
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/308720421

Towards	a	Systematic	Study	of	Big	Data
Performance	and	Benchmarking

Thesis	·	September	2016

DOI:	10.13140/RG.2.2.28960.38406

CITATIONS

0

READS

4

1	author:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

SPIDAL:	CIF21	DIBBs:	Middleware	and	High	Performance	Analytics	Libraries	for	Scalable	Data

Science	View	project

Saliya	Ekanayake

Indiana	University	Bloomington

23	PUBLICATIONS			108	CITATIONS			

SEE	PROFILE

All	in-text	references	underlined	in	blue	are	linked	to	publications	on	ResearchGate,

letting	you	access	and	read	them	immediately.

Available	from:	Saliya	Ekanayake

Retrieved	on:	29	September	2016

https://www.researchgate.net/publication/308720421_Towards_a_Systematic_Study_of_Big_Data_Performance_and_Benchmarking?enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ%3D%3D&el=1_x_2
https://www.researchgate.net/publication/308720421_Towards_a_Systematic_Study_of_Big_Data_Performance_and_Benchmarking?enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ%3D%3D&el=1_x_3
https://www.researchgate.net/project/SPIDAL-CIF21-DIBBs-Middleware-and-High-Performance-Analytics-Libraries-for-Scalable-Data-Science?enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ%3D%3D&el=1_x_9
https://www.researchgate.net/?enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Saliya_Ekanayake?enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Saliya_Ekanayake?enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ%3D%3D&el=1_x_5
https://www.researchgate.net/institution/Indiana_University_Bloomington?enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Saliya_Ekanayake?enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ%3D%3D&el=1_x_7


TOWARDS A SYSTEMATIC STUDY OF BIG DATA

PERFORMANCE AND BENCHMARKING

Saliya Ekanayake

Submitted to the faculty of the University Graduate School
in partial fulfillment of the requirements

for the degree
Doctor of Philosophy

in the School of Informatics and Computing
Indiana University

October 2016



Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy.

Geoffrey Fox, Ph.D.

Andrew Lumsdaine, Ph.D.

Judy Qiu, Ph.D.

Haixu Tang, Ph.D.

September 28, 2016

ii



Copyright 2016
Saliya Ekanayake

All rights reserved

iii



To my wife Kalani, son Neth, and our parents.

iv



Acknowledgements

This dissertation represents work done over many years. I have been fortunate to be among

many who cared for me and guided me throughout this endeavor. I am humbled by their

support, without which none of this would have been possible.

I express my sincere gratitude to my mentor and adviser Prof. Geoffrey Fox for his

invaluable research insight and constant encouragement. His remarkable expertise in

parallel programming has helped me to solve numerous challenges throughout this research.

I am honored to have conducted this Ph.D under his guidance.

I am indebted to my committee members Prof. Judy Qiu, Prof. Andrew Lumsdaine,

and Prof. Haixu Tang for their equally invaluable guidance and support. I am privileged to

have taken their courses and to have worked with them on this research. Their wisdom

has helped to shape me into a researcher and scientist. I also thank my former committee

members Prof. Kent Dybvig and Prof. Arun Chauhan for their feedback and guidance that

made it possible to reach the early Ph.D. milestones.

Dr. Sanjiva Weerawarana paved the way for the start of my graduate studies at Indiana

University. I thank him for being an exceptional mentor to me and many other Sri Lankan

students. My deepest gratitude also goes to Vishaka Nanayakkara and Dr. Sanath Jayasena

of University Moratuwa, Sri Lanka for their invaluable support and guidance.

v



It has been a delight to work among my brilliant peers at the Digital Science Center (DSC)

research group. Supun Kamburugamuve has coauthored several papers with me and

supported this research in many ways. I have enjoyed working with Jerome Mitchell and

treasured his friendship during this work. Pulasthi Wickramasinghe has greatly supported

with testing applications and authoring papers. I also extend my thanks to Andrew Young,

TakLon Wu, and BingJing Zang.

Former colleagues – all doctors now – have helped me immensely during the early

years of this research. Jaliya Ekanayake, my brother, constantly encouraged and guided

me during this Ph.D. He has been a role model throughout my life and has always cared

for me. Thilina Gunarathne has assisted countless times with his technical expertise and

guidance. I also thank Ruan Yang, and Jong Choi

My sincere thanks also go to Gary Miksik, Mary Nell Shiflet, Allan Streib, Adam Hughes,

Scott Beason, Julie Overfield, and the staff of the School of Informatics and Computing for

providing continual help during my Ph.D. study.

Suresh Marru of the Science Gateways Group has guided me in many ways both

professionally and as a friend. Eric Holk is an incredible programmer and a colleague whose

LATEXsupport made it possible to write this dissertation as swiftly as possible. Prof. Dan

Friedman’s course has been a complete eye-opener and changed my view on programming

vi



languages. I have also taken great pleasure in attending Prof. Amr Sabry’s and Dr. Kent

Dybvig’s courses.

I would like to thank John McCurley for his untiring proofreading of this dissertation.

I have been blessed to be surrounded by friends whose love and care made our time in

Bloomington unforgettably wonderful. I thank Milinda Pathirage, Isuru Suriyaarachchi,

Supun Kamburugamuve, Udayanga Wickramasinghe, Amila Jayasekara, and the rest of

my Sri Lankan friends.

Words cannot explain the love, support, and encouragement of my parents. It has been

a ritual for my mother, Padmini Ekanayake, to start her day by calling me throughout this

journey. My father, Prof. Punchibanda Ekanayake, has never failed to inspire me through

his courage and dedication. They have taught me to be humble yet strong in the face of

whatever the life has to offer.

None of this would have been possible if not for the one special person, Kalani, who

has been at my side through tears and joys. Her devoted love and courage as my wife

are the pillars of support that I stand on today. Finally, my dear son, Neth, is too little to

understand what daddy is writing here, but his smiles have wiped away my pains and

have given me reason to be strong more than ever!

vii



Saliya Ekanayake

TOWARDS A SYSTEMATIC STUDY OF BIG DATA PERFORMANCE AND
BENCHMARKING

Big data queries are increasing in complexity and the performance of data analytics is

of growing importance. To this end, Big Data on high-performance computing (HPC)

infrastructure is becoming a pathway to high-performance data analytics. The state of

performance studies on this convergence between Big Data and HPC, however, is limited

and ad hoc. A systematic performance study is thus timely and forms the core of this

research.

This thesis investigates the challenges involved in developing Big Data applications with

significant computations and strict latency guarantees on multicore HPC clusters. Three

key areas it considers are thread models, affinity, and communication mechanisms. Thread

models discuss the challenges of exploiting intra-node parallelism on modern multicore

chips, while affinity looks at data locality and Non-Uniform Memory Access (NUMA)

effects. Communication mechanisms investigate the difficulties of Big Data communications.

For example, parallel machine learning depends on collective communications, unlike

classic scientific simulations, which mostly use neighbor communications. Minimizing this

cost while scaling out to higher parallelisms requires non-trivial optimizations, especially

when using high-level languages such as Java or Scala. The investigation also includes a

discussion on performance implications of different programming models such as dataflow

viii



and message passing used in Big Data analytics. The optimizations identified in this

research are incorporated in developing the Scalable Parallel Interoperable Data Analytics

Library (SPIDAL) in Java, which includes a collection of multidimensional scaling and

clustering algorithms optimized to run on HPC clusters.

Besides presenting performance optimizations, this thesis explores a novel scheme for

characterizing Big Data benchmarks. Fundamentally, a benchmark evaluates a certain

performance-related aspect of a given system. For example, HPC benchmarks such as

LINPACK and NAS Parallel Benchmark (NPB) evaluate the floating-point operations (flops)

per second through a computational workload. The challenge with Big Data workloads is

the diversity of their applications, which makes it impossible to classify them along a single

dimension. Convergence Diamonds (CDs) is a multifaceted scheme that identifies four

dimensions of Big Data workloads. These dimensions are: problem architecture, execution,

data source and style, and processing view.

The performance optimizations together with the richness of CDs provide a systematic

guide to developing high-performance Big Data benchmarks, specifically targeting data

analytics on large, multicore HPC clusters.

ix



Geoffrey Fox, Ph.D.

Andrew Lumsdaine, Ph.D.

Judy Qiu, Ph.D.

Haixu Tang, Ph.D.

