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1.1.	 Preamble

This is a 21-month progress report on an NSF-

funded project NSF14-43054 started October 

1, 2014 and involving a collaboration between 

university teams at Arizona, Emory, Indiana 

(lead), Kansas, Rutgers, Virginia Tech, and 

Utah. The project is constructing data building 

blocks to address major cyberinfrastructure 

challenges in seven different communities: 

Biomolecular Simulations, Network and 

Computational Social Science, Epidemiology, 

Computer Vision, Spatial Geographical 

Information Systems, Remote Sensing for 

Polar Science, and Pathology Informatics. 

The project has an overall architecture [5] 

built around the twin concepts of HPC-ABDS 

(High Performance Computing enhanced 

Apache Big Data Stack) software [6-8] and a 

classification of Big data applications – the 

Ogres [9-11] – that defined the key qualities 

exhibited by applications and required to be 

supported in software. These underpinning 

ideas are described in section 2 together 

with recent extensions including a discussion 

of Big Data – Big Simulation and HPC 

convergence [12, 13].

1	 Introduction

1.1.	 Preamble

1.2	 Motivation

1.3	 Overview of Components of 
	 SPIDAL Dibbs
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Our architecture for data intensive applications relies on Apache Big Data stack ABDS for the core 

software building blocks where we add an interface layer MIDAS – the Middleware for Data-

Intensive Analytics and Science – described in Section 3, that will enable scalable applications with 

the performance of HPC (High Performance Computing) and the rich functionality of the 

commodity ABDS (Apache Big Data Stack). The next set of building blocks described in section 4 

are members of a cross-cutting high-performance data-analysis library – SPIDAL (Scalable Parallel 

Interoperable Data Analytics Library). SPIDAL consists of a set of core routines covering well 

established functionality (such as optimization and clustering) together with targeted community 

specific capabilities motivated by applications described in Section 5. Section 6 covers community 

engagement and Section 7 has some important lessons learned as well as existing and future spin-

off activities. 

The project has a webpage [14], an early Indiana University press release [15] and the public NSF 

award announcement [16]. 

1.2. Motivation 

Many scientific problems depend on the ability to analyze and compute on large amounts of data. 

This analysis often does not scale well; its effectiveness is hampered by the increasing volume, 

variety and rate of change (velocity) of Big Data. This project is aimed at designing, developing and 

implementing building blocks that will enable a fundamental improvement in the ability to support 

data-intensive analysis on a broad range of cyberinfrastructure, including that supported by NSF 

for the scientific community.  

The project will integrate features of traditional high-performance computing, such as scientific 

libraries, communication and resource management middleware, with the rich set of capabilities 

found in the commercial Big Data ecosystem. The latter includes many important software 

systems such as Hadoop, Spark, Storm and Mesos, available from the Apache open source 

community. We note that there are over 350 separate software modules in HPC-ABDS [7] and it is 

certainly not realistic to study, use, and/or support this number in, for example, the national NSF 

cyberinfrastructure. This project divides this software into broad categories and identifies a few 

key or representative members whose performance is examined and enhanced by HPC.  

We are inspired by the beneficial impact that scientific libraries such as PETSc, MPI and 

ScaLAPACK have had for supercomputer simulations and hope that our building blocks MIDAS and 

SPIDAL will have the same impact on data analytics. MIDAS will allow our libraries to be scalable 
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and interoperable across a range of computing systems including clouds, clusters and 

supercomputers. 

1.3. Overview of Components of SPIDAL DIBBs 

The implementation of this project requires significant coordinated activity in several areas that 

are spelled out here and described in more detail in the later sections 

• NIST Big Data Application Analysis [10, 11, 17, 18]– This identifies features of data 

intensive applications that need to be supported in software and represented in 

benchmarks. This analysis comes from the project (initiated as part of proposal planning) 

and was recently extended to separately look at model and data components [13, 19]. 

(section 2.1) 

• HPC-ABDS: Cloud-HPC interoperable software performance of HPC (High Performance 

Computing) and the rich functionality of the commodity Apache Big Data Stack. [6, 7] It 

is described in section 2.2. 

o This is a reservoir of software subsystems – nearly all from outside the project and 

coming from a mix of HPC and Big Data communities 

o We added a categorization and an HPC enhancement approach 

o HPC-ABDS combined with the NIST Big Data Application Analysis leads to Big Data 

– Big Simulation – HPC Convergence [12, 13], described in section 2.3 

• MIDAS: This is the integrating middleware that links HPC and ABDS: its different 

components are described in section 3. It includes an architecture for Big Data analytics, a 

cloud-HPC interoperable deployment tool, and other features,  

• SPIDAL Java: Our goals imply a substantial emphasis on performance of MIDAS Inter- and 

Intra-node. This is extended to include the techniques described in section 3.2, to achieve 

high performance when coding in the popular data language Java. 

• SPIDAL (Scalable Parallel Interoperable Data Analytics Library): This is described in 

section 4 and provides scalable data analytics for:  

o Domain specific data analytics libraries – mainly from project. 

o Add Core Machine learning libraries – mainly from community. 

• Benchmarks – This project adds to a community with Ogre characteristics and high 

performance core kernels as discussed at WBDB2015 Benchmarking Workshop. 
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• Implementations: We have a particular focus on NSF infrastructure, including XSEDE and 

Blue Waters, as well as clouds with OpenStack and Docker using Cloudmesh (section 3.3) 

for interoperability. 

• Applications: Biomolecular Simulations, Network and Computational Social Science, 

Epidemiology, Computer Vision, Spatial Geographical Information Systems, Remote 

Sensing for Polar Science and Pathology Informatics. These are described in section 5 and 

provide requirements and test grounds for our work. Separately funded work in 

bioinformatics and computer vision also help in these regards. 

  



2.1.	 NIST Big Data Application  
	 Analysis 

The Big Data Ogres build on a collection 

of 51 big data uses gathered by the NIST 

Public Working Group where 26 properties 

were gathered for each application [20]. 

This information was combined with other 

studies including the Berkeley dwarfs [21], 

the NAS parallel benchmarks [22, 23] and the 

Computational Giants of the NRC Massive 

Data Analysis Report [24]. The Ogre analysis 

led to a set of 50 features divided into four 

views that could be used to categorize 

and distinguish between applications. 

The four views are Problem Architecture 

(Macro pattern); Execution Features (Micro 

patterns); Data Source and Style; and finally 

the Processing View or runtime features. We 

generalized [3] this approach to integrate Big 

Data and Simulation applications into a single 

classification that we called convergence 

diamonds with the total facets growing to 

64 in number and split between the same 4 

views as shown in figure 2-1. These are used in 

Section 2.3 and a mapping of facets into the 

work of this project as given earlier[11].

2	 Overall 
	 Architecture

2.1.	 NIST Big Data Application 
	 Analysis

2.2.	 HPC-ABDS High Performance 
	 Computing and Apache Big 
	 Data Stack

2.3.	 Big Data - Big Simulation 
	 (Exascale) Convergence

2.4.	 HPC-ABDS Mapping of Project 
	 Activitie
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We can illustrate these facets by considering a few of special applicability to our project. The facets 

in the Problem Architecture view include 5 very common ones describing synchronization 

structure of a parallel job: Pleasingly Parallel (PA1), MapReduce (PA2), MapCollective (PA3) and 

Map Point-to-Point (PA4) describe respectively the processing of a collection of independent 

events; independent calculations (maps) followed by a final consolidation via MapReduce; parallel 

machine learning dominated by scatter, gather, reduce and broadcast; simulations or graph 

processing with many local linkages in points of studied system. The fifth important Problem 

Architecture is Map Streaming (PA5) seen in recent approaches to processing real-time data [25]. 

We do not focus on pure shared memory architectures PA-6 although we do look carefully at 

hybrid architectures with clusters of multicore nodes and find important performance differences 

dependent on the node programming model (Section 3.2). Most of our code is SPMD (PA-7) and 

BSP (PA-8). 

Looking at the Execution View, we see in EV-M14 complexity of model (O(N2) for N points) seen in 

the non-metric space models EV-M13 similar to what one gets with DNA sequences. EV-M11 

describes iterative structures distinguishing Spark, Flink, and Harp from the original Hadoop. The 

facet EV-M8 describes the communication structure, which is a focus of our research as much of 

data analytics relies on collective communication. This is understood in principle but we find that 

significant new work is needed compared to basic MPI releases. The model size EV-M4 and data 

volume EV-D4 are important in describing the algorithm performance, since just like in simulation 

problems, the grain size (number of model parameters held in the unit – thread or process – of 

parallel computing) is a critical measure of performance.  

In the Data view, we can highlight D-5 streaming covered in Section 7.1 where there has been much 

recent progress; D-9 categorizes our Biomolecular simulation application with data produced by 

an HPC simulation; and D-10 Geospatial Information Systems is covered by spatial algorithms in 

Section 4.11. D-7 (provenance) is an example of an important feature that we are not covering. The 

data storage and access (D-3 and D-4) is covered in Section 3.4. Internet of Things (D-8) is not a 

focus of our project although our recent streaming work (Section 7.1) relates to this and our 

addition of HPC to Apache Heron and Storm is an example of the value of HPC-ABDS to IoT. 

The Processing View characterizes algorithms; for example, Graph P-M13 (sections 3.7, 4.2, 4.4) 
and visualization P-M14 covered in section 4.5. P-M15 directly describes SPIDAL which is a library 
of core analytics. This project covers many aspects of P-M4 to P-M11 as these characterize the 
SPIDAL algorithms. We are of course NOT addressing P-M16 to P-M22 which are simulation 
algorithms and not applicable to data analytics. Our work largely addresses Global Machine 
Learning P-M3 although some of the simple image analytics are local machine learning P-M2 with 
parallelism over images and not over the analytics. Many of our SPIDAL algorithms have linear 
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algebra at their core; one nice example is multi-dimensional scaling in Section 4.7(2) which is 
based on matrix-matrix multiplication. 

Figure 2-1: 64 Convergence Diamonds [12] in 4 views generalizing Ogres. 

These convergence diamonds are particularly useful in classifying benchmarks. We are pursuing 

this to design a “complete” (over the 64 facets) set of benchmarks which potentially will link 

simulation and big data benchmark collections. 
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2.2. HPC-ABDS High Performance Computing and Apache Big Data Stack 

Figure 2-2: HPC-ABDS as compiled January 29, 2016 with layers given special consideration in  

this project shown in green. 

Kaleidoscope of (Apache) Big Data Stack (ABDS) and HPC Technologies  
Cross-

Cutting 
Functions 

1) Message 
and Data 
Protocols: 
Avro, Thrift, 
Protobuf 
2) Distributed 
Coordination: 
Google 
Chubby, 
Zookeeper, 
Giraffe, 
JGroups 
3) Security & 
Privacy: 
InCommon, 
Eduroam 
OpenStack 
Keystone, 
LDAP, Sentry, 
Sqrrl, OpenID, 
SAML OAuth 
4) 
Monitoring: 
Ambari, 
Ganglia, 
Nagios, Inca 

 

17) Workflow-Orchestration: ODE, ActiveBPEL, Airavata, Pegasus, Kepler, Swift, Taverna, Triana, 
Trident, BioKepler, Galaxy, IPython, Dryad, Naiad, Oozie, Tez, Google FlumeJava, Crunch, Cascading, 
Scalding, e-Science Central, Azure Data Factory, Google Cloud Dataflow, NiFi (NSA), Jitterbit, Talend, 
Pentaho, Apatar, Docker Compose, KeystoneML 
16) Application and Analytics: Mahout , MLlib , MLbase, DataFu, R, pbdR, Bioconductor, ImageJ, 
OpenCV, Scalapack, PetSc, PLASMA MAGMA, Azure Machine Learning, Google Prediction API & 
Translation API, mlpy, scikit-learn, PyBrain, CompLearn, DAAL(Intel), Caffe, Torch, Theano, DL4j, H2O, 
IBM Watson, Oracle PGX, GraphLab, GraphX, IBM System G, GraphBuilder(Intel), TinkerPop, Parasol, 
Dream:Lab, Google Fusion Tables, CINET, NWB, Elasticsearch, Kibana, Logstash, Graylog, Splunk, 
Tableau, D3.js, three.js, Potree, DC.js, TensorFlow, CNTK 
15B) Application Hosting Frameworks: Google App Engine, AppScale, Red Hat OpenShift, Heroku, 
Aerobatic, AWS Elastic Beanstalk, Azure, Cloud Foundry, Pivotal, IBM BlueMix, Ninefold, Jelastic, 
Stackato, appfog, CloudBees, Engine Yard, CloudControl, dotCloud, Dokku, OSGi, HUBzero, OODT, 
Agave, Atmosphere 
15A) High level Programming: Kite, Hive, HCatalog, Tajo, Shark, Phoenix, Impala, MRQL, SAP HANA, 
HadoopDB, PolyBase, Pivotal HD/Hawq, Presto, Google Dremel, Google BigQuery, Amazon Redshift, 
Drill, Kyoto Cabinet, Pig, Sawzall, Google Cloud DataFlow, Summingbird, Lumberyard 
14B) Streams: Storm, S4, Samza, Granules, Neptune, Google MillWheel, Amazon Kinesis, LinkedIn, 
Twitter Heron, Databus, Facebook Puma/Ptail/Scribe/ODS, Azure Stream Analytics, Floe, Spark Streaming, 
Flink Streaming, DataTurbine 
14A) Basic Programming model and runtime, SPMD, MapReduce: Hadoop, Spark, Twister, MR-MPI, 
Stratosphere (Apache Flink), Reef, Disco, Hama, Giraph, Pregel, Pegasus, Ligra, GraphChi, Galois, Medusa-
GPU, MapGraph, Totem 
13) Inter process communication Collectives, point-to-point, publish-subscribe: MPI, HPX-5, Argo 
BEAST HPX-5 BEAST PULSAR, Harp, Netty, ZeroMQ, ActiveMQ, RabbitMQ, NaradaBrokering, QPid, 
Kafka, Kestrel, JMS, AMQP, Stomp, MQTT, Marionette Collective,  Public Cloud: Amazon SNS, Lambda, 
Google Pub Sub, Azure Queues, Event Hubs  
12) In-memory databases/caches: Gora (general object from NoSQL), Memcached, Redis, LMDB (key 
value), Hazelcast, Ehcache, Infinispan, VoltDB, H-Store 
12) Object-relational mapping: Hibernate, OpenJPA, EclipseLink, DataNucleus, ODBC/JDBC  
12) Extraction Tools: UIMA, Tika 
11C) SQL(NewSQL): Oracle, DB2, SQL Server, SQLite, MySQL, PostgreSQL, CUBRID, Galera Cluster, 
SciDB, Rasdaman, Apache Derby, Pivotal Greenplum, Google Cloud SQL, Azure SQL, Amazon RDS, 
Google F1, IBM dashDB, N1QL, BlinkDB, Spark SQL 
11B) NoSQL: Lucene, Solr, Solandra, Voldemort, Riak, ZHT, Berkeley DB, Kyoto/Tokyo Cabinet, Tycoon, 
Tyrant, MongoDB, Espresso, CouchDB, Couchbase, IBM Cloudant, Pivotal Gemfire, HBase, Google 
Bigtable, LevelDB, Megastore and Spanner, Accumulo, Cassandra, RYA, Sqrrl, Neo4J, graphdb, Yarcdata, 
AllegroGraph, Blazegraph, Facebook Tao, Titan:db, Jena, Sesame 
Public Cloud: Azure Table, Amazon Dynamo, Google DataStore 
11A) File management: iRODS, NetCDF, CDF, HDF, OPeNDAP, FITS, RCFile, ORC, Parquet 
10) Data Transport: BitTorrent, HTTP, FTP, SSH, Globus Online (GridFTP), Flume, Sqoop, Pivotal 
GPLOAD/GPFDIST 
9) Cluster Resource Management: Mesos, Yarn, Helix, Llama, Google Omega, Facebook Corona, Celery, 
HTCondor, SGE, OpenPBS, Moab, Slurm, Torque, Globus Tools, Pilot Jobs 
8) File systems: HDFS, Swift, Haystack, f4, Cinder, Ceph, FUSE, Gluster, Lustre, GPFS, GFFS 
Public Cloud: Amazon S3, Azure Blob, Google Cloud Storage 
7) Interoperability: Libvirt, Libcloud, JClouds, TOSCA, OCCI, CDMI, Whirr, Saga, Genesis 
6) DevOps: Docker (Machine, Swarm), Puppet, Chef, Ansible, SaltStack, Boto, Cobbler, Xcat, Razor, 
CloudMesh, Juju, Foreman, OpenStack Heat, Sahara, Rocks, Cisco Intelligent Automation for Cloud, 
Ubuntu MaaS, Facebook Tupperware, AWS OpsWorks, OpenStack Ironic, Google Kubernetes, Buildstep, 
Gitreceive, OpenTOSCA, Winery, CloudML, Blueprints, Terraform, DevOpSlang, Any2Api 
5) IaaS Management from HPC to hypervisors: Xen, KVM, QEMU, Hyper-V, VirtualBox, OpenVZ, 
LXC, Linux-Vserver, OpenStack, OpenNebula, Eucalyptus, Nimbus, CloudStack, CoreOS, rkt, VMware 
ESXi, vSphere and vCloud, Amazon, Azure, Google and other public Clouds  
Networking: Google Cloud DNS, Amazon Route 53     

