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Abstract—    Many scientific fields routinely generate huge datasets.  In many cases, these datasets are not static but rapidly grow in 

size.  Handling these types of datasets, as well as allowing sophisticated queries necessitates efficient distributed database systems 

that allow geographically dispersed users to access resources and to use machines simultaneously in anytime and anywhere.  In this 

paper we present the architecture, implementation and performance analysis of a scalable, distributed database system built on 

multicore systems.  The system architecture makes use of a software partitioning of the database based on data clustering, termed 

the SQMD (Single Query Multiple Database) mechanism, a web service interface and multicore server technologies.  The system 

allows uniform access to concurrently distributed databases over multicore servers, using the SQMD mechanism based on the 

publish/subscribe paradigm.  We highlight the scalability of our software and hardware architecture by applying it to a database of 

17 million chemical structures.  In addition to simple identifier based retrieval, we will present performance results for shape 

similarity queries, which is extremely, time intensive with traditional architectures.    

1. INTRODUCTION 

In the last few years, we have witnessed a huge increase in the size of datasets in a variety of fields (scientific observations 

for e-Science, local (video, environmental) sensors, data fetched from Internet defining users interests, and so on [35, 41]). This 

trend is expected to continue and future datasets will only become larger.  Given this deluge of data, there is an urgent need for 

technologies that will allow efficient and effective processing of huge datasets.  With the maturation of a variety of computing 

paradigms such as grid computing [14, 22], mobile computing [34], and pervasive computing [30], and with the advance of a 

variety of hardware technologies such as multicore servers [29], we can now start addressing the problem of allowing 

geographically dispersed users to access resources and to use machines simultaneously in anytime and anywhere. 

The problems of effectively partitioning a huge dataset and of efficiently alleviating too much computing for the processing 

of the partitioned data have been critical factor for scalability and performance.  In today’s data deluge the problems are 

becoming common and will become more common in near future.  The principle “Make common case fast” [26] (or 

“Amdahl’s law” which is the quantification of the principle) can be applied to make the common case faster since the impact on 

making the common case faster may be higher, while the principle generally applies for the design of computer architecture.  

Our scalable, distributed database system architecture is composed of three tiers – a web service client (front-end), a web 

service and message service system (middleware), and finally agents and a collection of databases (back-end).  To achieve 

scalability and maintain high performance, we have developed a distributed database system on multicore servers.  The 

databases are distributed over multiple, physically distinct multicore servers by fragmenting the data using two different 

methods: data clustering and horizontal partitioning to increase the molecule shape similarity and to decrease the query 

processing time.  Each database operates with independent threads of execution over multicore servers.  The distributed 

nature of the databases is transparent to end-users and thus the end-users are unaware of data fragmentation and distribution.  

The middleware hides the details about the data distribution.  To support efficient queries, we used a Single Query Multiple 

Database (SQMD) mechanism which transmits a single query that simultaneously operates on multiple databases, using a 

publish/subscribe paradigm.  A single query request from end-user is disseminated to all the databases via middleware and 

agents, and the same query is executed simultaneously by all the databases.  The web service component of the middleware 

carries out a serial aggregation of the responses from the individual databases.  Fundamentally, our goal is to allow high 

performance interaction between users and huge datasets by building a scalable, distributed database system using multicore 

servers.  The multicore servers exhibit clear universal parallelism as many users can access and use machines simultaneously 

[45].  Obviously our distributed database system built on such multicore servers will be able to greatly increase query 

processing performance.  In this paper we focus on the issue of data scalability with our software architecture and hardware 

technology while leaving the rest for future work – query optimization, localization, SQSD (Single Query Specific Databases), 

and so on.  
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This paper is organized as follows.  Section 2 presents the problem and our general approach to a solution.  We discuss 

related work in Section 3.  Section 4 presents the architecture of our scalable, distributed database system built on multicore 

servers.  Section 5 briefly describes the properties of the Pub3D, a database of 3D chemical structures, which we use as a case 

study for our architecture.  Section 6 presents experimental results to demonstrate the viability of our distributed database 

system.  Finally we conclude with a brief discussion of future work and summarize our findings. 

