

Datanet: CIF21 DIBBs:
Middleware and High Performance
Analytics Libraries for Scalable
Data Science
NSF14-43054 Progress Report
August 2016

Indiana University (Fox, Qiu, Crandall, von Laszewski)

Rutgers (Jha)

Virginia Tech (Marathe)

Kansas (Paden)

Stony Brook (Wang)

Arizona State (Beckstein)

Utah (Cheatham)

Table of Contents

1. Introduction 4
1.1.	 Preamble	 4

1.2.	 Motivation	 5

1.3.	 Overview of Components of SPIDAL Dibbs	 6

2. Overall Architecture 8
2.1.	 NIST Big Data Application Analysis	 8

2.2.	 HPC-ABDS High Performance Computing and Apache Big Data Stack	 11

2.3.	 Big Data - Big Simulation (Exascale) Convergence	 12

2.4.	 HPC-ABDS Mapping of Project Activities	 13

3. MIDAS: Software Activities in DIBBS 14
3.1.	 Introduction	 14

3.2.	 	 15

3.3.	 Cloudmesh Interoperability IaaS and Paas Tool leveraging DevOps	 20

3.4.	 Pilot Jobs and Pilot Data Memory	 23

3.5.	 Architecture of Scalable Big Data Machine Learning Library	 26

3.6.	 Harp Programming Paradigm	 29

3.7.	 Integration of Harp and Intel DAAL Library	 32

4. SPIDAL Algorithms 34
4.1.	 Introduction	 35

4.2.	 SPIDAL Algorithms – Harp Latent Dirichlet Allocation	 37

4.3.	 SPIDAL Algorithms – Subgraph mining	 38

4.4.	 SPIDAL Algorithms – Random Graph Generation	 41

4.5.	 SPIDAL Algorithms – Triangle Counting	 43

4.6.	 SPIDAL Algorithms – Community Detection	 44

4.7.	 SPIDAL Algorithms – Core	 45

4.8.	 SPIDAL Algorithms – Optimization	 48

4.9.	 SPIDAL Algorithms – Polar Remote Sensing Algorithms	 50

4.10.	 SPIDAL Algorithms – Nuclei Segmentation for Pathology Images	 53

4.11.	 SPIDAL Algorithms – Spatial Querying Methods	 56

5. Applications 58
5.1.	 Summary	 58

5.2.	 Overview of Imaging Applications	 59

5.3.	 Enabled Applications – Digital Pathology	 60

5.4.	 Enabled Applications – Public Health	 61

5.5.	 Enabled Applications - Biomolecular Simulation Data Analysis	 62

6. Community Engagement 68
6.1.	 REU Programs	 68

6.2.	 Making MIDAS and SPIDAL Available to community	 68

6.3.	 Working with Apache: Harp and Heron	 69

7. Futures 71
7.1.	 Integrating SPIDAL and MIDAS as Coherent Building Blocks	 71

7.2.	 Orchestration and Workflow	 72

7.3.	 Streaming	 72

8. Team & Publications 74

9. References 78

1.1.	 Preamble

This is a 21-month progress report on an NSF-

funded project NSF14-43054 started October

1, 2014 and involving a collaboration between

university teams at Arizona, Emory, Indiana

(lead), Kansas, Rutgers, Virginia Tech, and

Utah. The project is constructing data building

blocks to address major cyberinfrastructure

challenges in seven different communities:

Biomolecular Simulations, Network and

Computational Social Science, Epidemiology,

Computer Vision, Spatial Geographical

Information Systems, Remote Sensing for

Polar Science, and Pathology Informatics.

The project has an overall architecture [5]

built around the twin concepts of HPC-ABDS

(High Performance Computing enhanced

Apache Big Data Stack) software [6-8] and a

classification of Big data applications – the

Ogres [9-11] – that defined the key qualities

exhibited by applications and required to be

supported in software. These underpinning

ideas are described in section 2 together

with recent extensions including a discussion

of Big Data – Big Simulation and HPC

convergence [12, 13].

1	 Introduction

1.1.	 Preamble

1.2	 Motivation

1.3	 Overview of Components of
	 SPIDAL Dibbs

 5

Our architecture for data intensive applications relies on Apache Big Data stack ABDS for the core

software building blocks where we add an interface layer MIDAS – the Middleware for Data-

Intensive Analytics and Science – described in Section 3, that will enable scalable applications with

the performance of HPC (High Performance Computing) and the rich functionality of the

commodity ABDS (Apache Big Data Stack). The next set of building blocks described in section 4

are members of a cross-cutting high-performance data-analysis library – SPIDAL (Scalable Parallel

Interoperable Data Analytics Library). SPIDAL consists of a set of core routines covering well

established functionality (such as optimization and clustering) together with targeted community

specific capabilities motivated by applications described in Section 5. Section 6 covers community

engagement and Section 7 has some important lessons learned as well as existing and future spin-

off activities.

The project has a webpage [14], an early Indiana University press release [15] and the public NSF

award announcement [16].

1.2. Motivation

Many scientific problems depend on the ability to analyze and compute on large amounts of data.

This analysis often does not scale well; its effectiveness is hampered by the increasing volume,

variety and rate of change (velocity) of Big Data. This project is aimed at designing, developing and

implementing building blocks that will enable a fundamental improvement in the ability to support

data-intensive analysis on a broad range of cyberinfrastructure, including that supported by NSF

for the scientific community.

The project will integrate features of traditional high-performance computing, such as scientific

libraries, communication and resource management middleware, with the rich set of capabilities

found in the commercial Big Data ecosystem. The latter includes many important software

systems such as Hadoop, Spark, Storm and Mesos, available from the Apache open source

community. We note that there are over 350 separate software modules in HPC-ABDS [7] and it is

certainly not realistic to study, use, and/or support this number in, for example, the national NSF

cyberinfrastructure. This project divides this software into broad categories and identifies a few

key or representative members whose performance is examined and enhanced by HPC.

We are inspired by the beneficial impact that scientific libraries such as PETSc, MPI and

ScaLAPACK have had for supercomputer simulations and hope that our building blocks MIDAS and

SPIDAL will have the same impact on data analytics. MIDAS will allow our libraries to be scalable

 6

and interoperable across a range of computing systems including clouds, clusters and

supercomputers.

1.3. Overview of Components of SPIDAL DIBBs

The implementation of this project requires significant coordinated activity in several areas that

are spelled out here and described in more detail in the later sections

• NIST Big Data Application Analysis [10, 11, 17, 18]– This identifies features of data

intensive applications that need to be supported in software and represented in

benchmarks. This analysis comes from the project (initiated as part of proposal planning)

and was recently extended to separately look at model and data components [13, 19].

(section 2.1)

• HPC-ABDS: Cloud-HPC interoperable software performance of HPC (High Performance

Computing) and the rich functionality of the commodity Apache Big Data Stack. [6, 7] It

is described in section 2.2.

o This is a reservoir of software subsystems – nearly all from outside the project and

coming from a mix of HPC and Big Data communities

o We added a categorization and an HPC enhancement approach

o HPC-ABDS combined with the NIST Big Data Application Analysis leads to Big Data

– Big Simulation – HPC Convergence [12, 13], described in section 2.3

• MIDAS: This is the integrating middleware that links HPC and ABDS: its different

components are described in section 3. It includes an architecture for Big Data analytics, a

cloud-HPC interoperable deployment tool, and other features,

• SPIDAL Java: Our goals imply a substantial emphasis on performance of MIDAS Inter- and

Intra-node. This is extended to include the techniques described in section 3.2, to achieve

high performance when coding in the popular data language Java.

• SPIDAL (Scalable Parallel Interoperable Data Analytics Library): This is described in

section 4 and provides scalable data analytics for:

o Domain specific data analytics libraries – mainly from project.

o Add Core Machine learning libraries – mainly from community.

• Benchmarks – This project adds to a community with Ogre characteristics and high

performance core kernels as discussed at WBDB2015 Benchmarking Workshop.

 7

• Implementations: We have a particular focus on NSF infrastructure, including XSEDE and

Blue Waters, as well as clouds with OpenStack and Docker using Cloudmesh (section 3.3)

for interoperability.

• Applications: Biomolecular Simulations, Network and Computational Social Science,

Epidemiology, Computer Vision, Spatial Geographical Information Systems, Remote

Sensing for Polar Science and Pathology Informatics. These are described in section 5 and

provide requirements and test grounds for our work. Separately funded work in

bioinformatics and computer vision also help in these regards.

2.1.	 NIST Big Data Application
	 Analysis

The Big Data Ogres build on a collection

of 51 big data uses gathered by the NIST

Public Working Group where 26 properties

were gathered for each application [20].

This information was combined with other

studies including the Berkeley dwarfs [21],

the NAS parallel benchmarks [22, 23] and the

Computational Giants of the NRC Massive

Data Analysis Report [24]. The Ogre analysis

led to a set of 50 features divided into four

views that could be used to categorize

and distinguish between applications.

The four views are Problem Architecture

(Macro pattern); Execution Features (Micro

patterns); Data Source and Style; and finally

the Processing View or runtime features. We

generalized [3] this approach to integrate Big

Data and Simulation applications into a single

classification that we called convergence

diamonds with the total facets growing to

64 in number and split between the same 4

views as shown in figure 2-1. These are used in

Section 2.3 and a mapping of facets into the

work of this project as given earlier[11].

2	 Overall
	 Architecture

2.1.	 NIST Big Data Application
	 Analysis

2.2.	 HPC-ABDS High Performance
	 Computing and Apache Big
	 Data Stack

2.3.	 Big Data - Big Simulation
	 (Exascale) Convergence

2.4.	 HPC-ABDS Mapping of Project
	 Activitie

 9

We can illustrate these facets by considering a few of special applicability to our project. The facets

in the Problem Architecture view include 5 very common ones describing synchronization

structure of a parallel job: Pleasingly Parallel (PA1), MapReduce (PA2), MapCollective (PA3) and

Map Point-to-Point (PA4) describe respectively the processing of a collection of independent

events; independent calculations (maps) followed by a final consolidation via MapReduce; parallel

machine learning dominated by scatter, gather, reduce and broadcast; simulations or graph

processing with many local linkages in points of studied system. The fifth important Problem

Architecture is Map Streaming (PA5) seen in recent approaches to processing real-time data [25].

We do not focus on pure shared memory architectures PA-6 although we do look carefully at

hybrid architectures with clusters of multicore nodes and find important performance differences

dependent on the node programming model (Section 3.2). Most of our code is SPMD (PA-7) and

BSP (PA-8).

Looking at the Execution View, we see in EV-M14 complexity of model (O(N2) for N points) seen in

the non-metric space models EV-M13 similar to what one gets with DNA sequences. EV-M11

describes iterative structures distinguishing Spark, Flink, and Harp from the original Hadoop. The

facet EV-M8 describes the communication structure, which is a focus of our research as much of

data analytics relies on collective communication. This is understood in principle but we find that

significant new work is needed compared to basic MPI releases. The model size EV-M4 and data

volume EV-D4 are important in describing the algorithm performance, since just like in simulation

problems, the grain size (number of model parameters held in the unit – thread or process – of

parallel computing) is a critical measure of performance.

In the Data view, we can highlight D-5 streaming covered in Section 7.1 where there has been much

recent progress; D-9 categorizes our Biomolecular simulation application with data produced by

an HPC simulation; and D-10 Geospatial Information Systems is covered by spatial algorithms in

Section 4.11. D-7 (provenance) is an example of an important feature that we are not covering. The

data storage and access (D-3 and D-4) is covered in Section 3.4. Internet of Things (D-8) is not a

focus of our project although our recent streaming work (Section 7.1) relates to this and our

addition of HPC to Apache Heron and Storm is an example of the value of HPC-ABDS to IoT.

The Processing View characterizes algorithms; for example, Graph P-M13 (sections 3.7, 4.2, 4.4)
and visualization P-M14 covered in section 4.5. P-M15 directly describes SPIDAL which is a library
of core analytics. This project covers many aspects of P-M4 to P-M11 as these characterize the
SPIDAL algorithms. We are of course NOT addressing P-M16 to P-M22 which are simulation
algorithms and not applicable to data analytics. Our work largely addresses Global Machine
Learning P-M3 although some of the simple image analytics are local machine learning P-M2 with
parallelism over images and not over the analytics. Many of our SPIDAL algorithms have linear

10

algebra at their core; one nice example is multi-dimensional scaling in Section 4.7(2) which is
based on matrix-matrix multiplication.

Figure 2-1: 64 Convergence Diamonds [12] in 4 views generalizing Ogres.

These convergence diamonds are particularly useful in classifying benchmarks. We are pursuing

this to design a “complete” (over the 64 facets) set of benchmarks which potentially will link

simulation and big data benchmark collections.

 11

2.2. HPC-ABDS High Performance Computing and Apache Big Data Stack

Figure 2-2: HPC-ABDS as compiled January 29, 2016 with layers given special consideration in

this project shown in green.

Kaleidoscope of (Apache) Big Data Stack (ABDS) and HPC Technologies
Cross-

Cutting
Functions

1) Message
and Data
Protocols:
Avro, Thrift,
Protobuf
2) Distributed
Coordination:
Google
Chubby,
Zookeeper,
Giraffe,
JGroups
3) Security &
Privacy:
InCommon,
Eduroam
OpenStack
Keystone,
LDAP, Sentry,
Sqrrl, OpenID,
SAML OAuth
4)
Monitoring:
Ambari,
Ganglia,
Nagios, Inca

17) Workflow-Orchestration: ODE, ActiveBPEL, Airavata, Pegasus, Kepler, Swift, Taverna, Triana,
Trident, BioKepler, Galaxy, IPython, Dryad, Naiad, Oozie, Tez, Google FlumeJava, Crunch, Cascading,
Scalding, e-Science Central, Azure Data Factory, Google Cloud Dataflow, NiFi (NSA), Jitterbit, Talend,
Pentaho, Apatar, Docker Compose, KeystoneML
16) Application and Analytics: Mahout , MLlib , MLbase, DataFu, R, pbdR, Bioconductor, ImageJ,
OpenCV, Scalapack, PetSc, PLASMA MAGMA, Azure Machine Learning, Google Prediction API &
Translation API, mlpy, scikit-learn, PyBrain, CompLearn, DAAL(Intel), Caffe, Torch, Theano, DL4j, H2O,
IBM Watson, Oracle PGX, GraphLab, GraphX, IBM System G, GraphBuilder(Intel), TinkerPop, Parasol,
Dream:Lab, Google Fusion Tables, CINET, NWB, Elasticsearch, Kibana, Logstash, Graylog, Splunk,
Tableau, D3.js, three.js, Potree, DC.js, TensorFlow, CNTK
15B) Application Hosting Frameworks: Google App Engine, AppScale, Red Hat OpenShift, Heroku,
Aerobatic, AWS Elastic Beanstalk, Azure, Cloud Foundry, Pivotal, IBM BlueMix, Ninefold, Jelastic,
Stackato, appfog, CloudBees, Engine Yard, CloudControl, dotCloud, Dokku, OSGi, HUBzero, OODT,
Agave, Atmosphere
15A) High level Programming: Kite, Hive, HCatalog, Tajo, Shark, Phoenix, Impala, MRQL, SAP HANA,
HadoopDB, PolyBase, Pivotal HD/Hawq, Presto, Google Dremel, Google BigQuery, Amazon Redshift,
Drill, Kyoto Cabinet, Pig, Sawzall, Google Cloud DataFlow, Summingbird, Lumberyard
14B) Streams: Storm, S4, Samza, Granules, Neptune, Google MillWheel, Amazon Kinesis, LinkedIn,
Twitter Heron, Databus, Facebook Puma/Ptail/Scribe/ODS, Azure Stream Analytics, Floe, Spark Streaming,
Flink Streaming, DataTurbine
14A) Basic Programming model and runtime, SPMD, MapReduce: Hadoop, Spark, Twister, MR-MPI,
Stratosphere (Apache Flink), Reef, Disco, Hama, Giraph, Pregel, Pegasus, Ligra, GraphChi, Galois, Medusa-
GPU, MapGraph, Totem
13) Inter process communication Collectives, point-to-point, publish-subscribe: MPI, HPX-5, Argo
BEAST HPX-5 BEAST PULSAR, Harp, Netty, ZeroMQ, ActiveMQ, RabbitMQ, NaradaBrokering, QPid,
Kafka, Kestrel, JMS, AMQP, Stomp, MQTT, Marionette Collective, Public Cloud: Amazon SNS, Lambda,
Google Pub Sub, Azure Queues, Event Hubs
12) In-memory databases/caches: Gora (general object from NoSQL), Memcached, Redis, LMDB (key
value), Hazelcast, Ehcache, Infinispan, VoltDB, H-Store
12) Object-relational mapping: Hibernate, OpenJPA, EclipseLink, DataNucleus, ODBC/JDBC
12) Extraction Tools: UIMA, Tika
11C) SQL(NewSQL): Oracle, DB2, SQL Server, SQLite, MySQL, PostgreSQL, CUBRID, Galera Cluster,
SciDB, Rasdaman, Apache Derby, Pivotal Greenplum, Google Cloud SQL, Azure SQL, Amazon RDS,
Google F1, IBM dashDB, N1QL, BlinkDB, Spark SQL
11B) NoSQL: Lucene, Solr, Solandra, Voldemort, Riak, ZHT, Berkeley DB, Kyoto/Tokyo Cabinet, Tycoon,
Tyrant, MongoDB, Espresso, CouchDB, Couchbase, IBM Cloudant, Pivotal Gemfire, HBase, Google
Bigtable, LevelDB, Megastore and Spanner, Accumulo, Cassandra, RYA, Sqrrl, Neo4J, graphdb, Yarcdata,
AllegroGraph, Blazegraph, Facebook Tao, Titan:db, Jena, Sesame
Public Cloud: Azure Table, Amazon Dynamo, Google DataStore
11A) File management: iRODS, NetCDF, CDF, HDF, OPeNDAP, FITS, RCFile, ORC, Parquet
10) Data Transport: BitTorrent, HTTP, FTP, SSH, Globus Online (GridFTP), Flume, Sqoop, Pivotal
GPLOAD/GPFDIST
9) Cluster Resource Management: Mesos, Yarn, Helix, Llama, Google Omega, Facebook Corona, Celery,
HTCondor, SGE, OpenPBS, Moab, Slurm, Torque, Globus Tools, Pilot Jobs
8) File systems: HDFS, Swift, Haystack, f4, Cinder, Ceph, FUSE, Gluster, Lustre, GPFS, GFFS
Public Cloud: Amazon S3, Azure Blob, Google Cloud Storage
7) Interoperability: Libvirt, Libcloud, JClouds, TOSCA, OCCI, CDMI, Whirr, Saga, Genesis
6) DevOps: Docker (Machine, Swarm), Puppet, Chef, Ansible, SaltStack, Boto, Cobbler, Xcat, Razor,
CloudMesh, Juju, Foreman, OpenStack Heat, Sahara, Rocks, Cisco Intelligent Automation for Cloud,
Ubuntu MaaS, Facebook Tupperware, AWS OpsWorks, OpenStack Ironic, Google Kubernetes, Buildstep,
Gitreceive, OpenTOSCA, Winery, CloudML, Blueprints, Terraform, DevOpSlang, Any2Api
5) IaaS Management from HPC to hypervisors: Xen, KVM, QEMU, Hyper-V, VirtualBox, OpenVZ,
LXC, Linux-Vserver, OpenStack, OpenNebula, Eucalyptus, Nimbus, CloudStack, CoreOS, rkt, VMware
ESXi, vSphere and vCloud, Amazon, Azure, Google and other public Clouds
Networking: Google Cloud DNS, Amazon Route 53

21 layers
Over 350
Software
Packages

January
29
2016

Green is
work of
NSF14-
43054

 12

Figure 2-2 collects together much existing relevant systems software coming from either HPC or

commodity ABDS sources. The software is broken up into 21 layers so systems are grouped by

functionality. The layers given especial attention in this project are colored green in Figure 2 and

discussed in Section 2.4. This software collection is termed HPC-ABDS (High Performance

Computing enhanced Apache Big Data Stack) as many critical core components of the commodity

stack (such as Spark and Hbase) come from open source projects while HPC is needed to bring

performance and other parallel computing capabilities [6]. Note that Apache is the largest but not

sole source of open source software; we believe that the Apache Foundation is a critical leader in

the Big Data open source software movement and use it to designate the full big data software

ecosystem. The figure also includes proprietary systems as they illustrate key capabilities and

often motivate open source equivalents. We built this picture for Big Data problems but it also

applies to big simulation with the caveat that we need to add more high level software at the library

level and more high level tools like Global Arrays.

The essential idea of our Big Data HPC convergence for software is to make use of ABDS software

where possible as it offers richness in functionality, a compelling open-source community

sustainability model and typically attractive user interfaces. ABDS has a good reputation for scale

but often does not give good performance. Our approach is to augment ABDS with HPC ideas

which we illustrated with Hadoop [25, 26], Storm [27] and the basic Java environment [28]. As

described in Section 2.3, we suggest using the resultant HPC-ABDS for both Big Cata and Big

Ximulation applications.

2.3. Big Data - Big Simulation (Exascale) Convergence

A key idea introduced in [12, 19] was to separate, for any application, the data and model

components which were merged together in the original Ogre analysis. In Big Data problems,

naturally the data size is large and this normally is the focus of work in that area. However, a model

is essential to interpret data and this is, of course, a concern of the rapid advances in machine

learning and our SPIDAL library realizes the model algorithms. Note the size of a model can be

much smaller than the data such as in algorithms like clustering and dimension reduction.

However, in applications like deep learning and topic modeling, the model can be huge. Parallelism

has to be considered carefully both for data and models [19] and this leads to a new convergence

programming paradigm. Turning to simulations where HPC has been most extensively explored,

we again find that the applications contain both data and model, but typically it is now the model

that is always large. For example, if one is solving particle dynamics or partial differential

equations, then the model is the large numerical representation, while the data can be relatively

small as in boundary conditions. On the other hand, there are examples like data assimilation for

 13

climate forecasting and data visualizations produced by simulations, where the data can be quite

large. Data is often static between iterations (unless streaming) while model parameters vary

between iterations.

We suggest that as long as one carefully compares apples with apples (e.g. Big Data model

component with simulation model component), one can find many points of similarity between Big

Data and simulations. This will yield methods to support both with a common architecture that is

separate in the handling of the different data and model components but NOT separated by the

application type: Big Data and Simulation.