 

 

21 layers  
Over 350 
Software 
Packages 
 
January 
29 
2016 

Green is 
work of 
NSF14-
43054 
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Figure 2-2 collects together much existing relevant systems software coming from either HPC or 

commodity ABDS sources. The software is broken up into 21 layers so systems are grouped by 

functionality. The layers given especial attention in this project are colored green in Figure 2 and 

discussed in Section 2.4. This software collection is termed HPC-ABDS (High Performance 

Computing enhanced Apache Big Data Stack) as many critical core components of the commodity 

stack (such as Spark and Hbase) come from open source projects while HPC is needed to bring 

performance and other parallel computing capabilities [6]. Note that Apache is the largest but not 

sole source of open source software; we believe that the Apache Foundation is a critical leader in 

the Big Data open source software movement and use it to designate the full big data software 

ecosystem. The figure also includes proprietary systems as they illustrate key capabilities and 

often motivate open source equivalents. We built this picture for Big Data problems but it also 

applies to big simulation with the caveat that we need to add more high level software at the library 

level and more high level tools like Global Arrays.  

The essential idea of our Big Data HPC convergence for software is to make use of ABDS software 

where possible as it offers richness in functionality, a compelling open-source community 

sustainability model and typically attractive user interfaces. ABDS has a good reputation for scale 

but often does not give good performance. Our approach is to augment ABDS with HPC ideas 

which we illustrated with Hadoop [25, 26], Storm [27] and the basic Java environment [28]. As 

described in Section 2.3, we suggest using the resultant HPC-ABDS for both Big Cata and Big 

Ximulation applications. 

2.3. Big Data - Big Simulation (Exascale) Convergence 

A key idea introduced in [12, 19] was to separate, for any application, the data and model 

components which were merged together in the original Ogre analysis. In Big Data problems, 

naturally the data size is large and this normally is the focus of work in that area. However, a model 

is essential to interpret data and this is, of course, a concern of the rapid advances in machine 

learning and our SPIDAL library realizes the model algorithms. Note the size of a model can be 

much smaller than the data such as in algorithms like clustering and dimension reduction. 

However, in applications like deep learning and topic modeling, the model can be huge. Parallelism 

has to be considered carefully both for data and models [19] and this leads to a new convergence 

programming paradigm. Turning to simulations where HPC has been most extensively explored, 

we again find that the applications contain both data and model, but typically it is now the model 

that is always large. For example, if one is solving particle dynamics or partial differential 

equations, then the model is the large numerical representation, while the data can be relatively 

small as in boundary conditions. On the other hand, there are examples like data assimilation for 
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climate forecasting and data visualizations produced by simulations, where the data can be quite 

large. Data is often static between iterations (unless streaming) while model parameters vary 

between iterations. 

We suggest that as long as one carefully compares apples with apples (e.g. Big Data model 

component with simulation model component), one can find many points of similarity between Big 

Data and simulations. This will yield methods to support both with a common architecture that is 

separate in the handling of the different data and model components but NOT separated by the 

application type: Big Data and Simulation.  

2.4.  HPC-ABDS Mapping of Project Activities 

We can offer some insight into our project by mapping the work into the different levels of HPC-

ABDS in Figure 2. The layers correspond to those colored green in Figure 2. 

• Level 17: Orchestration: Apache Beam (Google Cloud Dataflow) or Crunch integrated with 

Cloudmesh on HPC cluster 

• Level 16: Applications: Datamining for molecular dynamics, Image processing for remote 

sensing and pathology, graphs, streaming, bioinformatics, social media, financial 

informatics, text mining 

• Level 16: Algorithms: Generic and custom for applications SPIDAL 

• Level 14: Programming: Storm, Heron (from Twitter replaces Storm), Hadoop, Spark, 

Flink. Improve Inter- and Intra-node performance 

• Level 13: Communication: Enhanced Storm and Hadoop using HPC runtime technologies, 

Harp 

• Level 12: In-memory Database: Redis and Spark used in Pilot-Data Memory 

• Level 11: Data management: Hbase and MongoDB integrated via use of Beam and other 

Apache tools; enhance Hbase 

• Level 9: Cluster Management: Integrate Pilot Jobs with Yarn, Mesos, Spark, Hadoop; 

integrate Storm and Heron with Slurm 

• Level 6: DevOps: Python Cloudmesh virtual Cluster Interoperability 

  



3	 MIDAS: 
	 Software 

Activities in 
	 DIBBS

3.1. Introduction 

3.2. SPIDAL Language

3.3.	 Cloudmesh Interoperability 
IaaS and Paas Tool leveraging 

	 DevOps

3.4.	 Pilot Jobs and Pilot 
Data Memory

3.5.	 Architecture of Scalable Big 
Data Machine Learning Library

3.6.	 Harp Programming Paradigm

3.7.	 Integration of Harp  
and Intel DAAL Library

3.1.	 Introduction

Recall from the introduction that MIDAS is 

the software shim that links HPC and ABDS. 

The initial algorithm work went ahead with 

traditional technologies and as MIDAS 

matures, it needs to be reworked with this 

infrastructure. The following subsections 

3.2 to 3.6 expand section 2.4 and cover the 

different parts of MIDAS used in our research.

• Section 3.2: SPIDAL Language takes 

another look at Java Grande[29], 15 years 

after this was active, to examine how to 

make Java codes run as fast as possible 

with simple steps.

• Section 3.3: The DevOps tool 

Cloudmesh provides interoperability 

between HPC and Cloud (OpenStack, 

AWS, Docker) platforms based on virtual  

clusters with software defined systems 

using Ansible or Chef.

• Section 3.4: Pilot Jobs integrate Slurm 

with Yarn & Mesos (ABDS schedulers), and 

support ABDS programming frameworks 

(Hadoop MapReduce, Spark). 
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• Section 3.4: Pilot Data Memory integrates ABDS in-memory stores from Redis and Spark 

with HPC file systems 

• Section 3.5: Model-centric Data Analytics Architecture provides a general approach to 

data analytics supporting different model synchronization approaches and with typically 

higher performance than parameter server approach 

• Section 3.6: Communication and scientific data abstractions: Harp plug-in to Hadoop 

outperforms ABDS programming layers. Optimize collectives above provided by MPI. 

• Data Management: use Hbase, MongoDB with customization (pre-proposal work: no 

recent activity) 

• Workflow: Use Apache Crunch and Beam (Google Cloud Data flow) as they link to other 

ABDS technologies (just prototyping at present and no results reported) 

We are starting to integrate MIDAS components and move into algorithms of SPIDAL library. 

3.2. SPIDAL Language 

Motivation:  SPIDAL Java was developed to support the high performance parallel 

multidimensional scaling and clustering algorithms listed in Section 4.5 and implemented in Java. 

These algorithms fall under the Map-Collective pattern, where independent computations are 

followed by global collective communications over many iterations. The goal of SPIDAL Java is to 

leverage HPC hardware in satisfying the demanding computation and communication needs of 

these algorithms. The work includes coding strategies and communication routines and allows 

Java to perform at a similar level to C++. 

The nature of SPIDAL Java algorithms presents 

several challenges in coming up with high 

performance scalable and parallel 

implementations. Modern HPC clusters with 

multicore NUMA nodes provide a large number 

of computing cores. Intel Haswell, for example, 

supports up to 24 and 36 core counts per node. 

The all MPI approach – 1 process per core on all 

nodes – is a straightforward match in 
Figure 3-1 MPI allgatherv performance with varying 

processes per node 
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implementing Map-Collective applications on such clusters. The downside is the cost of collective 

communication, especially within a node.  MPI+X model where X is a mechanism to do intra-node 

parallelism. Typically, scientific computations employ OpenMP as X.  

While performance studies exist on the MPI+X model with regard to HPC applications, it is not 

clear what the performance characteristics would 

be for Java-based Map-Collective applications. In 

SPIDAL Java, we identified that intra-node 

communication poses a significant cost, 

especially with collective communications. Figure 

3 shows the effect of doing an allgatherv call with 

both Java and C versions of OpenMPI with 

varying number of processes per node. Note, the 

total number of bytes sent out from a node is 

constant across all the patterns in the x-axis.  

Figure 3-1 suggests that keeping the number of 

communicating processes per node to a 

minimum gives the best performance. This implies intra-node parallelism should be done with 

threads. However, we find keeping the same process model while doing intra-node communication 

through shared memory is better than threads (reasons explained below). In SPIDAL Java, a 

separate layer written in Java on top of MPI handles the intra-node communication through direct 

memory copies. The architecture is shown in Figure 3. 

 

  
Figure 3-3 DA-MDS 100K performance with varying 

intra-node parallelism 

Figure 3-4 DA-MDS 200K performance with varying 

intra-node parallelism 

 

Figure 3-2 Intra-node message passing with Java 

shared memory maps 
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Figures 3-3 and 3-4 show the results for 100K and 200K DA-MDS with (blue line) and without (red 

line) this optimization. The green line includes shared memory and several other optimizations 

available in SPIDAL Java. 

The abscissa in Figures 3-3 and Figure 3-4 show different combinations of threads and processes 

within a node that utilizes the full parallelism of 24 cores per node. While typical MPI 

implementation (red line) favors threads within a node due to high communication cost, the 

removal of intra-node communication (blue line) shows all processes model (left-most pattern) is 

better than other combinations that include threads. This is further exemplified in SPIDAL Java 

when other optimizations are applied on top of shared memory communication (see green lines).  

Three reasons why threads don’t perform as well as processes in these experiments are as follows: 

1. NUMA Boundaries 

The experiments were run on a cluster where each node has 2 physical CPUs. When threads 

are scheduled across NUMA boundaries, accessing process local data could incur high 

overheads. 

2. Scheduling Overhead 

Threads are used in a Fork-Join (FJ) pattern in these applications, meaning that the worker 

threads sleep during serial paths of the code. We find through Intel Vtune profiling that the 

cost of scheduling these parallel regions over many iterations adds a significant overhead.  

3. TLB Misses 

While studying the Linux perf counters for threads and processes, we noticed FJ-based 

thread parallelism to incur high amounts of TLB misses. This essentially reduced the 

number of operations performed per clock cycle, making it less efficient than the process 

model. 

In a recent version of DA-MDS we have verified these two effects and have provided a long-running 

thread (LRT) implementation over FJ. Also, by adhering to strict thread process and placement we 

have reduced the overheads associated with threads. The difference between LRT and FJ 

implementations is shown in 3. 
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Figure 3-3 Fork-Join FJ vs Long Running Thread LRT implementations 

Note, LRT requires a significant amount of code change from what typical MPI+X model programs 

look like. Also, the programmer is responsible for implementing communication after non-trivial 

parallel segments, whereas in FJ the built-in constructs such as parallel for implement such 

synchronization. Moreover, the synchronization implementation needs to make sure that none of 

the threads “sleep”, that is threads would be busy-waiting rather than giving up CPU resources. By 

performing a Linux perf counter analysis, we find this produced a smaller number of TLB misses 

compared to FJ.  

Even with LRT implementation, the thread and process placement has to be explicit and within 

NUMA boundaries to get the best performance. For example, on these 2 socket nodes, placing 1 

process with 24 threads is less efficient than placing 2 processes with 1 on each node having 12 

threads. It is also important to pin threads to a core. In Java, pinning threads to a core is achieved 

using OpenHFT’s thread affinity library [30].  

The point of this experiment with threads was to show that it is possible to achieve similar 

performance as processes (when process communication is through shared memory), but doing 

so is not straightforward and requires a considerable amount of code change. 

Apart from the intra-node communication optimization, SPIDAL Java employs several other 

techniques to reduce costs such as Java Garbage Collection (GC), cache and memory access, and 

heap allocated objects. GC invocations are the so-called “stop the world” events, which require all 

activities within the user code to be stopped while cleaning the heap. These are expensive, 

especially with these Map-Collective applications where such GC events are responsible for the 

Serial work 
 

Non-trivial parallel work 

Busy thread synchronization 

FJ Implementation LRT Implementation 
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strangler effect. SPIDAL Java utilizes off-heap data structures and static allocations to keep GC 

activity nearly at zero. Also, this makes it possible to run with a minimum memory footprint.  

Cache and memory accesses also need to be optimized in yielding high-performance. SPIDAL Java 

adopts some of the techniques from scientific simulations to overcome these, including blocked 

loops, loop ordering, and 1D arrays. It is important to note that data representations with nested 

data structures add a substantial overhead due to multiple indirect memory references, hence the 

use of 1D arrays are preferred when possible. 

Heap allocated objects require creating temporary copies when used with native I/O operations. 