x



Contents

Abstract i

List of Figures xiii

Chapter 1. Introduction 1

Chapter 2. Background 4

2.1. Shared Memory (SM) 4

2.2. Distributed Memory (DM) 7

2.3. Hybrid of SM and DM 10

2.4. Dataflow Programming 11

Chapter 3. Related Work 13

3.1. Survey of the Current Benchmarks 13

3.2. Technical Improvements 30

3.3. Benchmarking Guidelines 33

Chapter 4. Scalable Parallel Interoperable Data Analytics Library (SPIDAL) 36

4.1. DA-MDS 36

4.2. DA-PWC 37

4.3. DA-VS 37

4.4. MDSasChisq 37

xi



4.5. K-Means Clustering 38

4.6. Elkan’s K-Means Clustering 38

4.7. WebPlotViz 38

4.8. SPIDAL Use Cases 39

4.9. Convergence Diamonds: A Novel Approach to Benchmark Classification 41

Chapter 5. Performance Factors of Big Data 49

5.1. Thread Models 49

5.2. Threads and Processes Affinity Patterns 52

5.3. Communication Mechanisms 53

5.4. Other Factors 58

Chapter 6. Performance Evaluation 62

6.1. Performance of K-Means Clustering 62

6.2. Performance of Deterministic Annealing Multidimensional Scaling (DA-MDS) 74

6.3. Performance of MDSasChisq and Deterministic Annealing Pairwise

Clustering (DA-PWC) 85

Chapter 7. Conclusion 88

Bibliography 91

Curriculum Vita

xii



List of Figures

2.1 Programmer’s view of the SM model 4

2.2 SM model implementation on distributed machines 5

2.3 Programmer’s view of the DM model 8

2.4 Execution model of an Message Passing Interface (MPI) program 9

2.5 Programmer’s view of the hybrid model 10

4.1 Gene sequence analysis pipeline 40

4.2 Gene sequence analysis snapshots 41

4.3 Stock data analysis process 42

4.4 Relative changes in stocks using one day values 43

4.5 Relative changes in stocks using one day values expanded 43

4.6 Dimensions and facets of CDs 48

5.1 Fork-Join vs. long running threads 51

5.2 MPI allgatherv performance with different MPI implementations and varying

intra-node parallelisms 54

5.3 Intra-node message passing with Java shared memory maps 55

5.4 Heterogeneous shared memory intra-node messaging 55

xiii



6.1 Flink and Spark K-Means algorithm. Both Flink and Spark implementations follow

the same data-flow 64

6.2 Java K-Means 1 mil points and 1k centers performance on 16 nodes for Long

Running Threads Fork-Join (LRT-FJ) and Long Running Threads Bulk Synchronous

Parallel (LRT-BSP) with varying affinity patterns over varying threads and

processes. 66

6.3 C K-Means 1 mil points and 1k centers performance on 16 nodes for LRT-FJ and

LRT-BSP with varying affinity patterns over varying threads and processes. 67

6.4 Java K-Means LRT-BSP affinity CE vs NE performance for 1 mil points with

1k,10k,50k,100k, and 500k centers on 16 nodes over varying threads and processes. 67

6.5 Java vs C K-Means LRT-BSP affinity CE performance for 1 mil points with

1k,10k,50k,100k, and 500k centers on 16 nodes over varying threads and processes. 68

6.6 Java K-Means 1 mil points with 1k,10k, and 100k centers performance on 16 nodes

for LRT-FJ and LRT-BSP over varying threads and processes. The affinity pattern

is CE. 69

6.7 Java K-Means 1 mil points with 50k, and 500k centers performance on 16 nodes for

LRT-FJ and LRT-BSP over varying threads and processes. The affinity pattern is

CE. 69

6.8 Java and C K-Means 1 mil points with 100k centers performance on 16 nodes for

LRT-FJ and LRT-BSP over varying intra-node parallelisms. The affinity pattern is

CE. 71

xiv



6.9 K-Means total and compute times for 1 million 2D points and 1k,10,50k,100k, and

500k centroids for Spark, Flink, and MPI Java LRT-BSP CE. Run on 16 nodes as

24x1. 72

6.10 Spark and Flink’s all reduction vs MPI all reduction. 73

6.11 K-Means total and compute times for 100k 2D points and 1k,2k,4k,8k, and 16k

centroids for Spark, Flink, and MPI Java LRT-BSP CE. Run on 1 node as 24x1 74

6.12 Java DA-MDS 50k points performance on 16 nodes for LRT-FJ and LRT-BSP over

varying threads and processes. Affinity patterns are CE,NE,SE, and NI. 76

6.13 Java DA-MDS 50k points performance on 16 of 36-core nodes for LRT-FJ and

LRT-BSP over varying threads and processes. Affinity patterns are CE,NE,SE, and

NI. 77

6.14 Java DA-MDS 100k points performance on 16 nodes for LRT-FJ and LRT-BSP over

varying threads and processes. Affinity patterns are CE,NE,SE, and NI. 77

6.15 Java DA-MDS 100k points performance on 16 of 36-core nodes for LRT-FJ and

LRT-BSP over varying threads and processes. Affinity patterns are CE,NE,SE, and

NI. 78

6.16 Java DA-MDS 200k points performance on 16 nodes for LRT-FJ and LRT-BSP over

varying threads and processes. Affinity patterns are CE,NE,SE, and NI. 78

6.17 Java DA-MDS 200k points performance on 16 of 36-core nodes for LRT-FJ and

LRT-BSP over varying threads and processes. Affinity patterns are CE,NE,SE, and

NI. 79

xv



6.18 DA-MDS 100K performance with varying intra-node parallelism 81

6.19 DA-MDS 200K performance with varying intra-node parallelism 81

6.20 DA-MDS 400K performance with varying intra-node parallelism 82

6.21 DA-MDS 100K allgatherv performance with varying intra-node parallelism 82

6.22 DA-MDS 200K allgatherv performance with varying intra-node parallelism 83

6.23 DA-MDS speedup for 200K with different optimization techniques 84

6.24 DA-MDS speedup with varying data sizes 85

6.25 Java MDSasChisq 10k points performance on 32 nodes for LRT-FJ over varying

threads and processes. Affinity pattern is CI 86

6.26 Java MDSasChisq 10k points speedup on 32 nodes for LRT-FJ over varying

intra-node parallelism. Affinity pattern is CI 87

6.27 Java DA-PWC LRT-FJ performance on 32 nodes over varying varying threads and

processes. Affinity pattern is CE 87

xvi



CHAPTER 1

Introduction

The concept of Big Data has evolved from its early hype to a norm within a short period of

time. Google pioneered Big Data processing with the advent of the MapReduce [22] frame-

work for analyzing its large collection of web data. The MapReduce implementation gained

wide publicity for reasons such as the ease of programming, built-in fault tolerance, and

horizontal scalability over commodity clusters. Google’s implementation was proprietary,

and with the growing interest in MapReduce, Yahoo developed an open-source version and

released it under Apache Software Foundation (ASF) as Apache Hadoop [95]. It has since

been adopted heavily in both academia and industry. Currently, an abundance of open-

source Big Data frameworks and libraries exist in the Apache Big Data Stack (ABDS) [36],

including popular frameworks like Apache Spark, Flink, and Storm that support complex

batch and streaming data analytics beyond MapReduce. It is worth noting here that most

of these frameworks and applications are based on high-level languages such as Java,

Scala, and Python, which is uncommon in classic high-performance computing (HPC)

applications.

Big Data queries are becoming increasingly complex, and there is a rising trend to

bridge Big Data and HPC, especially for applications such as parallel machine learning that

exhibit intensive computations and communication. This means performance is of utmost

importance. To this end, there are over a dozen Big Data benchmarks; however, while they

1

https://www.researchgate.net/publication/283469883_Towards_a_comprehensive_set_of_big_data_benchmarks?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/220851866_MapReduce_Simplified_Data_Processing_on_Large_Clusters?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==


1. INTRODUCTION

are designed to compare similar products, they do not provide insight into performance

scaling within a node or across nodes. Further, their coverage is limited and ad hoc.

This thesis explores the challenges of developing high-performance, parallel machine-

learning applications on HPC environments. A primary challenge with parallel machine

learning is its sensitivity to performance variations in individual tasks. To elaborate, these

algorithms are typically iterative in nature and require collective communications that

are not easily overlapped with computations; hence, the performance is susceptible to

communication overheads and noise caused by slow-performing tasks. Beyond the nature

of these applications, the use of high-level languages such as Java, as mentioned previ-

ously, on multicore Non-Uniform Memory Access (NUMA) nodes brings out additional

challenges in keeping constant performance when scaling over the many cores within a

node as well as across nodes. This research identifies three key factors that significantly

affect performance. These factors are thread models, affinity strategies for threads and

processes, and communication mechanisms. Moreover, we discuss several other factors

of importance when developing high-performance applications using Java and Object

Oriented Programming (OOP). We present optimization techniques to bring performance

closer to traditional HPC applications written in languages like C.

To study performance we carefully look at three major frameworks: Message Passing

Interface (MPI), Apache Spark [98], and Apache Flink [1,12]. Two parallel machine learning

algorithms – K-Means clustering and Multidimensional Scaling (MDS) – are used to evaluate

these frameworks using an Intel Haswell HPC cluster consisting of both 24-core and 36-core

nodes. The experiments focus on four aspects: scaling over the many cores of a node,

2

https://www.researchgate.net/publication/279458648_Lightweight_Asynchronous_Snapshots_for_Distributed_Dataflows?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/234790155_Spark_Cluster_Computing_with_Working_Sets?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==


1. INTRODUCTION

efficiently exploiting the maximum parallelism of a node, scaling across nodes, and scaling

over varying data sizes. These tests form the basis of our systematic study of Big Data

performance.

The rest of the thesis is organized as follows. Chapter 2 provides some background

information on different parallel programming models used to write Big Data applications.

Chapter 3 presents a survey of existing Big Data benchmarks, technical improvements, and

benchmark design guidelines. Chapter 4 introduces Scalable Parallel Interoperable Data

Analytics Library (SPIDAL), a parallel machine-learning library that is contributed to as

part of this research. It also presents a novel, multifaceted Big Data classification scheme

to overcome the limitations of existing classification approaches. Chapter 5 identifies

the major factors affecting Java parallel machine-learning and presents optimizations to

improve performance to near native levels. Chapter 6 presents a detailed performance

study of two machine-learning applications highlighting the effects of the optimizations

discussed in the previous chapter. Finally, Chapter 7 summarizes and concludes the work

of this research.

3



CHAPTER 2

Background

Before diving into the details of performance and benchmarking it is helpful to understand

the different programming models that write parallel Big Data applications. The following

sections describe Shared Memory (SM), Distributed Memory (DM), hybrid SM and DM,

and Dataflow (DF) programming models, all of which are popular among both Big Data

and scientific communities.

2.1. Shared Memory (SM)

The SM model, as the name implies, presents a shared memory layer to the program.

Developers consider an SM program as a collection of tasks running in a single address

space as shown in Figure 2.1.

