a computational modeling standpoint, the ions are
represented as spheres of finite size, the material surfaces are
often treated as planar interfaces considering the size differ-
ence between the ions and the confining material particles,
and the solvent is coarse-grained to speed-up the simula-
tions. Such coarse-grained MD simulations have been em-
ployed to extract the ionic distributions over a wide range of
electrolyte concentrations, ion valencies, and interfacial sep-
arations using codes developed in individual research groups
[3, 6, 32] or using general purpose software packages such
as ESPRESSO [41] and LAMMPS [48].

2.2. ML-enhanced simulations of materials
Recent years have seen a surge in the use of ML to ac-

celerate computational techniques aimed at understanding
material phenomena. ML has been used to predict parame-
ters, generate configurations in material simulations, design
coarse-grained potentials, and classify material properties
[7, 16, 42, 52, 53, 22]. For example, Fu et al. [42] employed
ANN to select efficient updates to accelerate Monte Carlo
simulations of classical Ising spin models near the phase
transition. Botu et al. [7] employed kernel ridge regres-
sion to accelerate MD method for nuclei-electron systems
by learning the selection of probable configurations in MD
simulations, which enabled bypassing explicit simulations
for several steps. More recently, ML has been used to predict
specific outcomes (the dissociation timescale of compounds)
of ab initio MD simulations by bypassing the time evolu-
tion of the particle trajectories [22]. Also, convolutional
neural network based ML “emulators” have been introduced
recently to predict output functions (e.g., power spectrum)
of simulations in biogeochemistry and other domains [38].
However, relative to “hard” condensedmatter systems, a sur-
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Figure 1: System overview of the ML surrogate for MD simulation approach for generating rapid and accurate predictions
associated with soft material behavior.

vey of literature finds far fewer applications ofML in the area
of MD simulations of soft materials [16, 35].

2.3. ML-enhanced simulations as web applications
nanoHUB is the largest online resource for education and

research in nanotechnology [39]. This cyberinfrastructure
hosts over 500 web applications for launching simulations
and serves 1.4 million users worldwide. nanoHUB provides
online access for executing simulation codes to researchers,
students, and educators. We have deployed MD simulation
frameworks as computational tools on nanoHUB to explore
diverse self-assembly phenomena in materials. These tools
are: Ions in Nanoconfinement [37], Nanosphere Electrostat-
ics Lab [34], Nanoparticle Assembly Lab [8], and Polyvalent
Nanoparticle Binding Simulator. The “Ions in nanoconfine-
ment” tool [37] has been extensively employed by students
to learn nanoscale self-assembly concepts [23]. In about 2
years since its launch, this nanoHUB tool has been used by
over 100 users and run over 2600 times [37].

The integration of ML for performance enhancement of
scientific simulation frameworks deployed as web applica-
tions is relatively far less explored. Our survey indicated that
only one simulation tool on nanoHUB [21] employs ML-
based methods to enhance the performance and usability of
the simulation software. This simulation tool employs a deep
neural network to bypass computational limitations in ex-
tracting transfer times associated with the excitation energy
transport in light-harvesting systems [21].

3. ML Surrogates for MD Simulations
We now describe a general approach, first introduced

in Ref. [36], that utilizes ML to enhance MD simulations,
significantly improving their use in research and education.
The “ML surrogates for MD simulations” framework can
be broadly defined as the approach where an ML model,
trained on data from completed simulations, is used to ap-
proximate the complex relationships between the physical
input parameters and the output functions of simulations, by-
passing the explicit computation of the trajectory evolution
of the simulated components. Figure 1 shows the overview
of this framework in the context of soft materials engineering

applications to predict the structural and dynamical proper-
ties (outputs) of the soft-matter system over a broad range
of experimental control parameters (inputs). First, the at-
tributes of the soft-matter system and the control parameters
are fed to the framework (Figure 1). These inputs are used to
launch the MD simulation on the HPC cluster. Simultane-
ously, these inputs are fed to the ML-based prediction mod-
ule. Both the MD and ML methods are designed to extract
(predict) the desired output quantities. Error handler aborts
the MD simulation program and displays appropriate error
messages when a simulation fails due to any pre-defined cri-
teria. At the end of the simulation run, the output quantities
are saved for future retraining of the ML model, which oc-
curs after a set number of new successful simulation runs.
After yielding a sufficiently large set of predictions, the ML
surrogate rapidly provides trendlines capturing the behavior
of output quantities as a function of variation in input param-
eters.