Therefore, SPIDAL Java utilizes off-heap memory maps to store such content. This approach is 

also used in loading initial large data. Memory maps not only offer off-heap allocations, but are 

significantly faster than the typical Java stream APIs when reading such large data. Also, for inter-

node MPI communications these memory maps are more efficient than using heap allocated 

arrays or objects. 

 

 

 

 

Figure 3-2 shows the effect of each optimization for DA-MDS as a speedup chart. The results are 

taken for all processes case. The base case is 48 processes run as 1x1x48, meaning 1 thread per 

process and 1 process per node across 48 nodes. It shows SPIDAL Java achieves around 40x 

speedup over 64x core count increase, while typical MPI is only able to achieve 6x speedup for the 

same increase in cores. 

Figure 3-3 shows speedup for varying core counts for three data sizes - 100K, 200K, and 400K. 

These too were run as all processes because threads did not result in good performance (the 

tested DA-MDS did not have the LRT implementation discussed above). None of the three data 

sizes were small enough to have a serial base case, so the graphs use the 48 core as the base, 

which was run as 1x1x48. SPIDAL Java computations grow (𝑁𝑁𝑁𝑁2) while communications grow 

 
 

Figure 3-4 DA-MDS speedup for 200K with different 

optimization techniques 

Figure 3-5 DA-MDS speedup with varying data sizes 
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(𝑁𝑁𝑁𝑁), which intuitively suggests larger data sizes should yield better speedup than smaller ones 

and the results confirm this behavior. 

In conclusion, performance results of SPIDAL Java show it scales and performs well in large PC 

clusters. Also, the optimizations to overcome performance challenges made it possible to run 

SPIDAL Java applications on much larger data sets than what was available in the past while still 

achieving excellent scaling results. The improved shared memory intra-node communication is 

pivotal to the gains in SPIDAL Java and it is the first such implementation for Java, to the best of 

our knowledge. 

3.3. Cloudmesh Interoperability IaaS and Paas Tool leveraging DevOps 

Motivation: Today’s cyberinfrastructure is complex and ever-changing. Scientists often struggle 

over the question of how to develop and use next generation Big Data tools and frameworks. 

Deployment and use of such infrastructure is complex and often beyond the expertise of data 

scientists. Furthermore, we have seen scientists perform unnecessary differentiations while using 

various IaaS platforms such as Openstack, Azure, and AWS. We also identified that the model of 

generating a virtual machine and using it for a long period of time is broken as security updates and 

other rapidly developing software render such virtual images obsolete, insecure, and outdated 

quickly. We need tools and frameworks that makes this easier and allow the creation and 

recreation of state-of-the-art tools and services used by the data scientists.  

Model: Our model targets four layers in the scientific data workflow: 

Phase A: IaaS deployment: Creation of virtual clusters that uses an existing HPC or IaaS system 

Phase B: PaaS deployment: The platform level in which a platform is deployed or used  

Phase C: Application deployment: The application deployment and development on A) and B) 

Phase D: Data deployment and application execution: The execution of data analysis and 

experiments while using the programs developed as part of C) 

This is achieved while leveraging existing advanced cyberinfrastructure tools and exposing them 

through a uniform interface. 
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3.3.1. Virtual Cluster IaaS deployment 

We identified that one of the recurring tasks for data scientists is to set up a virtual cluster 

containing the software needed to perform the actual activities. Through practical experience with 

data science students we learned that the creation of such clusters often includes sophisticated 

services that are beyond the capabilities of the scientist to deploy. Furthermore, subtle differences 

between IaaS frameworks do not allow the generality needed in the experiment on other IaaS 

offerings and estimate usage impact. Hence we have developed a tool called Cloudmesh that 

abstracts the IaaS platform and allows easy creation of virtual clusters including proper key 

management that often is ignored or wrongly executed by the data scientists, who may lack 

experience in cyberinfrastructure security. An example in Figure 3-6 illustrates the convenience of 

our tool. Here we demonstrate the use of persistent variables that are integrated in our Cloudmesh 

command line tool called cm. We can switch with a single variable between clouds, boot, assign IP 

addresses, and even ssh into the VMs without needing to know all the details about the cloud. An 

easy configuration simplifies integration of new clouds.  

cm default cloud=chameleon 

cm vm boot 

cm vm ip assign 

cm vm ssh 

cm default cloud=kilo 

cm vm boot 

cm vm ip assign 

cm vm ssh 

Figure 3-6: Booting a VM is simple in Cloudmesh and uniform 

While the above also allows the creation of multiple VMs, generation of a virtual cluster requires 

proper key management between the VMs. This is achieved through our prototype cluster 

command as illustrated in Figure 3-7 where we boot up 30 virtual machines and allow login 

between them. In addition, we implemented an inventory command that produces the necessary 

inventory file used, for example, by Ansible, which is part of Phase B. 

cm default cloud=chameleon 

cm cluster create myCluster –count=30 

cm cluster ip assign    # not yet implemented 

cm cluster setup key 

cm cluster inventory  

 

Figure 3-7: Booting a cluster of VMs is simple in Cloudmesh 

Status: We have developed a prototype of Cloudmesh [31]. It includes an abstraction for 

OpenStack, and Comet Cloud [1]. Interfaces for AWS and Azure have been prototyped and 

demonstrated, but improvements need to be made to integrate them in the production release. 
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The cluster command has been prototyped but not yet released. The interface to SDSC Comet is 

still in production. A tutorial will be given at XSEDE2016. A Docker interface is also under 

development. A prototype to integrate VirtualBox VMs has been developed. We currently focus on 

Comet and NSF resources that use OpenStack. 

Results: Managing VMs on different IaaS clouds is easy with Cloudmesh.  Integration of additional 

clouds is possible via abstractions. The use of a saved state in the Cloudmesh client is a 

distinguishing feature from other efforts. This allows the use of defaults to simplify access to 

different clouds. We demonstrated use of the following clouds with Cloudmesh: FutureSystems, 

Chameleon Cloud, Jetstream, CloudLab, Cybera, AWS, Azure, and VirtualBox. 

3.3.2. Virtual cluster PaaS, Data and Application Deployment 

Once a virtual cluster is available, either as HPC, 

VMs, or containers, additional software services 

need to be installed on such a system. This can 

be achieved while leveraging software 

configuration tools in support of DevOps such 

as Ansible, Chef, Pupet, Saltstack or others. In 

our efforts we have focused so far on Ansible as 

the deployment framework as it allows us to 

leverage a deployment methodology based on 

well-known security concepts and abstractions 

allowing a push model. Just as we can deploy 

such platforms, we are currently evaluating 

whether to use the same deployment 

frameworks for application data, software and 

even their execution.  

Status: We have developed prototype 

deployments for several Apache-based tools and services such as Hadoop and Spark. We have 

tested them on Openstack within Futuresystems and Chameleon cloud. Last semester we 

supported and evaluated the use of the framework and its tools in a “Big Data Open Source 

Software Projects Class” that had 40 teams with various projects in Big Data deployment. Based 

on the experience of the class we have identified that using Cloudmesh cluster will introduce much 

more flexibility and ease of use for the data scientists. Furthermore, we can introduce an additional 

abstraction layer that would allow us to integrate multiple deployment frameworks and not just 

Figure 3-10: Architecture of the Cloudmesh 

abstraction layers to gain access to 

cyberinfrastructure systems. DevOps frameworks 

are available as part of the Cloudmesh access to 

them and are coordinated and choreographed with 

the help of the shell, command line or a portal 

interface that we will develop. 
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focus on a single DevOps tool such as Ansible. We have made initial good progress while also using 

the DevOps framework for the application data and software deployment.  

Access to the sophisticated cyberinfrastructure is summarized in Figure 3-8. 

Summary of Cloudmesh 

• Cloudmesh was downloaded 287 times in April (however since then pypi has discontinued 

their download information so we have no further information on downloads).  

• We are presenting a tutorial at XSEDE2016 that uses Cloudmesh 

• We have written a paper that was accepted at XSEDE2016 using Cloudmesh [32] 

• We have identified that Cloudmesh significantly reduces startup time and effort to use 

multiple IaaS 

• We are using the Cloudmesh principles in the current summer REU activity. 

• Cloudmesh is now used to support the open science virtual cluster on Comet. 

3.4. Pilot Jobs and Pilot Data Memory 

Motivation: The Pilot-Abstraction offers a unified approach for application-level compute and data 

management across heterogeneous compute resources (e.g. HPC, cloud, Hadoop), storage 

resources (e.g., local disks, cloud storage, parallel filesystems, SSD) and memory. As part of 

MIDAS we extended the Pilot-Abstraction to facilitate the integration of ABDS and HPC at the level 

of scheduling (Yarn, Slurm) and data access integrating ABDS HDFS, in-memory systems (Spark) 

and HPC file systems (Lustre). 

With the introduction of YARN, a broader set of applications can be executed within Hadoop 

clusters than ever before.  However, developing and deploying YARN applications potentially side-

by-side with HPC applications remains a difficult task. We still lack established abstractions that 

are easy-to-use while still enabling the user to reason about compute and data resources across 

infrastructure types (i.e., Hadoop, HPC and clouds).  

YARN provides a low-level abstraction for resource management, e.g., a Java API and protocol 

buffer specification. Typically interactions between YARN and the applications are much more 

complex than the interactions between an application and a HPC scheduler. Further, applications 

must be able to run on a dynamic set of resources; YARN can preempt containers in high-load 



 

 24 

situations. Data/compute locality needs to be manually managed by the application scheduler by 

requesting resources at the location of a file chunk. Also, allocated resources (the so-called YARN 

containers) can be preempted by the scheduler. 

To address these shortcomings, various frameworks that aid the development of YARN 

applications have been proposed [33]. While these frameworks simplify development, they do not 

address concerns such as interoperability and integration of HPC/Hadoop. To facilitate the uptake 

of Hadoop ecosystem in an HPC context, we integrate YARN and SPARK into the RADICAL-Pilot 

framework, so as to provide advanced and scalable data analysis capabilities to existing high 

performance applications while allowing applications to run HPC and Hadoop application parts 

side-by-side. These implementations are called Pilot-YARN and Pilot-SPARK. 

We extended RADICAL-Pilot to support the deployment and management of the Hadoop/Spark 

cluster to the resources acquired. The extension of RADICAL-Pilot was mainly due to the RADICAL-

Pilot’s Agent which has the following components: the Agent Execution Component, the Heartbeat 

Monitor, Agent Update Monitor, Stage In and Stage Out workers. The integration of Hadoop/Spark 

was done in the agent’s execution component. Figure 3-9 shows how YARN/Spark specifics were 

integrated in the RADICAL-Pilot Agent. 

Figure 3-9: RADICAL-Pilot YARN Architecture. All YARN/Spark specifics are encapsulated in the RADICAL-Pilot Agent 

 

Pilot-Data and Pilot-Memory: Pilot-Data [34] offers a unified approach for data management in 

conjunction with Pilot-Jobs across complex storage hierarchies comprised of local disks, cloud 

storage, parallel file systems, SSD and memory. Doing so allows the efficient management of Pilot-

/task-level input data as well as intermediate and output data, taking into account data locality. 
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While this disk-based model is suitable for compute-bound tasks, for scalable data processing – 

like data transformations using the split-apply-combine pattern – more sophisticated methods are 

required. The usage of memory allows the efficient caching of input and intermediate data, which is 

essential for these algorithms.  

We propose Pilot-Data Memory as both an extension to Pilot-Data and as a runtime system for 

supporting an increasing number of iterative algorithms. Pilot-Data Memory supports application 

patterns, such as the split-apply-combine pattern, and iterative algorithms, as well as K-Means or 

optimization algorithms. It adds in-memory capabilities to Pilot-Data and makes it available via the 

Pilot-API. Figure 3-12 shows the architecture of Pilot-Data Memory. 

An important design objective for Pilot-Data Memory is extensibility and flexibility. Pilot-Data 

Memory supports different in-memory backends: (i) file-based, (ii) in-memory Redis and (iii) in-

memory Spark. 

Pilot-YARN and 

Pilot-Spark can be 

used to set up the 

necessary Spark 

infrastructure on a 

HPC resource. 

 

 

 

 

Figure 3-10 Pilot Data and Pilot-Data Memory Architecture 
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The different backends are supported via an adaptor service interface that specifies the 

capabilities necessary for implementation by the in-memory backend; it consists of functions for 

allocating/de-allocating memory, loading data and executing map/reduce functions on the data. 

Depending on the backend, the processing function must be implemented either manually, e.g., 

file-based and Redis backend adaptors, or directly delegated to the processing engine as in for 

Spark. The Redis and file backends use the Pilot-Job framework for executing the Complete Units 

generated by Pilot-Data Memory. If required, the application can access the native runtime 

functions via a context interface. It is important to note that Pilot-Data Memory can be easily 

extended to other backends, e. g. Alluxio and HDFS in-memory storage tier, which we will evaluate. 

Performance measurements are shown in Figure 3-11. 

3.5. Architecture of Scalable Big Data Machine Learning Library 

Motivation: This section establishes principles for designing parallel machine learning algorithms 

supporting a variety of model synchronization paradigms. It suggests a bridge between parameter 

server approaches and those “owner compute rule-based” distributed model parameter 

approaches familiar in HPC. 

Figure 3-13: KMeans Pilot-Data: Running KMeans on Different Pilot-Data Backends. The iterative KMeans 

algorithms benefits from the usage of Spark and Redis In-Memory Backends. 



 

 27 

There is a vast amount of literature on distributed machine learning and data analytics, much of it 

continuing a long tradition of developing special ways to speed up or parallelize individual 

algorithms or applications. However, specialized implementation rarely leads to wide-spread 

deployment since it yields no generalization of parallelization techniques. Thus the focus of our 

work [19] is to develop a general and exact parallelization technique for a large class of machine 

learning algorithms. It aims to provide the software building blocks (kernels) that are portable to 

manycore (and GPU) architectures, as we migrate from the multicore to manycore era. 

We define the process for parallelization of 

machine learning algorithms as shown in Figure 

3-12: the first step is to choose an algorithm for a 

given big data analysis problem. It may occur 

that there are multiple solutions to the same 

problem. An implementation is often optimized 

for a selected algorithm. Such a tightly coupled 

cycle (ref. top rectangle of Figure 3-12) works 

well for a specific application but becomes 

difficult to sustain due to diverse choices as well 

as changes of technology at algorithm, system 

and hardware levels. This motivates us to 

investigate the fundamental issue of 

computation and parallelization abstractions 

that are effective for a set of domain problems. 

We propose a systematic approach with 

categorizations based on “Computation Model”, which effectively expresses kernel computation 

characteristics and synchronization or communication mechanisms. The separation of 

Computation Model, Abstraction and Implementation details allows us to adapt the variants and 

make the optimization easier for parallel and distributed machine learning algorithms. 

Programming interface in particular provides APIs to application users. 

• Computation Model 

High level description of the parallel algorithm, not associating with any execution 

environment. 