The language supporting a shared memory model is responsible for mapping it onto the

physical computing system. Typically, tasks are mapped to threads and the implementation

FIGURE 2.1. Programmer’s view of the SM model

4



2. BACKGROUND

FIGURE 2.2. SM model implementation on distributed machines

may determine if the mapping is one-to-one or many-to-one. Although the common

use of the SM model is local to a node, it is possible to implement the SM model over

distributed machines [76]. This necessitates communications over the network as shown

in the illustration in Figure 2.2. Note that the leftmost processor is enlarged to show the

mapping of tasks onto central processing units (CPUs), and the network layer is placed

between the processor and memory of each machine for clarity, but this does not imply

uniform memory access. Although not shown in the figure, tasks can have unshared local

address spaces in physical memory local to the processor running a particular task. The

advantage of this model to a developer is the ability to share data across tasks, unconstrained

by the notion of ownership, which requires explicit communication to share data. The

caveat, however, is the need to synchronize data access to preserve the expected behavior

of the program.

5

https://www.researchgate.net/publication/3333209_Distributed_shared_memory_concepts_and_systems?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==


2. BACKGROUND

The most common implementation of the SM model is the thread support found in

almost all programming languages. Portable Operating System Interface (POSIX) threads

(or ’Pthreads’) is a thread specification for Linux Operating Systems (OSs) and is supported

in the C language. Other languages such as Java and Python have their own thread

implementations. There are also high-level SM libraries such as Open Multi-Processing

(OpenMP), Intel Thread Building Blocks (TBBs) [81], Microsoft’s Task Parallel Library

(TPL) [64], and Habanero Java (HJ) [50] to name a few. We briefly introduce OpenMP and

HJ below as they were used in performance evaluations in Section 6.

2.1.1. OpenMP. OpenMP is one of the most popular implementations of the SM model.

It provides an Application Programming Interface (API) based on compiler directives

to express parallelism explicitly along with a set of library routines and environment

variables. OpenMP implementations support C, C++, and Fortran languages and are

portable enough to run on both Linux- and Windows-based platforms. Before the intro-

duction of parallel tasks in version 3.0, OpenMP programs by default followed a fork-

join execution model, where a master thread would fork worker threads when necessary.

Once the parallel work was done, the threads would exit, leaving only the master thread

again. The number of threads spawned in a parallel region can be determined by the

programmer by setting either the OMP_NUM_THREADS environment variable or calling

the omp_set_num_threads(int num_threads) method before the start of a parallel

region. The threads are numbered from zero to one minus the total number of threads,

making it possible for different threads to take different execution paths. OpenMP also

provides several synchronization constructs to the programmer to avoid race conditions

6

https://www.researchgate.net/publication/221320612_The_Design_of_a_Task_Parallel_Library?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/266661749_Habanero-Java_library_a_Java_8_framework_for_multicore_programming?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==


2. BACKGROUND

when multiple threads work on shared data, such as critical, atomic, barrier, master, ordered,

and flush. Also, OpenMP version 3.0 introduced tasks in which a thread may generate

any number of other tasks to be run by a pool of threads. The moment of execution of a

task is decided by the runtime and completion of tasks and can be enforced using task

synchronization.

2.1.2. HJ. HJ [50] is a Java-based thread library similar to OpenMP. It provides two par-

allel constructs to do loop parallelism: forall and forasync. The former includes an im-

plicit synchronization at the end of the parallel loop. These two also have forallChunked

and forasyncChunked versions to partition the data into chunks, so an asynchronous task

may handle a block of data rather than creating tasks per item of data. Besides loop-parallel

constructs, HJ provides other kinds of asynchronous task creation similar to OpenMP and

coordination constructs, such as isolated, futures, phasers, and actors.

2.2. Distributed Memory (DM)

The DM model presents a segmented address space in which each segment is local only

to a single task. A programmer’s view of a DM program is as a collection of individual

tasks acting on their own local address spaces as shown in Figure 2.3.

The DM model obligates the programmer to partition data structures that need to be

distributed among tasks manually and requires explicit communication between tasks for

synchronization. Communication is shown in dashed lines in Figure 2.3. Typically, DM

encourages Single Program Multiple Data (SPMD) programming, which works well for

many parallel algorithms. The best-known implementation of DM is MPI, discussed in

7

https://www.researchgate.net/publication/266661749_Habanero-Java_library_a_Java_8_framework_for_multicore_programming?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==


2. BACKGROUND

FIGURE 2.3. Programmer’s view of the DM model

Section 2.2.1. Big Data frameworks such as Apache Hadoop [95], Twister [26], and Harp [99]

are also realizations of the DM model but restrict themselves to the MapReduce [22] model

and its extensions. One advantage of following such a restrictive DM model is the ability to

provide fault tolerance at the framework level, which is especially important for programs

running on commodity clusters.

2.2.1. MPI. MPI is an API specification allowing inter-process communication via

message passing. Over the years it has become the de facto standard in realizing DM parallel

programming. The most frequently used implementations of MPI are OpenMPI [43],

MPICH [44], MVAPICH [48], and vendor-specific implementations, such as Intel MPI [52],

Cray MPI [51], and Microsoft MPI [16]. While these commonly support C, C++, and Fortran,

other bindings exist for languages such as Java, C#, Python, Ruby, and Perl.

The execution model of an MPI program requires the user to specify the total number

of processes. In the MPI-1 specification the number of processes is a constant throughout

the execution of the program. MPI-2 relaxes this constraint to support dynamic process

8

https://www.researchgate.net/publication/220691734_Using_MPI_-_portable_parallel_programming_with_the_message-parsing_interface?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/220717676_Twister_A_Runtime_for_Iterative_Mapreduce?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/220851866_MapReduce_Simplified_Data_Processing_on_Large_Clusters?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/4241890_Design_of_High_Performance_MVAPICH2_MPI2_over_InfiniBand?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/220697964_Open_MPI_A_flexible_high_performance_MPI?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==


2. BACKGROUND

FIGURE 2.4. Execution model of an MPI program

creation and connection of previously existing processes. All processes belong to the

MPI COMM WORLD communicator and are ranked from 0 to N-1, where N is the total number

of processes. Figure 2.4 illustrates the general execution model of an MPI program.

The usual practice of MPI programs is to execute the same application by all the

processes resembling the SPMD model. The flow of execution, however, may differ across

processes depending on their rank. The dashed line segments in Figure 2.4 denote this

difference in control flow. These processes operate on separate data entities and data sharing

is made explicit through communication between processes as identified by blue arrows in

the figure.

9



2. BACKGROUND

FIGURE 2.5. Programmer’s view of the hybrid model

MPI is a complete programming model capable of implementing any parallel algorithm.

Also, MPI implementations have been perfected for high-performance, especially in HPC

environments with tightly coupled nodes.

2.3. Hybrid of SM and DM

It is common to combine the SM and DM models to implement parallel programs. A

programmer’s view is shown in Figure 2.5. There are two types of tasks visible in the

figure: inter-node tasks and intra-node tasks. These are represented in large and small

ellipses, respectively. The classic realization of this model is to combine OpenMP with MPI.

The outer tasks, the processes, share their address space with threads running inside of

them. While it is not restricted to initiating communications at thread-level, in practice

communications happen at the process level while threads perform compute-only tasks.

In multicore environments, threads are usually preferred over processes for intra-node

tasks, as they incur less communication cost than processes do. However, there are other

performance implications for using threads, which we will discuss in a later section.

10



2. BACKGROUND

2.4. Dataflow Programming

Dataflow programming models parallel computation as a series of data-transformation

steps. Apache Spark, Apache Flink, and Apache Storm are popular dataflow frameworks

that emerged with Big Data. Overall, dataflow is similar in style to the classic HPC work-

flow systems except at a finer level. For example, in workflow systems data transformations

happen across coarse-grained components, such as separate applications. These compo-

nents appear as black boxes to the workflow system, which essentially coordinates them

by passing data as inputs and outputs. In a dataflow system the transformations are tasks

that are visible to the framework and are usually composed of transformation constructs

exposed by the framework. Generally, the following operations are supported in dataflow

systems.

(1) Map - Represents a transformation function that is applied to data partitions in

parallel.

(2) Filter - Similar to the Map but represents a logic to filter out data elements.

(3) Project - Selects part of the data elements.

(4) Group - Groups data items based on a provided key attribute.

(5) Reduce - Reductions, as the name implies, are used to combine and reduce an

input dataset. For example, the plus operator may be used to sum a collection of

numbers.

(6) Aggregate - Similar to reductions, aggregations reduce data elements. These are

essentially built-in reduce functions.

(7) Join - Joins two datasets based on a key attribute.

11



2. BACKGROUND

(8) Cross - Produces the cross product of two datasets.

(9) Union - Produces the union of two datasets.

The dataflow model offers a more declarative approach to parallel programming than

other DM models and is being adopted in the industry to process Big Data. However, the

suitability of this model for parallel analytics requiring complex computations and commu-

nications is still being investigated. In our performance study presented in Section 6, we

observed that current dataflow systems could benefit from classic HPC concepts, especially

when used within HPC environments.

12



CHAPTER 3

Related Work

As the diversity of Big Data continues to increase, a vast collection of benchmarks have

emerged to evaluate the performance of Big Data systems. While the majority of the

benchmarks have originated from Big Data companies to evaluate performance of their

systems, other research, such as BigDataBench [93], is aimed at providing a repository of

Big Data benchmarks and guidelines on how to select a few representative benchmarks to

evaluate a system. Beyond establishing these benchmarks the next line of research relating to

performance concerns is the technical improvements of Big Data frameworks and libraries.

Further research explores approaches toward consensus around the benchmarking of Big

Data systems. The following sections present current work on these three related areas,

starting with the current landscape of benchmarks.

3.1. Survey of the Current Benchmarks

There is a range of Big Data benchmarks in the current literature, and the following

sections describe a selected few from different areas. To highlight the diversity of Big Data

benchmarks, we start with two of the prominent HPC benchmarks, LINPACK (LINPACK)

and NAS Parallel Benchmarks (NPBs), which are primarily used to evaluate computation

performance of HPC systems.