  

2. PROBLEM STATEMENT 

With the advances in a variety of software/hardware technologies and wire/wireless networking, coupled with large end-user 

populations, traditionally tightly-coupled client-server systems have evolved to loosely-coupled three-tier systems as a solution 

for scalability and performance.  The workload of the server in two-tier system has been offloaded into the middleware in 

three-tier system in considering bottlenecks incurred from: increased number of service requests/responses, increased size of 

service payload, and so on.  Also with the explosion of information and data, and the rapid evolution of Internet, centralized 

data have been distributed into locally or geographically dispersed sites in considering such bottleneck as increased workload of 

database servers.  But in today’s data deluge, too much computing for the processing of too much data leads to the necessity of 

effective data fragmentation and efficient service processing task.  For instance, as the size of data increases, the response time 

of database server will increase by its increasing workload.  One solution to the problem is to effectively partition large 

databases into smaller databases.  The individual databases can then be distributed over a network of multicore servers.  The 

partitioning of the database over multicore servers can be a critical factor for scalability and performance.  The purpose of the 

multicore’s use is to facilitate concurrent access to individual databases residing on the database server with independent 

threads of execution for decreasing the service processing time.  We have already encountered the scalability problems with a 

single huge dataset – a collection of 3D chemical structures [6] during our research work.  We believe that the software and 

hardware architecture described in Section 4 will allow for effective data fragmentation and efficient service processing 

resulting in a scalable solution. 

 

3. RELATED WORK 

The middleware in a three-tier distributed database system also has a number of bottlenecks with respect to scalability.  We 

do not address the scalability issues for middleware in this paper since our system can be scaled well in size by a cluster (or 

network) of cooperating brokers [1, 18].  In this paper we focus on the issue related on data scalability.  For data scalability, 

other researchers showed a database can be scaled across locally or geographically dispersed sites by using such fragmentation 

methods as vertical partitioning, horizontal partitioning, heuristic GFF (Greedy with First-Fit) [11], hash partitioning [5], 

range/list/hash partitioning [21], and so on.  On the other hand, we address the problem of partitioning a database over 

multicore servers, based on data clustering [10] such that intra-cluster similarity (using the Euclidean metric) is greater than 

inter-cluster similarity.  The use of data clustering in general has been explored in the field of data mining.  We performed the 

clustering using algorithms developed by the SALSA project [35] at the CGL [8].  The details of the clustering method are 

described in [45].  Also in our work we utilized multicore servers which enable multithreading of executions to provide 

scalable service to our distributed system.  The utilization of the hardware device to aid data scalability was not addressed yet.  

The partitioning of the database over the multicore servers have emerged from a necessity for the new architectural design of 

the distributed database system from scalability and performance concerns against coming data deluge.  Our architecture is 

similar in concept to that of SIMD (Single Instruction stream, Multiple Data stream) [42], in that a single unit dispatches 

instructions to each processing unit.  The SMMV (Single Model Multiple Views) collaboration model (to build applications as 

web services in M-MVC (Message-based Model-View-Controller) architecture) which generalizes the concept of SIMD is used 

for collaborative applications such as shared display [15].  The difference between SQMD and SMMV is direct 

communication between front-end (or view) and back-end (or model).  In the SQMD architecture, the front-end always 

communicates with back-end through middleware (or controller), where the view in the SMMV architecture can communicate 

directly with the model.  Therefore the back-ends (or distributed databases) are transparent to the front-ends (or end-users) in 

SQMD.  The SQMD uses the data parallelism in a manner similar to that of SIMD, via a publish/subscribe mechanism.  In 

this paper we discuss data scalability in the distributed database system with the software and hardware architecture, using a 

collection of more 17 million 3D chemical structures. 

 

4. ARCHITECTURE FOR SCALABLE DISTRIBUTED DATABASE SYSTEM BUILT ON MULTICORE BASED SYSTEMS 

Figure 1 shows a broad 3-tier architecture view for our scalable distributed database system built on multicore systems.  The 

scalable, distributed database system architecture is composed of three tiers – the web service client (front-end), a web service 

and message service system (middleware), agents and a collection of databases (back-end).  The distributed database system is 

a network of two or more PostgreSQL [32] databases that reside on one or more multicore servers or machines. 
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Our hardware (using multicore machines) and software (with web service, SQMD using publish/subscribe mechanism, and 

data clustering program) architecture concentrates on increasing scalability with increased size of distributed data, providing 

high performance service with the enhancement of query/response interaction time, and improving data locality.  The purpose 

of the software/hardware’s use in our architecture is to provide a basis for data scalability, high performance query service, and 

data locality.  In order to decrease the processing time and to improve the data locality of a query performed as the size of data 

increases, we used MPI (Message Passing Interface) [28] style multi-threading on a multicore machine by clustering data 

through clustering program developed by CGL and associating the clustered data (put into databases) with each of threads 

generated within the database agent.  But the threads do not communicate with each other as MPI does.  The multithreading 

within the database agent multitasks by concurrently running multiple databases, one on each thread associated with each core.  