ML surrogates for MD simulations enable several capa-
bilities: (i) learn pre-identified interesting features associ-
ated with the simulation outputs, (ii) generate accurate pre-
dictions for unseen state points, (iii) enable instantaneous
predictions, and (iv) improve interactivity with anytime ac-
cess to simulation results.

We now describe the application of this framework to the
specific case of MD simulations of ions in nanoconfinement
to illustrate the approach in further detail. Here, the goal is
to extract the distribution of ions confined by two material
surfaces represented as identical, uncharged parallel plates at
z = −ℎ∕2 and z = ℎ∕2 (creating a confinement length of ℎ).
The inputs include the attributes of the electrolyte ions such
as valency and size, and the control parameters such as elec-
trolyte concentration and interface separation. The outputs
include the density profiles or distribution functions of ions
in confinement. These parameter choices enable a rich com-
petition between electrostatic and steric forces characteriz-
ing the ionic dynamics and structure in nanoconfinement.

Our earlier work [36] showed that an artificial neural net-
work (ANN) model can accurately predict 3 key output fea-
tures: contact density, peak density, and mid-point density
of confined ions. ANN outperformed other ML techniques
such as polynomial regression, support vector regression,
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decision tree regression, and random forest regression. In
this paper, we show that the ANN model can generate pre-
dictions for nearly all the desired features of the ionic density
profile, producing almost the entire ionic distribution in ex-
cellent agreement with explicit MD simulation results.

3.1. Data Generation, Preparation, and
Preprocessing

Prior domain experience and backward elimination us-
ing the adjusted R squared is used for selecting the most sig-
nificant input parameters for creating the training data set.
This process determineswhich inputs are important to change
the desired output. The process begins with all possible in-
puts and eliminates them one by one, monitoring the ad-
justed R squared value to determine which are important.
Dropping of an input that produces a sharp spike in the R
squared value is indicative of the high importance of the
input parameter. Using this process, five input parameters
characterizing the ionic system are identified: confinement
length ℎ, salt (electrolyte) concentration c, positive ion va-
lency zp, negative ion valency zn, and the ion diameter d.
All ions are assumed to have the same diameter; in general,
oppositely charged ions have different sizes. The range of
each parameter is selected as follows: ℎ ∈ (3.0, 4.0) nm,
c ∈ (0.3, 0.9) M, zp ∈ 1, 2, 3, zn ∈ −1, and d ∈ (0.5, 0.75)
nm. The salt concentration is defined as the number of neg-
ative ions per unit volume [36, 35, 32]. We note that system
temperature is another important input parameter. In this ini-
tial application, temperature is held fixed and we have em-
ployed data generated at room temperature (298 K). Min-
max normalization filter is applied to normalize the input
data at the preprocessing stage.

The converged distribution for positive ions is selected
as the output. The dataset created for investigations in the
earlier work [36] is reused. This dataset was generated by
sweeping over a few discrete values for each of the input
and output parameters to create and run 6,864 MD simula-
tions utilizing HPC resources. On average, each MD simu-
lation was performed in the NVT (canonical) ensemble for
over ≈ 5 nanoseconds of ionic dynamics, and took 4200
CPU hours (≈ 36minutes per simulation withMPI/OpenMP
parallelization). The training dataset creation took approxi-
mately 25 days including the queue wait times on the Indiana
University BigRed2 supercomputing cluster. The data asso-
ciated with the ionic density profiles (dataset relevant to our
investigation), was over 2 GB.

The entire data set is separated into training and testing
sets using a ratio of 0.8:0.2. In our earlier work, contact den-
sity �c , mid-point (center of the slit) density �m, and peak
density �p associated with the final (converged) distribution
for positive ions were selected as the output parameters [36].
EachMD simulation produces positive ion distribution char-
acterized by ionic density measured at ≈ 300 positions as
output. For simplicity, using the symmetry of ionic den-
sity around the confinement center z = 0 (resulting from
neutral surfaces), approximately half of the 300 points are
selected as the output parameters to train the ML surrogate.

Accordingly, in the experiments that follow,ML is employed
to make P ≈ 150 predictions characterizing the density of
ions in the left half of the confinement (with z ∈ (−ℎ∕2, 0)).

