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Abstract.  Many large semantic systems can be described as Semantic Grids of 
Semantic Grids with large amounts of relatively static services and associated 
semantic information combined with multiple dynamic regions (sessions or 
subgrids) where the semantic information is changing rapidly. We design a hy-
brid Information Service supporting both the scalability of large amounts of 
relatively slowly varying data and a high performance rapidly updated Informa-
tion Service for dynamic regions. We use the two web service standards UDDI 
and WS-Context in our system. We report initial results from a prototype that is 
applied to sensor and collaboration grids.  

1 Introduction 

Semantic Grid [1-2] is an approach to Grid where computing resources, services and 
data can be expressed in standardized ways which can be understood and processed 
by Grid applications. This way, resources and services can be discovered, linked 
together and plug into appropriate data sources in an automatic fashion. Major Grid 
Web Service families are identified as Data, Execution, Desktop, Information and 
Collaboration Grids in [3]. Each and every style of Grid Web Service family can also 
be identified as Semantic Grid if they built on the important W3C Semantic Web [4-
5] initiative. By analogy with categorization described in [3], we can identify Seman-
tic Grids as Semantic Data, Semantic Execution, Semantic Desktop, Semantic Infor-
mation and Semantic Collaboration Grids. From all of these parts of identified Se-
mantic Grid Web Service families, comprehensive science applications can be built. 
Members of these different types of Semantic Grids may be united into a collection of 
Semantic Grid services that are needed to build application Grid systems such as 
myGrid [6], the Collaboratory for Multi-scale Chemical Science (CMCS) [7], Scien-
tific Annotation Middleware (SAM) [8] and Tupelo [9]. This unification can be called 
as “Semantic Grid of Semantic Grids”.  
 



E-Science Semantic Grids can often be thought of as dynamic collection of semantic 
subgrids where each subgrid is a collection of modest number of services that assem-
bled for specific tasks such as forecasting an earthquake [10]. We term an actively 
interacting (collaborating) set of managed services as a Gaggle where services are put 
together for particular functionality. Semantic Grid may consist of several gaggles 
each featuring intense local activity with less intense inter-gaggle interactions. Each 
Gaggle maintains most dynamic information which is the session related metadata 
generated as result of interactions among Web/Grid Services.  
 
Handling and discovery of dynamic information requires high performance, fault 
tolerant information systems. These information systems better be decentralized, 
relocate metadata to nearby locations of interested entities and provide efficient ac-
cess, storage of the information, as the dynamic metadata needs to be delivered on 
tight time constraints within a Gaggle. Information Services (IS) support discovery 
and handling of services through metadata and are vital components of Grids [11]. 
 
We identify following problems in Information Services supporting both Classical 
and Semantic Grids.  First, Grid Information Services need to be able to support dy-
namically assembled services. Classic Grid Information Services [12-13] however are 
not built along this model. Second, Information Services should scale in numbers and 
geographical area and be tolerant to failures while providing high performance in 
serving the requests. Most existing solutions [16] however have centralized compo-
nents and do not address scalability, fault tolerance and performance issues. Third, 
Information Services need to be able to take into account user demand changes when 
making decisions on metadata access and storage. Classical Grid Information Ser-
vices [16] however store the metadata on pre-defined locations and ignore changing 
user demands. We therefore see this as an important area of investigation. This paper 
presents our design of an architecture and prototype to address the identified prob-
lems above. We describe a novel architecture for fault tolerant and high performance 
Information Services in order to manage distributed, dynamic session related meta-
data while providing consistent, uniform interface to both static and dynamic meta-
data. 
 
Our architecture intends to meet the following requirements: a) Providing a hybrid 
Information Service supporting both static, relatively slowly varying information and 
dynamic, rapidly updated information. b) Providing a dynamic metadata hosting envi-
ronment where metadata can be relocated based on changing user demands. c) Main-
taining information regarding sessions and also state of entities in these sessions d) 
Enabling discovery of participant entities within a session. e) Enabling dynamic dis-
covery of data-systems hosting the metadata in consideration. f) Enabling discovery, 
retrieval and reconstruction of any state that might need to be associated with a failed 
entity in a session.      
                                   
This paper is organized as follows. Section 2 reviews the state of art in existing in-
formation services and replica hosting environments. Section 3 reviews our design for 
information systems to support Gaggles paying particular attention to distributed data 



management aspects of the system. We discuss the status and the evaluation of our 
prototype in Section 4. In Section 5, we summarize and discuss future work. 