• Abstraction 

Mid-level description of the parallelization, associating with a programming framework or 

Machine Learning 
Application

Machine Learning 
Algorithm

Computation 
Model

Programming 
Interface

Implementation

Figure 3-12. A solution for big data machine 

learning application includes decisions on 

algorithms, computation models, 

programming interfaces, and implementation. 
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runtime environment and including the data abstraction/distribution, processes/threads 

and the operations/APIs for performing the parallelization (e.g. network and 

manycore/GPU devices). 

• Implementation 

Low level details of implementation (e.g. language). 

We further categorize parallel machine learning applications into four types of computation models 

(see Figure 3-13): 

Computation Model A 

This computation model uses a 

synchronized algorithm to coordinate 

parallel workers. In each iteration, once a 

worker processes a training data item, it 

locks related model parameters and 

prevents other workers from accessing 

them. When the related model parameters 

are updated, the worker unlocks the 

parameters. As long as workers compute 

and update on different model parameters, 

they can execute in parallel. Only one 

worker is allowed to access a word's model 

parameters at a time; therefore the model 

parameters used in the local computation are always the latest. In practice, this computation 

model is seldom applied due to the high overhead of locking. 

Computation Model B 

The next computation model also uses a synchronized algorithm. Each worker first takes a 

partition of the shared model and performs computation. Afterwards, the model partitions are 

shifted between workers. When all the model partitions are accessed by all the workers, an 

iteration is complete. Through model rotation, each model parameter is computed and updated by 

only one worker at a time so that the consistency of the model is maintained. 

Computation Model C 

Computation Model C applies a synchronized algorithm but with a stale model. In a single iteration, 

Figure 3-13 Four Computation Models 
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each worker first fetches all the model parameters required by local computation. When the local 

computation is completed, the modifications of the local model from all the workers are combined 

to update the model. 

Computation Model D 

With this model, an asynchronous algorithm employs a stale model. Each worker independently 

fetches the related model parameters, performs the local computation, and returns the model 

updates. Unlike Computation Model A, other workers are allowed to fetch or update the same 

model parameter independently. In contrast to Computation Model B and C, there is no 

synchronization barrier in this computation model. 

Based on the summarized computation models, we propose a new set of model-centric 

abstractions including data abstraction and synchronization operation abstraction for parallel 

machine learning applications as a part of the MapCollective model. These establish parallel 

machine learning as the combination of training data-centric and model-centric processing. The 

new model-centric computation abstractions can support numerous, including but not limited to:  

• Expectation-Maximization Type 

o K-Means Clustering 

o Collapsed Variational Bayesian for topic modeling (e.g. LDA) 

• Gradient Optimization Type 

o Stochastic Gradient Descent and Cyclic Coordinate Descent for classification (e.g. SVM and 

Logistic Regression), regression (e.g. LASSO), collaborative filtering (e.g. Matrix 

Factorization) 

• Markov Chain Monte Carlo Type 

Collapsed Gibbs Sampling for topic modeling (e.g. LDA in Section 4.2.) 

3.6. Harp Programming Paradigm 

Motivation: This section introduces Harp [26], whose basic idea is to abstract iterative 

communication and scientific data abstractions with MapCollective. It distinguishes distributed 

(training) data and distributed model (parameters) and these set up parallel machine learning as 

the combination of training data-centric and model-centric parallel processing. Harp distributes 
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models over worker nodes and supports collective communication to bring global models to each 

worker node.  

The Harp Programming Paradigm shown in figure 3-14, abstracts parallel applications in the 

MapCollective model which is extended from the original MapReduce model. Here parallelization of 

an application is abstracted as parallel execution on a set of Map tasks which are synchronized 

with collective communication operations. While the input data is abstracted and partitioned as 

KeyValue pairs, the abstraction of the synchronized model data and related collective 

communication operations are specially defined. These ideas are implemented in the Harp library 

(open source) as a Hadoop plugin. By plugging Harp into Hadoop, the MapCollective model can be 

expressed on top of a MapReduce framework and efficient data synchronization for a variety of 

machine learning applications is enabled. In addition, mapping a MapCollective model to Hadoop 

also enables two levels of parallelism. Since each Map task is a process where the collective 

communication operations are invoked and multi-thread execution is enabled for another level of 

parallelism. 

 

The data types in Harp are abstracted in a hierarchy. Data are horizontally abstracted as arrays or 

key-values and constructed from basic types into partitions and tables vertically. At the lowest 

level, there are two basic types: arrays and objects. Based on the component type of an array, 

there can be byte array, int array, long array or double array. Object type is used to describe keys 

Figure 3-14. MapCollective Model and Hadoop Plugin 
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and values. In the middle level, arrays and objects are wrapped as array partition and key-value 

partition. At the top level are tables containing multiple partitions, each with a unique partition ID. 

Tables on different parallel workers can be associated with each other and present one dataset. 

The collective communication operations are defined as redistribution or consolidation of 

partitions in tables. 

 

Table 3-1: Collective Operations supported in Harp 

 

Collective communication operations are defined on top of the data abstractions. The operations 

are abstracted based on the synchronization mechanisms summarized from the existing tools and 

many applications for learning. Currently four categories of collective communication operations 

are supported: (1) operations adapted from MPI: e.g. “broadcast”, “reduce”, “allgather”, and 

“allreduce”; (2) operations derived from MapReduce: e.g. “regroup" operation with “combine & 

reduce” support; (3) operations derived from graph processing tools: e.g. “send messages to 

vertices”; and (4) operations abstracted from machine learning applications with big models: e.g. 

“syncLocalWithGlobal” and “syncGlobalWithLocal”, or “rotate”. 

The collective communication operations are not specific to some data abstractions. For each 

operation, both arrays and objects can be used. Even for graph-based communication, the 

operations are not tied with graph abstractions. Instead, the data movement is between partitions 

according to their locality. For each operation, routing mechanisms are optimized based on the 

total data size involved in the movement. Routing optimization is very helpful to many iterative 

applications in which synchronization happens in iterations, especially to machine learning 

applications which need to frequently synchronize a huge model. We apply this MapCollective 
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model to Latent Dirichlet Allocation (LDA) and show that with MapCollective abstractions the 

implementation can achieve better performance compared with parameter server type 

applications which use asynchronous communication methods. 

3.7. Integration of Harp and Intel DAAL Library 

Motivation: For machine learning libraries, it is obviously advantageous to reuse highly optimized 

kernels as software building blocks. Intel's Data Analytics Acceleration Library (DAAL) [43] 

provides several core algorithms with excellent intra-node parallelism. Here we explore using Harp 

to invoke DAAL and thus build a distributed version of this library. 

We aim to combine the advantages of Intel's DAAL for intra-node multithreading and Harp 

programming framework for inter-node communications. Intel optimizes a select group of data 

analytics and machine learning algorithm kernels on their hardware platforms, from CPUs to more 

recent Xeon Phi coprocessor of manycore architectures. As an extension to its highly reputable 

Math Kernel Library (MKL), DAAL provides high performance on its batch mode. Yet the 

performance of its kernels on distributed mode relies on the communication framework chosen by 

the users, which motivates our effort to interface Harp with DAAL. Harp is designed to handle 

communication overheads within iterative applications by using collective in-memory 

communication operations. Yet the implementation of local computation within the current version 

of Harp, which is written in multi-threading Java, is not straightforward in memory management.  

Thus, an integrated Harp-DAAL programming framework shall result in a significant improvement 

of the performance. 

 

 
Input data has 500k points and varies centroids 1000, 
10000, 100000 

 
Input data varies points 5000, 50000, 500000 and 
has100k centroids 

Figure 3-15. K-means Performance of Harp and Harp-DAAL 
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Fig. 3-15 shows a performance comparison between two implementations of K-means clustering. 

The experiments are done on two nodes of Haswell Xeon processor within a cluster of the 

FutureSystems testbed. The K-means kernel with local computation offloaded to DAAL (red lines) 

achieves significantly lower execution time than the kernel implemented by Java threads. 

The Harp-LDA algorithm is implemented using Java threads, while the Harp-DAAL-LDA algorithm 

takes advantage of the optimized native computation kernels on Intel's platform. Unlike K-means 

clustering, LDA has complicated irregular memory access, which requires more effort to reduce 

the memory data transfer overheads. Moreover, there is no LDA kernel within the current version 

of DAAL. We need to write the native LDA while calling the optimized MKL kernel at low levels. Our 

approach includes two aspects: 

Data type conversion between Harp and native kernels 

Harp, due to its optimization on collective communication among nodes, adopts a massive use of 

memory allocation in a nonconsecutive way. In contrast, DAAL and MKL allocate the data on 

contiguous memory chunks, which better fits the requirement of data alignment within BLAS 

operations. A compromise should be made between the two aspects and so we attempt to create 

some highly efficient data conversion methods. In order to profile the memory usage of kernels 

within the Harp-DAAL framework, we use Intel VTune Amplifier as a profiling tool. We also conceive 

a way to profile the Harp/Hadoop applications by VTune, though VTune is mainly used for profiling 

programs written in native languages. 

Memory Optimization on Intel's Xeon Phi Knights Landing 

With the announcement of Intel's latest 2nd generation of Xeon Phi coprocessor, codenamed 

Knights Landing (KNL), we intend to optimize the Harp-DAAL-LDA kernel especially on that 

platform. KNL has tremendously improved its memory latency and bandwidth compared to the 

previous generation. The so-called multi-channel dynamic random access memory (MCDRAM) has 

on-package high bandwidth memory technology (HBM), which could either serve as a last level of 

cache between the L2 cache and the on-platform DDR4 memory or as a separate memory node 

alongside the DDR4 memory. According to [44], MCDRAM can significantly accelerate the latency-

bounded applications that are usually hard to achieve on Xeon and the first generation of Xeon Phi. 

Therefore, we will leverage the potential benefits of KNL on Harp-DAAL-LDA applications. 
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4.1. Introduction 

In the original proposal, we identified a set of algorithms to address in SPIDAL: 

Table 4-1 Status & Parallelism Abbreviations Used in Tables 4-2 to 4-4 

GML Global (parallel) Machine Learning ToDo No prototype Available 

PP Pleasingly Parallel (Local ML) Seq Sequential version Available 

GrA Good distributed algorithm needed P-DM Distributed memory parallel algorithm 

Available 

GrB Graphs with runtime parallel partitioning P-ShM Shared memory parallel algorithm 

Available 

GrC Graphs with static parallel partitioning   
 

 

 

Table 4-2 Proposed SPIDAL Algorithms for Graphs and Spatial Analytics 

Algorithm Applications Features Status Parallelism 

Graph Analytics 

Community Detection Social Networks, webgraph 

Graph 

P-DM GML-GrC 

Subgraph/motif finding 
Webgraph, biological/social 

networks 
P-DM GML-GrB 

Finding diameter Social networks, webgraph P-DM GML-GrB 

Clustering coefficient Social networks P-DM GML-GrC 

Page rank Webgraph P-DM GML-GrC 

Maximal cliques Social networks, webgraph P-DM GML-GrB 

Connected component Social networks, webgraph P-DM GML-GrB 

Betweenness centrality Social networks Graph, Non-metric, 

static 

P-Shm 
GML-GRA 

Shortest Path Social networks, webgraph P-Shm 

Spatial Queries and Analytics 

Spatial relationship based 

queries 
GIS/social networks/pathology/ 

informatics 
Geometric 

P-DM PP 

Distance based queries P-DM PP 

Spatial clustering Seq GML 

Spatial modeling Seq PP 
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Table 4-3 Proposed SPIDAL Algorithms for Image Processing and Deep Learning 

 

Table 4-4 Proposed SPIDAL Core and Optimization Algorithms 

Algorithm Applications Features Status Parallelism 
DA Vector Clustering Accurate Clusters Vectors P-DM GML 

DA Non-metric Clustering Accurate Clusters, Biology, Web Non metric, O(N2) P-DM GML 

K-means; Bsic, Fuzzy and Elkan Fast Clustering Vectors P-DM GML 

Levenberg-Marquardt Optimization 
Non-linear Gauss Newton, use in 

MDS 
Least Squares P-DM GML 

SMACOF Dimension Reduction DA-MDS with general weights 
Least Squares, 

O(N2) 
P-DM GML 

Vector Dimension Reduction DA-GTM and others Vectors P-DM GML 

TFIDF Search 
Find nearest neighbors in 

document corpus 

Bag of “words” 

(image features) 
P-DM PP 

All-pairs similarity search 

Find pairs of documents with 

TFIDF distance below a 

threshold 

Bag of “words” 

(image features) 
Todo GML 

Support Vector Machine (SVM) Learn and Classify Vectors Seq GML 

Random Forest Learn and Classify Vectors P-DM PP 

Gibbs sampling (MCMC) 
Solve global interference 

problems 
Graph Todo GML 

Latent Dirichlet Allocation LDA with 

Gibbs sampling or Var. Bayes 
Topic models (Latent factors) Bag of “words” P-DM GML 

Singular Value Decomposition 

(SVD) 
Dimension Reduction and PCA Vectors Seq GML 

Hidden Markov Models (HMM) 
Global inference on sequence 

models 
Vectors Seq PP & GML 

Algorithm Applications Features Status Parallelism 

Core Image Processing 

Image preprocessing 

Computer vision/pathology 

informatics 

Metric Space Point sets, 

Neighborhood sets & 

Image features 

P-DM PP 

Object detection & segmentation P-DM PP 

Image/object feature 

computation 
P-DM PP 

3D image registration Seq PP 

Object matching 
Geometric 

Todo PP 

3D feature extraction Todo PP 

Deep Learning 

Learning Network, Stochastic 

Gradient Descent 

Image Understanding, 

Language Translation, Voice 

Recognition, Car driving 

Connections in artificial 

neural net 
P-DM GML 
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In addition, there are community specific analytics often building on some of those in Tables 4-2 to 

4-4. Table 4-2 is covered in subsections 4.3, 4.4 and 4.5. Table 4-3 is covered in subsections 4.8 to 

4.10, while Table 4-4 is covered in subsections 4.2, 4.6 and 4.7. 

4.2. Harp Latent Dirichlet Allocation 

Motivation: Latent Dirichlet Allocation is an important algorithm that is representative of several 

related sophisticated latent factor (topic) determination problems. Additionally, it involves data 

structures and can benefit from loosening synchronization between model parameters in the 

different processes of a parallel algorithm. It was therefore a natural case to investigate with the 

Harp MIDAS technology which had been proven effective in simpler cases, especially DA-MDS, 

reported later under core machine learning. 

The research work focuses on the computation models and the synchronization mechanisms of 

parallel machine learning applications using Latent Dirichlet Allocation as an example [25]. LDA is 

a widely used machine learning technique for Big Data analysis, including text mining, advertising, 

recommender systems, network analysis, and genetics. We use Collapsed Gibbs Sampling (CGS) 

algorithm to solve LDA. A major challenge is the scaling issue in parallelization owing to the fact 

that the model size is huge and parallel workers need to synchronize the model continually. We 

identify three important features of the model in parallel LDA CGS computation: (1) the model 

volume required for local computation is high; (2) the time complexity of local computation is 

proportional to the related model size; (3) the model size shrinks as it converges. By investigating 

collective and asynchronous methods of the model synchronization mechanisms, we discover that 

optimized collective communication can improve the model update speed, thus allowing the model 

to converge faster. The performance improvement derives not only from accelerated 

communication but also from reduced iteration computation time as the model size shrinks during 

the model convergence. To foster faster model convergence, we design new collective 

communication abstractions and implement two Harp-LDA applications, “lgs” and “rtt”.  