3.2. Feature Extraction and Regression
Following earlier paper [36], the ANN architecture with

2 hidden layers (Figure 2) is implemented in TensorFlow [1]
for regression and prediction of P ≈ 150 continuous (out-
put) variables. The process of regression first determines
weights and biases in the two hidden layers following an er-
ror backpropagation algorithm, implemented via a stochastic
gradient descent procedure. This process employs an itera-
tive learning algorithm that uses a training dataset to update
the weights and biases in the hidden layers. Regression is
done by a simple forward prediction.

The size of the hidden layers was chosen to be over 150
informed by the higher dimensions of the output data. By
performing a grid search, hyper-parameters such as the num-
ber of first hidden layer units, second hidden layer units,
batch size, and the number of epochs are optimized to 512,
256, 25, and 4000 respectively. The batch size is a hyper-
parameter of the stochastic gradient descent algorithm that
controls the number of training samples that are allowed to
pass through the model before its internal parameters are up-
dated. The number of epochs is a hyperparameter that con-
trols the number of complete passes made through the entire
training dataset. Adam optimizer is used to optimize the er-
ror backpropagation. The learning rate of Adam optimizer
and the dropout rate in the dropout layer is set to 0.0001 and
0.15 respectively to prevent overfitting. Both learning and
dropout rates were selected using a trial-and-error process.

The weights in the hidden layers and in the output layer
are initialized for better convergence using a Xavier normal
distribution at the beginning. Xavier normal distribution is
characterized with 0 mean and � = 1∕(

√

ℎi + ℎo) variance,
where ℎi and ℎo are input and output sizes of the hidden lay-
ers, respectively [17]. The L2 error (mean square loss) be-
tween target and predicted ionic density values is used for er-
ror calculation. ANN implementation, training, and testing
are programmed using scikit-learn, Keras, and TensorFlow
ML libraries [14, 11, 1]. Scikit-learn is used for grid search
and scaling, Keras is used to save and load models, and Ten-
sorFlow is used to create and train the neural network.

4. Results
4.1. Preliminary Results

In our earlier work [36] we experimented with 6 regres-
sion models to predict the key output density features identi-
fied above: contact density (�c), mid-point density (�m), and
peak density (�p). These models were tested on 2060 sets of
input parameters (ℎ, zp, zn, c, d). Table 1 shows the success
rate and the mean square error (MSE) for testing data sets.
The success rate was calculated based on the error bars asso-
ciated with the density values obtained via MD simulations:
ML predictionwas considered successful when the predicted
density value was within the error bar of the simulation esti-
mate. Simulations were run for sufficiently long times (over
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Figure 2: Artificial neural network based regression model
used in the ML surrogate to predict output ionic density profile
of ions in nanoconfinement.

≈ 5 nanoseconds) to obtain converged density estimates and
error bars. MSE values are calculated using k-fold cross-
validation techniques with k = 20. k-fold cross-validation is
a statistical technique commonly used in applied ML to esti-
mate the accuracy of theMLmodels. This approach involves
randomly dividing the set of observations into k groups, or
folds, of approximately equal size. The first fold is treated as
a validation set, and the method is fit on the remaining k−1
folds. The test accuracy is determined by taking the average
over (k − 1) folds.

ANN-based regression model with implementation de-
tails described in Sec. 3 predicted �c , �m and �p accurately
with a success rate of 95.52%, 92.07%, and 94.78% respec-
tively. MSE values for each of these predictions were small
as shown in Table 1. ANN outperformed all other non-linear
regression models investigated (Table 1) including Polyno-
mial, Kernel-Ridge, Support Vector, Decision Tree and Ran-
dom Forest. Among these other models, the highest average
success rates of 80.11%, 79.55%, and 81.89% for predictions
of �c , �m and �p values respectively were obtained for the
Support Vector regression model [36]. To enable a clear
comparison of ANN results with those obtained via other re-
gression models, we discuss briefly the implementation de-
tails associated with other methods below.