2 Background 

Most existing decentralized solutions to Information Services can be broadly catego-
rized by the manner of in which decentralization is realized such as a) hierarchical, 
structured and b) unstructured, peer-to-peer (ad-hoc). a) In structured architectures, 
components of the system are strictly controlled and may depend on each other for 
publishing and discovery of information. For an example, Globus Monitoring and 
Discovery System (MDS4) [12] has a hierarchical architecture where there is a single 
top-level Information Service that presents a uniform interface to clients to access 
data, while the data is collected by lower-level information providers. Another exam-
ple is the structured P2P systems where the nodes in the systems are equally enabled 
and controlled and service information is disseminated to all nodes [14-15]. b) Un-
structured P2P architectures can be characterized as systems where there is lack of 
control on the capabilities of the system nodes and where there is no organizational 
structure. For an example, Relational Grid Monitoring Architecture (R-GMA) [13] 
presents a P2P architecture where consumers directly connect to information provid-
ers to retrieve the data without intermediary nodes. An extensive survey on Grid 
Information Services can be found at [16]. Architectures with pure decentralized 
storage models have focused on the concept of distributed hash tables (DHT) [14-15]. 
DHT approach assumes possession of an identifier such as hash table that identifies 
the service that need to be discovered. Each node forwards the incoming query to a 
neighbor based on the calculations made on DHT. Although, DHT approach provides 
good performance on routing messages to corresponding nodes, it has various limita-
tions such as primitive query capabilities. Here, we focus on management of dynami-
cally generated and widely-scattered metadata.  We design an architecture which can 
be defined as an unstructured P2P approach to P2P/Grid environment. We use multi-
publisher message broadcasting through a topic-based publish/subscribe messaging 
system, which support access and storage decisions among distributed nodes. Unlike 
DHT approach, our architecture takes into account user demand changes when pro-
viding metadata access and storage. 
 
Well-defined descriptions of resources, services and data constitute metadata. Meta-
data can be represented using varying metadata models such as XML Schemas or 
Semantic Web [4] languages (RDF, OWL, etc.). Here, we are mainly concerned with 
managing the metadata and delivering to clients, not with knowledge processing. We 
presume the metadata models to be application-specific and not defined by us. To this 
end, we are concentrating on the distributed computing problems of managing meta-
data in the Semantic Grid, not the “semantic” part. 
 
We use replication, a well-known and commonly used technique to improve the qual-
ity of metadata hosting environment of our architecture. Sivasubramanian et al. [17] 
gives an extensive survey on research efforts on designing and developing World 



Wide Web replica hosting environments, so does Robinovich in [18] paying particu-
lar attention to dynamic replication. As the nature of our target data is dynamic, we 
focus on data hosting systems that are handling with dynamic data.  These systems 
can be discussed under following important design issues: a) distribution of client 
requests among data replicas b) selection of hosting environments for replica place-
ment c) consistency enforcement. a) Distribution of client requests is the problem of 
redirecting a client to the most appropriate replica server. Most existing solutions to 
this problem are based on DNS-Server such as in [19-20].  These solutions utilize a 
redirector/proxy server that obtains physical location of collection of data-systems 
hosting a replica of the requested data, and choose one to redirect client’s request. b) 
Replica placement is another issue that deals with selecting data hosting environ-
ments for replica placement and deciding how many replicas to have in the system. 
Existing solutions, that apply dynamic replication, monitor various properties of the 
system when making replica placement decisions [20-21]. For instance, Radar [20] 
replicates/migrates dynamic content based on changing client demands. Spread [21] 
considers the path between the data-system and client and makes decisions to repli-
cate dynamic content on that path. c) Consistency enforcement issue has to do with 
ensuring all replicas of the same data to be the same. Various techniques have been 
introduced in consistency management. For instance, Akamai project [19] introduces 
versioning where a version number is encoded to document identifier, so that client 
would only fetch the updated data from the corresponding data hosting system. Radar 
[20] applies primary-copy approach where an update can be done only on the pri-
mary-copy of the data. Our architecture mainly differs from these systems in the fol-
lowing points. First, the intended use of our architecture is not to be a web-scale host-
ing environment. The scale of the system that we are looking at is in the order of 
thousand entities participating in a session in which these entities dynamically gener-
ate metadata. Second, existing solutions to dynamic replication assume all data-
hosting servers to be ready and available for replica placement and ignore “dyna-
mism” in the network topology. In reality, data-systems can fail anytime and may 
present volatile behavior. We use a pure Peer-to-Peer approach, which is based on 
multi-publisher multicast mechanism, when distributing access and storage requests 
to data-systems. 

3 Information Services  

We designed a novel architecture of an Information Service presenting a uniform 
interface to support handling and discovery of not only quasi-static, stateless meta-
data, but also session related metadata. In order to be compatible with existing 
Web/Grid Service standards, we based the interface of our system on the WS-Context 
[22] and Universal Description, Discovery and Integration (UDDI) Specifications 
[23] from OASIS (http://www.oasis-open.org). We extend both specifications to 
provide advanced capabilities and fulfill aforementioned requirements of our system.  
 