We compare our new approach with Yahoo! LDA and Petuum LDA, two leading implementations 

favoring asynchronous methods in the field, on a 100-node, 4000-thread Intel Haswell cluster with 

three different datasets (see Table 4-5). When using local-global model synchronization on 

“enwiki”, “lgs” reaches higher model likelihood with shorter execution time (see Fig. 4-1a). Though 

“lgs” can be overtaken by Yahoo! LDA on “clueweb”, by increasing model synchronization rounds 

per iteration to four, “lgs-4s” obtains higher model convergence speed (see Fig. 4-1b). When using 

model rotation, “rtt” and Petuum LDA achieve similar model likelihood with similar execution time 

on “clueweb” (see Fig. 4-1c). However, on “bi-gram”, as the number of words in the model grows, 
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“rtt” runs 3.9 times faster compared with Petuum LDA (see Fig. 4-1d). The details of this research 

work are described in [14]. 

Table 4-5 Training Data Settings 

Dataset 
Number 

of Docs 

Number 

of Tokens 
Vocabulary 

Doc Length 

Mean/SD 

Number 

of Topics 

Initial 

Model Size 

clueweb 50.5M 12.4B 1M 224/352 10K 14.7GB 

enwiki 3.8M 1.1B 1M 293/523 10K 2.0GB 

bi-gram 3.9M 1.7B 20M 434/776 500 5.9GB 

 

 
(a) Execution Time vs. Model Likelihood on “enwiki”  

(b) Model Likelihood vs. Execution Time on “clueweb” 

 
(c) Model Likelihood vs. Execution Time on “clueweb” 

 
(d) Model Likelihood vs. Execution Time on “bi-gram” 

 

Figure 4-1. Performance comparison between “lgs” and Yahoo! LDA  

and Performance comparison between “rtt” and Petuum 

 

4.3. SPIDAL Algorithms – Subgraph mining 

Motivation: Subgraph isomorphism is a canonical problem in several disciplines where people are 

interested in finding subsets of nodes with specific labels or attributes and mutual relationships 

that match a specific template, such as social network analysis [35], data mining [36, 37], fraud 

detection [38] and bioinformatics [39]. For example, in financial networks, where  the nodes are 
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banks/individuals, and edges represent financial transactions, an investigator might be interested 

in specific transaction patterns from an individual to banks, e.g., through suspicious intermediaries 

to deflect attention [38]. In many bioinformatics applications, frequent subgraphs (referred to as 

“motifs”) in protein-protein interaction networks (PPI) have been used to characterize the 

network, distinguish it from random networks and identify functional groups [39, 40].  

Relational subgraph analysis, e.g. finding labeled subgraphs in a network, which are isomorphic to 

a template, is a key problem in many graph-related applications. It is computationally challenging 

for large networks and complex templates, and thus we are working on algorithms for relational 

subgraph analysis using Harp. We study a variety of subgraph isomorphism problems, such as: (i) 

counting the number of embeddings of a given labeled/unlabeled template; (ii) finding the most 

frequent subgraphs/motifs efficiently from a given set of candidate templates; and (iii) computing 

the graphlet frequency distribution. 

By plugging Harp into Hadoop, we can express the MapCollective model in a MapReduce 

framework and enable efficient in-memory collective communication between map tasks. It stores 

the intermediate data (or model data) on all nodes, each node with a different partition. 

An algorithm for subgraph analysis using Hadoop, called Sahad, is given in [41], which is based on 

a color-coding scheme [42].  

 

Network 
No. Of Nodes  
(in million) 

No. Of Edges  
(in million) 

Size  
(MB) 

Web-
google 

0.9 4.3 65 

Miami 2.1 51.2 740 
 

 

Table 4-6. Networks of Graph Applications Figure 4-2. Sub-graph Templates 
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We used two networks as shown in Table 4-6 in the experiments. Figure 4-2 shows four unlabeled 

templates used. Figure 4-3 displays the performance comparison between HarpSahad and 

SAHAD. We ran the experiments on the Juliet cluster at Indiana University using 40 threads (4 

nodes and 10 threads per node). Juliet is a cluster with Haswell architecture and has 128 nodes in 

total. For network Web-google, HarpSahad runs about 5 times faster than SAHAD, and for Miami 

network, HarpSahad performs about 9 times faster than SAHAD  

We’re working on further improvements in the following areas: 

1. Memory usage optimization. The initial SAHAD implementation cannot work on very large 

templates and networks. This issue is challenging due to growing model data, as in our case. 

2. Communication overhead. We are working on communication models for specific 

partitioning schemes. The rotation model is not suitable for this application because it may 

transfer unnecessary model data from one node to another, which increases the 

communication overhead. 

3. Load balancing. We investigated several partitioning schemes such as random-partition, 

minimum-cut, and even-partition. We also looked at increasing parallelism on high edge 

count nodes. 

4.4. SPIDAL Algorithms – Random Graph Generation 

Motivation: Advances in hardware technology, as well as the developments in software and 

algorithms, have enabled the detailed study of complex networks such as the Internet, biological 

  
 

Figure 4-3. Performance comparison between SAHAD and HarpSahad on Web-google and  

Miami networks using Template u5-1 and u7-1. 
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networks, social networks, and various infrastructure networks. The study of these complex 

systems has significantly increased interest in various random graph models. Many real-world 

systems and networks are modeled and analyzed using various random graph models. These 

models must incorporate relevant properties such as degree distribution and clustering 

coefficient. Many of them, such as the preferential attachment (PA) model, Chung-Lu (CL), 

stochastic Kronecker, stochastic block model (SBM), and block two–level Erdos-Renyi (BTER) 

models, have been devised to capture those properties. As some of the complex networks grow, it 

has become necessary to correspondingly generate massive random networks efficiently. A 

smaller network may not exhibit the same behavior, even if both networks are generated using the 

same model. The generative algorithms for these models are mostly sequential and take a 

prohibitively long time to create large-scale graphs. We are working on developing efficient parallel 

algorithms for producing random graphs using various models.  

We have developed a novel method (called the DG method), based on grouping the vertices by 

their degrees, that leads to space- and time-efficient sequential and parallel algorithms for several 

random graph models, including the CL model, with rigorous guarantees. Our main contributions 

are summarized below. 

1. Space efficiency: Both of our sequential and parallel algorithms for the CL model require 

only O(Λ) space, where Λ is the number of distinct degrees, comparing to O(n) space 

required by the previous algorithms. In the real-world networks, Λ is significantly smaller 

than n. Experimental results on a wide range of large-scale networks show that our 

algorithms require 400–15000 times less memory than the previous algorithms. This space 

efficiency makes our algorithms suitable for generating very large-scale graphs. 

2. Time efficiency: Our algorithms are more efficient in terms of runtime also. We prove that 

our sequential and parallel algorithms have running time of O(m) and O(m/P + Λ + P), 

respectively, with high probability, where P denotes the number of processors. In contrast 

to earlier algorithms, the associated constants and overheads are significantly smaller for 

our algorithms. Experimental results show that our algorithms are about 3-4 times faster 

than the previous algorithms. Moreover, our parallel algorithm achieves almost optimal load 

balancing using an efficient load balancing technique and scales very well to a large number 

of processors. Our parallel algorithm can generate a network with 250 billion edges in just 

12 seconds using 1024 processors. 

3. Extensions to other models: Finally, we show how our algorithmic method extends naturally 

to the BTER and SBM models and leads to significantly improved sequential and parallel 
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algorithms. Experimental results show that after applying the DG method, the runtime for 

the BTER model improves by a factor of 5-80 for various types and sizes of networks. 

Figure 4-4 shows the performance of our DG algorithm against the MH algorithm [45], which is the 

best-known previous sequential algorithm, using both real-world and synthetic networks. We 

extracted the degree sequences of these networks, and then generated new graphs from these 

degree sequences. We observe that our DG algorithm is approximately 3 times faster than the MH 

algorithm as we discussed before. A huge improvement made by our algorithm is on the memory 

requirement, improving it by a factor of 440-3474 for the networks shown in the figures below. 

 

 

Figure 4-4 Runtime and memory requirement comparison between our DG algorithm and the  

previous MH algorithm [45] on several datasets. 

Figure 4-5 shows the speedup of our 

parallel DG algorithm along with the 

best-known previous parallel 

algorithm [4] (referred to as the AK 

algorithm) for a massive power-law 

(PL) and two large real-world graphs 

(Twitter and UK-Union). Speedups 

are measured as Ts / Tp, where Ts and 

Tp are the running time of the 

sequential and the parallel algorithm, 

respectively. The number of processors is varied from 1 to 1024. As shown in Fig. 4-5, our 

algorithm achieves almost linear speedup for each graph. The AK algorithm also has a linear 

speedup. However our algorithm is approximately four times faster than the AK algorithm. 

Moreover, our algorithm requires less memory (O(Λ) memory) than the AK algorithm (O(n) 

Figure 4-5. Strong scaling of our parallel DG algorithm and the 

previous AK algorithm [4] on several datasets. 
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memory). For example, for the Twitter, UK-Union, and PL graphs, the DG algorithm takes about 

440, 716, and 16000 times less memory than the AK algorithm, respectively.  

4.5. SPIDAL Algorithms – Triangle Counting 

Motivation: Counting triangles in a graph is a fundamental and important algorithmic problem in 

graph analysis, and its solution can be used in solving many other problems, such as the 

computation of clustering coefficient, transitivity, and triangular connectivity [39, 46]. Existence of 

triangles and the resulting high clustering coefficient in a social network reflect some common 

theories of social science, e.g., homophily where people become friends with those similar to 

themselves and triadic closure where people who have common friends tend to be friends 

themselves [47]. Further, triangle counting has important applications in graph mining such as 

detecting spamming activity and assessing content quality in social networks [48] and detecting 

communities or clusters in social and information networks [49]. 

Finding the number of triangles in a network (graph) is an important problem in mining and 

analysis of complex networks. 

Triangle counting and enumeration is 

an important special case of subgraph 

mining. Specialized algorithms for this 

problem can outperform the general 

algorithms for the subgraph analysis 

problem significantly. 

There are few Hadoop-based 

distributed-memory parallel 

algorithms (by Suri et al. and Park et 

al.) for counting triangles. These 

algorithms generate huge volumes of 

intermediate data for shuffling and 

regrouping, which require a large 

amount of time and memory. 

Previously we have developed an MPI-based distributed-memory parallel algorithm, called PATRIC 

[50], which uses overlapping partitioning of the given graph. Although PATRIC significantly 

improves both time and space requirement comparedto the Hadoop-based algorithms, it still 

requires large memory per processor due to overlapping partitions. 

Figure 4-6. Runtime comparison of various algorithms for 

counting triangles 
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Very recently we have developed a space-efficient MPI-based parallel algorithm for counting and 

enumerating triangles in massive networks. The algorithm divides the network into non-

overlapping partitions. Experimental results, shown in figure 4-6, on some real-world networks 

demonstrate up to 25-fold space saving over the previous algorithm PATRIC, while the runtime is 

comparable to that of PATRIC. For example, for the Twitter network, our space-efficient version 

requires 265MB memory per processor in contrast to 4254MB per processor for PATRIC. Figure 4-

6 shows runtime comparisons on Twitter network for these algorithms. 

4.6. SPIDAL Algorithm – Community Detection 

A community in a network is a group of nodes such that the nodes within the community are 

densely connected but there are fewer edges from these nodes to the nodes outside the 

community. Complex networks generally consist of communities or clusters of nodes, each having 

a distinct role or function. Each functional unit (community) appears as a tightly-knit set of nodes 

having higher connection inside the set than outside. Finding communities may reveal the 

organization of complex systems and their function. For instance, communities are often 

interpreted as organizational units in social networks, functional units in biological networks, or 

scientific disciplines in citation networks. Thus detecting communities in massive networks such 

as emerging social and information networks has become an interesting and fundamental problem 

in network science. 

Although a fairly large volume of work addressed the sequential algorithms for community 

detection (see a survey in [51]), only recently has attention been given to parallel algorithms. There 

are some existing parallel algorithm for shared-memory [52], Bulk Synchronous Parallel (BSP) 

[53], GPU [54], and MapReduce [55] frameworks. We propose an MPI-based distributed-memory 

Figure 4-7. Strong scaling of our parallel 

community detection algorithm on two 

networks: LiveJournal and Miami social 

contact network. The results are shown for 

two partitioning schemes: based on the 

number of nodes (N), based on the degrees 

of the nodes (D). 
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parallel algorithm that later will be implemented with Harp. By partitioning the graph, this 

algorithm allows us to work with large-scale graphs and scales well with the increasing number of 

processors. This is an ongoing work. Below we present some of our preliminary experimental 

results. Figure 4-7 shows the speedup factor of our algorithm with the increasing number of 

processors on two networks. 

4.7. SPIDAL Algorithms – Core  

The initial contributions to SPIDAL are available from Github [56]. They are described here and are 

already given in Table 4-4. As MIDAS and SPIDAL development proceeded in parallel, much of the 

initial SPIDAL work used different technology from that highlighted in MIDAS; for example, not all 

routines are available in Harp or use the SPIDAL Java optimizations. As this project matures and 

optimized MIDAS components become available, we will re-engineer current SPIDAL accordingly. 

Also, based on input from users of MLlib and Mahout, we will plan a design process to ensure a 

uniform consistent programmatic interface to the SPIDAL library. 

Figure 4-8: Visualization using WebPlotViz of a small part (<0.1%) of a clustering using DA-VS of 10.9 million LCMS peaks 

into 423400 clusters extending work in [57]. Orange stars are the 1% of points outside clusters, yellow circles represent 

cluster centers, colored dots are clustered peaks. 

We will now describe the status of several core machine learning routines. 

1. O(N2) distance matrices offer calculation with Hadoop parallelism and various options 

such as storage in MongoDB or distributed files, normalization, packing to save memory 

usage, and calculation exploiting symmetry. This is built into many existing approaches and 

described in Section 5.5. We will separate this and make it a separate SPIDAL library. 
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Figure 4-9: Trajectories of values of 6 financial instruments (stocks with ETF’s) using one-day values measured from 

January 2004 and ending December 2015. Filled circles are final values and 6000 stocks are used in the DA-MDS 3D 

projection of vectors of daily stock values. [58] 

2. WDA-SMACOF or DA-MDS: Multidimensional scaling MDS is an optimal nonlinear 

dimension reduction enhanced by 

SMACOF, deterministic annealing 

and Conjugate gradient for non-

uniform weights [59]. It is used in 

many applications [2] and is 

illustrated in figures 4-9 to 4-12. 

This is believed to be the most 

accurate non-linear dimension 

reduction routine available and the 

only one whose performance 

scales to large parallel machines. It 

supports Sammon’s method and 

missing distance measurements. 