Polynomial regressionwas testedwith scikit-learn “Poly-
nomialFeatures”. Different “degree” parameter values (rep-
resenting the order of the polynomial used to approximate
the target function) were experimented with and the high-
est reported accuracy was obtained for degree of 4. Support
Vector was tested with scikit-learn “SVR” implementation
and we experimented with different kernel transformation
functions such as linear, polynomial, radial basis function
(rbf), and sigmoid. The highest reported accuracy was ob-
tained for the rbf kernel with kernel coefficient  = 0.1,
and the following optimization (meta) parameters: regular-
ization parameter C = 100, and no-penalty distance � =
0.1. Kernel-Ridge model was tested with scikit-learn “Ker-
nel ridge regression (KRR)” implementation. Experiments
with different input arguments for the kernel transformation
function were performed; the highest reported accuracy was
obtained for the rbf kernel with kernel coefficient  = 0.1.

Figure 3: Accuracy comparison between ML predictions and
MD simulation results for the contact densities (red circles)
of ions in systems characterized by inputs selected from the
following ranges of parameters: ℎ ∈ (3.0, 4.0) nm, zp ∈ 1, 2, 3,
zn ∈ −1,−2, c ∈ (0.3, 0.9) M, and d ∈ (0.5, 0.75) nm. Top-left
and bottom-right insets show the comparison for the peak (blue
squares) and mid-point (green diamonds) densities respectively
for a subset of the selected systems. Black dashed lines with a
slope of 1 represent perfect correlation. All densities are shown
in units of molars.

Decision Tree was tested with scikit-learn “DecisionTreeRe-
gressor” implementation and we experimented with differ-
ent input arguments for the maximum depth of the tree and
the highest reported accuracy was obtained for the maxi-
mum depth of 4. Random Forest was tested with scikit-learn
“RandomForestRegressor” implementation and we experi-
mented with different input arguments for maximum depth
of the tree and the number of trees in the forest. The highest
reported accuracy was obtained for maximum depth of 4 and
25 number of trees. All these methods as well as the ANN
model were trained and validated with the same test data.

Figure 3 shows the comparison between the predictions
made by the ML model and the results obtained from MD
simulations for the contact, mid-point, and peak densities
associated with positive ions [36]. Results are shown for
a randomly selected subset of the entire testing dataset de-
scribed in Section 3.1. �c , �m and �p predicted by the ML
model were found to be in excellent agreement with those
calculated using the MD method; data from either approach
fall on the dashed lines which indicate perfect correlation.

4.2. ML surrogate accuracy and validation
We now describe the extension of the ANN model to

make accurate predictions over a much larger set of output
ionic density values. In order to demonstrate this, we exam-
ine both the overfitting characteristics and the accuracy of
the model. Overfitting characteristics are assessed by com-
paring two losses: training loss on training data and valida-
tion loss on test data. Training loss is the average of theMSE
between the prediction and the target values for all training
data. Validation loss is the average of the MSE between the
prediction and the target values for all testing data. The train-
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Table 1
Comparison of regression models for the prediction of output ionic density values.

Model Contact Density Midpoint Density Peak Density
Success % MSE Success % MSE Success % MSE

Polynomial 61.04 0.0129300 60.84 0.0187700 61.87 0.0100400
Kernel-Ridge 78.86 0.0030900 76.57 0.0041200 75.93 0.0049800
Support Vector 80.11 0.0012700 79.55 0.0024900 81.98 0.0010600
Decision Tree 68.44 0.0084600 64.54 0.0094900 62.47 0.0110700
Random Forest 74.15 0.0045700 70.85 0.0078900 75.09 0.0040800
ANN-based 95.52 0.0000718 92.07 0.0002293 94.78 0.0002306

ing and validation loss on 5491 and 1373 simulations de-
crease to 0.000194 and 0.000024 respectively within 4000
epochs of training. Similar amounts of reduction in train-
ing and validation losses indicates that the ML model is not
overfitted [12].