2.4. HPC-ABDS Mapping of Project Activities

We can offer some insight into our project by mapping the work into the different levels of HPC-

ABDS in Figure 2. The layers correspond to those colored green in Figure 2.

• Level 17: Orchestration: Apache Beam (Google Cloud Dataflow) or Crunch integrated with

Cloudmesh on HPC cluster

• Level 16: Applications: Datamining for molecular dynamics, Image processing for remote

sensing and pathology, graphs, streaming, bioinformatics, social media, financial

informatics, text mining

• Level 16: Algorithms: Generic and custom for applications SPIDAL

• Level 14: Programming: Storm, Heron (from Twitter replaces Storm), Hadoop, Spark,

Flink. Improve Inter- and Intra-node performance

• Level 13: Communication: Enhanced Storm and Hadoop using HPC runtime technologies,

Harp

• Level 12: In-memory Database: Redis and Spark used in Pilot-Data Memory

• Level 11: Data management: Hbase and MongoDB integrated via use of Beam and other

Apache tools; enhance Hbase

• Level 9: Cluster Management: Integrate Pilot Jobs with Yarn, Mesos, Spark, Hadoop;

integrate Storm and Heron with Slurm

• Level 6: DevOps: Python Cloudmesh virtual Cluster Interoperability

3	 MIDAS:
	 Software

Activities in
	 DIBBS

3.1. Introduction

3.2. SPIDAL Language

3.3.	 Cloudmesh Interoperability
IaaS and Paas Tool leveraging

	 DevOps

3.4.	 Pilot Jobs and Pilot
Data Memory

3.5.	 Architecture of Scalable Big
Data Machine Learning Library

3.6.	 Harp Programming Paradigm

3.7.	 Integration of Harp
and Intel DAAL Library

3.1.	 Introduction

Recall from the introduction that MIDAS is

the software shim that links HPC and ABDS.

The initial algorithm work went ahead with

traditional technologies and as MIDAS

matures, it needs to be reworked with this

infrastructure. The following subsections

3.2 to 3.6 expand section 2.4 and cover the

different parts of MIDAS used in our research.

• Section 3.2: SPIDAL Language takes

another look at Java Grande[29], 15 years

after this was active, to examine how to

make Java codes run as fast as possible

with simple steps.

• Section 3.3: The DevOps tool

Cloudmesh provides interoperability

between HPC and Cloud (OpenStack,

AWS, Docker) platforms based on virtual

clusters with software defined systems

using Ansible or Chef.

• Section 3.4: Pilot Jobs integrate Slurm

with Yarn & Mesos (ABDS schedulers), and

support ABDS programming frameworks

(Hadoop MapReduce, Spark).

 15

• Section 3.4: Pilot Data Memory integrates ABDS in-memory stores from Redis and Spark

with HPC file systems

• Section 3.5: Model-centric Data Analytics Architecture provides a general approach to

data analytics supporting different model synchronization approaches and with typically

higher performance than parameter server approach

• Section 3.6: Communication and scientific data abstractions: Harp plug-in to Hadoop

outperforms ABDS programming layers. Optimize collectives above provided by MPI.

• Data Management: use Hbase, MongoDB with customization (pre-proposal work: no

recent activity)

• Workflow: Use Apache Crunch and Beam (Google Cloud Data flow) as they link to other

ABDS technologies (just prototyping at present and no results reported)

We are starting to integrate MIDAS components and move into algorithms of SPIDAL library.

3.2. SPIDAL Language

Motivation: SPIDAL Java was developed to support the high performance parallel

multidimensional scaling and clustering algorithms listed in Section 4.5 and implemented in Java.

These algorithms fall under the Map-Collective pattern, where independent computations are

followed by global collective communications over many iterations. The goal of SPIDAL Java is to

leverage HPC hardware in satisfying the demanding computation and communication needs of

these algorithms. The work includes coding strategies and communication routines and allows

Java to perform at a similar level to C++.

The nature of SPIDAL Java algorithms presents

several challenges in coming up with high

performance scalable and parallel

implementations. Modern HPC clusters with

multicore NUMA nodes provide a large number

of computing cores. Intel Haswell, for example,

supports up to 24 and 36 core counts per node.

The all MPI approach – 1 process per core on all

nodes – is a straightforward match in
Figure 3-1 MPI allgatherv performance with varying

processes per node

1

10

100

24x32 12x32 8x32 6x32 4x32 3x32 2x32 1x32Av
g.

 A
llg

at
he

rv
 T

im
e

(m
s)

Processes per node x Nodes

OpenMPI Java

OpenMPI C

 16

implementing Map-Collective applications on such clusters. The downside is the cost of collective

communication, especially within a node. MPI+X model where X is a mechanism to do intra-node

parallelism. Typically, scientific computations employ OpenMP as X.

While performance studies exist on the MPI+X model with regard to HPC applications, it is not

clear what the performance characteristics would

be for Java-based Map-Collective applications. In

SPIDAL Java, we identified that intra-node

communication poses a significant cost,

especially with collective communications. Figure

3 shows the effect of doing an allgatherv call with

both Java and C versions of OpenMPI with

varying number of processes per node. Note, the

total number of bytes sent out from a node is

constant across all the patterns in the x-axis.

Figure 3-1 suggests that keeping the number of

communicating processes per node to a

minimum gives the best performance. This implies intra-node parallelism should be done with

threads. However, we find keeping the same process model while doing intra-node communication

through shared memory is better than threads (reasons explained below). In SPIDAL Java, a

separate layer written in Java on top of MPI handles the intra-node communication through direct

memory copies. The architecture is shown in Figure 3.

Figure 3-3 DA-MDS 100K performance with varying

intra-node parallelism

Figure 3-4 DA-MDS 200K performance with varying

intra-node parallelism

Figure 3-2 Intra-node message passing with Java

shared memory maps

 17

Figures 3-3 and 3-4 show the results for 100K and 200K DA-MDS with (blue line) and without (red

line) this optimization. The green line includes shared memory and several other optimizations

available in SPIDAL Java.

The abscissa in Figures 3-3 and Figure 3-4 show different combinations of threads and processes

within a node that utilizes the full parallelism of 24 cores per node. While typical MPI

implementation (red line) favors threads within a node due to high communication cost, the

removal of intra-node communication (blue line) shows all processes model (left-most pattern) is

better than other combinations that include threads. This is further exemplified in SPIDAL Java

when other optimizations are applied on top of shared memory communication (see green lines).

Three reasons why threads don’t perform as well as processes in these experiments are as follows:

1. NUMA Boundaries

The experiments were run on a cluster where each node has 2 physical CPUs. When threads

are scheduled across NUMA boundaries, accessing process local data could incur high

overheads.

2. Scheduling Overhead

Threads are used in a Fork-Join (FJ) pattern in these applications, meaning that the worker

threads sleep during serial paths of the code. We find through Intel Vtune profiling that the

cost of scheduling these parallel regions over many iterations adds a significant overhead.

3. TLB Misses

While studying the Linux perf counters for threads and processes, we noticed FJ-based

thread parallelism to incur high amounts of TLB misses. This essentially reduced the

number of operations performed per clock cycle, making it less efficient than the process

model.

In a recent version of DA-MDS we have verified these two effects and have provided a long-running

thread (LRT) implementation over FJ. Also, by adhering to strict thread process and placement we

have reduced the overheads associated with threads. The difference between LRT and FJ

implementations is shown in 3.

 18

Figure 3-3 Fork-Join FJ vs Long Running Thread LRT implementations

Note, LRT requires a significant amount of code change from what typical MPI+X model programs

look like. Also, the programmer is responsible for implementing communication after non-trivial

parallel segments, whereas in FJ the built-in constructs such as parallel for implement such

synchronization. Moreover, the synchronization implementation needs to make sure that none of

the threads “sleep”, that is threads would be busy-waiting rather than giving up CPU resources. By

performing a Linux perf counter analysis, we find this produced a smaller number of TLB misses

compared to FJ.

Even with LRT implementation, the thread and process placement has to be explicit and within

NUMA boundaries to get the best performance. For example, on these 2 socket nodes, placing 1

process with 24 threads is less efficient than placing 2 processes with 1 on each node having 12

threads. It is also important to pin threads to a core. In Java, pinning threads to a core is achieved

using OpenHFT’s thread affinity library [30].

The point of this experiment with threads was to show that it is possible to achieve similar

performance as processes (when process communication is through shared memory), but doing

so is not straightforward and requires a considerable amount of code change.

Apart from the intra-node communication optimization, SPIDAL Java employs several other

techniques to reduce costs such as Java Garbage Collection (GC), cache and memory access, and

heap allocated objects. GC invocations are the so-called “stop the world” events, which require all

activities within the user code to be stopped while cleaning the heap. These are expensive,

especially with these Map-Collective applications where such GC events are responsible for the

Serial work

Non-trivial parallel work

Busy thread synchronization

FJ Implementation LRT Implementation

 19

strangler effect. SPIDAL Java utilizes off-heap data structures and static allocations to keep GC

activity nearly at zero. Also, this makes it possible to run with a minimum memory footprint.

Cache and memory accesses also need to be optimized in yielding high-performance. SPIDAL Java

adopts some of the techniques from scientific simulations to overcome these, including blocked

loops, loop ordering, and 1D arrays. It is important to note that data representations with nested

data structures add a substantial overhead due to multiple indirect memory references, hence the

use of 1D arrays are preferred when possible.

Heap allocated objects require creating temporary copies when used with native I/O operations.

Therefore, SPIDAL Java utilizes off-heap memory maps to store such content. This approach is

also used in loading initial large data. Memory maps not only offer off-heap allocations, but are

significantly faster than the typical Java stream APIs when reading such large data. Also, for inter-

node MPI communications these memory maps are more efficient than using heap allocated

arrays or objects.

Figure 3-2 shows the effect of each optimization for DA-MDS as a speedup chart. The results are

taken for all processes case. The base case is 48 processes run as 1x1x48, meaning 1 thread per

process and 1 process per node across 48 nodes. It shows SPIDAL Java achieves around 40x

speedup over 64x core count increase, while typical MPI is only able to achieve 6x speedup for the

same increase in cores.

Figure 3-3 shows speedup for varying core counts for three data sizes - 100K, 200K, and 400K.

These too were run as all processes because threads did not result in good performance (the

tested DA-MDS did not have the LRT implementation discussed above). None of the three data

sizes were small enough to have a serial base case, so the graphs use the 48 core as the base,

which was run as 1x1x48. SPIDAL Java computations grow (𝑁𝑁𝑁𝑁2) while communications grow

Figure 3-4 DA-MDS speedup for 200K with different

optimization techniques

Figure 3-5 DA-MDS speedup with varying data sizes

 20

(𝑁𝑁𝑁𝑁), which intuitively suggests larger data sizes should yield better speedup than smaller ones

and the results confirm this behavior.

In conclusion, performance results of SPIDAL Java show it scales and performs well in large PC

clusters. Also, the optimizations to overcome performance challenges made it possible to run

SPIDAL Java applications on much larger data sets than what was available in the past while still

achieving excellent scaling results. The improved shared memory intra-node communication is

pivotal to the gains in SPIDAL Java and it is the first such implementation for Java, to the best of

our knowledge.

3.3. Cloudmesh Interoperability IaaS and Paas Tool leveraging DevOps

Motivation: Today’s cyberinfrastructure is complex and ever-changing. Scientists often struggle

over the question of how to develop and use next generation Big Data tools and frameworks.

Deployment and use of such infrastructure is complex and often beyond the expertise of data

scientists. Furthermore, we have seen scientists perform unnecessary differentiations while using

various IaaS platforms such as Openstack, Azure, and AWS. We also identified that the model of

generating a virtual machine and using it for a long period of time is broken as security updates and

other rapidly developing software render such virtual images obsolete, insecure, and outdated

quickly. We need tools and frameworks that makes this easier and allow the creation and

recreation of state-of-the-art tools and services used by the data scientists.

Model: Our model targets four layers in the scientific data workflow:

Phase A: IaaS deployment: Creation of virtual clusters that uses an existing HPC or IaaS system

Phase B: PaaS deployment: The platform level in which a platform is deployed or used

Phase C: Application deployment: The application deployment and development on A) and B)

Phase D: Data deployment and application execution: The execution of data analysis and

experiments while using the programs developed as part of C)

This is achieved while leveraging existing advanced cyberinfrastructure tools and exposing them

through a uniform interface.

 21

3.3.1. Virtual Cluster IaaS deployment

We identified that one of the recurring tasks for data scientists is to set up a virtual cluster

containing the software needed to perform the actual activities. Through practical experience with

data science students we learned that the creation of such clusters often includes sophisticated

services that are beyond the capabilities of the scientist to deploy. Furthermore, subtle differences

between IaaS frameworks do not allow the generality needed in the experiment on other IaaS

offerings and estimate usage impact. Hence we have developed a tool called Cloudmesh that

abstracts the IaaS platform and allows easy creation of virtual clusters including proper key

management that often is ignored or wrongly executed by the data scientists, who may lack

experience in cyberinfrastructure security. An example in Figure 3-6 illustrates the convenience of

our tool. Here we demonstrate the use of persistent variables that are integrated in our Cloudmesh

command line tool called cm. We can switch with a single variable between clouds, boot, assign IP

addresses, and even ssh into the VMs without needing to know all the details about the cloud. An

easy configuration simplifies integration of new clouds.

cm default cloud=chameleon

cm vm boot

cm vm ip assign

cm vm ssh

cm default cloud=kilo

cm vm boot

cm vm ip assign

cm vm ssh

Figure 3-6: Booting a VM is simple in Cloudmesh and uniform

While the above also allows the creation of multiple VMs, generation of a virtual cluster requires

proper key management between the VMs. This is achieved through our prototype cluster

command as illustrated in Figure 3-7 where we boot up 30 virtual machines and allow login

between them. In addition, we implemented an inventory command that produces the necessary

inventory file used, for example, by Ansible, which is part of Phase B.

cm default cloud=chameleon

cm cluster create myCluster –count=30

cm cluster ip assign # not yet implemented

cm cluster setup key

cm cluster inventory

Figure 3-7: Booting a cluster of VMs is simple in Cloudmesh

Status: We have developed a prototype of Cloudmesh [31]. It includes an abstraction for

OpenStack, and Comet Cloud [1]. Interfaces for AWS and Azure have been prototyped and

demonstrated, but improvements need to be made to integrate them in the production release.

22

The cluster command has been prototyped but not yet released. The interface to SDSC Comet is

still in production. A tutorial will be given at XSEDE2016. A Docker interface is also under

development. A prototype to integrate VirtualBox VMs has been developed. We currently focus on

Comet and NSF resources that use OpenStack.

Results: Managing VMs on different IaaS clouds is easy with Cloudmesh. Integration of additional

clouds is possible via abstractions. The use of a saved state in the Cloudmesh client is a

distinguishing feature from other efforts. This allows the use of defaults to simplify access to

different clouds. We demonstrated use of the following clouds with Cloudmesh: FutureSystems,

Chameleon Cloud, Jetstream, CloudLab, Cybera, AWS, Azure, and VirtualBox.

3.3.2. Virtual cluster PaaS, Data and Application Deployment

Once a virtual cluster is available, either as HPC,

VMs, or containers, additional software services

need to be installed on such a system. This can

be achieved while leveraging software

configuration tools in support of DevOps such

as Ansible, Chef, Pupet, Saltstack or others. In

our efforts we have focused so far on Ansible as

the deployment framework as it allows us to

leverage a deployment methodology based on

well-known security concepts and abstractions

allowing a push model. Just as we can deploy

such platforms, we are currently evaluating

whether to use the same deployment

frameworks for application data, software and

even their execution.

Status: We have developed prototype

deployments for several Apache-based tools and services such as Hadoop and Spark. We have

tested them on Openstack within Futuresystems and Chameleon cloud. Last semester we

supported and evaluated the use of the framework and its tools in a “Big Data Open Source

Software Projects Class” that had 40 teams with various projects in Big Data deployment. Based

on the experience of the class we have identified that using Cloudmesh cluster will introduce much

more flexibility and ease of use for the data scientists. Furthermore, we can introduce an additional

abstraction layer that would allow us to integrate multiple deployment frameworks and not just

Figure 3-10: Architecture of the Cloudmesh

abstraction layers to gain access to

cyberinfrastructure systems. DevOps frameworks

are available as part of the Cloudmesh access to

them and are coordinated and choreographed with

the help of the shell, command line or a portal

interface that we will develop.

 23

focus on a single DevOps tool such as Ansible. We have made initial good progress while also using

the DevOps framework for the application data and software deployment.

Access to the sophisticated cyberinfrastructure is summarized in Figure 3-8.

Summary of Cloudmesh

• Cloudmesh was downloaded 287 times in April (however since then pypi has discontinued

their download information so we have no further information on downloads).

• We are presenting a tutorial at XSEDE2016 that uses Cloudmesh

• We have written a paper that was accepted at XSEDE2016 using Cloudmesh [32]

• We have identified that Cloudmesh significantly reduces startup time and effort to use

multiple IaaS

• We are using the Cloudmesh principles in the current summer REU activity.

• Cloudmesh is now used to support the open science virtual cluster on Comet.

3.4. Pilot Jobs and Pilot Data Memory

Motivation: The Pilot-Abstraction offers a unified approach for application-level compute and data

management across heterogeneous compute resources (e.g. HPC, cloud, Hadoop), storage

resources (e.g., local disks, cloud storage, parallel filesystems, SSD) and memory. As part of

MIDAS we extended the Pilot-Abstraction to facilitate the integration of ABDS and HPC at the level

of scheduling (Yarn, Slurm) and data access integrating ABDS HDFS, in-memory systems (Spark)

and HPC file systems (Lustre).

With the introduction of YARN, a broader set of applications can be executed within Hadoop

clusters than ever before. However, developing and deploying YARN applications potentially side-

by-side with HPC applications remains a difficult task. We still lack established abstractions that

are easy-to-use while still enabling the user to reason about compute and data resources across

infrastructure types (i.e., Hadoop, HPC and clouds).

YARN provides a low-level abstraction for resource management, e.g., a Java API and protocol

buffer specification. Typically interactions between YARN and the applications are much more

complex than the interactions between an application and a HPC scheduler. Further, applications

must be able to run on a dynamic set of resources; YARN can preempt containers in high-load

 24

situations. Data/compute locality needs to be manually managed by the application scheduler by

requesting resources at the location of a file chunk. Also, allocated resources (the so-called YARN

containers) can be preempted by the scheduler.

To address these shortcomings, various frameworks that aid the development of YARN

applications have been proposed [33]. While these frameworks simplify development, they do not

address concerns such as interoperability and integration of HPC/Hadoop. To facilitate the uptake

of Hadoop ecosystem in an HPC context, we integrate YARN and SPARK into the RADICAL-Pilot

framework, so as to provide advanced and scalable data analysis capabilities to existing high

performance applications while allowing applications to run HPC and Hadoop application parts

side-by-side. These implementations are called Pilot-YARN and Pilot-SPARK.

We extended RADICAL-Pilot to support the deployment and management of the Hadoop/Spark

cluster to the resources acquired. The extension of RADICAL-Pilot was mainly due to the RADICAL-

Pilot’s Agent which has the following components: the Agent Execution Component, the Heartbeat

Monitor, Agent Update Monitor, Stage In and Stage Out workers. The integration of Hadoop/Spark

was done in the agent’s execution component. Figure 3-9 shows how YARN/Spark specifics were

integrated in the RADICAL-Pilot Agent.

Figure 3-9: RADICAL-Pilot YARN Architecture. All YARN/Spark specifics are encapsulated in the RADICAL-Pilot Agent

Pilot-Data and Pilot-Memory: Pilot-Data [34] offers a unified approach for data management in

conjunction with Pilot-Jobs across complex storage hierarchies comprised of local disks, cloud

storage, parallel file systems, SSD and memory. Doing so allows the efficient management of Pilot-

/task-level input data as well as intermediate and output data, taking into account data locality.

 25

While this disk-based model is suitable for compute-bound tasks, for scalable data processing –

like data transformations using the split-apply-combine pattern – more sophisticated methods are

required. The usage of memory allows the efficient caching of input and intermediate data, which is

essential for these algorithms.

We propose Pilot-Data Memory as both an extension to Pilot-Data and as a runtime system for

supporting an increasing number of iterative algorithms. Pilot-Data Memory supports application

patterns, such as the split-apply-combine pattern, and iterative algorithms, as well as K-Means or

optimization algorithms. It adds in-memory capabilities to Pilot-Data and makes it available via the

Pilot-API. Figure 3-12 shows the architecture of Pilot-Data Memory.

An important design objective for Pilot-Data Memory is extensibility and flexibility. Pilot-Data

Memory supports different in-memory backends: (i) file-based, (ii) in-memory Redis and (iii) in-

memory Spark.

Pilot-YARN and

Pilot-Spark can be

used to set up the

necessary Spark

infrastructure on a

HPC resource.

Figure 3-10 Pilot Data and Pilot-Data Memory Architecture

26

The different backends are supported via an adaptor service interface that specifies the

capabilities necessary for implementation by the in-memory backend; it consists of functions for

allocating/de-allocating memory, loading data and executing map/reduce functions on the data.

Depending on the backend, the processing function must be implemented either manually, e.g.,

file-based and Redis backend adaptors, or directly delegated to the processing engine as in for

Spark. The Redis and file backends use the Pilot-Job framework for executing the Complete Units

generated by Pilot-Data Memory. If required, the application can access the native runtime

functions via a context interface. It is important to note that Pilot-Data Memory can be easily

extended to other backends, e. g. Alluxio and HDFS in-memory storage tier, which we will evaluate.

Performance measurements are shown in Figure 3-11.

3.5. Architecture of Scalable Big Data Machine Learning Library

Motivation: This section establishes principles for designing parallel machine learning algorithms

supporting a variety of model synchronization paradigms. It suggests a bridge between parameter

server approaches and those “owner compute rule-based” distributed model parameter

approaches familiar in HPC.

Figure 3-13: KMeans Pilot-Data: Running KMeans on Different Pilot-Data Backends. The iterative KMeans

algorithms benefits from the usage of Spark and Redis In-Memory Backends.

 27

There is a vast amount of literature on distributed machine learning and data analytics, much of it

continuing a long tradition of developing special ways to speed up or parallelize individual

algorithms or applications. However, specialized implementation rarely leads to wide-spread

deployment since it yields no generalization of parallelization techniques. Thus the focus of our

work [19] is to develop a general and exact parallelization technique for a large class of machine

learning algorithms. It aims to provide the software building blocks (kernels) that are portable to

manycore (and GPU) architectures, as we migrate from the multicore to manycore era.