There are MPI and MIDAS (Harp) 

versions. 

Apple

Mid Cap

Energy

S&P 
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Finance
Origin
0% change

+10%

+20%

Figure 4-10: 3D Phylogenetic Tree from [2, 3] using DA-MDS  

and WebPlotViz  
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3. MDS Alignment to optimally align related point sets, as in MDS time series 

4. WebPlotViz data management 

(MongoDB) and browser visualization 

for 3D point sets including time 

series. Available as source or SaaS. 

5. MDS as χ2 using Manxcat (see 

next section on optimization). More 

general but less reliable alternative 

solution of MDS [60, 61]. Latest 

version of WDA-SMACOF usually 

preferable, and our use of this has 

declined. 

6. Other Dimension Reduction: 

SVD, PCA, GTM algorithms are 

understood but no work has been 

done within SPIDAL. 

7. DA-PWC Deterministic Annealing Pairwise Clustering for case where points aren’t in a 

vector space; used extensively to cluster DNA and proteomic sequences; improved 

algorithm over others published. Parallelism good but needs SPIDAL Java. 

8. DAVS Deterministic Annealing Clustering for vectors; includes specification of errors 

and limit on cluster sizes. Gives very accurate answers for cases where distinct clustering 

exists. Being upgraded for new LC-MS proteomics data with one million clusters in 27 

million size data sets shown in figure 4-8. 

9. K-means basic vector clustering: fast and adequate where clusters aren’t needed 

accurately 

10. Elkan’s improved K-means vector clustering: for high dimensional spaces; uses triangle 

inequality to avoid expensive distance calculations 

 

Figure 4-11: Results from [1] using DA-MDS to visualize in 

WebPlotViz for a set of Fungi sequences here colored by 

identified species 
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The above 10 routines are complete usable parallel algorithms and have good parallel 

performance, although they still need extensive work on use of MIDAS, SPIDAL Java and 

establishing good uniform interface. Parallel implementations are needed for logistic regression, 

Random Forest, SVM, Collaborative Filtering, TF-IDF search and other Spark MLlib and Mahout 

algorithms. These are typically simpler than codes already implemented but represent a major 

software engineering and performance tuning project. 

4.8. SPIDAL Algorithms – Optimization 

Many problems in computer science and science in general can be posed as mathematical 

optimization tasks, where the goal is to find the values for a set of variables that minimize a given 

objective or energy function of those variables. In applications, these tasks often arise in the 

context of fitting a model to data. For instance, nearly all machine learning algorithms are simply 

optimizing a set of model parameters by minimizing an objective function that measures the error 

of the model on a set of labeled training examples. Meanwhile data mining algorithms like K-means 

and LDA are similarly fitting model parameters to data to minimize some residual error. Many of 

the imaging applications in Section 5, for example, are simply finding a “simple” model to explain 

Figure 4-12: Early studies for [1, 2] using DA-MDS to visualize in WebPlotViz for a set of fungi 

sequences with 127 clusters determined by DA-PWC 
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complicated image data, e.g. a model that compactly describes a noisy radar echogram in terms of 

ice layer structure, or a segmentation that compactly describes a high-resolution CT scan. 

Optimization problems can often be classified into various broad categories depending on the form 

of the objective function, the domain of the unknown variables, and the type of solution that is 

required. While there is no efficient algorithm that can solve all optimization problems, algorithms 

do exist for many of these general categories, and we are integrating several of the most common 

in SPIDAL.  

Continuous optimization problems. For the common class of optimization problems where the 

variables are continuous and either the objective function is convex or a local minimum (as 

opposed to a global minimum) is acceptable, we are implementing Manxcat, a Levenberg 

Marquardt algorithm for non-linear χ2 optimization. This algorithm uses a sophisticated version of 

Newton’s method calculating value and derivatives of the objective function. It is parallelizable in 

both the calculation of the objective function and in the parameters to be determined. We have 

completed the implementation of this algorithm but it still needs to be optimized for SPIDAL in 

Java.  

Discrete optimization problems commonly arise in computer vision, language modeling, 

operations research, and other applications. Since in general discrete optimization is NP-hard, 

various efficient algorithms have been developed for objective functions with specific forms. Other 

algorithms can produce approximate but typically high-quality solutions even for some NP-hard 

problems. We have implemented several of these algorithms and are working to integrate them 

into SPIDAL. In particular: 

• The Viterbi algorithm finds the maximum a posteriori (MAP) solution for a Hidden Markov 

Model (HMM), which has an objective function that can be written as a sum of pairs of 

variables, such that the graph of these pairs is acyclic. The running time is O(n*s^2) where 

n is the number of variables and s is the number of possible states each variable can take. 

We will provide an "embarrassingly parallel" version that processes multiple problems (e.g. 

many images or many sentences) independently. Because Viterbi is so efficient, we do not 

believe parallelizing within the same problem is needed in our application space.  

• Forward-backward algorithm computes marginal distributions over HMM variables, with 

similar characteristics as Viterbi.  

• Loopy belief propagation (LBP) for approximately finding the maximum a posteriori 

(MAP) solution for a Markov Random Field (MRF). An MRF is a generalization of an HMM in 

which the objective function is still a sum over functions of pairs of variables, but this 
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pairwise relationship structure does not necessarily form a tree. Here the running time is 

O(n^2*s^2*i) in the worst case where n is number of variables, s is number of states per 

variable, and i is number of iterations required (which is usually a function of n, e.g. log(n) or 

sqrt(n)). Here there are various parallelization strategies depending on values of s and n for 

any given problem. We will provide two parallel versions: embarrassingly parallel for when s 

and n are relatively modest, and parallelizing each iteration of the same problem for the 

common situation when s and n are quite large so that each iteration takes a long time 

relative to the number of iterations required. 

• Markov Chain Monte Carlo (MCMC) for approximately computing marginal distributions 

and sampling over MRF variables. Similar to LBP with the same two parallelization 

strategies.  

The first – Manxcat – is complete as a library member but needs SPIDAL Java optimization and 

other packaging such as improved interface. The other four exist in application code but need to be 

abstracted as general library members with software engineering and performance work. 

4.9. SPIDAL Algorithms – Polar Remote Sensing Algorithms 

Motivation: This extends earlier successful work on 2D image processing to a 3D formulation that 

demonstrates how linking multiple images together will produce more reliable results from 

constraint of smoothness between images. This motivates some of our SPIDAL optimization 

algorithms. 

We are investigating radar informatics and image processing to reconstruct 3D ice structure in 

polar regions using novel analysis and processing of data from CReSIS radar systems. As it flies 

along a flight path, the CReSIS radar data processing outputs a sequence of tomographic cross 

sections or “slices” that characterize the returned radar signals at different orientations with 

respect to the vehicle (Figure 4-13) [62]. These slices are 2D images, in polar coordinates, where 

each pixel represents the energy return at the corresponding angle (with respect to the radar 

device) and radius (termed range in radar nomenclature). However, these ranges and angles are 

inferred by complex radar array processing, and can be noisy and imprecise when the desired 

target signal is weak relative to the noise from electronics and interfering scatterers. We have been 

developing optimization algorithms that integrate this noisy evidence with known constraints, like 

smoothness of the ice structure, in order to produce more accurate tomographic slices and in turn 

more accurate 3D reconstructions. 
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In particular, we pose the problem of estimating true tomographic slices from noisy ones as a 

Markov Random Field model. We applied similar MRF models in our earlier work on finding ice layer 

boundaries in 2D radar echograms [63, 64]. We use Loopy Belief Propagation (LBP) and Markov 

Chain Monte Carlo [65] to perform inference on these models. Although both MCMC and LBP are 

approximate inference algorithms (since exact inference is NP-hard), they have proven to be 

successful in a wide range of vision problems, and we find that they also work well for ours.  

We have been testing the algorithm using a simulator created by CReSIS that lets us take a 

ground-truth 3D bed structure, create synthetic tomographic images corresponding to that 

structure with user-controllable noise parameters, and then run our algorithm to compare the 

output to ground truth. We also compare to the initial simpler algorithm that CReSIS had 

developed [62], which was based on a simple interpolation of the array processor. The array 

processor uses a local optimization (single pixel)  based on the maximum likelihood estimator. 

Figure 4-14 shows sample results. 

 

Figure 4-13: At each position along the flight track, the radar gives a cross-section view, parameterized by angle 

and range, of the ice structure, which yields a set of 2D tomographic slices (right) along the flight path. 
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As part of this effort, we are also investigating novel probabilistic techniques for understanding the 

along-path cross sections of the radar signals. Figure 4-15 (left) shows an example of a cross 

section generated by the radar processing, where the yellow line in the middle corresponds to the 

bedrock signal that we would like to infer, but is weak and incomplete. As in this example, these 

signals are noisy, with many other confusing lines with similar structure. Fortunately, external 

information (like known prior properties of ice sheets and evidence from previous and subsequent 

cross sections) can be used to resolve these difficulties. We pose the problem again in terms of 

inference on a probabilistic graphical model and again apply techniques based on belief 

propagation and MCMC. Figure 4-15 shows sample results. 

 

 

Figure 4-14: Two sample results (one per row) for reconstructing bedrock in 3D, each showing (left) ground 

truth, (center) prior algorithm based on a simple interpolation of maximum likelihood estimators, and (right) 

our technique based on a Markov Random Field formulation. Each image represents a 3D depth map, along 

with track and cross track dimensions on the x-axis and y-axis respectively, and depth coded as colors. Note 

that the new algorithm at right more cleanly and faithfully reconstructs the ground truth at left. 
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4.10. SPIDAL Algorithms – Nuclei Segmentation for Pathology Images 

Motivation:  High-throughput digital scanning 

technologies, illustrated in Figure 4-16, have 

turned pathology image data into an emerging 

imaging modality to facilitate basic scientific 

research and diagnosis at cellular level by 

clinicians and biomedical researchers. With 

quantitative analysis of pathology imaging 

data, clinicians and researchers are able to 

explore the morphological and functional 

characteristics of biological systems as well as 

gain insight on the underlying mechanisms of 

normal tissue development and pathological 

evolutions of distinct diseases. Quantitative 

analyses of pathology images include 

segmentation of micro-anatomic objects such as nuclei and extraction of image features such as 

area, perimeter, and eccentricity [66].  Recently, 3D digital pathology was made possible through 

slicing tissues into serial sections. By registering consecutive slices, segmenting and 

reconstructing 3D micro-anatomic objects, it is possible to provide a 3D tissue view to explore 

spatial relationships and patterns among micro-anatomic objects to support biomedical research 

[67, 68]. For example, liver disease diagnosis and analytics rely on 3D structural features of blood 

Figure 4-15: Sample visualization of cross section from CRESIS radar, (left) before our analysis and (right) after 

localization of the bedrock layer. The x-axis corresponds to the cross track dimension and the y-axis corresponds 

to reflectance time (which approximately correlates with depth).  

 

2D WSI Slides 3D WSI Volume 3D Vessel Structure

Glass Slices Digital Scan WSI

Figure 4-16: 2D and 3D pathology image analysis 
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vessels and their 3D spatial relationships with cells [69]. The information-loss-less 3D tissue view 

with microscopy imaging volumes holds significant potential to enhance the study of both normal 

and diseased processes, and represents a new frontend for digital pathology [70]. 

There are major research challenges to detect and quantify spatial clusters at extreme scale due to 

the explosion of spatial data at micro-anatomic level and patient level. First, we will need to develop 

or adapt spatial clustering methods that can support detection of spatial clusters of complex 

shapes such as pseudopalisades. Second, we will need to make existing spatial clustering methods 

highly scalable for spatial big data. Stony Brook University will collaborate with Indiana University 

on developing scalable spatial clustering methods to support biomedical informatics problems 

driven by pathology imaging and GIS oriented public health studies. 
 

2D pathology image analysis: We have developed a 

novel and robust segmentation method for 2D cells in 

histopathologic images [71]. It consists of a new seed 

detection algorithm and a newly designed cell contour 

deformation method based on a sparse shape prior 

guided variational level set framework. The cell seed 

detection algorithm draws joint information of spatial 

connectivity, distance constraint, image edge map, 

and a shape-based voting result derived from 

eigenvalue analysis of Hessian matrix across multiple 

scales. Thus, it produces robust and accurate seed 

detection results, especially for overlapped or 

occluded cells. With cell contours initialized from 

these seeds, we deform them within a variational level 

set framework where we aim to minimize a new energy 

functional that incorporates a shape term in a sparse 

shape prior representation, an adaptive contour 

occlusion penalty term, and a boundary term encouraging contours to converge to strong edges. 

As a result, this approach is able to accommodate mutual occlusions and detect contours of 

multiple intersected objects simultaneously. This work will be useful for investigations on the 

influence of hypoxia and transcription factor expression on the orientation of tumor cells to assess 

their direction of migration. To support scalable pathology image analysis, we develop a 

MapReduce based framework to parallelize the image analysis pipelines, which includes multiple 

steps: tiling of whole slide images, segmentation of objects for each title, boundary normalization 

Figure 4-17: MapReduce-based pipeline for 

nuclei segmentation 
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for boundary-crossing objects, and aggregation of final spatial objects such as nuclei. A workflow is 

shown in Figure 4-17.    

3D pathology image analysis: Additionally, we have made substantial progress on quantitative 

reconstruction of 3D blood vessel structures with microscopy images of serial tissue sections [68, 

70]. This work will be particularly useful for investigations of the spatial configurations and 

signaling networks of tumor cells for creating a pro-angiogenic environment. Specifically, we have 

developed a fully automated framework for 3D vessel reconstruction with a set of histological 

whole-slide images of sequential tissue sections. We have managed to segment cells, vessels, and 

lumens with a morphology reconstruction segmentation method applied to image channels 

associated with different stains (i.e. Haematoxylin and DAB) decomposed with the color 

deconvolution technique. All slides in the same series are registered with rigid registration at low 

resolution and non-rigid registration on small image patches with a cubic B-Spline transform. We 

associated the segmented vessel objects across all slides by local bi-slide vessel mapping and 

global vessel structure association. Bi-slide vessel mapping generates sub-vessel structures 

between adjacent slides with pre-defined one-to-one, one-to-two, one-to-none and none-to-one 

association cases. In the global association, a Bayesian Maximum a Posteriori (MAP) framework 

was adopted to recover the global vessel structures across all images with the posterior probability 

modeled as a Markov chain. To group vessel cross-sections from different slices, we have used the 

motion and shape information with Kanade-Lucas-Tomasi Feature Tracker, morphology features, 

and distribution of Hausdorf distances. For better visualization, we uniformly sample vessel 

boundary points based on arc length from each 2D slice and interpolate vessel boundaries 

between the given slices. The isosurface of the analyzed vessel data volume is computed and 

rendered to show the 3-D structure. The proposed 3D vessel analysis framework is generic and can 

be readily applied to the analytics of other 3D biological entities of common interest in other 

biomedical investigations. 
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4.11. SPIDAL Algorithms – Spatial Querying Methods 

Motivation: Over recent years the proliferation of mobile phones, Internet of Things projects and 

ubiquitous sensory measurement 

technologies have contributed to 

generating multidimensional spatial data 

at an unprecedented scale and rate. 