13



3. RELATED WORK

3.1.1. LINPACK and Its Variants. The lineage of LINPACK [23] includes the following

three benchmark suites.

• LAPACK (LAPACK) [4]: the shared memory implementation

• ScaLAPACK (ScaLAPACK) [9]: the parallel distributed memory implementation

• HPL (HPL) 1: Top500’s 2 yardstick

These are kernel solvers for dense linear systems of the form Ax = b. The strategy is to use

lower upper (LU) factorization followed by a solver that totals 2n3/3+2n2 floating-point

operations (flops). The performance metric is flops per second, generally mega or giga flops

per second (Mflop/s of Gflop/s).

The LINPACK benchmark report [24] includes results from three benchmarks: LINPACK

Fortran n=100, LINPACK n=1000, and HPL. The first is a sequential, Fortran-based solver

for a matrix of order 100. The rules specify that no change other than compiler optimizations

are allowed for this case. The second benchmark is for a matrix of order 1000 with relaxed

rules such that the user can replace the LU factorization and solver steps. The report also

includes results exploiting shared-memory parallelism in a fork-join style for the n=1000

test. The HPL benchmark relaxes both the choice of implementation and problem size.

Its parallel algorithm for distributed memory systems is explained in the HPL algorithm

report 3, and a scalable implementation is packaged into the HPL software distribution that

scales both with the amount of computation and communication volume as long as the

memory usage per processor is maintained [25].

1http://www.netlib.org/benchmark/hpl
2http://www.top500.org/
3http://www.netlib.org/benchmark/hpl/algorithm.html

14

https://www.researchgate.net/publication/2543892_Performance_of_Various_Computers_Using_Standard_Linear_Equations_Software?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==


3. RELATED WORK

3.1.2. NAS Parallel Benchmarks (NPBs). NPBs are a set of kernel and pseudo appli-

cations derived from Computational Fluid Dynamics (CFD) applications. They are meant

to compare the performance of parallel computers and to serve as a standard indicator of

performance [67]. The original NPB 1, which is a paper-and-pencil specification, includes

five kernels and three pseudo applications. Optimized MPI parallel implementations habe

been available since version 2.3.

The original benchmark set was extended with multi-zone (MZ) implementations of

the original block tridiagonal (BT), scalar pentadiagonal (SP), and LU pseudo applications.

MZ versions are intended to exploit multiple levels of parallelism, and the implementations

use MPI plus threading with OpenMP. 4 NPB was further extended to include benchmarks

that evaluate unstructured computation, parallel I/O, and data movement. Alongside NPB,

GridNPB, another set of benchmarks, was introduced in order to rate the performance of

grid environments.

A notable feature in NPB is its well-defined benchmark classes: small (S), workstation

(W), standard, and large. The standard class is further divided into subclasses A, B, and C

with problem size increasing roughly four times from going one class to the next. The large

class also introduces D, E, and F subclasses where the problem size increase is roughly 16

times. A detailed description of the actual problem sizes for each class is available on the

NPB website. 5 We capture this property in our proposed classification strategy as well.

3.1.3. BigDataBench. BigDataBench [66, 94] is a benchmark suite targeting Internet

services. There is a total of 34 implemented benchmarks (or ‘workloads’ following the

4http://openmp.org/wp/
5http://www.nas.nasa.gov/publications/npb˙problem˙sizes.html

15



3. RELATED WORK

authors), which fall into any of five application domains: search engines, social networks,

e-commerce, multimedia data analytics, and bioinformatics. Moreover, some of these

benchmarks have multiple implementations to suite different Big Data frameworks. The

implementations use several components of the ABDS 6 and some of their commercial

adaptations. An extracted summary of benchmarks is given in Table 3.1.

Version 3.1 of the BigDataBench handbook mentions that each workload is quantified

over 45 micro-architectural-level metrics in the following categories: instruction mix, cache

behavior, TLB behavior, branch execution, pipeline behavior, offcore request, snoop re-

sponse, parallelism, and operation intensity. The original paper [94] also presents three

user-perceivable metrics: process requests per second (RPS), operations per second (OPS),

and data processes per second (DPS). Note that each of these is relevant only for some

workloads.

BigDataBench presents two things: implications of data volume and benchmark char-

acterizations. The paper [94] presents the importance of testing with increasing loads to

determine the performance trends in each case. The metrics, million instructions per sec-

ond (MIPS) and cache misses per 1000 instructions (MPKI) are given to elaborate this fact.

The benchmark characterization measures operation intensity and effects of hierarchical

memory. In conclusion they present that the kind of benchmarks tested in BigDataBench

show relatively low ratios of computation to memory accesses compared to traditional HPC

benchmarks. Further, they show that L3 caches show the lowest MPKI numbers for these

6http://hpc-abds.org/kaleidoscope/

16



3. RELATED WORK

benchmarks and that a possible cause of seeing higher MPKI values in lower-level caches

(L1, L2) could be due to the use of deep software stacks.

TABLE 3.1. Benchmark summary of BigDataBench.

Application Domain Operation or Algorithm Software Stack

Search Engine Sort, Grep, WordCount, Index,

PageRank, Nutch Server, Read,

Write, Scan

Hadoop, Spark, MPI, Nutch,

HBase, MySQL

Social network K-means, Connected Compo-

nents (CC), BFS

Hadoop, Spark, MPI

E-commerce Select, Aggregate, and Join

queries, Collaborative Filtering

(CF), Nave Bayes, Project, Filter,

Cross Product, OrderBy, Union,

Difference, Aggregation

Impala, Hive, Shark

Multimedia BasicMPEG, SIFT, DBN,

Speech Recognition, Image

Segmentation, Face Detection

MPI

Bioinformatics SAND, BLAST Work Queue, MPI

In addition to providing a large number of benchmarks and metrics, BigDataBench also

presents a way to reduce the number of benchmarks that one would require in order to assess

a system comprehensively. Instead of characterizing a benchmark by 45 dimensions (micro-

architectural metrics), the strategy involves picking the most uncorrelated dimensions

17



3. RELATED WORK

with the help of running Principal Component Analysis (PCA) [94] and then clustering

the benchmark performance vectors with K-means clustering to form groups of similar

benchmarks. A representative benchmark is then picked from each cluster either by picking

one close to the edge of a cluster or the middle of a cluster. There are two lists of such

shortlisted benchmarks presented in [66].

3.1.4. HiBench. HiBench [47] is a Hadoop benchmark suite intended to evaluate

MapReduce-style applications. It captures the interest of the Big Data community to

use Hadoop and its ecosystem Pig, Hive, Mahout, etc. to areas such as machine learning,

bioinformatics, and financial analysis. The introduction of HiBench, as it authors claim, is

to overcome the limited representation and diversity of existing benchmarks for Hadoop

at this time. The benchmarks they compare are the following sort programs: GridMix 7,

DFSIO 8, and Hive 9. A few reasons why these benchmarks do not produce a fair evaluation

are: 1) they do not exhibit computations compared to real applications; 2) they do not

feature data access outside of map tasks; and 3) they represent only analytical database

queries (Hive benchmarks), which do not evaluate MapReduce over a broad spectrum of

Big Data analysis.

HiBench introduces micro-benchmarks and real-world applications. These micro-

benchmarks include the original Sort, WordCount, and TeraSort from Hadoop. The appli-

cations are Nutch indexing, PageRank, Bayesian classification, K-means clustering, and

EnhancedDFSIO. The EnhancedDFSIO could be identified as a micro-benchmark in today’s

7https://developer.yahoo.com/blogs/hadoop/gridmix3-emulating-production-workload-apache-hadoop-
450.html
8http://epaulson.github.io/HadoopInternals/benchmarks.html#dfsio
9https://issues.apache.org/jira/browse/HIVE-396

18

https://www.researchgate.net/publication/259584511_BigDataBench_a_Big_Data_Benchmark_Suite_from_Internet_Services?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==


3. RELATED WORK

context and extends the original DFSIO to include measure-aggregated I/O bandwidth.

HiBench evaluates these benchmarks for job running time and throughput, aggregated

Hadoop Distributed File System (HDFS) bandwidth, utilization of CPU, memory and

I/O, and data access patterns, i.e. data sizes in map-in, map-out/combiner-in, combiner-

out/shuffle-in, and reduce-out stages. In conclusion the authors claim HiBench represents

a wider range of data analytic problems with diverse data access and resource utilization

patterns. The latest release of HiBench is version 3.0, completed on October 2014.

3.1.5. Graph500. Graph500 10, unlike other Big Data benchmarks, is intended to evalu-

ate a variety of architectures, programming models, and languages and frameworks against

data intensive workloads. It brings to light the point that systems targeted for traditional

physics simulations may not be the best for data intensive problems. The benchmark

performs a breadth-first graph search and defines six problem classes denoted as levels 10

through 15. These indicate the storage in bytes required to store the edge list such that for a

given level L the size will be in the order of 10L.

There are two timed kernels in Graph500. Kernel 1 creates a graph representation from

an edge list and Kernel 2 performs the Breadth-First Search (BFS). Kernel 2 is run multiple

times (usually 64), each with a different starting vertex. After each run a soft validation

is run on results. The soft validation checks for properties of a correct BFS tree rather

than verifying if the resultant BFS tree is the one for the input graph and the particular

starting vertex. The performance metric of Graph500 defines a new rate, traversed edges per

10http://www.graph500.org/

19



3. RELATED WORK

second (TEPS). It is defined as TEPS = m/timek2, where m is the number of edges including

any multiple edges and self-loops, and timek2 is Kernel 2’s execution time.