Our approach is to utilize the existing state-of-art systems for handling and discover-
ing static metadata and address the problems of distributed management of dynamic 
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metadata. The intended use of our approach is to support information in dynamically 
assembled Semantic Grids where “real-time” decisions are being made on which 
services to tie together in a dynamic workflow to solve a particular problem. The 
intended scale for our design is in the order of thousand entities that are participating 
in a session in e-Science Classical or Semantic Grids. We discuss various issues in 
building a dynamic metadata hosting environment in the following section. 

3.1. Fault Tolerant High Performance Information Services 

There are various issues in a data hosting environment that need to be answered. One, 
for instance, is fault tolerance and another is high performance. We use replication 
technique to provide fault tolerance and high performance which improves the quality 
of our data hosting environment. As the data-systems in a data hosting environment 
can fail, replication technique can provide the corrupted data by switching into one of 
the remaining replicas which in turn provides fault tolerance. Replication technique 
can also lead into high performance by reducing the time between a client issuing a 
request and receiving the corresponding response. As the nature of our data is very 
dynamic, we use dynamic data replication technique, where data replicas may be 
created, deleted, or migrated among hosting data-systems based on changing user 
demands [18]. We address two important issues of dynamic replication such as re-
quest distribution and replica placement in the following sections. 

3.2. Access Algorithm 

Access algorithm distributes client requests to appropriate replica hosting data-
systems. Our model is based on pure Peer-to-Peer approach where each node can 
probe all other nodes in the network to look up metadata. A primary role of access 
algorithm is the discovery of one or more data-systems hosting the requested meta-
data. This discovery process consists of two steps: data-system discovery and access. 
The first step concerns with selection of data-systems that can answer the client re-
quests. The second step is to inform the data-system that is most appropriate for han-
dling the request. In the first step, to find a metadata, a node sends a probe message to 
all other nodes through a software multicast mechanism; target data-systems that host 
the metadata matching the probe send a response directly to requestor node. Here, 
response message consists of information regarding how well the data-system can 
handle this query. For instance, such information may include proximity information 
between the client and the data-system. On receiving response messages, requestor 
node chooses the most appropriate data-system that can handle the request. In the 
second step, the requestor node sends the client request to the chosen data-system 
particularly asking to handle the request.  



3.3. Storage Algorithm 

Storage algorithm selects data-systems for replica placement and decides how many 
replicas to have in the system. In our design, storage decisions are made autono-
mously at each node without any knowledge of other replicas of the same metadata. 
The storage decision is made based on the client requests served by that node. Storage 
process consists of two separate steps such as metadata placement and metadata crea-
tion. The first step has to do with selection of data-systems that should hold the rep-
lica and the second step has to do with metadata replica creation. In the first step, 
each node (data-system) runs the storage algorithm which defines client request 
thresholds for replica creation and deletion. If a metadata is in high demand which is 
above a pre-defined threshold, then the metadata is replicated. If a metadata is in low 
demand which is below a pre-defined threshold, it will be deleted. To replicate a 
metadata, a node sends a “storage” message to all other nodes through a software 
multicast mechanism; target data-systems, that have available space, send a respond 
to directly requestor node. Here, response message consists of various decision met-
rics such as client proximity information. On receiving the response messages, replica 
placement algorithm chooses the most appropriate data-system to replicate the meta-
data. In the second step, the requestor node sends a replica creation message directly 
to the chosen data-system asking to store a replica of metadata in consideration. This 
process creates a dynamic metadata storage in which metadata is stored based on 
changing client demands.  

3.4. Multi-publisher Multicasting Communication Middleware 

An importing aspect of our system is that we utilize software multicasting capability 
which is an important communication medium supporting the ability to send out ac-
cess and storage requests to the all nodes of the system. Any node can publish and 
subscribe to topics which in turn create a multi-publisher multicast broker network as 
communication middleware. Here, the publisher does not even know the location and 
identities of receivers. It publishes a message to a topic to which all nodes subscribe. 
We use NaradaBrokering (NB) [25] publish/subscribe mechanism as a communica-
tion middleware for message exchanges between peers. NB is a free, open source, 
software which may be thought of a as topic-based publish/subscribe messaging sys-
tem: interested entities can register to a NB node to send and receive messages on 
particular topics. 

3.5. System Components 

Our proposed architecture consists of various modules such as Query and Publishing, 
Expeditor, Access, Storage and Sequencer Modules. Architectural design of our sys-
tem is illustrated in Figure 1. 
 