We define the process for parallelization of

machine learning algorithms as shown in Figure

3-12: the first step is to choose an algorithm for a

given big data analysis problem. It may occur

that there are multiple solutions to the same

problem. An implementation is often optimized

for a selected algorithm. Such a tightly coupled

cycle (ref. top rectangle of Figure 3-12) works

well for a specific application but becomes

difficult to sustain due to diverse choices as well

as changes of technology at algorithm, system

and hardware levels. This motivates us to

investigate the fundamental issue of

computation and parallelization abstractions

that are effective for a set of domain problems.

We propose a systematic approach with

categorizations based on “Computation Model”, which effectively expresses kernel computation

characteristics and synchronization or communication mechanisms. The separation of

Computation Model, Abstraction and Implementation details allows us to adapt the variants and

make the optimization easier for parallel and distributed machine learning algorithms.

Programming interface in particular provides APIs to application users.

• Computation Model

High level description of the parallel algorithm, not associating with any execution

environment.

• Abstraction

Mid-level description of the parallelization, associating with a programming framework or

Machine Learning
Application

Machine Learning
Algorithm

Computation
Model

Programming
Interface

Implementation

Figure 3-12. A solution for big data machine

learning application includes decisions on

algorithms, computation models,

programming interfaces, and implementation.

 28

runtime environment and including the data abstraction/distribution, processes/threads

and the operations/APIs for performing the parallelization (e.g. network and

manycore/GPU devices).

• Implementation

Low level details of implementation (e.g. language).

We further categorize parallel machine learning applications into four types of computation models

(see Figure 3-13):

Computation Model A

This computation model uses a

synchronized algorithm to coordinate

parallel workers. In each iteration, once a

worker processes a training data item, it

locks related model parameters and

prevents other workers from accessing

them. When the related model parameters

are updated, the worker unlocks the

parameters. As long as workers compute

and update on different model parameters,

they can execute in parallel. Only one

worker is allowed to access a word's model

parameters at a time; therefore the model

parameters used in the local computation are always the latest. In practice, this computation

model is seldom applied due to the high overhead of locking.

Computation Model B

The next computation model also uses a synchronized algorithm. Each worker first takes a

partition of the shared model and performs computation. Afterwards, the model partitions are

shifted between workers. When all the model partitions are accessed by all the workers, an

iteration is complete. Through model rotation, each model parameter is computed and updated by

only one worker at a time so that the consistency of the model is maintained.

Computation Model C

Computation Model C applies a synchronized algorithm but with a stale model. In a single iteration,

Figure 3-13 Four Computation Models

 29

each worker first fetches all the model parameters required by local computation. When the local

computation is completed, the modifications of the local model from all the workers are combined

to update the model.

Computation Model D

With this model, an asynchronous algorithm employs a stale model. Each worker independently

fetches the related model parameters, performs the local computation, and returns the model

updates. Unlike Computation Model A, other workers are allowed to fetch or update the same

model parameter independently. In contrast to Computation Model B and C, there is no

synchronization barrier in this computation model.

Based on the summarized computation models, we propose a new set of model-centric

abstractions including data abstraction and synchronization operation abstraction for parallel

machine learning applications as a part of the MapCollective model. These establish parallel

machine learning as the combination of training data-centric and model-centric processing. The

new model-centric computation abstractions can support numerous, including but not limited to:

• Expectation-Maximization Type

o K-Means Clustering

o Collapsed Variational Bayesian for topic modeling (e.g. LDA)

• Gradient Optimization Type

o Stochastic Gradient Descent and Cyclic Coordinate Descent for classification (e.g. SVM and

Logistic Regression), regression (e.g. LASSO), collaborative filtering (e.g. Matrix

Factorization)

• Markov Chain Monte Carlo Type

Collapsed Gibbs Sampling for topic modeling (e.g. LDA in Section 4.2.)

3.6. Harp Programming Paradigm

Motivation: This section introduces Harp [26], whose basic idea is to abstract iterative

communication and scientific data abstractions with MapCollective. It distinguishes distributed

(training) data and distributed model (parameters) and these set up parallel machine learning as

the combination of training data-centric and model-centric parallel processing. Harp distributes

 30

models over worker nodes and supports collective communication to bring global models to each

worker node.

The Harp Programming Paradigm shown in figure 3-14, abstracts parallel applications in the

MapCollective model which is extended from the original MapReduce model. Here parallelization of

an application is abstracted as parallel execution on a set of Map tasks which are synchronized

with collective communication operations. While the input data is abstracted and partitioned as

KeyValue pairs, the abstraction of the synchronized model data and related collective

communication operations are specially defined. These ideas are implemented in the Harp library

(open source) as a Hadoop plugin. By plugging Harp into Hadoop, the MapCollective model can be

expressed on top of a MapReduce framework and efficient data synchronization for a variety of

machine learning applications is enabled. In addition, mapping a MapCollective model to Hadoop

also enables two levels of parallelism. Since each Map task is a process where the collective

communication operations are invoked and multi-thread execution is enabled for another level of

parallelism.

The data types in Harp are abstracted in a hierarchy. Data are horizontally abstracted as arrays or

key-values and constructed from basic types into partitions and tables vertically. At the lowest

level, there are two basic types: arrays and objects. Based on the component type of an array,

there can be byte array, int array, long array or double array. Object type is used to describe keys

Figure 3-14. MapCollective Model and Hadoop Plugin

 31

and values. In the middle level, arrays and objects are wrapped as array partition and key-value

partition. At the top level are tables containing multiple partitions, each with a unique partition ID.

Tables on different parallel workers can be associated with each other and present one dataset.

The collective communication operations are defined as redistribution or consolidation of

partitions in tables.

Table 3-1: Collective Operations supported in Harp

Collective communication operations are defined on top of the data abstractions. The operations

are abstracted based on the synchronization mechanisms summarized from the existing tools and

many applications for learning. Currently four categories of collective communication operations

are supported: (1) operations adapted from MPI: e.g. “broadcast”, “reduce”, “allgather”, and

“allreduce”; (2) operations derived from MapReduce: e.g. “regroup" operation with “combine &

reduce” support; (3) operations derived from graph processing tools: e.g. “send messages to

vertices”; and (4) operations abstracted from machine learning applications with big models: e.g.

“syncLocalWithGlobal” and “syncGlobalWithLocal”, or “rotate”.

The collective communication operations are not specific to some data abstractions. For each

operation, both arrays and objects can be used. Even for graph-based communication, the

operations are not tied with graph abstractions. Instead, the data movement is between partitions

according to their locality. For each operation, routing mechanisms are optimized based on the

total data size involved in the movement. Routing optimization is very helpful to many iterative

applications in which synchronization happens in iterations, especially to machine learning

applications which need to frequently synchronize a huge model. We apply this MapCollective

 32

model to Latent Dirichlet Allocation (LDA) and show that with MapCollective abstractions the

implementation can achieve better performance compared with parameter server type

applications which use asynchronous communication methods.

3.7. Integration of Harp and Intel DAAL Library

Motivation: For machine learning libraries, it is obviously advantageous to reuse highly optimized

kernels as software building blocks. Intel's Data Analytics Acceleration Library (DAAL) [43]

provides several core algorithms with excellent intra-node parallelism. Here we explore using Harp

to invoke DAAL and thus build a distributed version of this library.

We aim to combine the advantages of Intel's DAAL for intra-node multithreading and Harp

programming framework for inter-node communications. Intel optimizes a select group of data

analytics and machine learning algorithm kernels on their hardware platforms, from CPUs to more

recent Xeon Phi coprocessor of manycore architectures. As an extension to its highly reputable

Math Kernel Library (MKL), DAAL provides high performance on its batch mode. Yet the

performance of its kernels on distributed mode relies on the communication framework chosen by

the users, which motivates our effort to interface Harp with DAAL. Harp is designed to handle

communication overheads within iterative applications by using collective in-memory

communication operations. Yet the implementation of local computation within the current version

of Harp, which is written in multi-threading Java, is not straightforward in memory management.

Thus, an integrated Harp-DAAL programming framework shall result in a significant improvement

of the performance.

Input data has 500k points and varies centroids 1000,
10000, 100000

Input data varies points 5000, 50000, 500000 and
has100k centroids

Figure 3-15. K-means Performance of Harp and Harp-DAAL

 33

Fig. 3-15 shows a performance comparison between two implementations of K-means clustering.

The experiments are done on two nodes of Haswell Xeon processor within a cluster of the

FutureSystems testbed. The K-means kernel with local computation offloaded to DAAL (red lines)

achieves significantly lower execution time than the kernel implemented by Java threads.

The Harp-LDA algorithm is implemented using Java threads, while the Harp-DAAL-LDA algorithm

takes advantage of the optimized native computation kernels on Intel's platform. Unlike K-means

clustering, LDA has complicated irregular memory access, which requires more effort to reduce

the memory data transfer overheads. Moreover, there is no LDA kernel within the current version

of DAAL. We need to write the native LDA while calling the optimized MKL kernel at low levels. Our

approach includes two aspects:

Data type conversion between Harp and native kernels

Harp, due to its optimization on collective communication among nodes, adopts a massive use of

memory allocation in a nonconsecutive way. In contrast, DAAL and MKL allocate the data on

contiguous memory chunks, which better fits the requirement of data alignment within BLAS

operations. A compromise should be made between the two aspects and so we attempt to create

some highly efficient data conversion methods. In order to profile the memory usage of kernels

within the Harp-DAAL framework, we use Intel VTune Amplifier as a profiling tool. We also conceive

a way to profile the Harp/Hadoop applications by VTune, though VTune is mainly used for profiling

programs written in native languages.

Memory Optimization on Intel's Xeon Phi Knights Landing

With the announcement of Intel's latest 2nd generation of Xeon Phi coprocessor, codenamed

Knights Landing (KNL), we intend to optimize the Harp-DAAL-LDA kernel especially on that

platform. KNL has tremendously improved its memory latency and bandwidth compared to the

previous generation. The so-called multi-channel dynamic random access memory (MCDRAM) has

on-package high bandwidth memory technology (HBM), which could either serve as a last level of

cache between the L2 cache and the on-platform DDR4 memory or as a separate memory node

alongside the DDR4 memory. According to [44], MCDRAM can significantly accelerate the latency-

bounded applications that are usually hard to achieve on Xeon and the first generation of Xeon Phi.

Therefore, we will leverage the potential benefits of KNL on Harp-DAAL-LDA applications.

4	 SPIDAL
	 Algorithms

4.1.	 Introduction

4.2.	 Harp Latent Dirichlet
	 Allocation

4.3.	 SPIDAL Algorithms –
	 Subgraph mining

4.4.	 SPIDAL Algorithms –
	 Random Graph
	 Generation

4.5.	 SPIDAL Algorithms –
	 Triangle Counting

4.6.	 SPIDAL Algorithm –
	 Community Detection

4.7.	 SPIDAL Algorithms –
	 Core

4.8.	 SPIDAL Algorithms –
	 Optimization

4.9.	 SPIDAL - Algorithms 	
 Polar Remote
 Sensing Algorithms

4.10.	 SPIDAL Algorithms – 	
 Nuclei Segmentation
 for Pathology
 Images	

4.11.	 SPIDAL Algorithms –
 Spatial Querying
 Methods

 35

4.1. Introduction

In the original proposal, we identified a set of algorithms to address in SPIDAL:

Table 4-1 Status & Parallelism Abbreviations Used in Tables 4-2 to 4-4

GML Global (parallel) Machine Learning ToDo No prototype Available

PP Pleasingly Parallel (Local ML) Seq Sequential version Available

GrA Good distributed algorithm needed P-DM Distributed memory parallel algorithm

Available

GrB Graphs with runtime parallel partitioning P-ShM Shared memory parallel algorithm

Available

GrC Graphs with static parallel partitioning

Table 4-2 Proposed SPIDAL Algorithms for Graphs and Spatial Analytics

Algorithm Applications Features Status Parallelism

Graph Analytics

Community Detection Social Networks, webgraph

Graph

P-DM GML-GrC

Subgraph/motif finding
Webgraph, biological/social

networks
P-DM GML-GrB

Finding diameter Social networks, webgraph P-DM GML-GrB

Clustering coefficient Social networks P-DM GML-GrC

Page rank Webgraph P-DM GML-GrC

Maximal cliques Social networks, webgraph P-DM GML-GrB

Connected component Social networks, webgraph P-DM GML-GrB

Betweenness centrality Social networks Graph, Non-metric,

static

P-Shm
GML-GRA

Shortest Path Social networks, webgraph P-Shm

Spatial Queries and Analytics

Spatial relationship based

queries
GIS/social networks/pathology/

informatics
Geometric

P-DM PP

Distance based queries P-DM PP

Spatial clustering Seq GML

Spatial modeling Seq PP

 36

Table 4-3 Proposed SPIDAL Algorithms for Image Processing and Deep Learning

Table 4-4 Proposed SPIDAL Core and Optimization Algorithms

Algorithm Applications Features Status Parallelism
DA Vector Clustering Accurate Clusters Vectors P-DM GML

DA Non-metric Clustering Accurate Clusters, Biology, Web Non metric, O(N2) P-DM GML

K-means; Bsic, Fuzzy and Elkan Fast Clustering Vectors P-DM GML

Levenberg-Marquardt Optimization
Non-linear Gauss Newton, use in

MDS
Least Squares P-DM GML

SMACOF Dimension Reduction DA-MDS with general weights
Least Squares,

O(N2)
P-DM GML

Vector Dimension Reduction DA-GTM and others Vectors P-DM GML

TFIDF Search
Find nearest neighbors in

document corpus

Bag of “words”

(image features)
P-DM PP

All-pairs similarity search

Find pairs of documents with

TFIDF distance below a

threshold

Bag of “words”

(image features)
Todo GML

Support Vector Machine (SVM) Learn and Classify Vectors Seq GML

Random Forest Learn and Classify Vectors P-DM PP

Gibbs sampling (MCMC)
Solve global interference

problems
Graph Todo GML

Latent Dirichlet Allocation LDA with

Gibbs sampling or Var. Bayes
Topic models (Latent factors) Bag of “words” P-DM GML

Singular Value Decomposition

(SVD)
Dimension Reduction and PCA Vectors Seq GML

Hidden Markov Models (HMM)
Global inference on sequence

models
Vectors Seq PP & GML

Algorithm Applications Features Status Parallelism

Core Image Processing

Image preprocessing

Computer vision/pathology

informatics

Metric Space Point sets,

Neighborhood sets &

Image features

P-DM PP

Object detection & segmentation P-DM PP

Image/object feature

computation
P-DM PP

3D image registration Seq PP

Object matching
Geometric

Todo PP

3D feature extraction Todo PP

Deep Learning

Learning Network, Stochastic

Gradient Descent

Image Understanding,

Language Translation, Voice

Recognition, Car driving

Connections in artificial

neural net
P-DM GML

 37

In addition, there are community specific analytics often building on some of those in Tables 4-2 to

4-4. Table 4-2 is covered in subsections 4.3, 4.4 and 4.5. Table 4-3 is covered in subsections 4.8 to

4.10, while Table 4-4 is covered in subsections 4.2, 4.6 and 4.7.

4.2. Harp Latent Dirichlet Allocation

Motivation: Latent Dirichlet Allocation is an important algorithm that is representative of several

related sophisticated latent factor (topic) determination problems. Additionally, it involves data

structures and can benefit from loosening synchronization between model parameters in the

different processes of a parallel algorithm. It was therefore a natural case to investigate with the

Harp MIDAS technology which had been proven effective in simpler cases, especially DA-MDS,

reported later under core machine learning.

The research work focuses on the computation models and the synchronization mechanisms of

parallel machine learning applications using Latent Dirichlet Allocation as an example [25]. LDA is

a widely used machine learning technique for Big Data analysis, including text mining, advertising,

recommender systems, network analysis, and genetics. We use Collapsed Gibbs Sampling (CGS)

algorithm to solve LDA. A major challenge is the scaling issue in parallelization owing to the fact

that the model size is huge and parallel workers need to synchronize the model continually. We

identify three important features of the model in parallel LDA CGS computation: (1) the model

volume required for local computation is high; (2) the time complexity of local computation is

proportional to the related model size; (3) the model size shrinks as it converges. By investigating

collective and asynchronous methods of the model synchronization mechanisms, we discover that

optimized collective communication can improve the model update speed, thus allowing the model

to converge faster. The performance improvement derives not only from accelerated

communication but also from reduced iteration computation time as the model size shrinks during

the model convergence. To foster faster model convergence, we design new collective

communication abstractions and implement two Harp-LDA applications, “lgs” and “rtt”.

We compare our new approach with Yahoo! LDA and Petuum LDA, two leading implementations

favoring asynchronous methods in the field, on a 100-node, 4000-thread Intel Haswell cluster with

three different datasets (see Table 4-5). When using local-global model synchronization on

“enwiki”, “lgs” reaches higher model likelihood with shorter execution time (see Fig. 4-1a). Though

“lgs” can be overtaken by Yahoo! LDA on “clueweb”, by increasing model synchronization rounds

per iteration to four, “lgs-4s” obtains higher model convergence speed (see Fig. 4-1b). When using

model rotation, “rtt” and Petuum LDA achieve similar model likelihood with similar execution time

on “clueweb” (see Fig. 4-1c). However, on “bi-gram”, as the number of words in the model grows,

 38

“rtt” runs 3.9 times faster compared with Petuum LDA (see Fig. 4-1d). The details of this research

work are described in [14].

Table 4-5 Training Data Settings

Dataset
Number

of Docs

Number

of Tokens
Vocabulary

Doc Length

Mean/SD

Number

of Topics

Initial

Model Size

clueweb 50.5M 12.4B 1M 224/352 10K 14.7GB

enwiki 3.8M 1.1B 1M 293/523 10K 2.0GB

bi-gram 3.9M 1.7B 20M 434/776 500 5.9GB

(a) Execution Time vs. Model Likelihood on “enwiki”

(b) Model Likelihood vs. Execution Time on “clueweb”

(c) Model Likelihood vs. Execution Time on “clueweb”

(d) Model Likelihood vs. Execution Time on “bi-gram”

Figure 4-1. Performance comparison between “lgs” and Yahoo! LDA

and Performance comparison between “rtt” and Petuum

4.3. SPIDAL Algorithms – Subgraph mining

Motivation: Subgraph isomorphism is a canonical problem in several disciplines where people are

interested in finding subsets of nodes with specific labels or attributes and mutual relationships

that match a specific template, such as social network analysis [35], data mining [36, 37], fraud

detection [38] and bioinformatics [39]. For example, in financial networks, where the nodes are

 39

banks/individuals, and edges represent financial transactions, an investigator might be interested

in specific transaction patterns from an individual to banks, e.g., through suspicious intermediaries

to deflect attention [38]. In many bioinformatics applications, frequent subgraphs (referred to as

“motifs”) in protein-protein interaction networks (PPI) have been used to characterize the

network, distinguish it from random networks and identify functional groups [39, 40].

Relational subgraph analysis, e.g. finding labeled subgraphs in a network, which are isomorphic to

a template, is a key problem in many graph-related applications. It is computationally challenging

for large networks and complex templates, and thus we are working on algorithms for relational

subgraph analysis using Harp. We study a variety of subgraph isomorphism problems, such as: (i)

counting the number of embeddings of a given labeled/unlabeled template; (ii) finding the most

frequent subgraphs/motifs efficiently from a given set of candidate templates; and (iii) computing

the graphlet frequency distribution.

By plugging Harp into Hadoop, we can express the MapCollective model in a MapReduce

framework and enable efficient in-memory collective communication between map tasks. It stores

the intermediate data (or model data) on all nodes, each node with a different partition.

An algorithm for subgraph analysis using Hadoop, called Sahad, is given in [41], which is based on

a color-coding scheme [42].

Network
No. Of Nodes
(in million)

No. Of Edges
(in million)

Size
(MB)

Web-
google

0.9 4.3 65

Miami 2.1 51.2 740

Table 4-6. Networks of Graph Applications Figure 4-2. Sub-graph Templates

 40

We used two networks as shown in Table 4-6 in the experiments. Figure 4-2 shows four unlabeled

templates used. Figure 4-3 displays the performance comparison between HarpSahad and

SAHAD. We ran the experiments on the Juliet cluster at Indiana University using 40 threads (4

nodes and 10 threads per node). Juliet is a cluster with Haswell architecture and has 128 nodes in

total. For network Web-google, HarpSahad runs about 5 times faster than SAHAD, and for Miami

network, HarpSahad performs about 9 times faster than SAHAD

We’re working on further improvements in the following areas:

1. Memory usage optimization. The initial SAHAD implementation cannot work on very large

templates and networks. This issue is challenging due to growing model data, as in our case.

2. Communication overhead. We are working on communication models for specific

partitioning schemes. The rotation model is not suitable for this application because it may

transfer unnecessary model data from one node to another, which increases the

communication overhead.

3. Load balancing. We investigated several partitioning schemes such as random-partition,

minimum-cut, and even-partition. We also looked at increasing parallelism on high edge

count nodes.

4.4. SPIDAL Algorithms – Random Graph Generation

Motivation: Advances in hardware technology, as well as the developments in software and

algorithms, have enabled the detailed study of complex networks such as the Internet, biological

Figure 4-3. Performance comparison between SAHAD and HarpSahad on Web-google and

Miami networks using Template u5-1 and u7-1.

0

500

1000

1500

2000

web-google-u5-1web-google-u7-1 miami-u5-1 miami-u7-1

Ru
ni

ng
 ti

m
e

(s
ec

)

Comparison between harpsahad and sahad
(running on 40 threads)

harpSahad sahad

 41

networks, social networks, and various infrastructure networks. The study of these complex

systems has significantly increased interest in various random graph models. Many real-world

systems and networks are modeled and analyzed using various random graph models. These

models must incorporate relevant properties such as degree distribution and clustering

coefficient. Many of them, such as the preferential attachment (PA) model, Chung-Lu (CL),

stochastic Kronecker, stochastic block model (SBM), and block two–level Erdos-Renyi (BTER)

models, have been devised to capture those properties. As some of the complex networks grow, it

has become necessary to correspondingly generate massive random networks efficiently. A

smaller network may not exhibit the same behavior, even if both networks are generated using the

same model. The generative algorithms for these models are mostly sequential and take a

prohibitively long time to create large-scale graphs. We are working on developing efficient parallel

algorithms for producing random graphs using various models.