3.1.6. BigBench. BigBench [41,42] is an industry-led effort to defining a comprehensive

Big Data benchmark. It emerged with a proposal that appeared in the first Workshop on

Big Data Benchmarking (WBDB) [79]. It is a paper-and-pencil specification, but it comes

with a reference implementation to get started. BigBench models a retailer and benchmarks

30 queries around it, covering five business categories depicted in the McKinsey report [68].

The retailer data model in BigBench addresses the three V’s volume, variety, and

velocity of Big Data systems It covers variety of data by introducing structured, semi-

structured, and unstructured data in the model. While the first is an adaptation from the

TPC-DS 11 benchmark’s data model, the semi-structured data represents the click stream

on the site, and unstructured data represents product reviews submitted by users. Volume

and velocity are covered with a scale factor in the specification that determines the size

for all data types, and a periodic refresh process based on TPC-DS’s data maintenance,

respectively.

Part of the BigBench research is on data generation, which includes an extension to the

popular Parallel Data Generation Framework (PDGF) [78] that generates the click-stream

(semi-structured) data and a novel synthetic reviews (unstructured text data) generator,

TextGen, which is seamlessly integrated with PDGF.

There are a total of 30 queries covering 10 classes from five business categories. While

these cover the business side well, they also cover 3 technical dimensions data source,

11http://www.tpc.org/information/benchmarks.asp

20



3. RELATED WORK

processing type, and analytic technique. Data source coverage is to represent all three

structured, semi-structured, and unstructured data in the queries. Given that BigBench is a

paper-and-pencil specification, the queries are specified using plain English. While some

of these could be implemented efficiently with Structured Query Language (SQL) or Hive-

QL 12 like declarative syntaxes, the others could benefit from a procedural implementation

like MapReduce or a mix of these two approaches. The processing-type dimension assures

that the queries manage reasonable coverage of these three types. BigBench identifies three

analytic techniques for answering queries: statistical analysis, data mining, and simple

reporting. The paper does not define a performance metric for future work, but it suggests

taking a geometric-mean approach such that 30

√
30

∏
i=1

Pi where Pi denotes execution time for

query i. It also presents their experience implementing and running this query end-to-end

on Teradata Aster Database Management System (DBMS).

In summary, BigBench is in active development at present and provides good coverage

for business-related queries over a synthetic data set. Plans are set for a Transaction

Processing Council (TPC) proposal with its 2.0 version as well.

3.1.7. MineBench. MineBench [70] is a benchmark targeted for data-mining workloads

and presents 15 applications covering five categories as shown in Table 3.2.

TABLE 3.2. Minebench applications

Application Category Description

Continued on next page

12https://cwiki.apache.org/confluence/display/Hive/LanguageManual

21



3. RELATED WORK

Application Category Description

ScalParC Classification Decision tree classification

Nave Bayesian Classification Simple statistical classifier

SNP Classification Hill-climbing search method for

DNA dependency extraction

Research Classification RNA sequence search using sto-

chastic Context-Free Grammars

SVM-RFE Classification Gene expression classifier using re-

cursive feature elimination

K-means Clustering Mean-based data partitioning

method

Fuzzy K-means Clustering Fuzzy logic-based data partition-

ing method

HOP Clustering Density-based grouping method

BIRCH Clustering Hierarchical Clustering method

Eclat Association Rule Mining Vertical database, Lattice transver-

sal techniques used

Apriori Association Rule Mining Horizontal database, level-wise

mining based on Apriori property

Continued on next page

22



3. RELATED WORK

Application Category Description

Utility Association Rule Mining Utility-based association rule min-

ing

GeneNet Structure Learning Learning Gene relationship ex-

traction using microarray-based

method

SEMPHY Structure Learning Learning Gene sequencing using

phylogenetic tree-based method

PLSA Optimization DNA sequence alignment us-

ing Smith-Waterman optimization

method

It has been a while since MineBench’s latest release in 2010, but it serves as a good

reference for the kind of applications used in data mining. Moreover, these are real-world

applications and the authors provide OpenMP-based parallel versions for most of them.

The input data used in these applications come from real and synthetic data sets of small,

medium, and large size.

A performance characterization of data-mining applications using MineBench is studied

in two papers [70, 75]. The architectural characterization study [75] is of particular interest

for a couple of reasons. First, it justifies the need to introduce a new benchmarking system

by identifying the diversity of data-mining applications. It does so by representing each

application as a vector of its performance counters and using K-means clustering to group

23

https://www.researchgate.net/publication/224761440_An_Architectural_Characterization_Study_of_Data_Mining_and_Bioinformatics_Workloads?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/224761440_An_Architectural_Characterization_Study_of_Data_Mining_and_Bioinformatics_Workloads?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==


3. RELATED WORK

them. While applications from other benchmarks such as SPEC INT, SPEC FP, MediaBench,

and TPC-H tend to cluster together, data-mining applications fall under multiple clusters.

Second, it characterizes the applications based on: 1) execution time and scalability, 2)

memory hierarchy behavior, and 3) instruction efficiency. While it is expected from any

benchmark to have a study of performance and scalability, we find the other two dimensions

are equally important and adaptable towards studying Big Data benchmarks as well.

3.1.8. LinkBench. LinkBench [5] is a benchmark developed at Facebook to evaluate its

graph-serving capabilities. Note that LinkBench evaluates a transactional workload, which

is different from a graph-processing benchmark like Graph500 that runs an analytic work-

load. LinkBench is intended to serve as a synthetic benchmark to predict the performance

of a database system serving Facebook’s production data, thereby reducing the need to

perform costly and time-consuming evaluations that mirror real data and requests.

The data model of LinkBench is a social graph where nodes and edges are represented

using appropriate structures in the underlying datastore, for example using tables with

MySQL. The authors have studied in detail the characteristics of Facebook’s data when

coming up with a data generator that would closely resemble it.

The workload is also modeled after careful study of actual social transactions. The

authors consider several factors such as access patterns and distributions, access patterns

by data type, graph structure and access patterns, and update characterization in coming

up with an operation mix for the benchmark.

The design includes a driver program that generates data and fires up requester threads

with the operation mix. The connections to the data store are handled through LinkBench’s

24



3. RELATED WORK

graph-store implementation, which currently includes support for MySQL back-ends. Most

of the information for the benchmark is fed through a simple configuration file, which

makes it easy to adapt for different settings in the future.

Primary metrics included in the benchmark are operation latency and mean operation

throughput. The other metrics include price/performance, CPU usage, I/O count per

second, I/O rate MB/s, resident memory size, and persistent storage size.

3.1.9. BG Benchmark. BG [2] emulates read and write actions performed on a social

networking datastore and benchmarks them against a given service-level agreement (SLA).

These actions originate from interactive social actions like view profile, list friends, view

friend requests, etc. BG defines a data model and lists the social actions it benchmarks in

detail in its paper [2]. It introduces two metrics to characterize a given datastore, as given

below.

• Social Action Rating (SoAR): The highest number of completed actions per sec-

ond agreeing to a given SLA.

• Socialites: The highest number of simultaneous threads that issue requests against

the datastore and satisfy the given SLA.

An SLA requires that for some fixed duration: 1) a fixed percentage of requests observing

latencies equal or less than a given threshold, and 2) the amount of unpredictable data

is less than a given threshold. Quantifying unpredictable data is an offline process done

through log analysis at the granularity of a social action.

BG implementation consists of three components: a BG coordinator, a BG client, and

a BG visualization deck. There can be multiple clients, and they are responsible for data

25



3. RELATED WORK

and action generation. The coordinator communicates with clients to instruct them how to

generate data and emulate actions based on the given SLA. It also aggregates the results

from clients and make them available to the visualization deck for presentation.

3.1.10. SparkBench: A Comprehensive Benchmarking Suite for In-Memory Data

Analytic Platform Spark. SparkBench is a suite of benchmarks for evaluating the per-

formance of an Apache Spark cluster. Table 3.3 summarizes the workloads in SparkBench.

SparkBench comes with a data generator that can produce datasets with varying sizes.

The reported metrics are job execution time, input data size, and data process rate. A few

metrics under development are shuffle data, RDD size, and resource consumption. Also,

integration with monitoring tools is in development.

TABLE 3.3. SparkBench workloads

Application Category Input Dataset

Logistic Regression Machine Learning Wikipedia

Support Vector Machine Machine Learning Wikipedia

Matrix Factorization Machine Learning Amazon Movie Reviews

Page Rank Graph Computation Google Web Graph

SVD++ Graph Computation Amazon Movie Reviews

Triangle Count Graph Computation Amazon Movie Reviews

Hive SQL Engine E-commerce

RDD Relation SQL Engine E-commerce

Continued on next page

26



3. RELATED WORK

Application Category Input Dataset

Twitter Streaming Application Twitter

Page Review Streaming Application Page View Data Gen

Table 3.4 describes the datasets used in SparkBench.

TABLE 3.4. SparkBench Datasets

Data Sets Description

Wikipedia 6938018 articles.

Google Web Graph 875713 nodes, 5105039 edges.

Amazon Movie Reviews 7911684 reviews, 889176 movies, 253059 users.

E-commerce Transactions 38275 orders, 8 columns. 240332 items, 7 columns.

SparkBench is intended for the following purposes.

• Quantitative comparison of different platforms and cluster setups

• Quantitative comparison of different Spark configurations and optimizations

• To provide guidance when deploying a Spark cluster

3.1.11. TPCx-HS. TPCx-HS stands for “Transaction Processing Council Express”tm

Hadoop Sort. It is the industry’s first standard for benchmarking Big Data systems and

models continuous system availability of 24 hours a day, 7 days a week. The core of TPCx-

HS is built around the TeraSort [34] implementation that comes with Apache Hadoop. The

benchmark consists of two five-step runs. The steps are as follows.

27



3. RELATED WORK

(1) HSGen: Generates input data that must be replicated 3-ways and written on a

durable medium.

(2) HSDataCheck: Verifies cardinality, size, and replication of generated data.