 

 
 

 
Figure 1: Scalable, distributed database system architecture is composed of three tiers: web service client (front-end), 

web service and broker (middleware), and agents and a collection of databases (back-end). 
 

Our message and service system, which represents a middle component, provides a mechanism for simultaneously 

disseminating (publishing) queries to and retrieving (subscribing) the results of the queries from distributed databases.  The 

message and service system interacts with a web service which is another service component of the middleware, and database 

agents which run on multicore machines.  The web service acts as query service manager and result aggregating service 

manager for heterogeneous web service clients.  The database agent acts as a proxy for database server. We describe them in 

each aspect in the following subsections. 

4.1. Web Service 

A web service is a software platform to build applications running on a variety of platforms as services [43].  The 

communication interface for web service is described by XML [13] that follows SOAP (Simple Object Access Protocol) 

standard [36].  Other heterogeneous systems can interact with the web service through a set of descriptive operations using 

SOAP.  For web services we used the open-source Apache Axis [2] library which is an implementation of the SOAP 

specification.  Also we used WSDL (Web Service Description Language) [44] to describe our web service operations.  A web 

service client reads WSDL to determine what functions are available for database service: one service is query request service 

and the other is reliable service which detects whether database servers fail. 

 

 

…… 

…… 

…… 

    Topics: 

1. Query / Response 

2. Heart-beat 

Web Server 

Query / Response 

Query / Response 

Query / Response 

Query / Response Query / Response 

Web Service Client 

(Front-end User Interface) 

Web Service 

 

Message Service 

Message / Service 
System (Broker) 

… 

…

Database Agent 

(JDBC to PostgreSQL) 

DB Host Server 

Thread Thread 

  

… 

…

Database Agent 

(JDBC to PostgreSQL) 

DB Host Server 

Thread Thread 

  



 4 

 
Figure 2: A Screenshot of the Web Page Interface (front-end user interface) to Pub3D Database. 

 

4.2. Web Service Client (front-end) 

Web service clients can simultaneously access (or query) the data in several databases in a distributed environment.  Query 

requests from clients are transmitted to the web service, disseminated through the message and service system to database 

servers via database agents which reside on multicore servers.  The well known benefits of the three-tier architecture results in 

the web service clients do not need to know about the individual distributed database servers, but rather, send query requests to 

a single web service that handles query transfer and response.  Figure 2 shows an example web service client (front-end user 

interface) for Pub3D [33] service developed by the ChemBioGrid (Chemical Informatics and Cyberinfrastructure Collaboratory) 

project [6] at Indiana University.  The web service user interface allows one to either specify compound ID’s or upload a 3D 

structure as a query molecule.  If the user uploads a 3D structure as a query molecule, we evaluate the shape descriptors 

(described in Section 5.2) for the query molecule via a chemoinformatics web service infrastructure [12].  We then construct 

the query described (in e.g. Figure 4) and return the list of molecules, whose distance to the query is less than the specified 

cutoff. 

4.3. Message and service middleware system 

For communication service between the web service and middleware, and the middleware and database agents which run on 

multicore servers in which distributed database servers are placed, we have used NaradaBrokering [19, 31, 37, 38] for message 

and service middleware system as overlay built over heterogeneous networks to support group communications among 

heterogeneous communities and collaborative applications.  The NaradaBrokering from Community Grids Lab (CGL) [8] is 

adapted as a general event brokering middleware, which supports publish/subscribe messaging model with a dynamic collection 

of brokers and provides services for TCP, UDP, Multicast, SSL, and raw RTP clients.  The NaradaBrokering also provides the 

capability of the communication through firewalls and proxies.  It is an open source and can operate either in a client-server 

mode like JMS [23] or in a completely distributed peer-to-peer mode [40].  In this paper we use the terms “message and 

service middleware (or system)” and “broker” interchangeably. 

4.4. Database Agent 

In Figure 1, the database agent (DBA) is used as a proxy for database server (PostgreSQL).  The DBA accepts query 

requests from front-end users via middleware, translates the requests to be understood by database server and retrieves the 

results from the database server.  The retrieved results are presented (published) to the requesting front-end user via message / 

service system (broker) and web service.  Web service clients interact with the DBA via middleware, and then the agent 

communicates with PostgreSQL database server via JDBC (Java Database Connectivity) [24] /PostgreSQL driver which resides 

on the agent.  The agent has responsibility for getting responses from the database server and performs any necessary 

concatenations of responses occurred from database for the aggregating operation of the web service.  As an intermediary 

between middleware and back-end (database server), the agent retains communication interfaces (publish/subscribe) and thus 

can offload some computational needs.  Also the agent generates multiple threads which will be associated with multiple 

databases residing on the PostgreSQL database server to improve query processing performance.  The PostgreSQL database 

server forks new database processes for concurrent connections from the multiple threads.  Each of threads then concurrently 

communicates with each of databases in the PostgreSQL database server. 
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4.5. Database Server 