Furthermore, collaborative spatial data 

collection projects, such as 

OpenStreetMap, have sped up the 

process by many folds. Spatial data 

collection, storage, querying and 

analysis have become increasingly 

important for scientific and business as 

well as daily user applications. Analysis 

of this plethora of spatial data involves 

complex queries such as spatial joins or 

spatial cross-matching, overlay of 

multiple sets of spatial objects, spatial proximity computations between objects, and queries for 

global spatial pattern discovery. In addition, support of high performance spatial queries on large 

volumes of 3D spatial data is becoming increasingly relevant in various emerging scientific 

applications, which are growing more data- and compute-intensive. In particular, 3D analytical 

pathology imaging provides high potential to support image-based computer aided diagnosis, and 

quantitative analysis of large-scale 3D pathology image volumes generates tremendous amounts 

of spatially derived 3D micro-anatomic objects, such as 3D blood vessels and nuclei.  Spatial 

exploration, shown in Figure 4-18, of such massive 3D spatial data requires effective and efficient 

querying methods. However, there are major challenges to support spatial queries: the “Big Data” 

challenge due to explosion of spatial data, the complex spatial object representation, and the high 

geometric computation complexity. 

SparkGIS: We have developed a Spark-based spatial querying method, which ports spatial 

querying libraries in Hadoop-GIS to run on Apache Spark framework [72]. SparkGIS removes HDFS 

dependency and supports multiple types of data storage, such as MongoDB, HDFS, and local file 

systems. By taking advantage of in-memory computing, SparkGIS significantly reduces I/O cost 

and boosts query performance. SparkGIS also supports streamed data processing, and can 

process data without waiting for all the data to be ready. SparkGIS supports common spatial 

queries, including spatial joins, containment queries, and nearest neighbor queries. SparkGIS also 

WINDOWCONTAINMENTPOINT

NEAREST NEIGHBORSPATIAL JOIN DENSITY

Figure 4-18: Example spatial queries for  

digital pathology imaging 



 

 57 

supports plugins into the querying pipelines; for example, computing statistics on top of querying 

results, and having them integrated into a single job. SparkGIS has been tested and deployed to 

support evaluation of segmentation results for large-scale pathology image analysis.  

Hadoop-GIS 3D:  We have 

developed a scalable and 

efficient 3D spatial query 

system for querying massive 

3D spatial data based on 

MapReduce [70] shown in 

Figure 4-19. Our system 

supports multiple types of 

spatial queries on 

MapReduce through 3D 

spatial data partitioning, a 

customizable 3D spatial 

query engine, and implicit 

parallel spatial query 

execution. The system 

utilizes multi-level spatial indexing to achieve efficient query processing, including global partition 

indexing for data retrieval and on-demand local spatial indexing for spatial query processing. Our 

prototype system supports two typical queries: 3D spatial joins and 3D K-nearest neighbor 

queries. Our experiments demonstrate the high efficiency and scalability of the system to support 

3D spatial queries on 3D micro-anatomic objects for analytical pathology imaging on MapReduce. 
  

HDFS

3D Global Spatial Indexing

3D Spatial Query Processing

3D Spatial Query Engine

3D Cuboid 
Spatial Indexing

3D Spatial 
Queries

3D Data Partitioning

3D Input Data

Hadoop

Figure 4-19: Architecture Overview of Hadoop-GIS 3D 
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	 Applications

5.3.	 Enabled Applications –  
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5.4.	 Enabled Applications –  
	 Public Health

5.5.	 Enabled Applications –  
	 Biomolecular Simulation  
	 Data Analysis

5.1.	 Summary

As explained in the introduction, our project 

uses applications to motivate and test the 

proposed building blocks. These applications 

are described in this section and earlier in 

Section 4 where application and algorithm 

were intertwined. There are also applications 

not funded by the project that are helpful for 

the building blocks.

The project applications involve multiple 

examples of image-based data, a general 

point  described in Section 5.2.  These are 

seen in remote sensing (KU) application of 

Section 4.9 and the digital pathology (SB) 

case in Section 5.3. There are interesting 

synergies between geospatial information  

GIS problems and the large 2D and 3D  

images seen in pathology and this is 

explained in public health (SB) application 

in Section 5.4. The last subsection 5.5 in this 

section describes the analysis of biomolecular 

simulations (Utah, ASU, Rutgers). Section 

4 describes graph algorithms identified by 

Virginia Tech from their study of networks 

and the CINET infrastructure [73, 74] which 

is a resource we will use to disseminate 

SPIDAL. IU and Rutgers have substantial 

work on streaming applications discussed in 

Section 7.3. Recently early HPC-ABDS work 

at IU helped the online Twitter streaming data 

repository Osome go live [75, 76]. Other IU 

applications driving SPIDAL and MIDAS are 

bioinformatics, financial informatics  

and robotics.
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5.2. Overview of Imaging Applications  

We motivate and test our building blocks through multiple applications of image processing and 

computer vision. Although these applications are from very different areas, they share many of the 

same core algorithms, allowing them to readily apply the same set of basic building blocks 

described above. In particular: 

Radar informatics. Our collaboration with CReSIS is developing algorithms for automated and 

semi-automated analysis of large-scale data produced by radar sensing of the Earth’s polar 

regions, as we described in section 4.8. Although these radar datasets are not images per se, they 

are 2D and 3D data that can be readily visualized and represented as images (e.g. radar 

echograms), which let us apply the same basic building blocks as with traditional visual-spectrum 

image processing. For example, finding layers of ice in these echograms is an image segmentation 

problem [77], which in turn can be formulated in terms of an energy minimization problem that 

tries to fit simple models to the data [63, 64]. This energy minimization problem can be solved 

using the various optimization algorithms described above, including the Viterbi algorithm, Loopy 

Belief Propagation, and gradient descent. 

Online social images. Computer vision is a very active research area, with most current research 

focused on extracting semantic information from consumer-style images, like those uploaded to 

photo sharing sites like Flickr and Facebook. Nearly all work in this area uses machine learning to 

automatically train classifiers for various tasks of interest to consumers such as face detection 

[78], image captioning [79], scene recognition [80], etc. For instance, Support Vector Machines 

[81] and Convolutional Neural Networks [82] are among the most popular learning techniques, and 

both are formulated in terms of energy minimization problems for which our optimization 

algorithms may potentially be applied. After models are trained, the main computation challenge 

with these datasets is their enormous quantity, typically millions to billions of images. However, the 

images can be processed independently, thus taking advantage of the pleasingly parallel versions 

of our building block implementations. 

Pathology and remote sensing. In contrast to social images, pathology and remote sensing 

images may be relatively few in quantity but enormous in size. For example, each pathology image 

could have 10 billion pixels, and we may extract a million spatial objects and 100 million features 

(dozens to 100 features per object) per image. We often tile the image into 4K x 4K tiles for 

processing. While the tasks involved in processing these images are similar to social images (e.g. 

segmentation, recognition, etc.), the huge image size requires developing buffering-based tiling to 
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handle boundary-crossing objects. For each typical research study, we may have hundreds to 

thousands of pathology images.  

5.3. Enabled Applications – Digital Pathology 

Overview: Digital pathology images scanned from human tissue specimens provide rich 

information about morphological and functional characteristics of biological systems. Pathology 

image analysis has high potential to provide diagnostic assistance, identify therapeutic targets, 

and predict patient outcomes and therapeutic responses.  It relies on both pathology image 

analysis algorithms to extract spatial information from images and spatial querying methods to 

explore spatial relationships or spatial patterns for micro-anatomic objects. Digital pathology 

includes both 2D pathology imaging and 3D pathology imaging.  

2D Digital pathology: 2D digital pathology images are generated through scanning human tissue 

specimens with high resolution microscope scanners. Examination of high resolution whole slide 

images enables more effective diagnosis, prognosis and prediction of cancer and other complex 

diseases. Analytical pathology imaging provides quantitative methods to derive tremendous 

amounts of spatial data about micro-anatomic objects [66]. Indeed, 2D pathology image analysis 

has been extensively used to support biomedical research for various diseases [66, 83], which 

produces 2D geometric objects representing cells, nuclei, and blood vessels, among other things.  

3D Digital Pathology: 3D digital pathology works through slicing tissues into serial sections. By 

registering consecutive slices, segmenting and reconstructing 3D micro-anatomic objects, it is 

possible to provide a 3D tissue view to explore spatial relationships and patterns among micro-

anatomic objects to support biomedical research [67, 68]. For example, liver disease diagnosis and 

analytics rely on 3D structural features of blood vessels and their 3D spatial relationships with cells 

[69]. The information-lossless 3D tissue view with microscopy imaging volumes holds significant 

potential in terms of studying processes for both healthy and ill samples, and represents a new 

frontend for digital pathology [70]. 

Quantitative analysis of 2D digital pathology images relies on image segmentation and feature 

extraction for 2D images. 2D analysis involves image registration, 2D segmentation, 3D object 

association, 3D object interpolation, and 3D object representation and visualization. Once spatial 

data is derived, spatial methods will be applied for spatial data exploration. Image analysis 

methods such as nuclei segmentation and spatial querying methods such as spatial joins could be 

parallelized through MapReduce or Spark. 
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5.4. Enabled Applications – Public Health 

Overview: GIS-oriented public health research has a strong focus on the locations of patients and 

the agents of disease, and studies the spatial patterns and variations. 

Integrating multiple spatial Big Data sources at fine spatial resolutions allows public health 

researchers and health officials to adequately identify, analyze, and monitor health problems at the 

community level. This will rely on high performance spatial querying methods on data integration 

of multiple spatial data sources. 

Integrative Spatial Big Data 

Analytics for Public Health: GIS 

oriented public health research, 

illustrated in Figure 5-1, has a strong 

focus on the locations of patients and 

the agents of disease, and studies the 

community and region level patterns 

and variations, as well as the impact 

of demographical, socio-economical, 

and environmental factors on 

diseases and human health. In the 

past, due to limited accessibility of 

health outcome data, public health 

studies often were limited at macro-

scale levels such as county level, and may not allow public health researchers and health officials 

to adequately identify, analyze, and monitor health problems at the community level. In this 

research [84], we take advantage of New York State SPARCS open dataset, which collects patient 

level detail on patient characteristics, diagnoses and treatments, services, and charges for each 

hospital inpatient stay and outpatient treatment. Such data also provides street level location 

information for each patient and healthcare facility site. Through geocoding and geo-mapping, we 

provide spatial-oriented data analysis on New York state health records at the community level. We 

study geospatial distributions of diseases in New York State at multiple spatial resolutions, and 

provide multi-dimensional analysis by grouping patients into different groups. We discover 

potential spatial clusters, hot spots or anomalies of disease distributions. We will also study 

potential correlations between socio-economic determinants and diseases by integrating 

additional spatial datasets, including socio-economic data and environment data (air quality 

Locations and Maps

Our NeighborhoodPatients

Our Environments

Figure 5-1: Spatial Big Data Analysis for Public Health 
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indices, pollen counts). Such large-scale spatial oriented analytics will rely on scalable spatial 

querying and analytics methods on a grand scale. 

Spatial data exploration includes density-based spatial patterns such as spatial clusters, hotspots, 

and anomalies. In digital pathology, we will need to detect and quantify regions that are significant 

and different from others with high scores according to density measures and statistical testing of 

spatial objects. For example, for brain tumors studies, pseudopalisades appear as ring-enhancing 

lesions where the rings have much higher concentration of cells than adjacent regions. For public 

health studies, we use patient location to discover spatial clusters of diseases and potential 

determinants associated with such clusters to monitor health problems at the community level.  

There are major research challenges to support such spatial clustering at extreme scale due to the 

explosion of spatial data at microanatomic level and patient level. First, we will need to develop or 

adapt spatial clustering methods that can support detection of spatial clusters of complex shapes 

such as pseudopalisades. Second, we will need to make existing spatial clustering methods highly 

scalable for spatial Big Data. Stony Brook University will collaborate with Indiana University on 

developing scalable spatial clustering methods to support biomedical informatics problems driven 

by pathology imaging and GIS-oriented public health studies. 

5.5. Enabled Applications - Biomolecular Simulation Data Analysis 

Overview of Biomolecular Simulation Data Analysis 

Molecular dynamics (MD) simulations have become an important computational tool to study 

biomolecular systems [85-87], in particular membrane proteins and membrane system [88-91]. 

Analysis of molecular dynamics (MD) trajectories is becoming more and more challenging, with 

simulation times routinely exceeding microseconds (with millions of frames) and increasing in size 

(with millions of particles). The increase in data volume is driven by (1) improvements in hardware 

(such as HPC systems with tens of thousands of cores and GPU accelerators) and algorithms [92-

95], (2) use of multi-copy enhanced sampling methods [94, 96-99], and (3) new efficient 

representations of the physical interactions such as coarse-grained models, which allows 

simulation of larger systems and at longer time steps [100, 101]. Here we explore a number of 

challenging analysis tasks with the goal to establish a better understanding for the underlying 

problem classes and with a view towards prototyping SPIDAL-based algorithms. 
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Hausdorff Calculation for Path Similarity Analysis 

Path Similarity Analysis (PSA) was 

introduced by Seyler et al. [102] in order 

to quantify the similarity between two 

arbitrary MD trajectories (which are 

considered geometrically as paths in 

the high-dimensional configuration 

space) and extract the atomic-scale 

determinants responsible for their 

differences. Given two trajectories with 

M1 and M2 frames, PSA uses the 

Hausdorff metric δij [103] to compute a 

distance between two paths. The 

Hausdorff metric in turn requires the 

calculation of a distance dij between all 

frames 1 ≤ i ≤ M1 and 1 ≤ j ≤ M2. The 

distance function is typically a metric 

such as the Euclidean metric in the 3N-dimensional configuration space, where N is the number of 

atoms. In typical applications, N is on the order of 103 to 104, and M1 and M2 can be anywhere 

between 102 and 107. Furthermore, PSA is typically applied to an ensemble of trajectories, often 

containing hundreds of trajectories (n > 100). The output of PSA is a matrix of Hausdorff distances 

between all trajectories. By clustering the distance matrix, similar relationships between 

trajectories can be revealed [102]. 

At its core, the Hausdorff distance calculation for an ensemble of trajectories is an all-pairs 

problem. We implemented the PSA algorithm (done in MDAnalysis [102, 104]) into the RADICAL-

Pilot framework by utilizing the “all pairs” execution pattern provided by Ensemble Toolkit [105]. 

The RADICAL-Pilot framework’s implementation of the PSA algorithm calculates the distances in 

smaller independent segments. Each segment of calculations is executed as a single task. By 

employing the task level parallelism capabilities of the RADICAL-Pilot framework the PSA 

algorithm can be executed in an efficient and scalable manner. Benchmarks with three different 

trajectory sizes are shown in figure 5-2. 