We have developed a novel method (called the DG method), based on grouping the vertices by

their degrees, that leads to space- and time-efficient sequential and parallel algorithms for several

random graph models, including the CL model, with rigorous guarantees. Our main contributions

are summarized below.

1. Space efficiency: Both of our sequential and parallel algorithms for the CL model require

only O(Λ) space, where Λ is the number of distinct degrees, comparing to O(n) space

required by the previous algorithms. In the real-world networks, Λ is significantly smaller

than n. Experimental results on a wide range of large-scale networks show that our

algorithms require 400–15000 times less memory than the previous algorithms. This space

efficiency makes our algorithms suitable for generating very large-scale graphs.

2. Time efficiency: Our algorithms are more efficient in terms of runtime also. We prove that

our sequential and parallel algorithms have running time of O(m) and O(m/P + Λ + P),

respectively, with high probability, where P denotes the number of processors. In contrast

to earlier algorithms, the associated constants and overheads are significantly smaller for

our algorithms. Experimental results show that our algorithms are about 3-4 times faster

than the previous algorithms. Moreover, our parallel algorithm achieves almost optimal load

balancing using an efficient load balancing technique and scales very well to a large number

of processors. Our parallel algorithm can generate a network with 250 billion edges in just

12 seconds using 1024 processors.

3. Extensions to other models: Finally, we show how our algorithmic method extends naturally

to the BTER and SBM models and leads to significantly improved sequential and parallel

 42

algorithms. Experimental results show that after applying the DG method, the runtime for

the BTER model improves by a factor of 5-80 for various types and sizes of networks.

Figure 4-4 shows the performance of our DG algorithm against the MH algorithm [45], which is the

best-known previous sequential algorithm, using both real-world and synthetic networks. We

extracted the degree sequences of these networks, and then generated new graphs from these

degree sequences. We observe that our DG algorithm is approximately 3 times faster than the MH

algorithm as we discussed before. A huge improvement made by our algorithm is on the memory

requirement, improving it by a factor of 440-3474 for the networks shown in the figures below.

Figure 4-4 Runtime and memory requirement comparison between our DG algorithm and the

previous MH algorithm [45] on several datasets.

Figure 4-5 shows the speedup of our

parallel DG algorithm along with the

best-known previous parallel

algorithm [4] (referred to as the AK

algorithm) for a massive power-law

(PL) and two large real-world graphs

(Twitter and UK-Union). Speedups

are measured as Ts / Tp, where Ts and

Tp are the running time of the

sequential and the parallel algorithm,

respectively. The number of processors is varied from 1 to 1024. As shown in Fig. 4-5, our

algorithm achieves almost linear speedup for each graph. The AK algorithm also has a linear

speedup. However our algorithm is approximately four times faster than the AK algorithm.

Moreover, our algorithm requires less memory (O(Λ) memory) than the AK algorithm (O(n)

Figure 4-5. Strong scaling of our parallel DG algorithm and the

previous AK algorithm [4] on several datasets.

 43

memory). For example, for the Twitter, UK-Union, and PL graphs, the DG algorithm takes about

440, 716, and 16000 times less memory than the AK algorithm, respectively.

4.5. SPIDAL Algorithms – Triangle Counting

Motivation: Counting triangles in a graph is a fundamental and important algorithmic problem in

graph analysis, and its solution can be used in solving many other problems, such as the

computation of clustering coefficient, transitivity, and triangular connectivity [39, 46]. Existence of

triangles and the resulting high clustering coefficient in a social network reflect some common

theories of social science, e.g., homophily where people become friends with those similar to

themselves and triadic closure where people who have common friends tend to be friends

themselves [47]. Further, triangle counting has important applications in graph mining such as

detecting spamming activity and assessing content quality in social networks [48] and detecting

communities or clusters in social and information networks [49].

Finding the number of triangles in a network (graph) is an important problem in mining and

analysis of complex networks.

Triangle counting and enumeration is

an important special case of subgraph

mining. Specialized algorithms for this

problem can outperform the general

algorithms for the subgraph analysis

problem significantly.

There are few Hadoop-based

distributed-memory parallel

algorithms (by Suri et al. and Park et

al.) for counting triangles. These

algorithms generate huge volumes of

intermediate data for shuffling and

regrouping, which require a large

amount of time and memory.

Previously we have developed an MPI-based distributed-memory parallel algorithm, called PATRIC

[50], which uses overlapping partitioning of the given graph. Although PATRIC significantly

improves both time and space requirement comparedto the Hadoop-based algorithms, it still

requires large memory per processor due to overlapping partitions.

Figure 4-6. Runtime comparison of various algorithms for

counting triangles

 44

Very recently we have developed a space-efficient MPI-based parallel algorithm for counting and

enumerating triangles in massive networks. The algorithm divides the network into non-

overlapping partitions. Experimental results, shown in figure 4-6, on some real-world networks

demonstrate up to 25-fold space saving over the previous algorithm PATRIC, while the runtime is

comparable to that of PATRIC. For example, for the Twitter network, our space-efficient version

requires 265MB memory per processor in contrast to 4254MB per processor for PATRIC. Figure 4-

6 shows runtime comparisons on Twitter network for these algorithms.

4.6. SPIDAL Algorithm – Community Detection

A community in a network is a group of nodes such that the nodes within the community are

densely connected but there are fewer edges from these nodes to the nodes outside the

community. Complex networks generally consist of communities or clusters of nodes, each having

a distinct role or function. Each functional unit (community) appears as a tightly-knit set of nodes

having higher connection inside the set than outside. Finding communities may reveal the

organization of complex systems and their function. For instance, communities are often

interpreted as organizational units in social networks, functional units in biological networks, or

scientific disciplines in citation networks. Thus detecting communities in massive networks such

as emerging social and information networks has become an interesting and fundamental problem

in network science.

Although a fairly large volume of work addressed the sequential algorithms for community

detection (see a survey in [51]), only recently has attention been given to parallel algorithms. There

are some existing parallel algorithm for shared-memory [52], Bulk Synchronous Parallel (BSP)

[53], GPU [54], and MapReduce [55] frameworks. We propose an MPI-based distributed-memory

Figure 4-7. Strong scaling of our parallel

community detection algorithm on two

networks: LiveJournal and Miami social

contact network. The results are shown for

two partitioning schemes: based on the

number of nodes (N), based on the degrees

of the nodes (D).

 45

parallel algorithm that later will be implemented with Harp. By partitioning the graph, this

algorithm allows us to work with large-scale graphs and scales well with the increasing number of

processors. This is an ongoing work. Below we present some of our preliminary experimental

results. Figure 4-7 shows the speedup factor of our algorithm with the increasing number of

processors on two networks.

4.7. SPIDAL Algorithms – Core

The initial contributions to SPIDAL are available from Github [56]. They are described here and are

already given in Table 4-4. As MIDAS and SPIDAL development proceeded in parallel, much of the

initial SPIDAL work used different technology from that highlighted in MIDAS; for example, not all

routines are available in Harp or use the SPIDAL Java optimizations. As this project matures and

optimized MIDAS components become available, we will re-engineer current SPIDAL accordingly.

Also, based on input from users of MLlib and Mahout, we will plan a design process to ensure a

uniform consistent programmatic interface to the SPIDAL library.

Figure 4-8: Visualization using WebPlotViz of a small part (<0.1%) of a clustering using DA-VS of 10.9 million LCMS peaks

into 423400 clusters extending work in [57]. Orange stars are the 1% of points outside clusters, yellow circles represent

cluster centers, colored dots are clustered peaks.

We will now describe the status of several core machine learning routines.

1. O(N2) distance matrices offer calculation with Hadoop parallelism and various options

such as storage in MongoDB or distributed files, normalization, packing to save memory

usage, and calculation exploiting symmetry. This is built into many existing approaches and

described in Section 5.5. We will separate this and make it a separate SPIDAL library.

 46

Figure 4-9: Trajectories of values of 6 financial instruments (stocks with ETF’s) using one-day values measured from

January 2004 and ending December 2015. Filled circles are final values and 6000 stocks are used in the DA-MDS 3D

projection of vectors of daily stock values. [58]

2. WDA-SMACOF or DA-MDS: Multidimensional scaling MDS is an optimal nonlinear

dimension reduction enhanced by

SMACOF, deterministic annealing

and Conjugate gradient for non-

uniform weights [59]. It is used in

many applications [2] and is

illustrated in figures 4-9 to 4-12.

This is believed to be the most

accurate non-linear dimension

reduction routine available and the

only one whose performance

scales to large parallel machines. It

supports Sammon’s method and

missing distance measurements.

There are MPI and MIDAS (Harp)

versions.

Apple

Mid Cap

Energy

S&P
Dow Jones

Finance
Origin
0% change

+10%

+20%

Figure 4-10: 3D Phylogenetic Tree from [2, 3] using DA-MDS

and WebPlotViz

 47

3. MDS Alignment to optimally align related point sets, as in MDS time series

4. WebPlotViz data management

(MongoDB) and browser visualization

for 3D point sets including time

series. Available as source or SaaS.

5. MDS as χ2 using Manxcat (see

next section on optimization). More

general but less reliable alternative

solution of MDS [60, 61]. Latest

version of WDA-SMACOF usually

preferable, and our use of this has

declined.

6. Other Dimension Reduction:

SVD, PCA, GTM algorithms are

understood but no work has been

done within SPIDAL.

7. DA-PWC Deterministic Annealing Pairwise Clustering for case where points aren’t in a

vector space; used extensively to cluster DNA and proteomic sequences; improved

algorithm over others published. Parallelism good but needs SPIDAL Java.

8. DAVS Deterministic Annealing Clustering for vectors; includes specification of errors

and limit on cluster sizes. Gives very accurate answers for cases where distinct clustering

exists. Being upgraded for new LC-MS proteomics data with one million clusters in 27

million size data sets shown in figure 4-8.

9. K-means basic vector clustering: fast and adequate where clusters aren’t needed

accurately

10. Elkan’s improved K-means vector clustering: for high dimensional spaces; uses triangle

inequality to avoid expensive distance calculations

Figure 4-11: Results from [1] using DA-MDS to visualize in

WebPlotViz for a set of Fungi sequences here colored by

identified species

 48

The above 10 routines are complete usable parallel algorithms and have good parallel

performance, although they still need extensive work on use of MIDAS, SPIDAL Java and

establishing good uniform interface. Parallel implementations are needed for logistic regression,

Random Forest, SVM, Collaborative Filtering, TF-IDF search and other Spark MLlib and Mahout

algorithms. These are typically simpler than codes already implemented but represent a major

software engineering and performance tuning project.

4.8. SPIDAL Algorithms – Optimization

Many problems in computer science and science in general can be posed as mathematical

optimization tasks, where the goal is to find the values for a set of variables that minimize a given

objective or energy function of those variables. In applications, these tasks often arise in the

context of fitting a model to data. For instance, nearly all machine learning algorithms are simply

optimizing a set of model parameters by minimizing an objective function that measures the error

of the model on a set of labeled training examples. Meanwhile data mining algorithms like K-means

and LDA are similarly fitting model parameters to data to minimize some residual error. Many of

the imaging applications in Section 5, for example, are simply finding a “simple” model to explain

Figure 4-12: Early studies for [1, 2] using DA-MDS to visualize in WebPlotViz for a set of fungi

sequences with 127 clusters determined by DA-PWC

 49

complicated image data, e.g. a model that compactly describes a noisy radar echogram in terms of

ice layer structure, or a segmentation that compactly describes a high-resolution CT scan.

Optimization problems can often be classified into various broad categories depending on the form

of the objective function, the domain of the unknown variables, and the type of solution that is

required. While there is no efficient algorithm that can solve all optimization problems, algorithms

do exist for many of these general categories, and we are integrating several of the most common

in SPIDAL.

Continuous optimization problems. For the common class of optimization problems where the

variables are continuous and either the objective function is convex or a local minimum (as

opposed to a global minimum) is acceptable, we are implementing Manxcat, a Levenberg

Marquardt algorithm for non-linear χ2 optimization. This algorithm uses a sophisticated version of

Newton’s method calculating value and derivatives of the objective function. It is parallelizable in

both the calculation of the objective function and in the parameters to be determined. We have

completed the implementation of this algorithm but it still needs to be optimized for SPIDAL in

Java.

Discrete optimization problems commonly arise in computer vision, language modeling,

operations research, and other applications. Since in general discrete optimization is NP-hard,

various efficient algorithms have been developed for objective functions with specific forms. Other

algorithms can produce approximate but typically high-quality solutions even for some NP-hard

problems. We have implemented several of these algorithms and are working to integrate them

into SPIDAL. In particular:

• The Viterbi algorithm finds the maximum a posteriori (MAP) solution for a Hidden Markov

Model (HMM), which has an objective function that can be written as a sum of pairs of

variables, such that the graph of these pairs is acyclic. The running time is O(n*s^2) where

n is the number of variables and s is the number of possible states each variable can take.

We will provide an "embarrassingly parallel" version that processes multiple problems (e.g.

many images or many sentences) independently. Because Viterbi is so efficient, we do not

believe parallelizing within the same problem is needed in our application space.

• Forward-backward algorithm computes marginal distributions over HMM variables, with

similar characteristics as Viterbi.

• Loopy belief propagation (LBP) for approximately finding the maximum a posteriori

(MAP) solution for a Markov Random Field (MRF). An MRF is a generalization of an HMM in

which the objective function is still a sum over functions of pairs of variables, but this

 50

pairwise relationship structure does not necessarily form a tree. Here the running time is

O(n^2*s^2*i) in the worst case where n is number of variables, s is number of states per

variable, and i is number of iterations required (which is usually a function of n, e.g. log(n) or

sqrt(n)). Here there are various parallelization strategies depending on values of s and n for

any given problem. We will provide two parallel versions: embarrassingly parallel for when s

and n are relatively modest, and parallelizing each iteration of the same problem for the

common situation when s and n are quite large so that each iteration takes a long time

relative to the number of iterations required.

• Markov Chain Monte Carlo (MCMC) for approximately computing marginal distributions

and sampling over MRF variables. Similar to LBP with the same two parallelization

strategies.

The first – Manxcat – is complete as a library member but needs SPIDAL Java optimization and

other packaging such as improved interface. The other four exist in application code but need to be

abstracted as general library members with software engineering and performance work.

4.9. SPIDAL Algorithms – Polar Remote Sensing Algorithms

Motivation: This extends earlier successful work on 2D image processing to a 3D formulation that

demonstrates how linking multiple images together will produce more reliable results from

constraint of smoothness between images. This motivates some of our SPIDAL optimization

algorithms.

We are investigating radar informatics and image processing to reconstruct 3D ice structure in

polar regions using novel analysis and processing of data from CReSIS radar systems. As it flies

along a flight path, the CReSIS radar data processing outputs a sequence of tomographic cross

sections or “slices” that characterize the returned radar signals at different orientations with

respect to the vehicle (Figure 4-13) [62]. These slices are 2D images, in polar coordinates, where

each pixel represents the energy return at the corresponding angle (with respect to the radar

device) and radius (termed range in radar nomenclature). However, these ranges and angles are

inferred by complex radar array processing, and can be noisy and imprecise when the desired

target signal is weak relative to the noise from electronics and interfering scatterers. We have been

developing optimization algorithms that integrate this noisy evidence with known constraints, like

smoothness of the ice structure, in order to produce more accurate tomographic slices and in turn

more accurate 3D reconstructions.

 51

In particular, we pose the problem of estimating true tomographic slices from noisy ones as a

Markov Random Field model. We applied similar MRF models in our earlier work on finding ice layer

boundaries in 2D radar echograms [63, 64]. We use Loopy Belief Propagation (LBP) and Markov

Chain Monte Carlo [65] to perform inference on these models. Although both MCMC and LBP are

approximate inference algorithms (since exact inference is NP-hard), they have proven to be

successful in a wide range of vision problems, and we find that they also work well for ours.

We have been testing the algorithm using a simulator created by CReSIS that lets us take a

ground-truth 3D bed structure, create synthetic tomographic images corresponding to that

structure with user-controllable noise parameters, and then run our algorithm to compare the

output to ground truth. We also compare to the initial simpler algorithm that CReSIS had

developed [62], which was based on a simple interpolation of the array processor. The array

processor uses a local optimization (single pixel) based on the maximum likelihood estimator.

Figure 4-14 shows sample results.

Figure 4-13: At each position along the flight track, the radar gives a cross-section view, parameterized by angle

and range, of the ice structure, which yields a set of 2D tomographic slices (right) along the flight path.

 52

As part of this effort, we are also investigating novel probabilistic techniques for understanding the

along-path cross sections of the radar signals. Figure 4-15 (left) shows an example of a cross

section generated by the radar processing, where the yellow line in the middle corresponds to the

bedrock signal that we would like to infer, but is weak and incomplete. As in this example, these

signals are noisy, with many other confusing lines with similar structure. Fortunately, external

information (like known prior properties of ice sheets and evidence from previous and subsequent

cross sections) can be used to resolve these difficulties. We pose the problem again in terms of

inference on a probabilistic graphical model and again apply techniques based on belief

propagation and MCMC. Figure 4-15 shows sample results.

Figure 4-14: Two sample results (one per row) for reconstructing bedrock in 3D, each showing (left) ground

truth, (center) prior algorithm based on a simple interpolation of maximum likelihood estimators, and (right)

our technique based on a Markov Random Field formulation. Each image represents a 3D depth map, along

with track and cross track dimensions on the x-axis and y-axis respectively, and depth coded as colors. Note

that the new algorithm at right more cleanly and faithfully reconstructs the ground truth at left.

 53

4.10. SPIDAL Algorithms – Nuclei Segmentation for Pathology Images

Motivation: High-throughput digital scanning

technologies, illustrated in Figure 4-16, have

turned pathology image data into an emerging

imaging modality to facilitate basic scientific

research and diagnosis at cellular level by

clinicians and biomedical researchers. With

quantitative analysis of pathology imaging

data, clinicians and researchers are able to

explore the morphological and functional

characteristics of biological systems as well as

gain insight on the underlying mechanisms of

normal tissue development and pathological

evolutions of distinct diseases. Quantitative

analyses of pathology images include

segmentation of micro-anatomic objects such as nuclei and extraction of image features such as

area, perimeter, and eccentricity [66]. Recently, 3D digital pathology was made possible through

slicing tissues into serial sections. By registering consecutive slices, segmenting and

reconstructing 3D micro-anatomic objects, it is possible to provide a 3D tissue view to explore

spatial relationships and patterns among micro-anatomic objects to support biomedical research

[67, 68]. For example, liver disease diagnosis and analytics rely on 3D structural features of blood

Figure 4-15: Sample visualization of cross section from CRESIS radar, (left) before our analysis and (right) after

localization of the bedrock layer. The x-axis corresponds to the cross track dimension and the y-axis corresponds

to reflectance time (which approximately correlates with depth).

2D WSI Slides 3D WSI Volume 3D Vessel Structure

Glass Slices Digital Scan WSI

Figure 4-16: 2D and 3D pathology image analysis

 54

vessels and their 3D spatial relationships with cells [69]. The information-loss-less 3D tissue view

with microscopy imaging volumes holds significant potential to enhance the study of both normal

and diseased processes, and represents a new frontend for digital pathology [70].

There are major research challenges to detect and quantify spatial clusters at extreme scale due to

the explosion of spatial data at micro-anatomic level and patient level. First, we will need to develop

or adapt spatial clustering methods that can support detection of spatial clusters of complex

shapes such as pseudopalisades. Second, we will need to make existing spatial clustering methods

highly scalable for spatial big data. Stony Brook University will collaborate with Indiana University

on developing scalable spatial clustering methods to support biomedical informatics problems

driven by pathology imaging and GIS oriented public health studies.

2D pathology image analysis: We have developed a

novel and robust segmentation method for 2D cells in

histopathologic images [71]. It consists of a new seed

detection algorithm and a newly designed cell contour

deformation method based on a sparse shape prior

guided variational level set framework. The cell seed

detection algorithm draws joint information of spatial

connectivity, distance constraint, image edge map,

and a shape-based voting result derived from

eigenvalue analysis of Hessian matrix across multiple

scales. Thus, it produces robust and accurate seed

detection results, especially for overlapped or

occluded cells. With cell contours initialized from

these seeds, we deform them within a variational level

set framework where we aim to minimize a new energy

functional that incorporates a shape term in a sparse

shape prior representation, an adaptive contour

occlusion penalty term, and a boundary term encouraging contours to converge to strong edges.

As a result, this approach is able to accommodate mutual occlusions and detect contours of

multiple intersected objects simultaneously. This work will be useful for investigations on the

influence of hypoxia and transcription factor expression on the orientation of tumor cells to assess

their direction of migration. To support scalable pathology image analysis, we develop a

MapReduce based framework to parallelize the image analysis pipelines, which includes multiple

steps: tiling of whole slide images, segmentation of objects for each title, boundary normalization

Figure 4-17: MapReduce-based pipeline for

nuclei segmentation

Di
st

rib
ut

ed
 F

ile
 S

ys
te

m

M
ap

Re
du

ce
 C

om
pu

tin
g

Fr
am

ew
or

k

Segmentation

Mask Images

Boundary Vectorization

Raw Polygons

Boundary Normalization

Normalized Polygons

Isolated Buffer Polygon Removal

Non-boundary
Polygons

Whole Slide Polygon Aggregation

Ti
lin

g
M

ap
Re

du
ce

Cleaned Polygons

Boundary
Polygons

Final Segmented
Polygons

Tiled Images

F1

F2

F3

F5 F4

F6 F7

F8

F9 F10

Tiling

Whole Slide Images

F11

 55

for boundary-crossing objects, and aggregation of final spatial objects such as nuclei. A workflow is

shown in Figure 4-17.

3D pathology image analysis: Additionally, we have made substantial progress on quantitative

reconstruction of 3D blood vessel structures with microscopy images of serial tissue sections [68,

70]. This work will be particularly useful for investigations of the spatial configurations and

signaling networks of tumor cells for creating a pro-angiogenic environment. Specifically, we have

developed a fully automated framework for 3D vessel reconstruction with a set of histological

whole-slide images of sequential tissue sections. We have managed to segment cells, vessels, and

lumens with a morphology reconstruction segmentation method applied to image channels

associated with different stains (i.e. Haematoxylin and DAB) decomposed with the color

deconvolution technique. All slides in the same series are registered with rigid registration at low

resolution and non-rigid registration on small image patches with a cubic B-Spline transform. We

associated the segmented vessel objects across all slides by local bi-slide vessel mapping and

global vessel structure association. Bi-slide vessel mapping generates sub-vessel structures

between adjacent slides with pre-defined one-to-one, one-to-two, one-to-none and none-to-one

association cases. In the global association, a Bayesian Maximum a Posteriori (MAP) framework

was adopted to recover the global vessel structures across all images with the posterior probability

modeled as a Markov chain. To group vessel cross-sections from different slices, we have used the

motion and shape information with Kanade-Lucas-Tomasi Feature Tracker, morphology features,

and distribution of Hausdorf distances. For better visualization, we uniformly sample vessel

boundary points based on arc length from each 2D slice and interpolate vessel boundaries

between the given slices. The isosurface of the analyzed vessel data volume is computed and

rendered to show the 3-D structure. The proposed 3D vessel analysis framework is generic and can

be readily applied to the analytics of other 3D biological entities of common interest in other

biomedical investigations.