A number of data partitions split by data clustering program are distributed into PostgreSQL database servers.  The 

partitioned data is assigned to a database which is associated with a thread generated by database agent that is running on 

multicore server for high performance service.  According to the number of cores supported by multicore servers, multiple 

threads can be generated to maximize high performance service.  Another benefit of database servers based on the three-tier 

architecture is that they do not concern about a large number of heterogeneous web service clients but need to only process 

queries and return results of the queries.  We used the open source database management system PostgreSQL [32].  With 

such an approach using open management system, we can build a sustainable high functionality system taking advantage of the 

latest system technologies with appropriate interface between layers (agents and database host servers) in a modular fashion. 

 

5. PUBCHEM  

PubChem is a public repository of chemical information including connection tables, properties and biological assay results.  

The repository can be accessed in a variety of ways including property-based searches and substructure searches.  However, 

one aspect of chemical structure that is not currently addressed by PubChem is the issue of 3D structures.  Given a set of 3D 

structures one would then like to be able to search these structures for molecules whose 3D shape is similar to that of a query. 

To address the lack of 3D information in PubChem and to provide 3D shape searching capabilities we created the Pub3D 

database. 

5.1. Pub3D Database 

Creating a 3D structure version of the PubChem repository requires a number of components.  First, one must have an 

algorithm to generate 3D structures from the 2D connection table.  We developed an in-house tool to perform this conversion 

and have made the program freely available [39].  Second, one must have an efficient way to store the 3D coordinates and 

associated information.  For this purpose, we employ a PostgreSQL database.  Third, one must be able to perform 3D 

searches that retrieve molecules whose shape is similar to that of a query molecule.  This is dependent on the nature of shape 

representation as well as the type of index employed to allow efficient queries.  We employ a 12-D shape representation 

coupled with an R-tree [17] spatial index to allow efficient queries.  The current version of Pub3D stores a single 3D structure 

for a given compound. 

5.2. Storing 3D Structure 

Each 3D structure is stored in the SD file format [9], which lists the 3D coordinates as well as bonding information.  We 

then store the 3D structure files in a PostgreSQL database as a text field.  The schema for the 3D structure table is shown in 

Figure 3. We store the 3D structure file simply for retrieval purposes and do not perform any calculations on the contents of the 

file within the database.  In addition to storing the 3D coordinates, we store the PubChem compound ID (cid), which is a 

unique numeric identifier provided by PubChem, which we use as a primary key.  The remaining field (momsim) is a 12-D 

CUBE field.  The CUBE data type provided by PostgreSQL is used to represent n-D hypercubes.  We use this data type to 

store a reduced description of the shape of the molecule.  More specifically, we employ the distance moment method [4] which 

characterizes the molecular shape by evaluating the first three statistical moments of the distribution of distances between 

atomic coordinates and four specified points, resulting in 12 descriptors characterizing a molecules shape.  Thus, each 

molecule can be considered as a point in a 12-D shape space. 

 

 
Figure 3: The schema for the table used to store the 3D structure information. 

 

5.3. Searching the 3D Database 

Given the 3D structures, the next step is to be able to efficiently retrieve the structures using different criterion.  The 

simplest way to retrieve one or more structures is by specifying their compound ID.  Since the cid column has a hash index on 

it, such retrieval is extremely rapid.  The second and more useful way, to retrieve structures is based on shape similarity to a 

query.  We perform the retrieval based on Euclidean distance to the query molecule (in terms of their 12-D shape descriptor 

vectors).  More formally, given a 12-D point representation of a query molecular shape, we want to retrieve those points from 

the database whose distance to the query point is less than some distance cutoff, R.  Given a the 12-D coordinates of a query 

point we construct an SQL query of the form 
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SELECT cid, structure FROM pubchem_3d WHERE 

cube_enlarge ( COORDS, R, 12 ) @> momsim 

 

Here COORDS represents the 12-D shape descriptor of the query molecule, R is the user specified distance cutoff and 

cube_enlarge is a PostgreSQL function that generates the bounding hypercube from the query point as described above.  The 

“@>” operator is a GiST [20] operator that indicates that the left operand contains the right operator.  In other words, find all 

rows of the database for which the 12-D shape descriptor lies in the hypercubical region defined by cube_enlarge. 