3.5.1. Context Query and Publishing Modules: These modules present a uniform 
Web/Grid Service interface for publishing/discovering both static and dynamic meta-



data. We use two Web Service standards UDDI and WS-Context to be compatible 
with existing service standards. When a client posts a query, the query is processed 
and separated into two as dynamic and static queries. The dynamic query is passed to 
Expediter Module, where the cache is queried for requested metadata. The static 
query however is posed on the external UDDI Service. On receiving the results from 
both ends, the Query Module forwards the combined results to the client. 
 

 
Fig.1. Architecture of an Information Service running on each peer  
 

 
3.5.2. Expediter Module: This is a generalized caching mechanism. Each node has a 
particular expediter. One consults the expediter to find how to get (or set) information 
about a dataset in an optimal fashion. The Expeditor forms a built-in memory and it 
maintains metadata objects in Context Spaces. We term our implementation of Tuple 
Spaces concept [26] as Context Spaces.  Context Spaces allow us to apply space 
based programming to provide mutual exclusive access and associative lookup. 
 
3.5.3. Access Module: This module runs the aforementioned access algorithm. It 
supports request distribution by publishing messages to topics in NB. It also receives 
messages (in respond to client request) coming from other peers and forward these 
query messages to Expediter Module.  
 
3.5.4. Storage Module: This module runs the storage algorithm. It interacts with 
Expediter Module and applies the storage algorithm to local metadata. If the metadata 
is decided to be replicated, then Storage Module advertises this replication by multi-
casting it to available peers through NB publish/subscribe mechanism. Storage mod-
ule also interacts with Sequencer module in order to label each incoming metadata 
with a time stamp. 



 
3.5.5. Sequencer Module: This module ensures that an order is imposed on ac-
tions/events that take place in a session. The Sequencer Module interacts with Storage 
Module and labels each metadata. This module interacts with Network Time Protocol 
(NTP) clients to achieve synchronized timestamps among the distributed nodes. This 
is to ensure that the replicated datasets are consistent with each other, while ensuring 
that the ACID properties are satisfied. We discuss an example scenario on how these 
components interact with each other in the following section. 

3.6. Example Scenario 

When receiving a query, Query Module first processes the query and extracts the 
dynamic metadata portion of the query. Then, the Query Module forwards the query 
to Expediter, where the Expeditor Module checks whether the requested data is in 
Context Spaces. If the Expeditor Module can not find the result in Context Space or if 
the requested metadata is expired, then the query is forwarded to JDBC Handler to 
query the data in local database. If the query asks for external metadata, then the 
Expediter will forward the query to Access Module, where the Access Module multi-
cast a probe message to available Information Services through NB and communi-
cates with those Information Services that are the original data sources for this query. 
The query is responded by an Information Service which may be the best qualified 
Information Service is to handle this query. 

4 System Status and Evaluation 

We implemented Information/UDDI Services handling and discovery of static meta-
data based on the WS-I standard UDDI Service Specifications [24].  Our implementa-
tion is a general purpose extension to the UDDI information model that allows us to 
insert both user-defined and arbitrary XML metadata into the repository.  Here, XML 
metadata may be searched using XPATH queries, a standard way for searching XML 
documents (http://www.w3.org/TR/xpath).    
 
We also implemented a centralized version of Information/WS-Context Services 
handling and discovery of dynamic, session related metadata. Here, session related 
metadata is short-lived and dependent on the client.  We extended existing WS-
Context Specifications to provide advanced capabilities to manage session metadata 
between multiple participants in Web Service interactions. Both UDDI and WS-
Context implementation of Information Services have been successfully applied to 
sensor and collaboration grids applications.  
 
We have done preliminary testing on the centralized version of the Information Ser-
vice’s primary operations which are GetContext and SetContext [10]. Three meas-
urement sets were made using a 50 byte string for GetContext.  Each of the three sets 
consisted of 100 individual measurements. We also performed 3 sets of 100 meas-



urements on the SetContext method. In average, we measure ~116 ms for GetContext 
and ~125 ms for SetContext functions to be performed. Both of these measurements 
are internal timings to process requests.  We note that these were subject to very large 
variations.  We conclude from this that the actual internal processing time for small 
metadata pieces is typically smaller than the network invocation time and does not 
create an actual overhead.  

5 Conclusions and Future Work 

In this paper, we identified an important gap in Information Services that is lack of 
support for dynamic information in dynamically assembled Semantic Grids. We have 
presented an architecture that addresses key issues of managing distributed dynamic 
metadata such as a) providing an efficient metadata access and storage methodology 
by taking into account changes in user demands and b) providing a P2P approach for 
access/storage request distribution among the peers of the system to capture the dy-
namic behavior both in metadata and the network topology. We discussed status of 
our implementation and report initial performance results from a prototype that is 
applied to sensor and collaboration grids.  

 
Work remains to further develop a distributed metadata hosting environment by em-
ploying novel dynamic replication techniques and to evaluate the system as whole 
through extensive performance tests. 
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