 56

4.11. SPIDAL Algorithms – Spatial Querying Methods

Motivation: Over recent years the proliferation of mobile phones, Internet of Things projects and

ubiquitous sensory measurement

technologies have contributed to

generating multidimensional spatial data

at an unprecedented scale and rate.

Furthermore, collaborative spatial data

collection projects, such as

OpenStreetMap, have sped up the

process by many folds. Spatial data

collection, storage, querying and

analysis have become increasingly

important for scientific and business as

well as daily user applications. Analysis

of this plethora of spatial data involves

complex queries such as spatial joins or

spatial cross-matching, overlay of

multiple sets of spatial objects, spatial proximity computations between objects, and queries for

global spatial pattern discovery. In addition, support of high performance spatial queries on large

volumes of 3D spatial data is becoming increasingly relevant in various emerging scientific

applications, which are growing more data- and compute-intensive. In particular, 3D analytical

pathology imaging provides high potential to support image-based computer aided diagnosis, and

quantitative analysis of large-scale 3D pathology image volumes generates tremendous amounts

of spatially derived 3D micro-anatomic objects, such as 3D blood vessels and nuclei. Spatial

exploration, shown in Figure 4-18, of such massive 3D spatial data requires effective and efficient

querying methods. However, there are major challenges to support spatial queries: the “Big Data”

challenge due to explosion of spatial data, the complex spatial object representation, and the high

geometric computation complexity.

SparkGIS: We have developed a Spark-based spatial querying method, which ports spatial

querying libraries in Hadoop-GIS to run on Apache Spark framework [72]. SparkGIS removes HDFS

dependency and supports multiple types of data storage, such as MongoDB, HDFS, and local file

systems. By taking advantage of in-memory computing, SparkGIS significantly reduces I/O cost

and boosts query performance. SparkGIS also supports streamed data processing, and can

process data without waiting for all the data to be ready. SparkGIS supports common spatial

queries, including spatial joins, containment queries, and nearest neighbor queries. SparkGIS also

WINDOWCONTAINMENTPOINT

NEAREST NEIGHBORSPATIAL JOIN DENSITY

Figure 4-18: Example spatial queries for

digital pathology imaging

 57

supports plugins into the querying pipelines; for example, computing statistics on top of querying

results, and having them integrated into a single job. SparkGIS has been tested and deployed to

support evaluation of segmentation results for large-scale pathology image analysis.

Hadoop-GIS 3D: We have

developed a scalable and

efficient 3D spatial query

system for querying massive

3D spatial data based on

MapReduce [70] shown in

Figure 4-19. Our system

supports multiple types of

spatial queries on

MapReduce through 3D

spatial data partitioning, a

customizable 3D spatial

query engine, and implicit

parallel spatial query

execution. The system

utilizes multi-level spatial indexing to achieve efficient query processing, including global partition

indexing for data retrieval and on-demand local spatial indexing for spatial query processing. Our

prototype system supports two typical queries: 3D spatial joins and 3D K-nearest neighbor

queries. Our experiments demonstrate the high efficiency and scalability of the system to support

3D spatial queries on 3D micro-anatomic objects for analytical pathology imaging on MapReduce.

HDFS

3D Global Spatial Indexing

3D Spatial Query Processing

3D Spatial Query Engine

3D Cuboid
Spatial Indexing

3D Spatial
Queries

3D Data Partitioning

3D Input Data

Hadoop

Figure 4-19: Architecture Overview of Hadoop-GIS 3D

5	 Applications

5.1.	 Summary

5.2.	 Overview of Imaging
	 Applications

5.3.	 Enabled Applications –
	 Digital Pathology

5.4.	 Enabled Applications –
	 Public Health

5.5.	 Enabled Applications –
	 Biomolecular Simulation
	 Data Analysis

5.1.	 Summary

As explained in the introduction, our project

uses applications to motivate and test the

proposed building blocks. These applications

are described in this section and earlier in

Section 4 where application and algorithm

were intertwined. There are also applications

not funded by the project that are helpful for

the building blocks.

The project applications involve multiple

examples of image-based data, a general

point described in Section 5.2. These are

seen in remote sensing (KU) application of

Section 4.9 and the digital pathology (SB)

case in Section 5.3. There are interesting

synergies between geospatial information

GIS problems and the large 2D and 3D

images seen in pathology and this is

explained in public health (SB) application

in Section 5.4. The last subsection 5.5 in this

section describes the analysis of biomolecular

simulations (Utah, ASU, Rutgers). Section

4 describes graph algorithms identified by

Virginia Tech from their study of networks

and the CINET infrastructure [73, 74] which

is a resource we will use to disseminate

SPIDAL. IU and Rutgers have substantial

work on streaming applications discussed in

Section 7.3. Recently early HPC-ABDS work

at IU helped the online Twitter streaming data

repository Osome go live [75, 76]. Other IU

applications driving SPIDAL and MIDAS are

bioinformatics, financial informatics

and robotics.

 59

5.2. Overview of Imaging Applications

We motivate and test our building blocks through multiple applications of image processing and

computer vision. Although these applications are from very different areas, they share many of the

same core algorithms, allowing them to readily apply the same set of basic building blocks

described above. In particular:

Radar informatics. Our collaboration with CReSIS is developing algorithms for automated and

semi-automated analysis of large-scale data produced by radar sensing of the Earth’s polar

regions, as we described in section 4.8. Although these radar datasets are not images per se, they

are 2D and 3D data that can be readily visualized and represented as images (e.g. radar

echograms), which let us apply the same basic building blocks as with traditional visual-spectrum

image processing. For example, finding layers of ice in these echograms is an image segmentation

problem [77], which in turn can be formulated in terms of an energy minimization problem that

tries to fit simple models to the data [63, 64]. This energy minimization problem can be solved

using the various optimization algorithms described above, including the Viterbi algorithm, Loopy

Belief Propagation, and gradient descent.

Online social images. Computer vision is a very active research area, with most current research

focused on extracting semantic information from consumer-style images, like those uploaded to

photo sharing sites like Flickr and Facebook. Nearly all work in this area uses machine learning to

automatically train classifiers for various tasks of interest to consumers such as face detection

[78], image captioning [79], scene recognition [80], etc. For instance, Support Vector Machines

[81] and Convolutional Neural Networks [82] are among the most popular learning techniques, and

both are formulated in terms of energy minimization problems for which our optimization

algorithms may potentially be applied. After models are trained, the main computation challenge

with these datasets is their enormous quantity, typically millions to billions of images. However, the

images can be processed independently, thus taking advantage of the pleasingly parallel versions

of our building block implementations.

Pathology and remote sensing. In contrast to social images, pathology and remote sensing

images may be relatively few in quantity but enormous in size. For example, each pathology image

could have 10 billion pixels, and we may extract a million spatial objects and 100 million features

(dozens to 100 features per object) per image. We often tile the image into 4K x 4K tiles for

processing. While the tasks involved in processing these images are similar to social images (e.g.

segmentation, recognition, etc.), the huge image size requires developing buffering-based tiling to

 60

handle boundary-crossing objects. For each typical research study, we may have hundreds to

thousands of pathology images.

5.3. Enabled Applications – Digital Pathology

Overview: Digital pathology images scanned from human tissue specimens provide rich

information about morphological and functional characteristics of biological systems. Pathology

image analysis has high potential to provide diagnostic assistance, identify therapeutic targets,

and predict patient outcomes and therapeutic responses. It relies on both pathology image

analysis algorithms to extract spatial information from images and spatial querying methods to

explore spatial relationships or spatial patterns for micro-anatomic objects. Digital pathology

includes both 2D pathology imaging and 3D pathology imaging.

2D Digital pathology: 2D digital pathology images are generated through scanning human tissue

specimens with high resolution microscope scanners. Examination of high resolution whole slide

images enables more effective diagnosis, prognosis and prediction of cancer and other complex

diseases. Analytical pathology imaging provides quantitative methods to derive tremendous

amounts of spatial data about micro-anatomic objects [66]. Indeed, 2D pathology image analysis

has been extensively used to support biomedical research for various diseases [66, 83], which

produces 2D geometric objects representing cells, nuclei, and blood vessels, among other things.

3D Digital Pathology: 3D digital pathology works through slicing tissues into serial sections. By

registering consecutive slices, segmenting and reconstructing 3D micro-anatomic objects, it is

possible to provide a 3D tissue view to explore spatial relationships and patterns among micro-

anatomic objects to support biomedical research [67, 68]. For example, liver disease diagnosis and

analytics rely on 3D structural features of blood vessels and their 3D spatial relationships with cells

[69]. The information-lossless 3D tissue view with microscopy imaging volumes holds significant

potential in terms of studying processes for both healthy and ill samples, and represents a new

frontend for digital pathology [70].

Quantitative analysis of 2D digital pathology images relies on image segmentation and feature

extraction for 2D images. 2D analysis involves image registration, 2D segmentation, 3D object

association, 3D object interpolation, and 3D object representation and visualization. Once spatial

data is derived, spatial methods will be applied for spatial data exploration. Image analysis

methods such as nuclei segmentation and spatial querying methods such as spatial joins could be

parallelized through MapReduce or Spark.

 61

5.4. Enabled Applications – Public Health

Overview: GIS-oriented public health research has a strong focus on the locations of patients and

the agents of disease, and studies the spatial patterns and variations.

Integrating multiple spatial Big Data sources at fine spatial resolutions allows public health

researchers and health officials to adequately identify, analyze, and monitor health problems at the

community level. This will rely on high performance spatial querying methods on data integration

of multiple spatial data sources.

Integrative Spatial Big Data

Analytics for Public Health: GIS

oriented public health research,

illustrated in Figure 5-1, has a strong

focus on the locations of patients and

the agents of disease, and studies the

community and region level patterns

and variations, as well as the impact

of demographical, socio-economical,

and environmental factors on

diseases and human health. In the

past, due to limited accessibility of

health outcome data, public health

studies often were limited at macro-

scale levels such as county level, and may not allow public health researchers and health officials

to adequately identify, analyze, and monitor health problems at the community level. In this

research [84], we take advantage of New York State SPARCS open dataset, which collects patient

level detail on patient characteristics, diagnoses and treatments, services, and charges for each

hospital inpatient stay and outpatient treatment. Such data also provides street level location

information for each patient and healthcare facility site. Through geocoding and geo-mapping, we

provide spatial-oriented data analysis on New York state health records at the community level. We

study geospatial distributions of diseases in New York State at multiple spatial resolutions, and

provide multi-dimensional analysis by grouping patients into different groups. We discover

potential spatial clusters, hot spots or anomalies of disease distributions. We will also study

potential correlations between socio-economic determinants and diseases by integrating

additional spatial datasets, including socio-economic data and environment data (air quality

Locations and Maps

Our NeighborhoodPatients

Our Environments

Figure 5-1: Spatial Big Data Analysis for Public Health

 62

indices, pollen counts). Such large-scale spatial oriented analytics will rely on scalable spatial

querying and analytics methods on a grand scale.

Spatial data exploration includes density-based spatial patterns such as spatial clusters, hotspots,

and anomalies. In digital pathology, we will need to detect and quantify regions that are significant

and different from others with high scores according to density measures and statistical testing of

spatial objects. For example, for brain tumors studies, pseudopalisades appear as ring-enhancing

lesions where the rings have much higher concentration of cells than adjacent regions. For public

health studies, we use patient location to discover spatial clusters of diseases and potential

determinants associated with such clusters to monitor health problems at the community level.

There are major research challenges to support such spatial clustering at extreme scale due to the

explosion of spatial data at microanatomic level and patient level. First, we will need to develop or

adapt spatial clustering methods that can support detection of spatial clusters of complex shapes

such as pseudopalisades. Second, we will need to make existing spatial clustering methods highly

scalable for spatial Big Data. Stony Brook University will collaborate with Indiana University on

developing scalable spatial clustering methods to support biomedical informatics problems driven

by pathology imaging and GIS-oriented public health studies.

5.5. Enabled Applications - Biomolecular Simulation Data Analysis

Overview of Biomolecular Simulation Data Analysis

Molecular dynamics (MD) simulations have become an important computational tool to study

biomolecular systems [85-87], in particular membrane proteins and membrane system [88-91].

Analysis of molecular dynamics (MD) trajectories is becoming more and more challenging, with

simulation times routinely exceeding microseconds (with millions of frames) and increasing in size

(with millions of particles). The increase in data volume is driven by (1) improvements in hardware

(such as HPC systems with tens of thousands of cores and GPU accelerators) and algorithms [92-

95], (2) use of multi-copy enhanced sampling methods [94, 96-99], and (3) new efficient

representations of the physical interactions such as coarse-grained models, which allows

simulation of larger systems and at longer time steps [100, 101]. Here we explore a number of

challenging analysis tasks with the goal to establish a better understanding for the underlying

problem classes and with a view towards prototyping SPIDAL-based algorithms.

 63

Hausdorff Calculation for Path Similarity Analysis

Path Similarity Analysis (PSA) was

introduced by Seyler et al. [102] in order

to quantify the similarity between two

arbitrary MD trajectories (which are

considered geometrically as paths in

the high-dimensional configuration

space) and extract the atomic-scale

determinants responsible for their

differences. Given two trajectories with

M1 and M2 frames, PSA uses the

Hausdorff metric δij [103] to compute a

distance between two paths. The

Hausdorff metric in turn requires the

calculation of a distance dij between all

frames 1 ≤ i ≤ M1 and 1 ≤ j ≤ M2. The

distance function is typically a metric

such as the Euclidean metric in the 3N-dimensional configuration space, where N is the number of

atoms. In typical applications, N is on the order of 103 to 104, and M1 and M2 can be anywhere

between 102 and 107. Furthermore, PSA is typically applied to an ensemble of trajectories, often

containing hundreds of trajectories (n > 100). The output of PSA is a matrix of Hausdorff distances

between all trajectories. By clustering the distance matrix, similar relationships between

trajectories can be revealed [102].

At its core, the Hausdorff distance calculation for an ensemble of trajectories is an all-pairs

problem. We implemented the PSA algorithm (done in MDAnalysis [102, 104]) into the RADICAL-

Pilot framework by utilizing the “all pairs” execution pattern provided by Ensemble Toolkit [105].

The RADICAL-Pilot framework’s implementation of the PSA algorithm calculates the distances in

smaller independent segments. Each segment of calculations is executed as a single task. By

employing the task level parallelism capabilities of the RADICAL-Pilot framework the PSA

algorithm can be executed in an efficient and scalable manner. Benchmarks with three different

trajectory sizes are shown in figure 5-2.

The next step is to implement the Hausdorff distance algorithm with Yarn/Spark and understand

the benefits of the in-memory execution that Spark provides. We will continue with the integration

of the different PSA metrics provided by MDAnalysis. Generally, applications that have similar

Figure 5-2: Time to Completion of a Short, Medium and Large

trajectory PSA Analysis on XSEDE Stampede. As Benchmark

is the time to completion by the PSA algorithm

implementation in MDAnalysis.

 64

properties partially or in total with the all-pairs problem can benefit from the RADICAL-Pilot

framework approach.

Topological analysis of lipid membranes

Biological membranes are lipid bilayers with distinct inner and outer surfaces that are formed by

lipid monolayers (“leaflets”). Movement of lipids between leaflets or changes in the membrane

topology such as the merging of leaflets during a fusion event between two cells or vesicles is

difficult to detect in simulations [106]. Understanding the underlying physics is important for

biological transport processes in the synapses [107] and the Golgi apparatus [108, 109] but might

also be of interest for the development of drug delivery vehicles [110].

The LeafletFinder algorithm in

MDAnalysis[104] is a graph-based

algorithm that assigns individual lipids

to topologically distinct leaflets. In

short, the algorithm proceeds in two

steps. In the first step, a nearest

neighbor problem has to be solved in

order to find lipid headgroups within a

given cutoff. From the resulting

adjacency matrix, a graph is

constructed. In a second step, the

largest connected subgraphs in the

graph are found and sorted by size.

With an appropriately chosen cutoff,

each subgraph corresponds to a

topologically distinct leaflet. The current implementation of LeafletFinder is slow for medium sized

systems (> 1000 lipids). It is also an interesting test case because of two distinct algorithmic

steps, which are likely to exhibit different scaling and optimization requirements. There are two

different implementations of LeafletFinder in the RADICAL-Pilot framework. The first

implementation utilized task level parallelism. The adjacency matrix is calculated using the “all-

pairs” pattern by a fixed number of independent tasks concurrently. The second step of the

algorithm is executed as a single task after the adjacency matrix is calculated. The second

implementation used Pilot-Spark.

Both implementations, the task level parallel and Spark, were tested over a large system (with

more than 100000 lipids). The results obtained in Figure 5-3 show that the execution of the

Figure 5-3: Time to completion of LeafletFinder algorithm with

RADICAL-Pilot and RADICAL-Pilot Spark on Comet for a

system of 145000 atoms.

 65

specific algorithm could scale and finish quite quickly. Interestingly, the Spark implementation was

not faster than the vanilla, strengthening the opinion that the two algorithmic steps will have

different optimization requirements. The test was executed on XSEDE Comet utilizing up to 384

cores (up to 16 nodes). Currently, we are investigating what type of optimizations are possible to

do in the Spark implementation of the algorithm and what type of processing is needed in each

step of the algorithm.

CPPTRAJ Amber Data Analysis

CPPTRAJ is the main program in the Amber molecular dynamics software package for processing

and analyzing various data output from MD simulations. We have recently made several additions

to the code which have greatly improved both the speed and the utility of CPPTRAJ.

Due to massive increases in processor power and the widespread use of enhanced sampling

methods that generate ensembles of trajectories, it is now commonplace for tens to hundreds of

GB of MD data to be generated in a single run. Analysis tools must be able to keep up with this

deluge of data. For the past few years, CPPTRAJ has had the ability to handle large amounts of

data via two levels of parallelism: processing of ensembles of trajectories with MPI, where each

thread is responsible for processing a single trajectory in the ensemble (across-ensemble

parallelism), and OpenMP-parallelization of time-consuming calculations. CPPTRAJ now has a

third level of parallelism in which trajectory reads/writes can also be divided among MPI threads

(across-trajectory parallelism). In addition, all three levels of parallelism can be active at the same

time (hybrid MPI/OpenMP). For example, say you have a small high-performance computing

cluster with 16 available nodes, and each node has 16 cores. Given an 8-trajectory ensemble,

CPPTRAJ could make use of all available resources; the processing of each ensemble trajectory

could be divided among 2 nodes each, and calculations on each frame of the trajectories could

Figure 5-4: CPPTRAJ Levels of Parallelism

 66

utilize all 16 cores of each node. These enhancements allow us to better utilize resources of HPC

clusters, as well as process extremely large data ets in a much shorter amount of time. In addition,

the scaling of across-trajectory parallelism is quite good since no communication is required

between threads during processing. We are also working with the Jha lab to enable use of the

Radical Pilot framework for asynchronous data processing in addition to investigating the use of

the Hadoop-like capabilities and SPIDAL tools.

CPPTraj’s levels of parallelism, as

mentioned above, are depicted in figure

5-4. CPPTraj offers a balanced across-

trajectory division to the MPI threads.

Employing the task level parallelism

offered by RADICAL-Pilot, we can

achieve a more elaborate data

partitioning. We are investigating the

scenario (figure 5-5) where the data are

partitioned and each partition is now

executed through a Compute Unit. The

Compute Unit can be a CPPTraj executable that may or may not use the levels of parallelism

already provided. Based on experimental results, over different types and sizes of data, we will be

able to create a heuristic which will allow us to decide which method of analysis is better for a given

dataset.

We have also been improving the speed of very time-consuming calculations via GPU acceleration.

The 'closest' action, which retains a specific number of solvent molecules around a specified region

of solute, typically requires a large amount of distance calculations. By offloading the distance

calculations to the GPU (using CUDA), we have been able to obtain several orders of magnitude

speedup over the single threaded code, and an order of magnitude speedup over the OpenMP

code. In addition, the CUDA code can be used with MPI trajectory parallelization for even greater

overall speedup.

We are looking to the future of MD data not just in terms of increasing trajectory sizes, but

increasing system sizes as well. Typical system sizes are now tens of thousands of atoms, and it is

not uncommon to see systems of hundreds of thousands of atoms or more. Recent improvements

to topology file parsing and internal handling of topology data in CPPTRAJ have allowed us to

successfully process a chromatin fiber system consisting of over 11.5 million atoms.

Figure 5-5: RADICAL-Pilot CPPTraj

Analysis scenario

 67

Finally, there have been some improvements made to the clustering code in CPPTRAJ as well

(GitHub version). Users now have the option to prevent storing the pairwise cache in memory and

instead calculate pairwise distances on the fly. While this option is slower, it does greatly increase

the possible size of datasets that can be clustered. Users can also specify that the same pairwise

distance matrix be used for several consecutive clustering instances. This means that pairwise

distances only need to be calculated once, which can be quite useful for assessing clustering

results using different input parameters (e.g. epsilon, number of clusters, etc.) in a more time-

efficient manner.

Much of this code was released in April 2016 with Amber16 and the remaining code has been made

available in the GitHub version. New features are described at [111].

6	 Community
	 Engagement

6.1.	 REU Programs

6.2.	 Making MIDAS and SPIDAL
	 Available to Community

6.3.	 Working with Apache:
	 Harp and Heron

6.1.	 REU Programs

We have obtained supplements and offered

REU programs for the SPIDAL institutions in

the first two years and intend to continue this

[112].

6.2.	 Making MIDAS and SPIDAL
	 Available to the Community

SPIDAL-MIDAS: We will employ a three

step approach to make SPIDAL-MIDAS

developments available to the community.

These activities span community

engagement, deployment and possible

integration.

•	Engagement: BoF at SC’16 and SC’17

and Workshop/tutorial at XSEDE’17 and

XSEDE’18.