 

6. PERFORMANCE ANALYSIS  

In Section 4 we showed the architecture of our distributed database system built on multicore systems.  In this section we 

show experimental results to demonstrate the viability of our hardware/software architectural approach with a variety of 

performance measurements.  First, we show the latency incurred from query/response interaction between a web service client 

and a centralized Pub3D database via a middleware and an agent.  Then we show the viability of our architectural approach to 

support efficient query processing in time among distributed databases into which the Pub3D database is split, with horizontal 

partitioning method and data clustering method respectively.  The horizontal partitioning method in our experiments was 

chosen due to such convenience factors as easy-to-split and easy-to-use.  In our experiments we used the example query shown 

in Figure 4 as a function of the distance R from 0.3 to 0.7.  The choice of the distance R between 0.3 and 0.7 was due to 

excessively small size of the result sets (0 hits for R=0.1 and 2 hits in R=0.2) for small values of R and the very large result sets, 

which exceeded the memory capacity (for the aggregation web service running on Windows XP platform with 2 GB RAM) 

caused by the large numbers of responses in the values bigger than 0.7.  Table 1 shows the total number of hits for varying R, 

using the query of Figure 4.  In Section 6.1 we show overhead timing considerations incurred from processing a query in our 

distributed database system.  In Section 6.2 we show the performance results for query processing task in a centralized (not 

fragmented) database.  In Section 6.3 we show the performance of a query/response interaction mechanism between a client 

and distributed databases.  The query/response interaction mechanism is based on SQMD using publish/subscribe mechanism.  

A web service client’s single query request is disseminated to all the databases via a broker and agents.  The same query is 

executed simultaneously by all the databases over multicore servers.  An operation for serially aggregating responses from all 

the databases is performed in web service component of middleware.  The aggregated result is transmitted to the request client. 

 

 

 

 

 

 

 

 

 

 

Figure 4: An example query used in our experiment, varying R from 0.3 to 0.7, where the R means some distance cutoff 

to retrieve those points from the database whose distance to the query point, described in more detail in section 5.3. 

 

 

 

Distance R 0.3 0.4 0.5 0.6 0.7 

The number of hits 495 6,870 37,049 113,123 247,171 

Size in bytes 80,837 1,121,181 6,043,337 18,447,438 40,302,297 

Table 1: The total number of response data occurred with varying the distance R in the query of Figure 4. 

 

6.1. Overhead timing considerations 

Figure 5 shows a breakdown of the latency for processing SQMD operation between a client and databases in our distributed 

database system which is a network of eight PostgreSQL database servers that reside on eight multicore servers respectively.  

The cost in time to access data from the databases distributed over multicore servers has four primary overheads.  The total 

latency is the sum of transit cost and web service cost.   

   

select * from (select cid, momsim, 1.0 / (1.0 + cube_distance  ( ('3.0532197952271,  1.0399824380875, -

0.092431426048279, 3.0814106464386, 1.0752420425415, -0.49167355895042, 5.3552670478821, 
5.1984167098999,  -0.41230815649033,  4.9449820518494, 4.9576578140259, -

0.093842931091785') ::cube, momsim)) as sim from pubchem_3d where cube_enlarge (('3.0532197952271, 

1.0399824380875, -0.092431426048279, 3.0814106464386, 1.0752420425415, -0.49167355895042, 

5.3552670478821, 5.1984167098999, -0.41230815649033, 4.9449820518494, 4.9576578140259, -

0.093842931091785'),  R,  12) @> momsim order by sim desc ) as foo where foo.sim != 1.0; 
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Figure 5: Total latency (Ttotal) = Transit cost (Tclient2ws) + Web service cost (Tws2db) 

 
• Transit cost (Tclient2ws) – The time to transmit a query (Tquery) to and receive a response (Tresponse) from the web service 

running on web server. 

• Web service cost (Tws2db) – The time between transmitting a query from a web service component to all the databases 

through a broker and agents and retrieving the query responses from all the databases including the corresponding 

execution times of the middleware and agents. 

• Aggregation (Taggregation) cost – The time spent in the web service for serially aggregating responses from databases.  

• Database agent service cost (Tagent2db) – The time between submitting a query from an agent to and retrieving the responses 

of the query from a database server including the corresponding execution time of the agent. 