Typically, in regression problems, accuracy or success
rate is inherently not defined. To facilitate the comparison
of ML predictions with MD results, we define a prediction
as successful when the density value predicted by the ML
surrogate �ML is within the error � associated with the cor-
respondingMD simulation estimate �MD (ground truth). For
each simulation, the MD result for the output ionic density
is represented by a set of ≈ 150 points associated with the
discretized positions characterizing the confinement length.
The nth predictionmade by theMLmodel corresponds to the
nth element in this output set. We define the average success
rate or accuracy associated with the ML approach for the nth
prediction as:

An =
1

Ntest

Ntest
∑

i=1
Θ
(

|

|

|

�ML
n,i − �

MD
n,i

|

|

|

, �n,i
)

(1)

where i indicates the simulation index, Ntest is the number
of samples (simulations) in the test data, andΘ(x, �) is a step
function given by: Θ(x, �) = 1 for x < �, andΘ(x, �) = 0 for
x ≥ �. The overall ensemble-average success rate A of the
ML prediction for the entire density profile can be estimated
using A = (1∕P )

∑P
n=1 An, where the sum is now over the

total number of predictions P .
Figure 4 shows the success rate An associated with the

nth ML prediction for the testing dataset. In order for the
prediction to be well-evaluated,An is only computed for ML
predictions associated with non-vanishing �MD (�MD ≠ 0).
In other words, results are not shown for ≈ 20 output param-
eters (P ≈ 130) where the ionic density and associated er-
ror from MD simulations are exactly 0 (regions near the left
wall where finite-sized ions are prohibited from entering).
As Figure 4 shows, An is very good for all the evaluated ML
predictions. The ensemble-average success rate is found to
be A = 0.958, and the lowest and highest recorded values
for accuracy are An = 0.86 and An = 0.997 respectively.

Figure 4: Success rate An associated with the nth prediction
made by the ML surrogate (An is defined in Eq. 1).

4.3. Ionic density profiles: comparing ML
surrogate predictions and MD simulations

We now present plots of the positive ion density profiles
showing the comparison between the predictions made by
the ML surrogate and the results obtained from MD simula-
tions. Results are shown for a set of 4 systems randomly
selected from the entire testing dataset. These 4 systems
are: system I (3.2, 1, -1, 0.6, 0.65), system II (3.6, 3, -1,
0.9, 0.75), system III (3.3, 3, -1, 0.35, 0.714), and system IV
(3.6, 1, -1, 0.9, 0.6), where the parentheses list the 5 afore-
mentioned input parameters characterizing the ionic system:
confinement length ℎ, positive ion valency zp, negative ion
valency zn, salt concentration c, and ion diameter d. Figure
5 (a) - (d) shows the ionic density profiles predicted by the
ML surrogate for systems I, II, III, and IV respectively. As
the figure indicates, for each system, the ML-predicted den-
sity profile is in excellent agreement with the result extracted
using MD simulation (ground truth).

To make the comparison between ML predictions and
MD simulation resultsmore quantitative, we extract the over-
all accuracy of the ML prediction for each system (density
profile). Similar to Eq. 1, we define this accuracy or success
rate Ai associated with the ith system (simulation configura-
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Figure 5: Ionic density profiles for systems I (a), II (b), III (c), and IV (d) predicted by the ML surrogate (red circles) and
extracted with MD simulation (blue squares). See main text for system definitions.

tion) as:

Ai =
1
P

P
∑

n=1
Θ
(

|

|

|

�ML
n,i − �

MD
n,i

|

|

|

, �n,i
)

(2)

where Θ is the step function defined above, and the sum is
over the total number of predictions P made using the ML
approach (as before, Ai is meaningful only at non-zero ionic
density values, making P ≈ 130). Using Eq. 2, the success
rates Ai for systems I, II, III, and IV are found to be 0.98,
0.91, 0.78, 0.89 respectively. Success rate Ai represents the
number of discrete positions (z) where the ML predictions
of density values were found to be within the error bounds
produced by the associated MD simulation results. For ex-
ample, a success rate of 89% means that density values at
89 discrete positions out of 100 were predicted within the
uncertainty obtained from MD simulations. As discussed
above, compared to results obtained using other regression
models which showed a maximum success rate of ≈ 80%
for density predictions at different positions within the con-
finement, ANN success rates for predicting the entire den-
sity profile are better on average. We also point out that the
ML inferences are made at a relatively much smaller time of
≈ 0.2 seconds compared to MD simulations (see below for
further details).

4.4. Instantaneous trendlines using ML surrogates
The good agreement between ionic densities generated

via ML surrogate and MD simulations as well as the much
smaller “lookup time” for obtaining the ML inferences en-
able the generation of trendlines for the entire density profile
almost instantaneously. Figure 6 shows a selected subset of
these ML-surrogate-predicted trendlines exhibiting the vari-
ation of ion distributions with changes in input parameters.