•	Deployment: Work with TACC, NCSA,

SDSC, PSC to develop and deploy on

XSEDE and Blue Waters resources.

•	Integration: Work with other DIBBS and

BIGDATA proposals, especially SDSC/

OSU led project “Scalable Middleware for

Managing and Processing Big Data on

Next Generation HPC Systems” [113].

 69

Cloudmesh: We are expending efforts to make Cloudmesh more accessible to the community.

Cloudmesh has been available as an open-source project in Github [31] and pypi. In April 2016 it

was downloaded 287 times. However, our biggest success is that Cloudmesh is now used and

extended based on the needs of the NSF-sponsored Comet supercomputer. It also shows that

Cloudmesh is uniquely positioned not only to support well-established cloud frameworks, but also

allows the support of state-of-the-art academic virtual cluster efforts as brought forward by

Comet. In addition, we are presenting a paper and a tutorial showcasing our efforts at XSEDE2016.

All of the Cloudmesh software is available through open source. We include in [31] the list of

relevant repositories hosted on Github or links to our software hosted elsewhere:

SPIDAL Examples: Along with SPIDAL’s core algorithms comes a separate examples repository

with code, data, and scripts to help a user get started quickly. These are available in [114]. The

examples are designed to be able to deploy on a cluster or cloud VMs from scratch. Currently,

these are based on Ubuntu – (16.04 or 14.04 preferred) – Linux systems. To test on other systems

such as RHEL or CentOS, the scripts need to be slightly modified.

6.3. Working with Apache: Harp and Heron

The Apache Software Foundation (ASF) is a community-driven open source organization for

hosting projects. To become a successful ASF member, it is important to build a vibrant

community around your work. Most projects entering into Apache have previously been available

as open source versions in places such as Github. Upon achieving a certain level of community

support and publicity they can be introduced under the Apache umbrella for better visibility and a

wider pool of contributors. This way when a project joins, it will have a substantial community and a

process that it can use to build upon in the future.

For the Harp initiative, the first goal is to make it open to the public through Github. Then after

attracting sufficient interest from the development community of HPC and Big Data Ecosystems, it

can be moved to Apache. Becoming a successful open source project requires strategic

partnerships between interested parties. Also a more community-driven development

methodology has to be introduced. This means discussing the architectural and design issues in

public, lowering the entry requirements for new developers, and making it easier for users to adopt

the Harp software. After entering ASF, Harp can follow the Apache Incubation process to become a

top-level project or a sub-project under a larger effort like Hadoop, depending on the community

requirements.

 70

Twitter Heron is an open source distributed stream processing engine available in Github. It is in

the early community building phase and will be introduced to Apache Software Foundation in the

future. We are engaged with the Heron development team to enhance its capabilities to work

seamlessly and efficiently in HPC environments. The improvements are directly going to the main

development branch of Heron.

7	 Futures

7.1.	 Integrating SPIDAL and MIDAS
	 as Coherent Building Blocks

7.2.	 Orchestration and Workflow

7.3.	 Streaming

7.1.	 Integrating SPIDAL and MIDAS as
	 Coherent Building Blocks

We have made significant progress in

both the overall structure of this project:

Convergence Diamonds and Ogres, HPC-

ABDS and the Architecture of Scalable Big

Data Machine Learning Library. Further

both MIDAS and SPIDAL have made good

progress with several building blocks: SPIDAL

Java, Harp, Pilot Jobs/Data and the over 20

scalable library members reported in Section

4. However, these building blocks do not

exist in the form of a single integrated and

coherent product. For example, there does

not exist an integrated clean SPIDAL library

or a MIDAS middleware which either an

application developer or an XSEDE resource

provider can download. There is a non-trivial

effort in integrating the building blocks so

as to create a library or middleware product,

which will provide a capability that is greater

than the simple sum of the blocks. Basic

software engineering is required to integrate

and package the building blocks. We have

also gathered further usability requirements

from users of Apache libraries that one needs

carefully designed uniform programmatic and

user interfaces. We are currently looking

at approaches to this which could include

using Apache ourselves as described in

Section 6.3 but we need a pulse effort at the

project level to push our software to

the needed usability levels.

72

7.2. Orchestration and Workflow

We have been exploring Apache Beam linked to either Heron, Flink or Spark as a dataflow API. The

universal data flow API provided by Beam can be translated to dataflow programs executed by

Flink, Spark and Heron grant users the flexibility to quickly migrate the programs written using

Beam API between different Big Data runtime environments. Furthermore the Beam API provides a

Streaming and Batch API with the same constructs, making the switch between streaming and

batch processing seamless. Beam is an open source version of Google Cloud Dataflow. This is level

17 in HPC-ABDS. Orchestration is needed to link multiple SPIDAL and MIDAS components together

and is essential in many applications.

7.3. Streaming

Motivation: The analysis of data streaming from online instruments, large-scale simulations, and

distributed sensors now enables near real-time steering and control of complex systems such as

scientific experiments, transportation systems, and urban environments. Bringing readily

available, easy-to-program distributed streaming systems to HPC environments can help scientific

discoveries in diverse application areas.

We are examining both modern streaming technology and streaming applications to see how they

could use and extend the SPIDAL and MIDAS framework. For example, by considering the

architecture and potential of the Heron Distributed Stream Processing Framework (DSPF), we

identified some areas where we can improve Heron to support HPC applications in the spirit of

HPC-ABDS.

From our experiences we see some immediate requirements from streaming applications,

considering application areas of real time applications, parallel applications and large data

applications. Here we summarize some of these requirements:

Real time applications

We explored this in a community workshop [115]. A real time application needs to process the data

within a given QoS. The main requirements for these applications have to do with the scheduling of

streaming tasks and communications among them. The areas of interest include [27, 116-119]:

1. Use high performance interconnects (RDMA) for low latency high throughput data

processing

 73

2. Scheduling for guaranteed QoS

3. Introduce efficient communication algorithms to further reduce the communication costs.

These algorithms are especially relevant in collective communication operations

4. Explore shared memory communications within nodes

Parallel applications

Some applications require parallel computations in order to reduce the processing time for a single

stream of data. In fact, this is one approach to achieving real-time response when cloud computing

tasks exceed the capacity of a sequential processor to complete in the required time interval. Such

a parallel computation requires synchronization and special communication APIs for achieving

best performance. As in deep learning, GPU processing may be needed.

Large data processing applications

There is a class of scientific streaming applications needing to process very large data. For

example, these can be very large images in the range of Gigabytes. Support for such large data is

challenging due to in-memory data processing adopted by the stream engines. We need

mechanisms to process large files while keeping parts of the data in permanent storage. For

different types of those applications described above, we can improve the data processing APIs of

streaming engines and introduce application libraries and benchmarks.

Data processing APIs

Add support for scientific data types such as images occurring in astronomy and remote sensing.

Explore integration with Apache Beam to support complete scientific workflows. The Java-based

APIs in Heron are suitable for data processing applications but can face difficulties in scientific

applications, especially when trying to integrate with already available libraries. The APIs can be

implemented in C++ for fully integrating with HPC domain specific applications and libraries.

Application libraries & Benchmarks

Identify the common streaming applications for scientific communities and create libraries. A

comprehensive set of benchmarks for streaming applications is useful for understanding the

characteristics of streaming application performance.

8	 Team & Publications

Geoffrey Fox
Professor of
Informatics and
Computing, and
Physics

Judy Qiu
Associate
Professor of
Computer
Science

Gregor von
Laszewski
Assistant
Director, CGL and
DSC, School of
Informatics and
Computing

David Crandall
Associate
Professor, School
of Informatics
and Computing

Supun
Kamburu-
gamuve
PhD Candidate

Saliya
Ekanayake
PhD Candidate

Pulasti Wick-
ramasinghe
PhD Candidate

Bingjing Zhang
PhD Candidate

Not Pictured:

Bo Peng, Visiting Faculty

Mingze Xu, PhD Candidate

Indiana University

Rutgers University

Shantenu Jha
Associate
Professor in
ECE Conducts
Research

Andre Luckow
Post-Doctoral
Researcher,
RADICAL Group

Alessio Angius
RADICAL Group
Member

Sean Olejar
Undergraduate
Student under
Dr. Jha

Ioannis
Paraskevakos
PhD Student,
RADICAL Group
Member

Anil Kumar S.
Vullikanti
Associate
Professor, Dept.
of Computer
Science and
Biocomplexity
Institute

Maleq Khan
Research
Scientist
at Virginia
Bioinformatics
Institute

Madhav Marathe
Director, Network
Dynamics and
Simulation
Science Lab,
Biocomplexity
Institute

Virginia Tech

John Paden
Associate
Scientist, Center
for Remote
Sensing of Ice
Sheets

University of Kansas

Not Pictured:

Teresa Stumpf, MS EE 2015 (now at John Hopkins Applied Physics Lab)

Sean Holloway, REU 2015 (now MS EE at Columbia University)

Sravya Athinarapu, MS EE 2017

Jordan Sprick, REU 2016

Fusheng Wang
Assistant
Professor Dept. of
Biomedical Info-
rmatics and Dept.
of Computer
Science

Jun Kong
Assistant
Professor, Emory
University

Stony Brook University

Not Pictured:

Pengyue Zhang, PhD Student

Yanhui Liang, PhD Student

Furqan Baig, PhD Student

Hoang Vo, PhD Student

Xin Chen, PhD Student

Arizona State University

Oliver Beckstein
Leader, Computa-
tional Biophysics
Research Group,
Center for Biolog-
ical Physics and
Dept. of Physics

University of Utah

Not Pictured:

Thomas Cheatham, Professor of Medicinal Chemistry and
Director of Research Computing

Daniel Roe

Rodrigo Galindo-Murillo

75

List of Publications

I.	 Saliya Ekanayake, Supun Kamburugamuve and Geoffrey Fox, “SPIDAL: High Performance Data Analytics with
Java and MPI on Large Multicore HPC Clusters”, Technical Report January 5 2016, Proceedings of 24th High
Performance Computing Symposium (HPC 2016), April 3-6, 2016, Pasadena, CA, USA as part of the SCS Spring
Simulation Multi-Conference (SpringSim‘16).

II.	 Supun Kamburugamuve, Saliya Ekanayake, Milinda Pathirage, Geoffrey Fox, “Towards High Performance Processing
of Streaming Data in Large Data Centers” Technical Report January 26 2016, to be published in proceedings of
HPBDC 2016 IEEE International Workshop on High-Performance Big Data Computing in conjunction with The 30th
IEEE International Parallel and Distributed Processing Symposium (IPDPS 2016), Chicago Hyatt Regency, Chicago,
Illinois USA, Friday, May 27th, 2016.

III.	 Bingjing Zhang, Peng Bo and Judy Qiu, “Model-Centric Computation Abstractions in Machine Learning
Applications”, Proceedings of the 3rd Workshop o Algorithms and Systems for MapReduce and Beyond
(BeyondMR2016), held in conjunction with SIGMOD 2016, San Francisco, California, July 1, 2016.

IV.	 Bingjing Zhang, Bo Peng, Judy Qiu, High Performance LDA through Collective Model Communication Optimization,
Proceedings of International Conference on Computational Science (ICCS2016) conference, San Diego, California,
June 6-8, 2016.

V.	 Ablimit Aji and Fusheng Wang, Challenges and Approaches in Spatial Big Data Management. Big Data: Storage,
Sharing, and Security (3S) Fei Hu. Auerbach Publications. 2016. ISBN: 978-1-4987-3486-8.

VI.	 Cong Xie, Wen Zhong, Jun Kong, Wei Xu, Klaus Mueller, and Fusheng Wang, IEVQ: An Iterative Example-based Visual
Query for Pathology Database. Proceedings of the Second International Workshop on Data Management and
Analytics for Medicine and Healthcare. 2016.

VII.	 Hoang Vo, Jun Kong, Dejun Teng, Yanhui Liang, Ablimit Aji, George Teodoro and Fusheng Wang. A MapReduce Based
High Performance Whole Slide Image Analysis Framework in the Cloud. Proceedings of the Second International
Workshop on Data Management and Analytics for Medicine and Healthcare. 2016.

VIII.	 Jun Kong, Pengyue Zhang, Yanhui Liang, George Teodorou, Daniel J. Brat and Fusheng Wang, Robust Cell
Segmentation for Histological Images of Glioblastoma. International Symposium on Biomedical Imaging (ISBI
2016).

IX.	 Xin Chen and Fusheng Wang. Integrative Spatial Data Analytics for Public Health Studies of New York State.
Proceedings of AMIA 2016 Annual Symposium.

X.	 Alam M, Khan M, Vullikanti A, Marathe M, An Efficient and Scalable Algorithmic Method for Generating Large–Scale
Random Graphs. In proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis. Salt Lake City, UT, November 13-18, 2016.

XI.	 Andre Luckow, Ioannis Paraskevakos, George Chantzialexiou, Shantenu Jha, Hadoop on HPC: Integrating Hadoop
and Pilot-based Dynamic Resource Management, Workshop on High-Performance Big Data Computing, 2016. [link]
[bib]: hadoop-on-hpc http://arxiv.org/abs/1602.00345.

XII.	 Yanhui Liang, Jun Kong, Yangyang Zhu and Fusheng Wang, Three-Dimensional Data Analytics for Pathology
Imaging. First International Workshop on Data Management and Analytics for Medicine and Healthcare (DMAH
2015).

XIII.	 Arifuzzaman S, Khan M, Marathe M, A Space-efficient Parallel Algorithm for Counting Exact Triangles in Massive
Networks. In Proceedings of the 17th IEEE International Conference on High Performance Computing and
Communications. New York City, NY, August 24-26, 2015.

XIV.	 Bing Zhang, Yang Ruan, and Judy Qiu, Harp: Collective Communication on Hadoop, Proceedings of IEEE
International Conference on Cloud Computing Engineering (IC2E), Tempe, Arizona, March 9-12, 2015.

XV.	 Yanhui Liang, Fusheng Wang, Darren Treanor, Derek Magee, George Teodoro, Yangyang Zhu and Jun Kong, Whole-
Slide Histological Image Analysis for 3D Primary Vessel Reconstruction. The 18th International Conference on
Medical Image Computing and Computer Assisted Intervention (MICCAI 2015). Munich, Germany.

76

77

XVI.	 D. L. Dotson, S. L. Seyler, M. Linke, R. J. Gowers, and O. Beckstein. datreant: persistent, Python trees for
heterogeneous data. In S. Benthall and S. Rostrup, editors, Proceedings of the 15th Python in Science Conference,
pages 51 – 56, Austin, TX, 2016. URL http://datreant.org. http://conference.scipy.org/proceedings/scipy2016/
david_dotson.html

XVII.	 R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler, D. L. Dotson, J. Domanski, S. Buchoux, I. M.
Kenney, and O. Beckstein. MDAnalysis: A Python package for the rapid analysis of molecular dynamics simulations.
In S. Benthall and S. Rostrup, editors, Proceedings of the 15th Python in Science Conference, pages 102 – 109,
Austin, TX, 2016. SciPy. URL http://mdanalysis.org. http://conference.scipy.org/proceedings/scipy2016/oliver_
beckstein.html

XVIII.	 I. M. Kenney, O. Beckstein, and B. I. Iorga. Prediction of cyclohexane-water distribution coefficients for the SAMPL5
data set using molecular dynamics simulations with the OPLS-AA force field. J Comput Aided Mol Des, e-pub, 2016.
doi: 10.1007/s10822-016-9949-5.

9	 References

[1]	 Geoffrey L. House, Saliya Ekanayake, Yang Ruan, Ursel Schütte, Wittaya Kaonongbua,

	 Geoffrey Fox, Yuzhen Ye, and James D. Bever, Phylogenetically structured differences in rRNA

	 gene sequence variation among species of arbuscular mycorrhizal fungi and their

	 implications for sequence clustering”, , , June 3 2016. Applied and Environmental

	 Microbiology (American Society of Microbiology), June 3, 2016. DOI: http://doi.org/10.1128/

	 AEM.00816-16

[2]	 Yang Ruan, Saliya Ekanayake, Mina Rho, Haixu Tang, Seung-Hee Bae, Judy Qiu, and

	 Geoffrey Fox, DACIDR: deterministic annealed clustering with interpolative dimension

	 reduction using a large collection of 16S rRNA sequences, in Proceedings of the ACM

	 Conference on Bioinformatics, Computational Biology and Biomedicine. 2012, ACM.

	 Orlando, Florida. pages. 329-336. http://grids.ucs.indiana.edu/ptliupages/publications/

	 DACIDR_camera_ready_v0.3.pdf. DOI: 10.1145/2382936.2382978.

[3]	 Yang Ruan, G.L.H., Saliya Ekanayake, Ursel Schütte, James D. Bever, Haixu Tang, Geoffrey

	 Fox, Integration of Clustering and Multidimensional Scaling to Determine Phylogenetic

	 Trees as Spherical Phylograms Visualized in 3 Dimensions, in C4Bio 2014 of IEEE/ACM

	 CCGrid 2014. May 26-29, 2014, 2014. Chicago, USA. http://salsahpc.indiana.edu/millionseq/

	 fungi2_phylo/reference/Integration%20of%20Clustering%20and%20

	 Multidimensional%20Scaling%20to%20Determine%20Phylogenetic%20Trees%20as%20

	 Spherical%20Phylograms%20Visualized%20in%203%20Dimensions.pdf.

[4]	 Maksudul Alam and Maleq Khan, Parallel Algorithms for Generating Random Networks with

	 Given Degree Sequences. International Journal of Parallel Programming,, 2015. http://arxiv.

	 org/abs/1406.1215

[5]	 Shantenu Jha, Judy Qiu, Andre Luckow, Pradeep Mantha, and Geoffrey C.Fox, A Tale of Two

	 Data-Intensive Paradigms: Applications, Abstractions, and Architectures, in Big Data

	 (BigData Congress), 2014 IEEE International Congress on. June 27 2014-July 2 2014, 2014.

	 pages. 645-652. http://arxiv.org/pdf/1403.1528. DOI: 10.1109/BigData.Congress.2014.137.

http://doi.org/10.1128/AEM.00816-16
http://doi.org/10.1128/
AEM.00816-16
http://grids.ucs.indiana.edu/ptliupages/publications/DACIDR_camera_ready_v0.3.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/DACIDR_camera_ready_v0.3.pd
http://salsahpc.indiana.edu/millionseq/fungi2_phylo/reference/Integration%20of%20Clustering%20and%20Multidimensional%20Scaling%20to%20Determine%20Phylogenetic%20Trees%20as%20
Spherical%20Phylograms%20Visualized%20in%203%20Dimensions.pdf
http://salsahpc.indiana.edu/millionseq/fungi2_phylo/reference/Integration%20of%20Clustering%20and%20Multidimensional%20Scaling%20to%20Determine%20Phylogenetic%20Trees%20as%20
Spherical%20Phylograms%20Visualized%20in%203%20Dimensions.pdf
http://salsahpc.indiana.edu/millionseq/fungi2_phylo/reference/Integration%20of%20Clustering%20and%20Multidimensional%20Scaling%20to%20Determine%20Phylogenetic%20Trees%20as%20
Spherical%20Phylograms%20Visualized%20in%203%20Dimensions.pdf
http://salsahpc.indiana.edu/millionseq/fungi2_phylo/reference/Integration%20of%20Clustering%20and%20Multidimensional%20Scaling%20to%20Determine%20Phylogenetic%20Trees%20as%20
Spherical%20Phylograms%20Visualized%20in%203%20Dimensions.pdf
http://arxiv.org/abs/1406.1215

http://arxiv.org/abs/1406.1215

http://arxiv.org/pdf/1403.1528

 79

[6] Geoffrey Fox, Judy Qiu, Shantenu Jha, Supun Kamburugamuve, and Andre Luckow, HPC-

ABDS High Performance Computing Enhanced Apache Big Data Stack, in Invited talk at 2nd

International Workshop on Scalable Computing For Real-Time Big Data Applications

(SCRAMBL'15) at.CCGrid2015, the 15th IEEE/ACM International Symposium on Cluster,

Cloud and Grid Computing. 2015, IEEE. Shenzhen, Guangdong, China.

http://dsc.soic.indiana.edu/publications/HPC-ABDSDescribedv2.pdf.

[7] HPC-ABDS Kaleidoscope of over 350 Apache Big Data Stack and HPC Tecnologies.

[accessed 2016 January 20]; Available from: http://hpc-abds.org/kaleidoscope/.

[8] Geoffrey Fox, Judy Qiu, and Shantenu Jha, High Performance High Functionality Big Data

Software Stack, in Big Data and Extreme-scale Computing (BDEC). 2014. Fukuoka, Japan.

http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepapers/fox.pdf.

[9] Geoffrey C.Fox, Shantenu Jha, Judy Qiu, and Andre Luckow, Ogres: A Systematic Approach

to Big Data Benchmarks, in Big Data and Extreme-scale Computing (BDEC) January 29-30,

2015. Barcelona.

http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepapers/OgreFacet

s.pdf.

[10] Geoffrey C. Fox, Shantenu Jha, Judy Qiu, and Andre Luckow, Towards an Understanding of

Facets and Exemplars of Big Data Applications, in 20 Years of Beowulf: Workshop to Honor

Thomas Sterling's 65th Birthday April 13, 2015. Annapolis

http://dsc.soic.indiana.edu/publications/OgrePaperv11.pdf. DOI:

http://dx.doi.org/10.1145/2737909.2737912.

[11] Geoffrey C. FOX , Shantenu JHA, Judy QIU, Saliya EKANAYAKE, and Andre LUCKOW,

Towards a Comprehensive Set of Big Data Benchmarks, Chapter in Big Data and High

Performance Computing, Lucio Grandinetti and Gerhard Joubert, Editors. 2015, IOS.

http://grids.ucs.indiana.edu/ptliupages/publications/OgreFacetsv9.pdf. DOI: 10.3233/978-

1-61499-583-8-47.

[12] Geoffrey Fox, Judy Qiu, Shantenu Jha, Saliya Ekanayake, and Supun Kamburugamuve, Big

Data, Simulations and HPC Convergence. January 30, 2016.

http://dsc.soic.indiana.edu/publications/HPCBigDataConvergence.pdf. DOI:

https://www.researchgate.net/publication/301231174_Big_Data_Simulations_and_HPC_Co

nvergence.