 

6.2. Performance for query processing task in a centralized (not fragmented) database 

In this section we show the performance results of latency incurred from processing a query between a web service client and 

a centralized (not fragmented) database.  Note that the results are not to show better performance enhancement but to quantify 

the performance for a variety of latencies induced with the centralized database.  The quantified results will be used as a 

reference of the experimental results of the performance measurements used in the following section.  In our experiments, we 

measured the round trip time in latency involved in performing queries (accessing data) between a web service client and 

database host servers via middleware (web service and broker) and database agents.  The experiment results were measured 

from executing a web service client running on Windows XP platform with 3.40 GHz Intel Pentium and 1 GB RAM connected 

to Ethernet network, and executing a web service and a broker running on Windows XP platform with 3.40 GHz Intel Pentium 

and 2 GB RAM connected to Ethernet network.  Agents and PostgreSQL database servers ran on each of eight 2.33 GHz 

Linux with 8 core / 8 GB RAM connected to Ethernet network as well.  The client, middleware, agents, and database servers 

are located in Community Grids Lab at Indiana University.  

 

Figure 6 show the mean completion time to transmit a query and to receive a response between a web service client and a 

database host server including the corresponding execution time of the middleware (web service and broker) and agents, 

varying the distance R described in section 5.3.  As the distance R increases, the size of result set also increases, as shown in 

Table 1.  Therefore as the distance R increases, the time needed to perform a query in the database increases as well, which is 

shown in the figure and thus the query processing cost clearly becomes the biggest portion of the total cost.  We can reduce the 

total cost by making the primary performance degrading factor (query processing cost (Tagent2db)) faster.  To make the primary 

degrading factor (or frequent case in today’s data deluge) faster, the result which motivated our research work will be used as a 

baseline for the speedup measurement of the experiments performed in the following section. 
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Figure 6: Mean query response time between a web service client and a centralized database host server including the 

corresponding execution time of the middleware (web service and broker) and agents, varying the distance R. 
 

6.3. Performance for query processing task in distributed databases (Data clustering vs. Horizontal partitioning vs. 

Data clustering + Horizontal partitioning) over multicore servers 

The Pub3D database is split into eight separate partitions (or clusters) by horizontal partitioning method and data clustering 

method developed by SALSA project at CGL.  Each of partitions of the database is distributed across eight multicore physical 

machines.  Table 2 shows the partitioned data size in number by the data clustering method.  Note that the data partitioned by 

horizontal partitioning method have almost the same size in number. 

 

 

Segment 

number 

Dataset size 

in number 

Segment 

number 

Dataset size 

in number 

1 6,204,776 5 2,302,272 

2 616,133 6 4,634,860 

3 507,209 7 785,232 

4 2,018,281 8 163,017 

Table 2: The data size (in number) in the fragmentations into which the Pub3D database is split by clustering method.  

(Note that each database in the fragmentations by horizontal partitioning method has about 2,154,000 dataset in 

number). 
 

 

 

S 
 R 

1 2 3 4 5 6 7 8 

0.3 1 0 0 0 494 0 0 0 

0.4 87 0 30 0 6,753 0 0 0 

0.5 1,868 0 570 0 34,611 0 0 0 

0.6 12,926 0 2,720 0 97,477 0 0 0 

 

 

D 

0.7 44,388 0 6,571 0 196,212 0 0 0 

0.3 75 82 77 62 45 27 49 78 

0.4 863 1,133 978 893 667 498 780 1,058 

0.5 4,667 5,686 5,279 4,746 3,615 3,031 4,361 5,664 

0.6 14,089 16,749 15,782 14,650 11,369 9,756 13,559 17,169 

 

 

H 

0.7 30,920 35,558 33,862 32,277 25,207 22,268 29,620 37,459 

Table 3: The number of responses in segments occurred with varying the distance R, where S, D, and H mean segment 

number, data clustering, and horizontal partitioning respectively. 
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Examining overhead costs and total cost, we measured the mean overhead cost for 100 query requests in our distributed 

database system built on multicore based systems.  For measuring the overhead costs, we tested three different cases with two 

different partitioning methods: data clustering vs. horizontal partitioning vs. data clustering and horizontal partitioning, varying 

the distance R in the example query which is shown in Figure 4.  The results are summarized in Table 4 with the mean 

completion time of a query request in the considerations of overhead timings between a client and databases. 