(3) HSSort: Samples the input data and sorts data. The sorted output must be repli-

cated 3-ways and written on a durable medium.

(4) HSDataCheck: Verifies cardinality, size, and replication of the sorted output.

(5) HSValidate: Validates correctness of the sorted output.

The two runs are identified as the performance run and the repeatability run based

on their TPCx-HS performance metric, HSph@SF , defined as HSph@SF = SF/(T/3600). In

this definition, SF identifies the scale factor of data, which can be 1TB, 3TB, 10TB, 30TB,

100TB, 300TB, 10000TB, 30000TB, or 100000TB. The run with the lower metric is denoted as

the performance run and the other as the repeatability run. Besides HSph@SF , TPC-xHS

defines two other metrics: price-performance and availability date. Also, there is an energy

metric that define power per performance. Details of these metrics can be found in the

TPC-xHS specification [20].

3.1.12. YCSB. Yahoo Cloud Serving Benchmark (YCSB) [15] is a benchmark suite de-

veloped by Yahoo to evaluate cloud serving systems such as HBase, Cassandra, Infinispan,

and MongoDB. TPC-C benchmark has been the norm for evaluating traditional database

systems. However, cloud serving systems do not necessarily support the Atomicity, Consis-

tency, Isolation, Durability (ACID) properties of traditional databases. Also, it is hard to

capture their usability through a single scenario, as in TPC-C. YCSB presents an extensible

28



3. RELATED WORK

workload generator and an extensible interface to support a variety of cloud serving sys-

tems. The primary intention of YCSB is to provide a tool to perform an apples-to-apples

comparison between such systems. YCSB propose two benchmark tiers: performance and

scaling. For performance it evaluates the latency of the system for queries. For scaling it

tests two things. The first is to evaluate the latency as the number of servers and database

size increase. The second is to test the elasticity of the system by loading a constant dataset

and dynamically adding more servers. Details of the workloads and performance results

are given in the YCSB paper [15].

3.1.13. Berkeley Big Data Benchmark. Traditional databases serve queries, typically

in SQL. Data warehousing as a concept emerged with Big Data as analytics were performed

over traditional databases. Berkeley Big Data Benchmark is designed to evaluate such data

warehousing frameworks such as Amazon Redshift, Apache Hive, SparkSQL, Cloudera

Impala, and Stringer. The benchmark evaluates these frameworks against a handful of

relational queries across different data sizes. More information about the queries and the

initial results can be found in Berkeley Big Data Benchmark [62]

3.1.14. CloudSuite. CloudSuite [33] is benchmark suite studying the behavior of scale-

out workloads using performance counters. It evaluates five scale-out workloads as listed

below.

• Data Serving: Evaluates Cassandra database using YCSB generated data.

• MapReduce: Performs Bayesian classification using Mahout library in Hadoop for

Wikipedia pages.

• Media Streaming: Benchmarks Darwin Streaming Server.

29



3. RELATED WORK

• SAT Solver: Evaluates Klee SAT Solver, which is compute intensive and is usually

designed to run in HPC environments.

• Web Frontend: Benchmarks a web-based social event calendar, Olio.

• Web Search: Evaluates an index serving node of the distributed version of Nutch

with an index size of 2GB.

In addition to these scale-out workloads, the authors have also tested five traditional

benchmarks to understand their low-level performance counters. These benchmarks are

PARSEC 2.1, SPEC CINT 2006, SPECweb09, TPC-C, TPC-E, and Web Backend. Note that

the Web Backend benchmark tests a standard MySQL database engine.

The findings of these workloads suggest there is a great mismatch between scale-out

workloads and the optimization found in standard server hardware. A detailed analysis is

given in the CloudSuite paper [33].

3.2. Technical Improvements

Apache Hadoop [95] is the first open-source software product that emerged with Big

Data. It implements Google’s MapReduce [22] model and has been well recognized both

in industry and academia. Over the last decade it has gone through major changes to

improve functionality as well as performance. Decoupling Hadoop’s resource management

from its MapReduce engine in version 2.0 was the biggest improvement. This allowed

Hadoop to be extended easily for purposes beyond MapReduce. Also, the previous version

had a single point of failure, as it could only run one Namenode, which is responsible

for managing metadata in HDFS. This is resolved in version 2.0 and above by allowing

multiple Namenode daemons. Also, the newer version can scale up to 10,000 nodes per

30

https://www.researchgate.net/publication/241623777_Clearing_the_Clouds_A_Study_of_Emerging_Scale-out_Workloads_on_Modern_Hardware?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/220851866_MapReduce_Simplified_Data_Processing_on_Large_Clusters?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==


3. RELATED WORK

cluster, whereas the earlier could reach a maximum of 4,000 nodes. The Yet Another

Resource Negotiator (YARN) paper discusses these improvements in detail [91].

Twister [26] is an iterative MapReduce framework developed at Indiana University

during the same time when Hadoop was released. While it is possible to develop iterative

applications using Hadoop as a chain of MapReduce jobs, the frequent data reading and

writing between iterations significantly degrades the application’s performance. Twister

improved on this aspect with built-in iterative support and in-memory data transfers.

Performance of Twister has shown orders of magnitude of improvement over Hadoop.

Harp [100] is another project at Indiana University developing a collective communication

framework over Hadoop to quicken machine learning applications. It brings the best of

classic HPC collectives to the Hadoop domain.

Similar to the improvements made in Twister, Apache Spark [98] improved upon

in-memory data transfer to overcome the performance bottleneck with Hadoop. It also

introduced a different programming model than MapReduce with its Resilient Distributed

Datasets (RDDs). The dataflow it introduced quickly caught the attention of the Big Data

community. In 2014 Spark developers initiated project Tungsten [96] to improve Spark’s

performance. It provided three performance improvements: memory management, cache-

aware computation, and code generation. Memory management is about explicitly manag-

ing memory to avoid Java Virtual Machine (JVM) overheads. Cache-aware computation

is used to exploit cache hierarchy efficiently. Code generation concerns the binary code

generation used for some Spark queries.

31

https://www.researchgate.net/publication/262241359_Apache_Hadoop_YARN_yet_another_resource_negotiator?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/220717676_Twister_A_Runtime_for_Iterative_Mapreduce?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==


3. RELATED WORK

The high-performance streaming data paper [55] discuss several performance improve-

ments on Apache Storm. One of the main contributions of this paper is the introduction

of efficient collective algorithm implementations to Storm. It also applies shared-memory-

based communication to tasks running within the same node. Recently, Twitter Inc. intro-

duced a complete revamp of Storm under the name Apache Heron [61]. The primary goal

of Heron has been to overcome performance challenges with Storm. Heron’s blog post [80]

describes the details of these improvements.

In addition to the improvements in Big Data frameworks, a significant amount of

research has been devoted to improving computation and communication performance,

especially for Java programs. To this end, several libraries are available in Java supporting

the MPI model in HPC environments. OpenMPI provides by far the best Java support

for MPI [73]. Guillermo et al. [90] discuss the performance of some of the other Java

MPI frameworks such as MPJ-Express [7] and JaMP [59] within HPC environments and

introduce FasMPJ [32] as a high-performance, purely Java-based MPI implementation. We

have found the OpenMPI’s Java support to outperform FastMPJ due to its use of native C

implementation of the actual communications.

Rajesh et al. [58] discusses actor-based frameworks to exploit the multicore machines,

and Flink uses this actor model for handling concurrency. Besides this there are other

published works [11, 14, 77] on improving performance in NUMA multicore environments.

Garbage Collection (Garbage Collection (GC)) also plays a vital role in high performance

and Maria et al. [13] shows how to optimize the Java GC in multi-core NUMA machines.

32

https://www.researchgate.net/publication/282182835_A_Performance_Study_of_Java_Garbage_Collectors_on_Multicore_Architectures?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/296692116_Towards_High_Performance_Processing_of_Streaming_Data_in_Large_Data_Centers?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==


3. RELATED WORK

3.3. Benchmarking Guidelines

With the rise of Big Data applications comes the challenge of defining guidelines to

develop standard benchmarks. While research is still ongoing, Baru et al. [8] have carried

out most of the initial work toward standardizing benchmark design. They have identified

five design concerns as described below.

3.3.1. Component vs. End-to-End Benchmark. Component benchmarks measure the

performance of a single or a few components of a system, whereas end-to-end benchmarks

assess an entire system. The advantage of the component benchmarks is that they are

relatively easier to specify and run. Also, if the components expose standard APIs then

the benchmark could be run as-is, for example using a benchmark kit. Standard Perfor-

mance Evaluation Corporation (SPEC) CPU benchmark [19] and TeraSort are examples

of component benchmarks. TPC benchmarks are examples of end-to-end types where an

entire system is modeled. The complexity of large systems, however, could hinder the

specification and development of standardized benchmark kits.

3.3.2. Big Data Applications. This topic is about the coverage of Big Data benchmarks,

as there are various use cases that fall under Big Data. For example, the large volumes of

data generated in the Large Haron Collider (LHC) or the retail systems of businesses such

as Amazon, Ebay, and Walmart all deal with Big Data. With such diversity it is difficult to

find a single benchmark to cover them all. Further, it is an open question as to whether Big

Data benchmarks should model concrete applications or should model abstractions based

on real applications. Modeling a concrete application is favorable in that it is possible to

33



3. RELATED WORK

use real-world examples for the benchmark process. Two real applications the paper [8]

suggest to model are a retailer system as modeled in TPC benchmarks and a social website

like Facebook or Netflix.

3.3.3. Data Sources. Data for Big Data benchmarks could either be synthetic or real.

While it is preferred to model benchmarks around real use cases, using real datasets is not

preferable. Real data needs to be downloaded and stored, which is impractical due to the

large size. Also, real data would reflect only certain properties, which makes benchmarking

inaccurate. Synthetic data on the other hand is relatively easy to generate using parallel

data generators and can be designed to incorporate all necessary characteristics.