Figure 6 (a) and (b) shows the variation in the density
of positive ions of valency zp = 1, 2, 3 at salt concentra-
tion c = 0.5 M and 0.9 M respectively (note that we define
c = Nn∕V , whereNn is the number of negative ions and V
is the simulated volume). Other input parameters are fixed to
ℎ = 3.0 nm, zn = −1, and d = 0.7 nm. The ML-generated
trendlines are able to track distinct variations in density for
different ion valencies and salinity conditions. Using Eq. 2,
the success rates Ai associated with ML predictions of pro-
files for ions of valency 1, 2, 3 at c = 0.5 M (Fig. 6 a) are
found to be 0.93, 0.98, and 0.92 respectively. Similarly Ai
values associated with ML predictions of profiles for ions of
valency 1, 2, 3 at c = 0.9M (Fig. 6 b) are 0.93, 0.96 and 0.89
respectively. The peak of the ionic density and the number
of oscillations increase with c. Further, at a given c, increas-
ing the ion valency leads to the depletion of ions near the
left surface (reduced ion density near z = 0). Both these ob-
servations inferred by the ML surrogate follow the expected
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Figure 6: Trendlines generated using ML surrogate to examine variation in ionic density with positive ion valency at salt
concentration (a) c = 0.5 M and (b) 0.9 M. See main text for values of other input system parameters.

behavior in these systems as reported and elucidated in pre-
vious work [32].

4.5. ML inference time and overall speedup
In the earlier paper [36], we introduced a simple formula

illustrative of the possible gains or speedup S resulting from
the use of scientific ML surrogates:

S =
tsim

tp + ttr ⋅Ntr∕Np
, (3)

where tsim is the time to run the MD simulation via the se-
quential model, tp is the time it takes for the ML surrogate to
make a prediction (or “lookup” time) for one set of inputs,
Np is the number of ML predictions made, Ntr is the num-
ber of elements in the training dataset, and ttr is the average
walltime associated with the MD simulation to create one
of these elements. Ntrttr is the total time to create the train-
ing dataset which includes the generation of the training data
using MD simulations and the TensorFlow training time.

In the specific case of the system of confined ions con-
sidered above, the training dataset consisted of 5491 simu-
lation configurations (Ntr = 5491). The time ttr to generate
one element of this training set is similar to the average run-
time of the parallelized MD simulation. For the MD sim-
ulations considered in this work, tsim ≈ 60 hours, ttr ≈ 36
minutes, and ML inference time tp ≈ 0.2 seconds. Compar-
ing the run times of the parallelized MD simulation and the
ML surrogate, we find that the ML surrogate yields output
results over 10,000 (= ttr∕tp) times faster than parallel MD
simulation. We also note that the ML surrogate is using 1
core to infer the result as compared to 128 cores employed
by the parallel simulation, indicating a complementary re-
duction in resource utilization by a factor of 128.

Given tp ≪ ttr and approximating tp → 0 in Eq. 3,
we find S = SHPCNp∕Ntr, where SHPC = tsim∕ttr is the
traditional speedup obtained by parallelizing the MD simu-
lation using HPC resources. We can identify the ML-only
speedup as SML = Np∕Ntr, i.e, the number of predictions
made by the ML surrogate divided by the size of the training
dataset. The key feature of the ML-based approach is thus

highlighted: S rises with increasingNp, that is, the speedup
increases as the ML surrogate is used to make more predic-
tions. We also observe that for ML-enabled results to gener-
ate a “true” net speedup (S > 1), the number of predictions
made by the surrogate (ANNmodel) per one forward propa-
gation must exceedNtr∕SHPC, that is,Np > Ntr∕SHPC. For
the example considered here, SHPC = 100, yielding the re-
lation Np ≳ 60. Considering this inequality, the use of ML
surrogate enhances the overall efficiency of the simulation
framework when it predicts over 60 ionic density profiles.

4.6. ML-enhanced nanoHUB application
In our original work [33], we proposed to extend the us-

ability of a nanoHUB computational tool, “Ions in nanocon-
finement” [37], by integratingML-based enhancements. This
tool enables investigations into the self-assembly of elec-
trolyte ions in nanoconfinement, and has been employed to
teach courses in Indiana University on nanoscale simulation
[23]. Our initial design focused on predicting ionic density
for three positions (contact, mid-point, peak) [36]. Building
on the extended ANNmodel, we designed the integration of
the ML surrogate with the nanoHUB tool to predict almost
all the interesting features of the ionic density profile (with
≈ 150 predicted density values). In October 2019, we de-
ployed this enhanced application using the Jupyter python
notebook interface on nanoHUB.