 

 

Mean query response time 

 No 

fragmentation 

Horizontal  

partitioning 

Data 

clustering 

Clustering + 

Horizontal 

mean mean mean mean overheads  

R Milliseconds 

0.3 284.4 66.24 219.06 104.13 

0.4 982.7 503.91 873.28 439.54 

0.5 4533.42 2789.8 3793.29 2542.95 

0.6 13772.36 8060.32 10791.34 7605.67 

Ttotal 

0.7 28808.54 15761.18 21000 15521.35 

0.3 13.86 13.86 13.86 13.86 

0.4 155.08 155.08 155.08 155.08 

0.5 908.18 908.18 908.18 908.18 

0.6 2815.08 2815.08 2815.08 2815.08 

Tclient2ws 

0.7 6054.57 6054.57 6054.57 6054.57 

0.3 270.54 52.38 205.2 90.27 

0.4 827.62 348.83 718.2 284.46 

0.5 3625.24 1881.62 2885.11 1634.77 

0.6 10957.28 5245.24 7976.26 4790.59 

Tws2db 

0.7 22753.97 9706.61 14945.43 9466.78 

0.3 5.93 2.51 5.82 2.04 

0.4 58.2 45.73 75.85 44.67 

0.5 439.58 550.63 460.71 537.37 

0.6 1145.04 1153.41 1447.5 1657.36 

Taggregation 

0.7 2433.72 2267.18 2875.83 3400.61 

0.3 250.85 43.54 186.95 69.27 

0.4 712.38 119.52 580.11 166.43 

0.5 2922.68 736.64 2164.95 675.24 

0.6 8913.66 2091.02 5801.43 2037.89 

Tagent2db 

0.7 18394.97 4491.22 10715.8 3956.57 

Table 4: Mean query response time between a web service client and a centralized database host server (or distributed 

database servers) including the corresponding execution times of the middleware (web service and broker) and agents, 

varying the distance R. 

 

 
By comparing the total costs for the three different cases with the total cost incurred from a centralized database system, we 

computed the speedup (similar to Amdahl’s Law) gained by the distribution of data with the use of multicore devices in our 

distributed database system:  

 

Speedup = Ttotal (1db) / Ttotal (8db) = (Tclient2ws (1db) + Tws2db (1db)) / (Tclient2ws (8db) + Tws2db (8db))              --- (1) 

     = 1 / ((1 – (Tagent2db (1db) / Ttotal (1db))) + ((Tagent2db (1db) / Ttotal (1db)) / (Tagent2db (1db) / Tagent2db (8db))))  --- (2) 

Where (1db) means a centralized database and (8db) means a distributed database. 

 

(1) means the value of speedup is the mean query response time in a centralized database system over the mean query response 

time in a distributed database system.  (2) means the speedup gained by incorporating the un-enhanced and enhanced portions 

respectively.  Figure 7 shows the overall speedup obtained by applying (1) to the test cases respectively.  For brevity we 

explain the overall speedup with the distance 0.5 as an example.  In case of using horizontal partitioning, the overall speedup 

by (1) is 1.62.  The speedup by (2) is 1.93.  This means some additional overheads were incurred during the query/response.  

We measured the duration between first and last response messages from agents, and that between first and last response 
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messages arriving into web service component in middleware for global aggregation of responses.  As expected, there was a 

difference between the durations.  The difference is due to network overhead between web service component and agents, and 

the global aggregation operation overhead in web service that degrades the performance of the system since the web service has 

to wait, blocking the return of the response to a query request client until all database servers send the response messages.  

From the results with the example query in our distributed database system, using horizontal partitioning is faster than using 

data clustering since fragments partitioned by the data clustering method can be different in the size of data as shown in Table 2.  

Then obviously as the responses occurred in performing a query in a large size of cluster increase, the time needed to perform 

the query in the cluster increases as well, which is shown in the graph in Figure 8.  But the responses hit by a query may not be 

occurred from all the distributed databases (fragments), then the data clustering method will benefit more, increasing data 

locality while resulting in high latency.  Therefore there may be unnecessary query processing with some databases distributed 

by the data clustering method, using the SQMD mechanism as shown in Table 3.  To eliminate the unnecessary query 

processing, we should consider the query optimization that allows a query to localize into some specific databases in future 

work – SQSD (Single Query Specific Databases) mechanism which is similar in concept to SISD (Single Instruction stream, 

Single Data stream) [42].  We thus identified the problems, data locality and latency, from our experimental results.  To 

reduce the latency with increasing data locality in using the data clustering method, we combined the data clustering method 

with the horizontal partitioning method to maximize the use of multicore with independent threads of execution by concurrently 

running multiple databases, one on each thread associated with each core in a multicore server.  Figure 9, 10 and 11 show the 

experimental results with data clustering, horizontal partitioning, and the combination of both methods respectively.  Our 

experimental results show there is a data locality vs. latency tradeoff.  Compare the query processing time in Figure 9 with that 

in Figure 10, with Table 3.  Also while the figures show that the query processing cost increases as the distance R increases, 

the cost becomes a smaller portion of overall cost than the transit cost in the distribution of data over multicore servers, with 

increasing data locality and decreasing query processing cost as shown in Figure 11.  This result shows our distributed 

database system is scalable with the partitioning of database over multicore servers by data clustering method for increasing 

data locality, and with multithreads of executions associated with multiple databases split by horizontal partitioning in each 

cluster for decreasing query processing cost, and thus the system improves overall performance as well as query processing 

performance. 
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Figure 7: The value of speedup is the mean query response time in a centralized database system over the mean query 

response time in a distributed database system. 
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Figure 8: Mean query processing time in each cluster 