3.3.4. Scaling. The topic scaling is about being able to extrapolate results based on the

performance obtained with the System Under Test (SUT). Allowing scalable system sizes

in the benchmark could lead to vendors increasing system size to get better performance

numbers than their competitors. This could also impose a huge financial burden on smaller

vendors. Therefore, it is preferable to be able to extrapolate results. Also, it is important

to consider the notion of ‘elasticity’ that is usually associated with cloud systems. It is

the ability to add resources dynamically depending on load. Moreover, system failures

could result in dynamically removing resources. Considering these two cases, the ability to

extrapolate results becomes more relevant with Big Data benchmarks.

3.3.5. Metrics. Besides reporting performance numbers, it is important to include cost-

based metrics similar to the (price/per f ormance) found in the TPC benchmarks. It is also

34



3. RELATED WORK

important to consider energy costs as well as setup costs, especially with Big Data, as large

infrastructure may be a significant factor in the overall cost.

35



CHAPTER 4

Scalable Parallel Interoperable Data Analytics Library (SPIDAL)

SPIDAL is a suite of machine-learning algorithms optimized for Big Data analytics on large

HPC clusters. Primarily, it implements several multidimensional scaling and clustering

algorithms. The following sections discuss these algorithms, their use cases, and other

tools in SPIDAL. We also introduce a novel scheme for systematically classifying Scalable

Parallel Interoperable Data Analytics Library (SPIDAL) and other Big Data benchmarks at

the end.

4.1. DA-MDS

Deterministic Annealing Multidimensional Scaling (DA-MDS) implements an efficient

weighted version of Scaling by MAjorization of a COmplicated Function (SMACOF) [10]

that effectively runs in O(N2) compared to the original O(N3) implementation [84]. It also

uses a deterministic annealing optimization technique [60, 82] to find the global optimum

instead of local optima. Given an NxN distance matrix for N high-dimensional data items,

DA-MDS finds N lower-dimensional points (usually three for visualization purposes) such

that the sum of error squared is the minimum. The error is defined as the difference between

mapped and original distances for a given pair of points. DA-MDS also supports arbitrary

36

https://www.researchgate.net/publication/223616307_A_deterministic_annealing_approach_to_clustering?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/261041010_A_Robust_and_Scalable_Solution_for_Interpolative_Multidimensional_Scaling_with_Weighting?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==


4. Scalable Parallel Interoperable Data Analytics Library (SPIDAL)

weights and fixed points —data points that already have the same low-dimensional map-

ping. Currently, the optimized implementation is based on Java MPI and threads. Two

other versions based on Spark and Flink are under development.

4.2. DA-PWC

Deterministic Annealing Pairwise Clustering (DA-PWC) also uses the concept of DA,

but for clustering [39, 82]. Its time complexity is O(NlogN), which is better than existing

O(N2) implementations [37]. Similar to DA-MDS it accepts an NxN pairwise distance matrix

and produces a mapping from point number to cluster number. It can also find cluster

centers based on the smallest mean distance, i.e. the point with the smallest mean distance

to all other points in a given cluster. If provided with a coordinate mapping for each point,

it can produce centers based on the smallest mean Euclidean distance and Euclidean center.

Its implementation is based on Java MPI and threads.

4.3. DA-VS

Deterministic Annealing Vector Sponge (DA-VS) is a recent addition to the SPIDAL

library based on MPI and Java threads. It can perform clustering in both vector and metric

spaces. Algorithmic details and an application of DA-VS to protein data is available in the

study by Fox et al. paper [35].

4.4. MDSasChisq

Multidimensional Scaling as Chi-squared (MDSasChisq) is a general MDS implemen-

tation based on the LevenbergMarquardt algorithm [65]. Similar to DA-MDS it supports

37

https://www.researchgate.net/publication/254004601_Deterministic_annealing_and_robust_scalable_data_mining_for_the_data_deluge?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/223616307_A_deterministic_annealing_approach_to_clustering?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/273568436_Robust_scalable_visualized_clustering_in_vector_and_non_vector_semi-metric_spaces?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/216212779_A_Method_for_The_Solution_of_Certain_Non-Linear_Problem_in_Least_Squares?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/261230844_Parallel_deterministic_annealing_clustering_and_its_application_to_LC-MS_data_analysis?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==


4. Scalable Parallel Interoperable Data Analytics Library (SPIDAL)

arbitrary weights and fixed points. Additionally, it supports scaling and rotation of MDS

mappings, which is useful when visually comparing 3D MDS outputs for the same data

but with different distance measures and other runtime parameters. The implementation is

Java MPI and thread based.

4.5. K-Means Clustering

K-Means is a well-known clustering algorithm, which typically operates on vectors. Scal-

able Parallel Interoperable Data Analytics Library (SPIDAL) recently included an optimized

Java MPI and thread-based implementation suitable for high-performance computing (HPC)

clusters. It also provides a native C implementation based on MPI and OpenMP.

4.6. Elkan’s K-Means Clustering

Elkan’s algorithm [31] is an improvement over the classic K-Means clustering. It utilizes

the triangle inequality to reduce the number of distance computations in K-Means. An

efficient parallel implementation of this algorithm is present in SPIDAL as an option in

DA-VS.

4.7. WebPlotViz

WebPlotViz [56] is a web-based point visualization tool in the SPIDAL suite. In a

typical analysis carried out using the Scalable Parallel Interoperable Data Analytics Library

(SPIDAL) suite, the output consists of a plot file that represents the input items as three-

dimensional points. The coordinates of these points are such that the distance between

a given pair of points is equal to the dissimilarity between the corresponding data items.

38

https://www.researchgate.net/publication/2480121_Using_the_Triangle_Inequality_to_Accelerate_K-Means?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==


4. Scalable Parallel Interoperable Data Analytics Library (SPIDAL)

The dissimilarity between input data points can be calculated any number of ways. For

example, the distance between two sequences in gene sequence data is calculated as the

percent identity of their Smith-Waterman-Gotoh (SWG) [87]. Besides displaying points,

WebPlotViz also supports graph structures, making it possible to visualize structures such

as phylogenetic trees and other complex networks. Moreover, it supports streaming data,

where a series of plots can be animated as a time series. This is relevant when analyzing

frequently changing data such as stock market values. The highlight of WebPlotViz is that

it provides a novel approach for biologists and other scientists to inspect the structure of

input data visually.

4.8. SPIDAL Use Cases

4.8.1. Gene Sequence Clustering. One of the strongest use cases of the Scalable Paral-

lel Interoperable Data Analytics Library (SPIDAL) suite is the analysis of gene sequences [27,

46, 83, 85, 89]. The objective is to classify sequences into groups of similar characteristics.

The initial step of this process is to compute dissimilarity between each pair of sequences

using an alignment algorithm such as Smith-Waterman-Gotoh (SWG) [87] or Needleman-

Wunsch (NW) [71]. In SPIDAL, we have implemented parallel algorithms to perform

this alignment for large sequence datasets. The dissimilarities are presented as an NxN

binary matrix, where N is the number of sequences. We feed this matrix to Deterministic

Annealing Multidimensional Scaling (DA-MDS) and Deterministic Annealing Pairwise

Clustering (DA-PWC) to produce a three-dimensional mapping of sequences and clustering

information. These two results are combined and visualized in WebPlotViz. The pipeline

described here is illustrated in Figure 4.1. Note that in Figure 4.1 DA-PWC (P3) has an

39

https://www.researchgate.net/publication/15934339_Identification_of_Common_Molecular_Subsequences?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/15934339_Identification_of_Common_Molecular_Subsequences?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/17749606_A_General_Method_Applicable_to_Search_for_Similarities_in_Amino_Acid_Sequence_of_2_Proteins?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==


4. Scalable Parallel Interoperable Data Analytics Library (SPIDAL)

FIGURE 4.1. Gene sequence analysis pipeline

arrow going to itself indicating that clustering is a multistage process. Generally, it is better

to cluster the full dataset into a smaller number of clusters and then do further work on

those clusters separately.

Figure 4.2 shows a few results of analyzing gene sequences. The leftmost image shows

the clusters for a 100,000-fungi-sequence dataset. The middle image illustrates how the

results from DA-MDS can be used to create a three-dimensional phylogenetic tree and

display using WebPlotViz. The rightmost picture shows another dataset where input is not

sequences but a set of vectors.

4.8.2. Stock Market Analysis. In a recent study we used SPIDAL algorithms to analyze

the behavior of stocks [57]. The data for this experiment contained around 7,000 distinct

stocks with daily values available at 2,750 distinct times. These data are from Jan 01, 2004 to

Dec 31, 2015. We used information such as Stock ID, Date, Symbol, Factor to Adjust Volume,

40



4. Scalable Parallel Interoperable Data Analytics Library (SPIDAL)

FIGURE 4.2. Gene sequence analysis snapshots

Factor to Adjust Price, Price, and Outstanding Stocks to represent each stock as a vector.

The analysis process is illustrated in Figure 4.3.

Figure 4.4 and Figure 4.5 show the relative change in stocks using one-day values. The

filled circles show the final values, and the zigzag paths show their change in value over the

time period. The time-series-data-visualisation capabilities of WebPlotViz made it possible

to see these changes in a way similar to video playback.