[13] Geoffrey Fox, Judy Qiu, Shantenu Jha, Saliya Ekanayake, and Supun Kamburugamuve, White

Paper: Big Data, Simulations and HPC Convergence, in BDEC Frankfurt workshop. June 16,

2016. Frankfurt Airport, Germany.

http://dsc.soic.indiana.edu/publications/HPC-ABDSDescribedv2.pdf
http://hpc-abds.org/kaleidoscope/
http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepapers/fox.pdf
http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepapers/OgreFacets.pdf
http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepapers/OgreFacets.pdf
http://dsc.soic.indiana.edu/publications/OgrePaperv11.pdf
http://dx.doi.org/10.1145/2737909.2737912
http://grids.ucs.indiana.edu/ptliupages/publications/OgreFacetsv9.pdf
http://dsc.soic.indiana.edu/publications/HPCBigDataConvergence.pdf
https://www.researchgate.net/publication/301231174_Big_Data_Simulations_and_HPC_Convergence
https://www.researchgate.net/publication/301231174_Big_Data_Simulations_and_HPC_Convergence

 80

http://dsc.soic.indiana.edu/publications/HPCBigDataConvergence.Summary_IURutgers.pd

f. DOI: http://dx.doi.org/10.13140/RG.2.1.3112.2800.

[14] Digital Science Center. SPIDAL Home Page: CIF21 DIBBs: Middleware and High Performance

Analytics Libraries for Scalable Data Science - Scalable Parallel Interoperable Data Analytics

Library. 2015 [accessed 2015 June 21]; Available from: http://spidal.org/index.html.

[15] Indiana University News Release: IU computer scientists receive $5 million to empower U.S.

researchers with new data analysis tools. 2014 October 28 [accessed 2016 July 7]; Available

from: http://news.indiana.edu/releases/iu/2014/10/big-data-dibbs-grant.shtml.

[16] NSF Award Announcement: Abstract #1443054: CIF21 DIBBs: Middleware and High

Performance Analytics Libraries for Scalable Data Science. 2014 [accessed 2016 July 7];

Available from: http://www.nsf.gov/awardsearch/showAward?AWD_ID=1443054.

[17] Geoffrey Fox and Wo Chang, Big Data Use Cases and Requirements, in 1st Big Data

Interoperability Framework Workshop: Building Robust Big Data Ecosystem ISO/IEC JTC 1

Study Group on Big Data March 18 - 21, 2014. San Diego Supercomputer Center, San Diego.

http://grids.ucs.indiana.edu/ptliupages/publications/NISTUseCase.pdf.

[18] Judy Qiu, Shantenu Jha, Andre Luckow, and Geoffrey C.Fox, Towards HPC-ABDS: An Initial

High-Performance Big Data Stack, in Building Robust Big Data Ecosystem ISO/IEC JTC 1

Study Group on Big Data. March 18-21, 2014. San Diego Supercomputer Center, San Diego.

http://grids.ucs.indiana.edu/ptliupages/publications/nist-hpc-abds.pdf.

[19] Bingjing Zhang, Bo Peng, and Judy Qiu, Model-centric computation abstractions in machine

learning applications, in Proceedings of the 3rd ACM SIGMOD Workshop on Algorithms and

Systems for MapReduce and Beyond. 2016, ACM. San Francisco, California. pages. 1-4. DOI:

10.1145/2926534.2926539.

[20] NIST Big Data Public Working Group: Use Cases and Requirements Subgroup, NIST Big Data

Interoperability Framework: Volume 3, Use Cases and General Requirements (NIST Special

Publication 1500-3). 2016, NIST: Vol. 3.

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1500-3.pdf. DOI:

http://dx.doi.org/10.6028/NIST.SP.1500-3.

[21] Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, Kurt Keutzer, John

Kubiatowicz, Nelson Morgan, David Patterson, Koushik Seny, John Wawrzynek, David

Wessel, and Katherine Yelick, A View of Parallel Computing. Communications of the ACM,

October, 2009. 52(10): p. 56-67. DOI:10.1145/1562764.1562783.

http://portal.acm.org/citation.cfm?id=1562764.1562783&coll=portal&dl=ACM

http://dsc.soic.indiana.edu/publications/HPCBigDataConvergence.Summary_IURutgers.pdf
http://dsc.soic.indiana.edu/publications/HPCBigDataConvergence.Summary_IURutgers.pdf
http://dx.doi.org/10.13140/RG.2.1.3112.2800
http://spidal.org/index.html
http://news.indiana.edu/releases/iu/2014/10/big-data-dibbs-grant.shtml
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1443054
http://grids.ucs.indiana.edu/ptliupages/publications/NISTUseCase.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/nist-hpc-abds.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1500-3.pdf
http://dx.doi.org/10.6028/NIST.SP.1500-3
http://portal.acm.org/citation.cfm?id=1562764.1562783&coll=portal&dl=ACM

 81

[22] NASA Advanced Supercomputing Division. NAS Parallel Benchmarks. 1991 [accessed 2014

March 28]; Available from: https://www.nas.nasa.gov/publications/npb.html.

[23] R. F. Van der Wijngaart, S. Sridharan, and V. W. Lee. Extending the BT NAS Parallel

Benchmark to exascale computing. in International Conference forHigh Performance

Computing, Networking, Storage and Analysis (SC). 10-16 Nov. 2012.

[24] Committee on the Analysis of Massive Data; Committee on Applied and Theoretical

Statistics; Board on Mathematical Sciences and Their Applications; Division on Engineering

and Physical Sciences; National Research Council, Frontiers in Massive Data Analysis. 2013:

National Academies Press. http://www.nap.edu/catalog.php?record_id=18374

[25] Bingjing Zhang, Bo Peng, and Judy Qiu, High Performance LDA through Collective Model

Communication Optimization, in International Conference on Computational Science 6-8

June, 2016, Procedia Computer Science: Vol. 80. San Diego, California,. pages. 86-97.

http://www.sciencedirect.com/science/article/pii/S1877050916306512. DOI:

http://dx.doi.org/10.1016/j.procs.2016.05.300.

[26] Bingjing Zhang, Yang Ruan, and Judy Qiu, Harp: Collective Communication on Hadoop, in

IEEE International Conference on Cloud Engineering (IC2E). March 9-12, 2015. Tempe AZ.

http://grids.ucs.indiana.edu/ptliupages/publications/HarpQiuZhang.pdf.

[27] Supun Kamburugamuve, Saliya Ekanayake, Milinda Pathirage, and Geoffrey Fox, Towards

High Performance Processing of Streaming Data in Large Data Centers, in HPBDC 2016 IEEE

International Workshop on High-Performance Big Data Computing in conjunction with The

30th IEEE International Parallel and Distributed Processing Symposium (IPDPS 2016). May

27, 2016. Chicago.

http://dsc.soic.indiana.edu/publications/high_performance_processing_stream.pdf.

[28] Saliya Ekanayake, Supun Kamburugamuve, and Geoffrey Fox, SPIDAL: High Performance

Data Analytics with Java and MPI on Large Multicore HPC Clusters, in 24th High Performance

Computing Symposium (HPC 2016), , 2016, as part of the SCS Spring Simulation Multi-

Conference (SpringSim'16). April 3-6, 2016. Pasadena, CA, USA

http://dsc.soic.indiana.edu/publications/hpc2016-spidal-high-performance-submit-18-

public.pdf.

[29] Java Grande Home Page. 2002 [accessed 2016 July 9]; Available from:

http://www.javagrande.org/.

[30] OpenHFT Thread Affinity Library. [accessed 2016 July 10]; Available from:

https://github.com/OpenHFT/Java-Thread-Affinity.

https://www.nas.nasa.gov/publications/npb.html
http://www.nap.edu/catalog.php?record_id=18374
http://www.sciencedirect.com/science/article/pii/S1877050916306512
http://dx.doi.org/10.1016/j.procs.2016.05.300
http://grids.ucs.indiana.edu/ptliupages/publications/HarpQiuZhang.pdf
http://dsc.soic.indiana.edu/publications/high_performance_processing_stream.pdf
http://dsc.soic.indiana.edu/publications/hpc2016-spidal-high-performance-submit-18-public.pdf
http://dsc.soic.indiana.edu/publications/hpc2016-spidal-high-performance-submit-18-public.pdf
http://www.javagrande.org/
https://github.com/OpenHFT/Java-Thread-Affinity

 82

[31] Digital Science Center. cloudmesh/client: A light weight cloud client to manage virtual

clusters. [accessed 2016 July 7]; Available from: http://cloudmesh.github.io/client.

[32] Rick Wagner, Philip Papadopoulos, Dmitry Mishin, Trevor Cooper, Mahidhar Tatineti, Gregor

von Laszewski, Fugang Wang, and Geoffrey C. Fox, User Managed Virtual Clusters in Comet,

in XSEDE 2016. July 17-21, 2016. Miami, FL. https://xsede16.sched.org/event/7RRV/tech-

user-managed-virtual-clusters-in-comet.

[33] Andre Luckow, Ioannis Paraskevakos, George Chantzialexiou, and Shantenu Jha, Hadoop on

HPC: Integrating Hadoop and Pilot-based Dynamic Resource Management in Workshop on

High-Performance Big Data Computing, 2016 at IPDPS 2016. 2016, IEEE. Chicago, ILL.

http://arxiv.org/abs/1602.00345.

[34] Andre Luckow, Mark Santcroos, Ashley Zebrowski, and Shantenu Jha, Pilot-Data. J. Parallel

Distrib. Comput., 2015. 79(C): p. 16-30. DOI:10.1016/j.jpdc.2014.09.009

[35] Lise Getoor and Christopher P Diehl, Link mining: a survey. ACM SIGKDD Explorations

Newsletter, 2005. 7(2): p. 3-12.

[36] Jure Leskovec, Ajit Singh, and Jon Kleinberg, Patterns of influence in a recommendation

network, in Proceedings of the 10th Pacific-Asia conference on Advances in Knowledge

Discovery and Data Mining. 2006, Springer-Verlag. Singapore. pages. 380-389. DOI:

10.1007/11731139_44.

[37] Xifeng Yan, X. Jasmine Zhou, and Jiawei Han, Mining closed relational graphs with

connectivity constraints, in Proceedings of the eleventh ACM SIGKDD international

conference on Knowledge discovery in data mining. 2005, ACM. Chicago, Illinois, USA. pages.

324-333. DOI: 10.1145/1081870.1081908.

[38] Eric Bloedorn, Neal J Rothleder, David DeBarr, and Lowell Rosen, Relational graph analysis

with real-world constraints: An application in irs tax fraud detection, in The Twentieth

National Conference on Artificial Intelligence (AAAI-05) July 9-13, 2005. Pittsburgh,

Pennsylvania. http://www.aaai.org/Papers/Workshops/2005/WS-05-07/WS05-07-

006.pdf.

[39] Milo, R., S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, Network motifs:

simple building blocks of complex networks. Science, 2002. 298(5594): p. 824.

[40] Mukund Deshpande, Michihiro Kuramochi, Nikil Wale, and George Karypis, Frequent

Substructure-Based Approaches for Classifying Chemical Compounds. IEEE Trans. on Knowl.

and Data Eng., 2005. 17(8): p. 1036-1050. DOI:10.1109/tkde.2005.127

http://cloudmesh.github.io/client
https://xsede16.sched.org/event/7RRV/tech-user-managed-virtual-clusters-in-comet
https://xsede16.sched.org/event/7RRV/tech-user-managed-virtual-clusters-in-comet
http://arxiv.org/abs/1602.00345
http://www.aaai.org/Papers/Workshops/2005/WS-05-07/WS05-07-006.pdf
http://www.aaai.org/Papers/Workshops/2005/WS-05-07/WS05-07-006.pdf

 83

[41] Zhao Zhao, Guanying Wang, Ali R. Butt, Maleq Khan, V. S. Anil Kumar, and Madhav V.

Marathe, SAHAD: Subgraph Analysis in Massive Networks Using Hadoop, in Proceedings of

the 2012 IEEE 26th International Parallel and Distributed Processing Symposium. 2012, IEEE

Computer Society. pages. 390-401. DOI: 10.1109/ipdps.2012.44.

[42] Alon, N., R. Yuster, and U. Zwick, Color-coding. J. ACM, 1995. 42(4): p. 844-856.

DOI:10.1145/210332.210337

[43] Intel. Intel® Data Analytics Acceleration Library. 2015 August 25 [accessed 2016 July 10];

Available from: https://software.intel.com/en-us/blogs/daal.

[44] Colfax Research. MCDRAM as High-Bandwidth Memory (HBM) in Knights Landing

Processors: Developer’s Guide. 2015 May 11 [accessed 2016 July 8]; Available from:

http://colfaxresearch.com/knl-mcdram/.

[45] Joel C. Miller and Aric Hagberg, Efficient generation of networks with given expected

degrees, in Proceedings of the 8th international conference on Algorithms and models for the

web graph. 2011, Springer-Verlag. Atlanta, GA. pages. 115-126.

[46] Shumo Chu and James Cheng, Triangle listing in massive networks and its applications, in

Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and

data mining. 2011, ACM. San Diego, California, USA. pages. 672-680. DOI:

10.1145/2020408.2020513.

[47] Miller McPherson, Lynn Smith-Lovin, and James M Cook, Birds of a Feather: Homophily in

Social Networks. Annual Review of Sociology, 2001. 27(1): p. 415-444.

DOI:doi:10.1146/annurev.soc.27.1.415.

http://www.annualreviews.org/doi/abs/10.1146/annurev.soc.27.1.415

[48] Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis, Efficient semi-streaming

algorithms for local triangle counting in massive graphs, in Proceedings of the 14th ACM

SIGKDD international conference on Knowledge discovery and data mining. 2008, ACM. Las

Vegas, Nevada, USA. pages. 16-24. DOI: 10.1145/1401890.1401898.

[49] Arnau Prat-Perez, David Dominguez-Sal, Josep-M. Brunat, and Josep-Lluis Larriba-Pey, Put

Three and Three Together: Triangle-Driven Community Detection. ACM Trans. Knowl. Discov.

Data, 2016. 10(3): p. 1-42. DOI:10.1145/2775108

[50] Shaikh Arifuzzaman, Maleq Khan, and Madhav Marathe, PATRIC: a parallel algorithm for

counting triangles in massive networks, in Proceedings of the 22nd ACM international

conference on Conference on information and knowledge management. 2013, ACM. San

Francisco, California, USA. pages. 529-538. DOI: 10.1145/2505515.2505545.

https://software.intel.com/en-us/blogs/daal
http://colfaxresearch.com/knl-mcdram/
http://www.annualreviews.org/doi/abs/10.1146/annurev.soc.27.1.415

 84

[51] Jure Leskovec, Kevin J. Lang, and Michael Mahoney, Empirical comparison of algorithms for

network community detection, in Proceedings of the 19th international conference on World

wide web. 2010, ACM. Raleigh, North Carolina, USA. pages. 631-640. DOI:

10.1145/1772690.1772755.

[52] E. Jason Riedy, Henning Meyerhenke, David Ediger, and David A. Bader, Parallel community

detection for massive graphs, in Proceedings of the 9th international conference on Parallel

Processing and Applied Mathematics - Volume Part I. 2012, Springer-Verlag. Torun, Poland.

pages. 286-296. DOI: 10.1007/978-3-642-31464-3_29.

[53] Yuzhou Zhang, Jianyong Wang, Yi Wang, and Lizhu Zhou, Parallel community detection on

large networks with propinquity dynamics, in Proceedings of the 15th ACM SIGKDD

international conference on Knowledge discovery and data mining. 2009, ACM. Paris, France.

pages. 997-1006. DOI: 10.1145/1557019.1557127.

[54] J. Soman and A. Narang. Fast Community Detection Algorithm with GPUs and Multicore

Architectures. in Parallel & Distributed Processing Symposium (IPDPS), 2011 IEEE

International. 16-20 May 2011 2011.

[55] Michael Ovelgönne, Distributed community detection in web-scale networks, in Proceedings

of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis

and Mining. 2013, ACM. Niagara, Ontario, Canada. pages. 66-73. DOI:

10.1145/2492517.2492518.

[56] Saliya Ekanayake. Global Machine Learning with DSC-SPIDAL. 2016 [accessed 2016 July 9];

Available from: https://www.gitbook.com/book/esaliya/global-machine-learning-with-dsc-

spidal/details.

[57] Geoffrey Fox, D. R. Mani, and Saumyadipta Pyne, Parallel Deterministic Annealing Clustering

and its Application to LC-MS Data Analysis, in IEEE International Conference on Big Data.

October 6-9, 2013. Santa Clara, CA, USA, . DOI:

http://dx.doi.org/10.1109/BigData.2013.6691636.

[58] Supun Kamburugamuve, Pulasthi Wickramasinghe, Saliya Ekanayake, Chathuri Wimalasena,

Milinda Pathirage, and Geoffrey Fox, TSmap3D: Browser Visualization of High Dimensional

Time Series Data. May 10, 2016. http://dsc.soic.indiana.edu/publications/tsmap3d.pdf.

[59] Yang Ruan PhD Thesis SCALABLE AND ROBUST CLUSTERING AND VISUALIZATION FOR

LARGE-SCALE BIOINFORMATICS DATA, in School of Informatics and Computing. 18 August,

Indiana University. http://dsc.soic.indiana.edu/publications/Final_Thesis_v1.03.pdf

https://www.gitbook.com/book/esaliya/global-machine-learning-with-dsc-spidal/details
https://www.gitbook.com/book/esaliya/global-machine-learning-with-dsc-spidal/details
http://dx.doi.org/10.1109/BigData.2013.6691636
http://dsc.soic.indiana.edu/publications/tsmap3d.pdf
http://dsc.soic.indiana.edu/publications/Final_Thesis_v1.03.pdf

 85

[60] Geoffrey Fox, Robust Scalable Visualized Clustering in Vector and non Vector Semimetric

Spaces. Parallel Processing Letters, June, 2013. 23(2).

DOI:http://www.worldscientific.com/doi/abs/10.1142/S0129626413400069.

http://grids.ucs.indiana.edu/ptliupages/publications/Clusteringv1.pdf

[61] Ekanayake, S., Y. Ruan, and G.C. Fox. Million Sequence Clustering. Available from:

http://salsahpc.indiana.edu/millionseq/.

[62] Theresa M. Stumpf,Thesis A Wideband Direction of Arrival Technique for Multibeam, Wide-

Swath Imaging of Ice Sheet Basal Morphology. , in M.S. Thesis, Electrical and Computer

Science Department, 2015, University of Kansas

[63] David J. Crandall, Geoffrey C. Fox, John D. Paden, and Layer-finding in Radar Echograms

using Probabilistic Graphical Models, in Technical Report submitted for publication. April 8,

2012. http://grids.ucs.indiana.edu/ptliupages/publications/icpr12-ice.pdf

[64] Stefan Lee, Jerome Mitchell, David J Crandall, and Geoffrey C Fox. Estimating bedrock and

surface layer boundaries and confidence intervals in ice sheet radar imagery using MCMC. in

2014 IEEE International Conference on Image Processing (ICIP) 2014: IEEE.

[65] Daphne Koller and Nir Friedman, Probabilistic Graphical Models: Principles and Techniques -

Adaptive Computation and Machine Learning. 2009: The MIT Press. p.1208.

ISBN:0262013193, 9780262013192

[66] Jun Kong , Lee A. D. Cooper, Fusheng Wang, Jingjing Gao, George Teodoro, Lisa Scarpace,

Tom Mikkelsen, Matthew J. Schniederjan, Carlos S. Moreno, Joel H. Saltz, and Daniel J. Brat,

Machine-Based Morphologic Analysis of Glioblastoma Using Whole-Slide Pathology Images

Uncovers Clinically Relevant Molecular Correlates. PloS one, 2013. 8(11): p. e81049.

DOI:http://dx.doi.org/10.1371/journal.pone.0081049

[67] Yanhui Liang, Fusheng Wang, Darren Treanor, Derek Magee, George Teodoro, Yangyang Zhu,

and Jun Kong, A 3D Primary Vessel Reconstruction Framework with Serial Microscopy

Images, Chapter in Medical Image Computing and Computer-Assisted Intervention –

MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015,

Proceedings, Part III, Nassir Navab, Joachim Hornegger, M. William Wells, and F. Alejandro

Frangi, Editors. 2015, Springer International Publishing: Cham. p. 251-259.

http://dx.doi.org/10.1007/978-3-319-24574-4_30. DOI: 10.1007/978-3-319-24574-4_30.

[68] Y. Liang, F. Wang, D. Treanor, D. Magee, G. Teodoro, Y. Zhu, and J. Kong. Liver whole slide

image analysis for 3D vessel reconstruction. in 2015 IEEE 12th International Symposium on

Biomedical Imaging (ISBI). 16-19 April 2015 2015.

http://www.worldscientific.com/doi/abs/10.1142/S0129626413400069
http://grids.ucs.indiana.edu/ptliupages/publications/Clusteringv1.pdf
http://salsahpc.indiana.edu/millionseq/
http://grids.ucs.indiana.edu/ptliupages/publications/icpr12-ice.pdf
http://dx.doi.org/10.1371/journal.pone.0081049
http://dx.doi.org/10.1007/978-3-319-24574-4_30

 86

[69] Nicholas Roberts, Derek Magee, Yi Song, Keeran Brabazon, Mike Shires, Doreen Crellin,

Nicolas M. Orsi, Richard Quirke, Philip Quirke, and Darren Treanor, Toward Routine Use of 3D

Histopathology as a Research Tool. The American Journal of Pathology, 2012. 180(5): p.

1835-1842. DOI:10.1016/j.ajpath.2012.01.033.

http://dx.doi.org/10.1016/j.ajpath.2012.01.033

[70] Yanhui Liang, Jun Kong, Yangyang Zhu, and Fusheng Wang, Three-Dimensional Data

Analytics for Pathology Imaging, Chapter in Biomedical Data Management and Graph Online

Querying: VLDB 2015 Workshops, Big-O(Q) and DMAH, Waikoloa, HI, USA, August 31 –

September 4, 2015, Revised Selected Papers, Fusheng Wang, Gang Luo, Chunhua Weng,

Arijit Khan, Prasenjit Mitra, and Cong Yu, Editors. 2016, Springer International Publishing:

Cham. p. 109-125. http://dx.doi.org/10.1007/978-3-319-41576-5_8. DOI: 10.1007/978-3-

319-41576-5_8.

[71] J. Kong, P. Zhang, Y. Liang, G. Teodoro, D. J. Brat, and F. Wang. Robust cell segmentation for

histological images of Glioblastoma. in 2016 IEEE 13th International Symposium on

Biomedical Imaging (ISBI). 13-16 April 2016 2016.