(Tagent2db), in the case of the distance R=0.5. 
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Figure 9: Mean query response time between a web 

service client and databases distributed by data 

clustering including the corresponding execution times of 

the middleware (web service and broker) and agents, 

varying the distance R. 
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Figure 10: Mean query response time between a web 

service client and databases distributed by horizontal 

partitioning including the corresponding execution times 

of the middleware (web service and broker) and agents, 

varying the distance R. 
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Figure 11: Mean query response time between a web 

service client and databases distributed by data 

clustering and horizontal partitioning including the 

corresponding execution times of the middleware (web 

service and broker) and agents, varying the distance R. 

 

7. SUMMARY AND FUTURE WORK  

We have developed a scalable, distributed database system that allows uniform access to concurrently distributed databases 

over multicore servers by the SQMD mechanism, based on a publish/subscribe paradigm.  The SQMD mechanism transmits a 

single query that simultaneously operates on multiple databases, hiding the details about data distribution in middleware to 

provide the transparency of the distributed databases to heterogeneous web service clients.  Also we addressed the problem of 

partitioning the Pub3D database over multicore servers for scalability and performance with our software architectural design.  

In our experiments with our scalable, distributed database system, we encountered a few problems.  The first problem occurred 

with the global aggregation operation in web service that degrades the performance of the system with an increasing number of 
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responses from distributed database servers since the web service performs poorly when the workload for aggregating the 

results of a query in the web service increases, and since the web service has to wait until all database servers send the response 

messages as well.  In future work we will consider the use of Axis2 web service [3] to provide asynchronous invocation web 

service and also redesign our current distributed database system with MapReduce [25] style data processing interaction 

mechanism by moving the computationally bound aggregating operation to a broker since the number of network transactions 

between web service and broker, and the workload for the aggregating operation are able to decrease.  CGL has been 

developing such a data processing interaction mechanism capable of integrating into Naradabrokering.  In future work, we will 

show that the architectural design with the Map-Reduce style data processing interaction mechanism is more scalable, and the 

scalable distributed database system performs better for query processing as well.  The second problem was found in extra hits 

that our current approach generates.  We will investigate the use of the M-tree index [7] which has been shown to be more 

efficient for near neighbor queries in high-dimensional spaces such as the ones being considered in this work.  Furthermore, 

M-tree indexes allow one to perform queries using hyperspherical regions.  This would allow us to avoid the extra hits we 

currently obtain due to the hypercube representation.  The third problem was found in unnecessary query processing with some 

databases distributed by the data clustering method, using the SQMD mechanism.  To eliminate the unnecessary query 

processing, we should consider the query optimization that allows a query to localize into some specific databases in future 

work – SQSD (Single Query Specific Databases) mechanism which is similar in concept to SISD (Single Instruction stream, 

Single Data stream) [42]. 

In future work we will extend the Pub3D database to the multi-conformer version.  Inclusion of multiple conformers will 

increase the row count by at least an order of magnitude.  We expect that our hardware/software architectural design will scale 

well to such row counts.  Also we will investigate alternative shape searching mechanisms.  The current approach is purely 

geometrical and does not include information regarding chemical groups.  We will investigate the use of extra property 

information as a pre-filter.  In addition we will investigate the possibility of performing pharmacophore [27] searches on the 

3D structure database.  Currently, such searches require a linear scan over the database and we will investigate ways in which 

pre-calculated pharmacophore fingerprints can be used to speed this process.  Finally, we will investigate a number of 

applications.  Given the ability to perform very efficient near neighbor queries, we will investigate the “density of space” 

around various query points.  This method has been described by Guha et al [16], and allows one to characterize the spatial 

location of a molecule in arbitrary chemical spaces.  In the context of the 3D structure database, we will be able to investigate 

how well certain molecular shapes are represented within PubChem.  The indexing technology employed in this work can also 

be used for other multi-dimensional chemical spaces, allowing us to investigate the structure of arbitrary chemical spaces for 

very large collections of molecules. 
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