The next step is to implement the Hausdorff distance algorithm with Yarn/Spark and understand 

the benefits of the in-memory execution that Spark provides. We will continue with the integration 

of the different PSA metrics provided by MDAnalysis. Generally, applications that have similar 

Figure 5-2: Time to Completion of a Short, Medium and Large 

trajectory PSA Analysis on XSEDE Stampede. As Benchmark  

is the time to completion by the PSA algorithm  

implementation in MDAnalysis. 
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properties partially or in total with the all-pairs problem can benefit from the RADICAL-Pilot 

framework approach. 

Topological analysis of lipid membranes 

Biological membranes are lipid bilayers with distinct inner and outer surfaces that are formed by 

lipid monolayers (“leaflets”). Movement of lipids between leaflets or changes in the membrane 

topology such as the merging of leaflets during a fusion event between two cells or vesicles is 

difficult to detect in simulations [106]. Understanding the underlying physics is important for 

biological transport processes in the synapses [107] and the Golgi apparatus [108, 109] but might 

also be of interest for the development of drug delivery vehicles [110]. 

The LeafletFinder algorithm in 

MDAnalysis[104] is a graph-based 

algorithm that assigns individual lipids 

to topologically distinct leaflets. In 

short, the algorithm proceeds in two 

steps. In the first step, a nearest 

neighbor problem has to be solved in 

order to find lipid headgroups within a 

given cutoff. From the resulting 

adjacency matrix, a graph is 

constructed. In a second step, the 

largest connected subgraphs in the 

graph are found and sorted by size. 

With an appropriately chosen cutoff, 

each subgraph corresponds to a 

topologically distinct leaflet. The current implementation of LeafletFinder is slow for medium sized 

systems (> 1000 lipids). It is also an interesting test case because of two distinct algorithmic 

steps, which are likely to exhibit different scaling and optimization requirements. There are two 

different implementations of LeafletFinder in the RADICAL-Pilot framework. The first 

implementation utilized task level parallelism. The adjacency matrix is calculated using the “all-

pairs” pattern by a fixed number of independent tasks concurrently. The second step of the 

algorithm is executed as a single task after the adjacency matrix is calculated. The second 

implementation used Pilot-Spark. 

Both implementations, the task level parallel and Spark, were tested over a large system (with 

more than 100000 lipids). The results obtained in Figure 5-3 show that the execution of the 

Figure 5-3: Time to completion of LeafletFinder algorithm with 

RADICAL-Pilot and RADICAL-Pilot Spark on Comet for a  

system of 145000 atoms. 
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specific algorithm could scale and finish quite quickly. Interestingly, the Spark implementation was 

not faster than the vanilla, strengthening the opinion that the two algorithmic steps will have 

different optimization requirements. The test was executed on XSEDE Comet utilizing up to 384 

cores (up to 16 nodes). Currently, we are investigating what type of optimizations are possible to 

do in the Spark implementation of the algorithm and what type of processing is needed in each 

step of the algorithm. 

 

 

CPPTRAJ Amber Data Analysis 

CPPTRAJ is the main program in the Amber molecular dynamics software package for processing 

and analyzing various data output from MD simulations. We have recently made several additions 

to the code which have greatly improved both the speed and the utility of CPPTRAJ. 

Due to massive increases in processor power and the widespread use of enhanced sampling 

methods that generate ensembles of trajectories, it is now commonplace for tens to hundreds of 

GB of MD data to be generated in a single run. Analysis tools must be able to keep up with this 

deluge of data. For the past few years, CPPTRAJ has had the ability to handle large amounts of 

data via two levels of parallelism: processing of ensembles of trajectories with MPI, where each 

thread is responsible for processing a single trajectory in the ensemble (across-ensemble 

parallelism), and OpenMP-parallelization of time-consuming calculations. CPPTRAJ now has a 

third level of parallelism in which trajectory reads/writes can also be divided among MPI threads 

(across-trajectory parallelism). In addition, all three levels of parallelism can be active at the same 

time (hybrid MPI/OpenMP). For example, say you have a small high-performance computing 

cluster with 16 available nodes, and each node has 16 cores. Given an 8-trajectory ensemble, 

CPPTRAJ could make use of all available resources; the processing of each ensemble trajectory 

could be divided among 2 nodes each, and calculations on each frame of the trajectories could 

Figure 5-4: CPPTRAJ Levels of Parallelism 
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utilize all 16 cores of each node. These enhancements allow us to better utilize resources of HPC 

clusters, as well as process extremely large data ets in a much shorter amount of time. In addition, 

the scaling of across-trajectory parallelism is quite good since no communication is required 

between threads during processing. We are also working with the Jha lab to enable use of the 

Radical Pilot framework for asynchronous data processing in addition to investigating the use of 

the Hadoop-like capabilities and SPIDAL tools. 

CPPTraj’s levels of parallelism, as 

mentioned above, are depicted in figure 

5-4. CPPTraj offers a balanced across-

trajectory division to the MPI threads. 

Employing the task level parallelism 

offered by RADICAL-Pilot, we can 

achieve a more elaborate data 

partitioning. We are investigating the 

scenario (figure 5-5) where the data are 

partitioned and each partition is now 

executed through a Compute Unit. The 

Compute Unit can be a CPPTraj executable that may or may not use the levels of parallelism 

already provided. Based on experimental results, over different types and sizes of data, we will be 

able to create a heuristic which will allow us to decide which method of analysis is better for a given 

dataset. 

We have also been improving the speed of very time-consuming calculations via GPU acceleration. 

The 'closest' action, which retains a specific number of solvent molecules around a specified region 

of solute, typically requires a large amount of distance calculations. By offloading the distance 

calculations to the GPU (using CUDA), we have been able to obtain several orders of magnitude 

speedup over the single threaded code, and an order of magnitude speedup over the OpenMP 

code. In addition, the CUDA code can be used with MPI trajectory parallelization for even greater 

overall speedup. 

We are looking to the future of MD data not just in terms of increasing trajectory sizes, but 

increasing system sizes as well. Typical system sizes are now tens of thousands of atoms, and it is 

not uncommon to see systems of hundreds of thousands of atoms or more. Recent improvements 

to topology file parsing and internal handling of topology data in CPPTRAJ have allowed us to 

successfully process a chromatin fiber system consisting of over 11.5 million atoms. 

Figure 5-5: RADICAL-Pilot CPPTraj  

Analysis scenario 
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Finally, there have been some improvements made to the clustering code in CPPTRAJ as well 

(GitHub version). Users now have the option to prevent storing the pairwise cache in memory and 

instead calculate pairwise distances on the fly. While this option is slower, it does greatly increase 

the possible size of datasets that can be clustered. Users can also specify that the same pairwise 

distance matrix be used for several consecutive clustering instances. This means that pairwise 

distances only need to be calculated once, which can be quite useful for assessing clustering 

results using different input parameters (e.g. epsilon, number of clusters, etc.) in a more time-

efficient manner. 

Much of this code was released in April 2016 with Amber16 and the remaining code has been made 

available in the GitHub version. New features are described at [111]. 

  



6	 Community
	 Engagement

6.1.	 REU Programs

6.2.	 Making MIDAS and SPIDAL  
	 Available to Community

6.3.	 Working with Apache:  
	 Harp and Heron

6.1.	 REU Programs

We have obtained supplements and offered 

REU programs for the SPIDAL institutions in 

the first two years and intend to continue this 

[112].

6.2.	 Making MIDAS and SPIDAL  
	 Available to the Community

SPIDAL-MIDAS: We will employ a three 

step approach to make SPIDAL-MIDAS 

developments available to the community. 

These activities span community 

engagement, deployment and possible 

integration.

•	Engagement: BoF at SC’16 and SC’17 

and Workshop/tutorial at XSEDE’17 and 

XSEDE’18.

•	Deployment: Work with TACC, NCSA, 

SDSC, PSC to develop and deploy on 

XSEDE and Blue Waters resources.  

•	Integration: Work with other DIBBS and 

BIGDATA proposals, especially SDSC/

OSU led project “Scalable Middleware for 

Managing and Processing Big Data on 

Next Generation HPC Systems”  [113].
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Cloudmesh: We are expending efforts to make Cloudmesh more accessible to the community. 

Cloudmesh has been available  as an open-source project in Github [31] and pypi. In April 2016 it 

was downloaded 287 times. However, our biggest success is that Cloudmesh is now used and 

extended based on the needs of the NSF-sponsored Comet supercomputer. It also shows that 

Cloudmesh is uniquely positioned not only to support well-established cloud frameworks, but also 

allows the support of state-of-the-art academic virtual cluster efforts as brought forward by 

Comet. In addition, we are presenting a paper and a tutorial showcasing our efforts at XSEDE2016. 

All of the Cloudmesh software is available through open source. We include in [31] the list of 

relevant repositories hosted on Github or links to our software hosted elsewhere: 

SPIDAL Examples: Along with SPIDAL’s core algorithms comes a separate examples repository 

with code, data, and scripts to help a user get started quickly. These are available in [114]. The 

examples are designed to be able to deploy on a cluster or cloud VMs from scratch. Currently, 

these are based on Ubuntu – (16.04 or 14.04 preferred) – Linux systems. To test on other systems 

such as RHEL or CentOS, the scripts need to be slightly modified. 

6.3. Working with Apache: Harp and Heron 

The Apache Software Foundation (ASF) is a community-driven open source organization for 

hosting projects. To become a successful ASF member, it is important to build a vibrant 

community around your work. Most projects entering into Apache have previously been available 

as open source versions in places such as Github. Upon achieving a certain level of community 

support and publicity they can be introduced under the Apache umbrella for better visibility and a 

wider pool of contributors. This way when a project joins, it will have a substantial community and a 

process that it can use to build upon in the future. 

For the Harp initiative, the first goal is to make it open to the public through Github. Then after 

attracting sufficient interest from the development community of HPC and Big Data Ecosystems, it 

can be moved to Apache. Becoming a successful open source project requires strategic 

partnerships between interested parties. Also a more community-driven development 

methodology has to be introduced. This means discussing the architectural and design issues in 

public, lowering the entry requirements for new developers, and making it easier for users to adopt 

the Harp software. After entering ASF, Harp can follow the Apache Incubation process to become a 

top-level project or a sub-project under a larger effort like Hadoop, depending on the community 

requirements. 
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Twitter Heron is an open source distributed stream processing engine available in Github. It is in 

the early community building phase and will be introduced to Apache Software Foundation in the 

future. We are engaged with the Heron development team to enhance its capabilities to work 

seamlessly and efficiently in HPC environments. The improvements are directly going to the main 

development branch of Heron. 

  



7	 Futures

7.1.	 Integrating SPIDAL and MIDAS  
	 as Coherent Building Blocks

7.2.	 Orchestration and Workflow

7.3.	 Streaming

7.1.	 Integrating SPIDAL and MIDAS as 
	 Coherent Building Blocks

We have made significant progress in 

both the overall structure of this project: 

Convergence Diamonds and Ogres, HPC-

ABDS and the Architecture of Scalable Big 

Data Machine Learning Library. Further 

both MIDAS and SPIDAL have made good 

progress with several building blocks: SPIDAL 

Java, Harp, Pilot Jobs/Data and the over 20 

scalable library members reported in Section 

4. However, these building blocks do not 

exist in the form of a single integrated and 

coherent product. For example, there does 

not exist an integrated clean SPIDAL library 

or a MIDAS middleware which either an 

application developer or an XSEDE resource 

provider can download. There is a non-trivial 

effort in integrating the building blocks so 

as to create a library or middleware product, 

which will provide a capability that is greater 

than the simple sum of the blocks. Basic 

software engineering is required to integrate 

and package the building blocks. We have 

also gathered further usability requirements 

from users of Apache libraries that one needs 

carefully designed uniform programmatic and 

user interfaces. We are currently looking  

at approaches to this which could include 

using Apache ourselves as described in 

Section 6.3 but we need a pulse effort at the 

project level to push our software to  

the needed usability levels.
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7.2. Orchestration and Workflow 

We have been exploring Apache Beam linked to either Heron, Flink or Spark as a dataflow API. The 

universal data flow API provided by Beam can be translated to dataflow programs executed by 

Flink, Spark and Heron grant users the flexibility to quickly migrate the programs written using 

Beam API between different Big Data runtime environments. Furthermore the Beam API provides a 

Streaming and Batch API with the same constructs, making the switch between streaming and 

batch processing seamless. Beam is an open source version of Google Cloud Dataflow. This is level 

17 in HPC-ABDS. Orchestration is needed to link multiple SPIDAL and MIDAS components together 

and is essential in many applications.  

7.3. Streaming 

Motivation: The analysis of data streaming from online instruments, large-scale simulations, and 

distributed sensors now enables near real-time steering and control of complex systems such as 

scientific experiments, transportation systems, and urban environments. Bringing readily 

available, easy-to-program distributed streaming systems to HPC environments can help scientific 

discoveries in diverse application areas.  

We are examining both modern streaming technology and streaming applications to see how they 

could use and extend the SPIDAL and MIDAS framework. For example, by considering the 

architecture and potential of the Heron Distributed Stream Processing Framework (DSPF), we 

identified some areas where we can improve Heron to support HPC applications in the spirit of 

HPC-ABDS. 

From our experiences we see some immediate requirements from streaming applications, 

considering application areas of real time applications, parallel applications and large data 

applications. Here we summarize some of these requirements: 

Real time applications 

We explored this in a community workshop [115]. A real time application needs to process the data 

within a given QoS. The main requirements for these applications have to do with the scheduling of 

streaming tasks and communications among them. The areas of interest include [27, 116-119]: 

1. Use high performance interconnects (RDMA) for low latency high throughput data

processing
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2. Scheduling for guaranteed QoS 

3. Introduce efficient communication algorithms to further reduce the communication costs. 

These algorithms are especially relevant in collective communication operations 

4. Explore shared memory communications within nodes 

Parallel applications 

Some applications require parallel computations in order to reduce the processing time for a single 

stream of data. In fact, this is one approach to achieving real-time response when cloud computing 

tasks exceed the capacity of a sequential processor to complete in the required time interval. Such 

a parallel computation requires synchronization and special communication APIs for achieving 

best performance. As in deep learning, GPU processing may be needed.  

Large data processing applications 

There is a class of scientific streaming applications needing to process very large data. For 

example, these can be very large images in the range of Gigabytes. Support for such large data is 

challenging due to in-memory data processing adopted by the stream engines. We need 

mechanisms to process large files while keeping parts of the data in permanent storage. For 

different types of those applications described above, we can improve the data processing APIs of 

streaming engines and introduce application libraries and benchmarks. 

Data processing APIs 

Add support for scientific data types such as images occurring in astronomy and remote sensing. 

Explore integration with Apache Beam to support complete scientific workflows. The Java-based 

APIs in Heron are suitable for data processing applications but can face difficulties in scientific 

applications, especially when trying to integrate with already available libraries. The APIs can be 

implemented in C++ for fully integrating with HPC domain specific applications and libraries. 

Application libraries & Benchmarks 

Identify the common streaming applications for scientific communities and create libraries. A 

comprehensive set of benchmarks for streaming applications is useful for understanding the 

characteristics of streaming application performance. 
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