Figure 8 shows the GUI of the deployed tool. Users
are provided the choice to click “Run” and “Predict using
ML” buttons simultaneously or separately depending on the
desired information. “Predict using ML” activates the ML
surrogate which predicts half of the density profile instanta-
neously. When a user clicks the “Run” button, the Jupyter
notebook passes the selected input parameters to a C++ ap-
plication to do the preprocessing executed on a virtual ma-
chine (VM) allocated by middleware management (Figure
7). Next, the preprocessing script creates the input files re-
quired to run the actual MD simulation using the in-house
program or LAMMPS [48]. The users are given the option of
clicking on “Cluster mode” button for accessing supercom-
puting resources to lower the computing time. Based on the
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Figure 7: Ecosystem of the computational tool, “Ions in nanoconfinement” [37], deployed on nanoHUB.

state of the “Cluster mode” button, execution engine either
submits a job on a computing cluster or runs the simulation
on a VM. When the simulation is over, the execution engine
passes the generated data to the postprocessing script to gen-
erate the positive and negative ion density profiles. These
files are plotted on the “Positive Ion Density” and “Nega-
tive Ion Density” tabs, and users are provided the option to
download the associated data from the “Downloads” tab.

Users can enable ML surrogate any time by clicking the
“Predict using ML” button for accessing the ML-predicted
ionic density profile. The predicted profile is displayed in
the “Prediction Graph” tab. The same prediction graph is
also available as an overlay in the "Positive Ion Density" tab
when the MD simulation run is completed. ML surrogate
is executed inside the Jupyter notebook environment using
TensorFlow ML libraries as a separate thread linked to the
“Predict using ML” button. For illustration purposes, Fig-
ure 8 shows the final density plot using this integrated MD
+ML approach for the input parameters ℎ = 3.0 nm, zp = 1,
zn = −1, c = 0.5M, and d = 0.714 nm.

5. Discussion and Conclusion
In this paper, we explored the idea of using scientific

ML surrogates to enhance the usability of MD simulations
of soft materials for both research and education. The suc-
cess of the idea was demonstrated using an example soft-
matter simulation framework of self-assembling electrolyte
ions in nanoconfinement. The overall success rates and rapid
inference times associated with the ML predictions enable
an interactive, dynamic, and responsive simulation environ-
ment open for wide exploration. To facilitate this possibil-
ity, we designed and integrated an ML surrogate with the
current version of the “Ions in nanoconfinement” computa-
tional tool deployed on nanoHUB [37]. The ML-enhanced
nanoHUB tool was used to teach nanoscale simulation con-
cepts in an Indiana University course in Fall 2019. As the
“Ions in nanoconfinement” framework evolves with more
input features (e.g., surface charge density, asymmetric ion
sizes) and output quantities, we plan to retrain the ML sur-
rogate to enable predictions for those new input features.

Results from this investigation are encouraging and we
intend to explore the feasibility of these ideas in other soft-
matter systems including simulations of polymer-based ma-
terials which are expected to incur higher computational costs
in general. As an example, we plan to explore the design
and utility of ML surrogates for MD-based simulated an-
nealing methods used to extract equilibrium shapes of soft-
matter-based, deformable nanocontainers [9, 30, 31]. Future
work will also explore the extent to which theML surrogates
can predict the desired simulation outputs outside the pre-
defined range of training datasets. The effects of changing
the force fields in the MD simulations to propagate the dy-
namics of ions will be investigated. We also plan to design
smart sampling approaches to reduce the amount of train-
ing data needed to achieve the desired accuracy associated
with the ML surrogate. Finally, we plan to investigate the
possibility of extending the idea of an ML surrogate in pre-
dicting final outputs to Monte Carlo simulations of mate-
rials [42, 24]. We expect that the usefulness of the ML-
enabled enhancements demonstrated in this work strength-
ens the case for scientific simulation applications to be de-
signed and developed with an ML surrogate that learns from
the simulations and optimizes the application execution.
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