[72] Furqan Baig, Mudit Mehrotra, Hoang Vo, Fusheng Wang, Joel Saltz, and Tahsin Kurc,

SparkGIS: Efficient Comparison and Evaluation of Algorithm Results in Tissue Image Analysis

Studies, Chapter in Biomedical Data Management and Graph Online Querying: VLDB 2015

Workshops, Big-O(Q) and DMAH, Waikoloa, HI, USA, August 31 – September 4, 2015, Revised

Selected Papers, Fusheng Wang, Gang Luo, Chunhua Weng, Arijit Khan, Prasenjit Mitra, and

Cong Yu, Editors. 2016, Springer International Publishing: Cham. p. 134-146.

http://dx.doi.org/10.1007/978-3-319-41576-5_10. DOI: 10.1007/978-3-319-41576-5_10.

[73] CINET Cyberinfrastructure middleware to support Network Science. [accessed 2016 July

10]; Available from: http://cinet.vbi.vt.edu/granite/granite.html#login.

[74] Sherif Abdelhamid, Maksudul Alam, Richard Alo, Shaikh Arifuzzaman, Pete Beckman, Tirtha

Bhattacharjee, Hasanuzzaman Bhuiyan, Keith Bisset, Stephen Eubank, Albert C. Esterline,

Edward A. Fox, Geoffrey C. Fox, S. M. Shamimul Hasan, Harshal Hayatnagarkar, Maleq Khan,

Chris J. Kuhlman, Madhav V. Marathe, Natarajan Meghanathan, Henning S. Mortveit, Judy

Qiu, S. S. Ravi, Zalia Shams, Ongard Sirisaengtaksin, Samarth Swarup, Anil Kumar S.

Vullikanti, and Tak-Lon Wu, CINET 2.0: A CyberInfrastructure for Network Science, in

Proceedings of the 2014 IEEE 10th International Conference on e-Science - Volume 01. 2014,

IEEE Computer Society. pages. 324-331. DOI: 10.1109/eScience.2014.21.

[75] Davis CA, C.G., Aiello LM, Chung K, Conover MD, Ferrara E, Flammini A, Fox GC, Gao X,

Gonçalves B, Grabowicz PA, Hong K, Hui P, McCaulay S, McKelvey K, Meiss MR, Patil S, Peli

Kankanamalage C, Pentchev V, Qiu J, Ratkiewicz J, Rudnick A, Serrette B, Shiralkar P, Varol

http://dx.doi.org/10.1016/j.ajpath.2012.01.033
http://dx.doi.org/10.1007/978-3-319-41576-5_8
http://dx.doi.org/10.1007/978-3-319-41576-5_10
http://cinet.vbi.vt.edu/granite/granite.html#login

 87

O, Weng L, Wu T, Younge AJ, Menczer F,, OSoMe: The IUNI observatory on social media. May

3, 2016, PeerJ Preprints. https://peerj.com/preprints/2008. DOI:

https://doi.org/10.7287/peerj.preprints.2008v1.

[76] Xiaoming Gao, Evan Roth, Karissa McKelvey, Clayton Davis, Andrew Younge, Emilio Ferrara,

Filippo Menczer, and Judy Qiu, Supporting a Social Media Observatory with Customizable

Index Structures: Architecture and Performance, Chapter in Cloud Computing for Data-

Intensive Applications, X. Li and J. Qiu, Editors. 2014, Springer New York: New York, NY. p.

401-427. http://dx.doi.org/10.1007/978-1-4939-1905-5_17. DOI: 10.1007/978-1-4939-1905-

5_17.

[77] Pedro F. Felzenszwalb and Daniel P. Huttenlocher, Efficient Graph-Based Image

Segmentation. Int. J. Comput. Vision, 2004. 59(2): p. 167-181.

DOI:10.1023/b:visi.0000022288.19776.77

[78] Yaniv Taigman, Ming Yang, Marc'Aurelio Ranzato, and Lior Wolf, DeepFace: Closing the Gap

to Human-Level Performance in Face Verification, in Proceedings of the 2014 IEEE

Conference on Computer Vision and Pattern Recognition. 2014, IEEE Computer Society.

pages. 1701-1708. DOI: 10.1109/cvpr.2014.220.

[79] Andrej Karpathy, Armand Joulin, and Li Fei Fei. Deep fragment embeddings for bidirectional

image sentence mapping. in Advances in Neural Information Processing Systems 2014.

[80] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,

Piotr Dollár, and C. Lawrence Zitnick, Microsoft COCO: Common Objects in Context, Chapter

in Computer Vision – ECCV 2014: 13th European Conference, Zurich, Switzerland,

September 6-12, 2014, Proceedings, Part V, David Fleet, Tomas Pajdla, Bernt Schiele, and

Tinne Tuytelaars, Editors. 2014, Springer International Publishing: Cham. p. 740-755.

http://dx.doi.org/10.1007/978-3-319-10602-1_48. DOI: 10.1007/978-3-319-10602-1_48.

[81] Thorsten Joachims, Making large-scale support vector machine learning practical, Chapter

in Advances in kernel methods, Bernhard Schölkopf, Christopher J. C. Burges, and Alexander

J. Smola, Editors. 1999, MIT Press. p. 169-184.

[82] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton, ImageNet Classification with Deep

Convolutional Neural Networks, in NIPS 2012, Advances in Neural Information Processing

Systems 25. December 3-8, 2012, Curran Associates, Inc. Lake Tahoe. pages. 1097--1105.

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-

networks.pdf.

https://peerj.com/preprints/2008
https://doi.org/10.7287/peerj.preprints.2008v1
http://dx.doi.org/10.1007/978-1-4939-1905-5_17
http://dx.doi.org/10.1007/978-3-319-10602-1_48
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

 88

[83] Ana Richelia Jara-Lazaro, Thomas Paulraj Thamboo, Ming Teh, and Puay Hoon Tan, Digital

pathology: exploring its applications in diagnostic surgical pathology practice. Pathology,

2010. 42(6): p. 512-518.

[84] Xin Chen and Fusheng Wang, Integrative Spatial Data Analytics for Public Health Studies of

New York State. , in AMIA 2016 Annual Symposium. 2016, American Medical Informatics

Association. Chicago, ILL. http://www3.cs.stonybrook.edu/~fuswang/publications.html.

[85] Ron O. Dror, Robert M. Dirks, J.P. Grossman, Huafeng Xu, and David E. Shaw, Biomolecular

Simulation: A Computational Microscope for Molecular Biology. Annual Review of Biophysics,

2012. 41(1): p. 429-452. DOI:doi:10.1146/annurev-biophys-042910-155245.

http://www.annualreviews.org/doi/abs/10.1146/annurev-biophys-042910-155245

[86] Modesto Orozco, A theoretical view of protein dynamics. Chemical Society Reviews, 2014.

43(14): p. 5051-5066. DOI:10.1039/C3CS60474H. http://dx.doi.org/10.1039/C3CS60474H

[87] Juan R. Perilla, Boon Chong Goh, C. Keith Cassidy, Bo Liu, Rafael C. Bernardi, Till Rudack,

Hang Yu, Zhe Wu, and Klaus Schulten, Molecular dynamics simulations of large

macromolecular complexes. Current Opinion in Structural Biology, 4//, 2015. 31: p. 64-74.

DOI:http://dx.doi.org/10.1016/j.sbi.2015.03.007.

http://www.sciencedirect.com/science/article/pii/S0959440X15000342

[88] Siewert J. Marrink, Alex H. de Vries, and D. Peter Tieleman, Lipids on the move: Simulations

of membrane pores, domains, stalks and curves. Biochimica et Biophysica Acta (BBA) -

Biomembranes, 1//, 2009. 1788(1): p. 149-168.

DOI:http://dx.doi.org/10.1016/j.bbamem.2008.10.006.

http://www.sciencedirect.com/science/article/pii/S0005273608003325

[89] Phillip J Stansfeld and Mark S P. Sansom, Molecular Simulation Approaches to Membrane

Proteins. Structure, 11/9/, 2011. 19(11): p. 1562-1572.

DOI:http://dx.doi.org/10.1016/j.str.2011.10.002.

http://www.sciencedirect.com/science/article/pii/S0969212611003364

[90] Julia Koehler Leman, Martin B. Ulmschneider, and Jeffrey J. Gray, Computational modeling of

membrane proteins. Proteins, 11/19, 2015. 83(1): p. 1-24. DOI:10.1002/prot.24703.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4270820/

[91] Jing Li, Po-Chao Wen, Mahmoud Moradi, and Emad Tajkhorshid, Computational

characterization of structural dynamics underlying function in active membrane

transporters. Current Opinion in Structural Biology, 4//, 2015. 31: p. 96-105.

DOI:http://dx.doi.org/10.1016/j.sbi.2015.04.001.

http://www.sciencedirect.com/science/article/pii/S0959440X15000500

http://www3.cs.stonybrook.edu/%7Efuswang/publications.html
http://www.annualreviews.org/doi/abs/10.1146/annurev-biophys-042910-155245
http://dx.doi.org/10.1039/C3CS60474H
http://dx.doi.org/10.1016/j.sbi.2015.03.007
http://www.sciencedirect.com/science/article/pii/S0959440X15000342
http://dx.doi.org/10.1016/j.bbamem.2008.10.006
http://www.sciencedirect.com/science/article/pii/S0005273608003325
http://dx.doi.org/10.1016/j.str.2011.10.002
http://www.sciencedirect.com/science/article/pii/S0969212611003364
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4270820/
http://dx.doi.org/10.1016/j.sbi.2015.04.001
http://www.sciencedirect.com/science/article/pii/S0959440X15000500

 89

[92] Thomas E. Cheatham III and Daniel R. Roe, The Impact of Heterogeneous Computing on

Workflows for Biomolecular Simulation and Analysis. Computing in Science & Engineering,

2015. 17(2): p. 30-39. DOI:doi:http://dx.doi.org/10.1109/MCSE.2015.7.

http://scitation.aip.org/content/aip/journal/cise/17/2/10.1109/MCSE.2015.7

[93] David E. Shaw, Ron O. Dror, John K. Salmon, J. P. Grossman, Kenneth M. Mackenzie, Joseph

A. Bank, Cliff Young, Martin M. Deneroff, Brannon Batson, Kevin J. Bowers, Edmond Chow,

Michael P. Eastwood, Douglas J. Ierardi, John L. Klepeis, Jeffrey S. Kuskin, Richard H. Larson,

Kresten Lindorff-Larsen, Paul Maragakis, Mark A. Moraes, Stefano Piana, Yibing Shan, and

Brian Towles, Millisecond-scale molecular dynamics simulations on Anton, in Proceedings of

the Conference on High Performance Computing Networking, Storage and Analysis. 2009,

ACM. Portland, Oregon. pages. 1-11. DOI: 10.1145/1654059.1654099.

[94] Levi C. T. Pierce, Romelia Salomon-Ferrer, Cesar Augusto F. de Oliveira, J. Andrew

McCammon, and Ross C. Walker, Routine Access to Millisecond Time Scale Events with

Accelerated Molecular Dynamics. Journal of Chemical Theory and Computation, 2012/09/11,

2012. 8(9): p. 2997-3002. DOI:10.1021/ct300284c. http://dx.doi.org/10.1021/ct300284c

[95] Romelia Salomon-Ferrer, Andreas W. Götz, Duncan Poole, Scott Le Grand, and Ross C.

Walker, Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2.

Explicit Solvent Particle Mesh Ewald. Journal of Chemical Theory and Computation,

2013/09/10, 2013. 9(9): p. 3878-3888. DOI:10.1021/ct400314y.

http://dx.doi.org/10.1021/ct400314y

[96] Matthew C. Zwier and Lillian T. Chong, Reaching biological timescales with all-atom

molecular dynamics simulations. Current Opinion in Pharmacology, 12//, 2010. 10(6): p.

745-752. DOI:http://dx.doi.org/10.1016/j.coph.2010.09.008.

http://www.sciencedirect.com/science/article/pii/S1471489210001463

[97] Ayori Mitsutake, Yoshiharu Mori, and Yuko Okamoto, Enhanced Sampling Algorithms,

Chapter in Biomolecular Simulations: Methods and Protocols, L. Monticelli and E. Salonen,

Editors. 2013, Humana Press: Totowa, NJ. p. 153-195. http://dx.doi.org/10.1007/978-1-

62703-017-5_7. DOI: 10.1007/978-1-62703-017-5_7.

[98] Sean L. Seyler and Oliver Beckstein, Sampling large conformational transitions: adenylate

kinase as a testing ground. Molecular Simulation, 2014/08/09, 2014. 40(10-11): p. 855-877.

DOI:10.1080/08927022.2014.919497. http://dx.doi.org/10.1080/08927022.2014.919497

[99] Rafael C. Bernardi, Marcelo C. R. Melo, and Klaus Schulten, Enhanced sampling techniques in

molecular dynamics simulations of biological systems. Biochimica et Biophysica Acta (BBA) -

General Subjects, 5//, 2015. 1850(5): p. 872-877.

http://dx.doi.org/10.1109/MCSE.2015.7
http://scitation.aip.org/content/aip/journal/cise/17/2/10.1109/MCSE.2015.7
http://dx.doi.org/10.1021/ct300284c
http://dx.doi.org/10.1021/ct400314y
http://dx.doi.org/10.1016/j.coph.2010.09.008
http://www.sciencedirect.com/science/article/pii/S1471489210001463
http://dx.doi.org/10.1007/978-1-62703-017-5_7
http://dx.doi.org/10.1007/978-1-62703-017-5_7
http://dx.doi.org/10.1080/08927022.2014.919497

 90

DOI:http://dx.doi.org/10.1016/j.bbagen.2014.10.019.

http://www.sciencedirect.com/science/article/pii/S0304416514003559

[100] Siewert J. Marrink and D. Peter Tieleman, Perspective on the Martini model. Chemical

Society Reviews, 2013. 42(16): p. 6801-6822. DOI:10.1039/C3CS60093A.

http://dx.doi.org/10.1039/C3CS60093A

[101] W. G. Noid, Perspective: Coarse-grained models for biomolecular systems. The Journal of

Chemical Physics, 2013. 139(9): p. 090901. DOI:doi:http://dx.doi.org/10.1063/1.4818908.

http://scitation.aip.org/content/aip/journal/jcp/139/9/10.1063/1.4818908

[102] Sean L Seyler, Avishek Kumar, Michael F Thorpe, and Oliver Beckstein, Path Similarity

Analysis: A Method for Quantifying Macromolecular Pathways. PLoS Comput Biol, 2015.

11(10): p. e1004568.

[103] D. P. Huttenlocher, G. A. Klanderman, and W. A. Rucklidge, Comparing Images Using the

Hausdorff Distance. IEEE Trans. Pattern Anal. Mach. Intell., 1993. 15(9): p. 850-863.

DOI:10.1109/34.232073

[104] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein,

MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of

Computational Chemistry, 2011. 32(10): p. 2319-2327. DOI:10.1002/jcc.21787.

http://dx.doi.org/10.1002/jcc.21787

[105] Andre Luckow, Mark Santcroos, Ashley Zebrowski, and Shantenu Jha, Pilot-Data: An

abstraction for distributed data. Journal of Parallel and Distributed Computing, 5//, 2015.

79–80: p. 16-30. DOI:http://dx.doi.org/10.1016/j.jpdc.2014.09.009.

http://www.sciencedirect.com/science/article/pii/S0743731514001725

[106] Svetlana Baoukina and D. Peter Tieleman, Direct Simulation of Protein-Mediated Vesicle

Fusion: Lung Surfactant Protein B. Biophysical Journal, 10/6/, 2010. 99(7): p. 2134-2142.

DOI:http://dx.doi.org/10.1016/j.bpj.2010.07.049.

http://www.sciencedirect.com/science/article/pii/S0006349510009215

[107] Thomas C Südhof, The synaptic vesicle cycle. Annu. Rev. Neurosci., 2004. 27: p. 509-547.

[108] Juan S. Bonifacino and Benjamin S. Glick, The Mechanisms of Vesicle Budding and Fusion.

Cell, 1/23/, 2004. 116(2): p. 153-166. DOI:http://dx.doi.org/10.1016/S0092-8674(03)01079-

1. http://www.sciencedirect.com/science/article/pii/S0092867403010791

[109] Graça Raposo and Willem Stoorvogel, Extracellular vesicles: Exosomes, microvesicles, and

friends. The Journal of Cell Biology, February 18, 2013, 2013. 200(4): p. 373-383.

DOI:10.1083/jcb.201211138. http://jcb.rupress.org/content/200/4/373.abstract

http://dx.doi.org/10.1016/j.bbagen.2014.10.019
http://www.sciencedirect.com/science/article/pii/S0304416514003559
http://dx.doi.org/10.1039/C3CS60093A
http://dx.doi.org/10.1063/1.4818908
http://scitation.aip.org/content/aip/journal/jcp/139/9/10.1063/1.4818908
http://dx.doi.org/10.1002/jcc.21787
http://dx.doi.org/10.1016/j.jpdc.2014.09.009
http://www.sciencedirect.com/science/article/pii/S0743731514001725
http://dx.doi.org/10.1016/j.bpj.2010.07.049
http://www.sciencedirect.com/science/article/pii/S0006349510009215
http://dx.doi.org/10.1016/S0092-8674(03)01079-1
http://dx.doi.org/10.1016/S0092-8674(03)01079-1
http://www.sciencedirect.com/science/article/pii/S0092867403010791
http://jcb.rupress.org/content/200/4/373.abstract

 91

[110] Lisa M Bareford and Peter W Swaan, Endocytic mechanisms for targeted drug delivery.

Advanced drug delivery reviews, 2007. 59(8): p. 748-758.

[111] CPPTRAJ wiki. [accessed 2016 July 8]; Available from: https://github.com/Amber-

MD/cpptraj/wiki.

[112] REU Programs at Digital Science CEnter and SPIDAL Collaborators 2015. [accessed 2016

July 10]; Available from: http://www.dsc.soic.indiana.edu/reu2015.

[113] NSF Award Abstract #1447861: BIGDATA: F: DKM: Collaborative Research: Scalable

Middleware for Managing and Processing Big Data on Next Generation HPC Systems. 2014

[accessed 2016 Jul 14]; Available from:

http://nsf.gov/awardsearch/showAward?AWD_ID=1447861.

[114] SPIDAL Examples. 2002 [accessed 2016 July 12]; Available from: http://dsc-

spidal.github.io/examples/.

[115] Geoffrey Fox, Lavanya Ramakrishnan, and Shantenu Jha, STREAM 2015 Final Report, in

Streaming and Steering Applications: Requirements and Infrastructure October 27-28, 2015.

Indianapolis, IN. DOI: http://streamingsystems.org/stream2015finalreport.html.

[116] Supun Kamburugamuve, Leif Christiansen, and Geoffrey Fox, A Framework for Real Time

Processing of Sensor Data in the Cloud. Journal of Sensors, 2015. 2015: p. 11.

DOI:10.1155/2015/468047.

http://dsc.soic.indiana.edu/publications/iotcloud_hindavi_revised.pdf

[117] Supun Kamburugamuve, Hengjing He, Geoffrey Fox, and David Crandall, Cloud-based

Parallel Implementation of SLAM for Mobile Robots, in International Conference on Internet

of things and Cloud Computing (ICC 2016). March 22-23 2016. Cambridge, UK.

http://dsc.soic.indiana.edu/publications/slam_isc_1.pdf.

[118] Supun Kamburugamuve and Geoffrey Fox, Survey of Distributed Stream Processing. January

8, 2016.

http://dsc.soic.indiana.edu/publications/survey_distributed_stream_frameworks.pdf.

[119] Hengjing He, Supun Kamburugamuve, and G.C. Fox, Cloud based real-time multi-robot

collision avoidance for swarm robotics. International Journal of Grid and Distributed

Computing, May 7, 2015.

http://dsc.soic.indiana.edu/publications/Cloud%20based%20real-time%20multi-

robot%20collision%20avoidance%20for%20swarm%20robotics.pdf

https://github.com/Amber-MD/cpptraj/wiki
https://github.com/Amber-MD/cpptraj/wiki
http://www.dsc.soic.indiana.edu/reu2015
http://nsf.gov/awardsearch/showAward?AWD_ID=1447861
http://dsc-spidal.github.io/examples/
http://dsc-spidal.github.io/examples/
http://streamingsystems.org/stream2015finalreport.html
http://dsc.soic.indiana.edu/publications/iotcloud_hindavi_revised.pdf
http://dsc.soic.indiana.edu/publications/slam_isc_1.pdf
http://dsc.soic.indiana.edu/publications/survey_distributed_stream_frameworks.pdf
http://dsc.soic.indiana.edu/publications/Cloud%20based%20real-time%20multi-robot%20collision%20avoidance%20for%20swarm%20robotics.pdf
http://dsc.soic.indiana.edu/publications/Cloud%20based%20real-time%20multi-robot%20collision%20avoidance%20for%20swarm%20robotics.pdf

	1.2. Motivation
	1.3. Overview of Components of SPIDAL DIBBs
	2.2. HPC-ABDS High Performance Computing and Apache Big Data Stack
	2.3. Big Data - Big Simulation (Exascale) Convergence
	2.4. HPC-ABDS Mapping of Project Activities
	3.2. SPIDAL Language
	3.3. Cloudmesh Interoperability IaaS and Paas Tool leveraging DevOps
	3.4. Pilot Jobs and Pilot Data Memory
	3.5. Architecture of Scalable Big Data Machine Learning Library
	3.6. Harp Programming Paradigm
	3.7. Integration of Harp and Intel DAAL Library
	4.1. Introduction
	4.2. Harp Latent Dirichlet Allocation
	4.3. SPIDAL Algorithms – Subgraph mining
	4.4. SPIDAL Algorithms – Random Graph Generation
	4.5. SPIDAL Algorithms – Triangle Counting
	4.6. SPIDAL Algorithm – Community Detection
	4.7. SPIDAL Algorithms – Core
	4.8. SPIDAL Algorithms – Optimization
	4.9. SPIDAL Algorithms – Polar Remote Sensing Algorithms
	4.10. SPIDAL Algorithms – Nuclei Segmentation for Pathology Images
	4.11. SPIDAL Algorithms – Spatial Querying Methods
	5.2. Overview of Imaging Applications
	5.3. Enabled Applications – Digital Pathology
	5.4. Enabled Applications – Public Health
	5.5. Enabled Applications - Biomolecular Simulation Data Analysis
	6.3. Working with Apache: Harp and Heron
	7.2. Orchestration and Workflow
	7.3. Streaming