4.9. Convergence Diamonds: A Novel Approach to Benchmark Classification

The number of Big Data benchmarks published within the last few years is impressive

given the relatively young age of Big Data compared to Big Simulations, its well-established

counterpart in the scientific community. The SPIDAL algorithms discussed above also

can be used to define a set of Big Data benchmarks to go along with those discussed in

Section 3.1. While having a collection of benchmarks is helpful in addressing the diversity of

Big Data applications, a systematic classification is necessary to identifying their similarity

and coverage. BigDataBench [66], for example, provides a mechanism to pick a subset of

41



4. Scalable Parallel Interoperable Data Analytics Library (SPIDAL)

FIGURE 4.3. Stock data analysis process

its benchmarks in evaluating a Big Data system [53] based on the micro-architectural-level

perf metrics available in Linux operating systems. The idea is to represent each benchmark

as a vector of different runtime metrics, such as load and store, cache misses, Translation

Lookaside Buffer (TLB) misses, and off-core requests. A total of 45 metrics spanning across

42



4. Scalable Parallel Interoperable Data Analytics Library (SPIDAL)

FIGURE 4.4. Relative changes in stocks using one day values

FIGURE 4.5. Relative changes in stocks using one day values expanded

nine categories is used in BigDataBench. The vectors are then processed through PCA

to remove correlated metrics and clustered using K-means algorithm. A representative

benchmark from each cluster is selected to produce the final subset of benchmarks. Also,

43



4. Scalable Parallel Interoperable Data Analytics Library (SPIDAL)

a hierarchical clustering algorithm is run on the PCA output to produce a dendrogram

showing the similarity between benchmarks.

While runtime characteristics are an important measure in studying benchmarks, the

downside is that one needs first to run and collect those metrics before being able to

compare a new benchmark against existing ones. Also, such schemes do not capture

the high-level features of the benchmark. Berkeley Dwarfs [6] presents a pattern-based

approach to benchmark classification. The Dwarfs classification, however, is intended for

HPC simulation applications and therefore is limited in applicability to covering the diverse

range of Big Data applications. This section introduces Convergence Diamonds (CDs),

which is a novel approach to investigating and classifying the properties of both Big Data

and Big Simulations, thereby solving the limitations of the existing approaches. CDs is an

extension over our previous Ogre classification [40].

CDs present a multidimensional and multifaceted classification. The dimensions and

facets are illustrated in Figure 4.6

The four dimensions of CDs are:
• Problem Architecture View (PAV): Describes the overall structure of the problem.

• Execution View (EV): Lists facets related to the execution of an application, such

as performance metrics.

• Data Source and Style View (DSSV): Describes data of the application. This is

more relevant to Big Data applications than to scientific applications.

• Processing View (PV): Facets of the application model separated for Big Data and

Big Simulations.

44



4. Scalable Parallel Interoperable Data Analytics Library (SPIDAL)

Of the 64 features illustrated in Figure 4.6, the following describes a select few for each

dimension.

4.9.1. Facets in Problem Architecture View.

• Pleasingly Parallel (PAV-1): Indicates the processing of a collection of independent

events, e.g. applying an image-processing operation in parallel over a collection of

images.

• Classic MapReduce (PAV-2): Independent calculations (maps) followed by a final

reduction step, e.g. WordCount from Big Data.

• Map-Collective (PAV-3): Independent calculations (maps) with collective commu-

nications. For example, parallel machine learning is dominated by collectives such

as scatter, gather, and reduce.

• Map Point-to-Point (PAV-4): Independent computations with point-to-point com-

munications. Graph analytics and simulations often employ local neighbor com-

munications.

• Map Streaming (PAV-5): Independent tasks with streaming data. This is seen in

recent approaches to processing real-time data.

• Shared Memory (PAV-6): In CDs we do not consider pure SM architectures but

look at hybrids of SM and other DM models.

4.9.2. Facets in Execution View.

• EV D4, D5, D6: Represents 3V’s out of the usual 4V’s of Big Data [3].

45



4. Scalable Parallel Interoperable Data Analytics Library (SPIDAL)

• EV M4: An application whether Big Data or Big Simulation can be broken up

into data plus model [38]. This facet identifies the size of the model, which is an

important factor in application’s performance.

• EV M8: Identifies the type and structure of communication such as collective,

point-to-point, or pub/sub. This is another important aspect in performance.

• EV M11: Identifies the iterative nature of applications, which is common in parallel

machine learning.

• EV M14: Complexity of the model.

4.9.3. Facets in Data Source and Style View. Facets in this are mostly self-explanatory

but we like to highlight the followings.

• Streaming (DSSV-D5): The streaming data has a lot of recent progress, especially

within the Big Data community.

• HPC Simulations (DSSV-D9): Identifies data that is generated as output of

another program. In all of Scalable Parallel Interoperable Data Analytics Li-

brary (SPIDAL) analytics, the input to DA-MDS and Deterministic Annealing

Pairwise Clustering (DA-PWC) comes in this form.

4.9.4. Facets in Processing View. Facets in the Processing View characterize algorithms

for both Big Data and Big Simulations. These facets identify application’s model only and

do not represent data.

• Micro-benchmarks (PV-M1): Represents functional benchmarks such as the ker-

nel benchmarks in NPB.

46

https://www.researchgate.net/publication/301231174_Big_Data_Simulations_and_HPC_Convergence?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==


4. Scalable Parallel Interoperable Data Analytics Library (SPIDAL)

• Local (Analytics/Informatics/Simulations) (PV-M2): Identifies models dealing

with only local data like those of neighbors.

• Global (Analytics/Informatics/Simulations) (PV-M3): Represents models with

global data synchronizations. For example, parallel machine learning typically

requires global knowledge at each step.

• PV 4M through 11M: Facets for Big Data models.

• PV 16M through 22M: Facets for Big Simulation models.

Some facets in the CDs model may require extensions. For example, the 6M Data

Search/Query/Index facet in the Processing View could be further divided into more facets

to represent the type of query used. While this model is still in research and a proper

classification of applications is necessary to evaluate its usefulness, its detailed faceted

nature brings a systematic approach to classifying both Big Data and Big Simulations.

47



4. Scalable Parallel Interoperable Data Analytics Library (SPIDAL)

FIGURE 4.6. Dimensions and facets of CDs

48



CHAPTER 5

Performance Factors of Big Data

The emergence of Big Data poses numerous challenges from data storage to processing.

While a plethora of benchmarks attempt to serve as yardsticks in this diverse landscape,

we find it is imperative to identify the factors governing Big Data performance to perform

a systematic study. It is also worth noting that most Big Data systems are written in Java,

which brings out additional performance challenges beyond the nature of the Big Data

application. The following sections identify three major issues: thread models, affinity

patterns, and communication mechanisms as factors significantly affecting performance

and show how to optimize them so that Java can match the performance of traditional HPC

languages like C. Further, we look at four additional important aspects for achieving high

performance with Java and Big Data. While these are discussed with respect to Java, they

apply equally well to other Java-like, high-level languages such as Scala.

5.1. Thread Models

Threads offer a convenient construct for implementing shared memory parallelism. A

common pattern used in both Big Data and HPC is the Fork-Join (FJ) thread model. In this

approach a master thread spawns parallel regions dynamically as required. FJ regions are

implicitly synchronized at the end, after which the worker threads are terminated and only

the master thread will continue until a new parallel region is created. Thread creation and

49



5. PERFORMANCE FACTORS OF BIG DATA

termination are expensive, so FJ implementations employ thread pools to hand over forked

tasks. Pooled threads are long-lived yet short-activated; i.e. they release CPU resources

and switch to idle state after executing their tasks. This model is subsequently referred

to as “Long Running Threads Fork-Join (LRT-FJ)” in this thesis. Java has built-in support

for LRT-FJ through its java.util.concurrent.ForkJoinPool 1. Habanero Java [50],

an OpenMP-like [21] implementation in Java, also supports LRT-FJ via its forall and

forallChunked constructs.

We experimented with another approach to shared memory parallelism, or Long Run-

ning Threads Bulk Synchronous Parallel (LRT-BSP). LRT-BSP resembles the classic Bulk

Synchronous Parallel (BSP) style but with threads. Figure 5.1 depicts a side-by-side view of

LRT-FJ and LRT-BSP models. The notable difference is that in LRT-BSP, threads are busy

from start to finish of the program, not only within the parallel region as in LRT-FJ. The

next important difference is the use of explicit synchronization constructs (blue horizontal

lines in the figure) after non-trivial parallel work (red bars in the figure) in LRT-BSP. There

are constructs such as CyclicBarrier in Java to aid the implementation of these synchro-

nization steps. However, we employed native compare-and-swap (CAS) operations and

busy loops for performance as well as to keep threads ‘hot’ on cores. A third difference

in LRT-BSP is that the serial part of the code (green bars) is replicated across workers,

whereas in LRT-FJ it is executed by just the master thread. Performance results show that

the replication of serial work in LRT-BSP does not add significant overhead. The reason for

this behavior is that in a well-designed parallel application, the serial portions are trivial

1https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

50

https://www.researchgate.net/publication/266661749_Habanero-Java_library_a_Java_8_framework_for_multicore_programming?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/3344403_OpenMP_An_Industry-Standard_API_for_Shared-Memory_Programming?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==


5. PERFORMANCE FACTORS OF BIG DATA

FIGURE 5.1. Fork-Join vs. long running threads

compared to the parallel work loads and the total amount of memory accesses in LRT-BSP

is equal to that of LRT-FJ for these parts.

Beyond the differences in the execution model, we observed a significant performance

improvement with LRT-BSP compared to LRT-BSP for parallel Java applications. Analyzing

perf statistics revealed that LRT-FJ experiences a higher number of context switches, CPU

migrations, and data translation lookaside buffer (dTLB) load/store misses than LRT-BSP.

In an MDS run the factors were over 15x and 70x for context switches and CPU migrations,

respectively. These inefficiencies coupled with the overhead of scheduling threads lead to

noise in computation times within parallel FJ regions. Consequently, synchronization points

51



5. PERFORMANCE FACTORS OF BIG DATA

TABLE 5.1. Affinity patterns

Process Affinity

Cores Socket None (All)

Thread

Affinity

Inherit CI SI NI

Explicit per Core CE SE NE

become expensive, and performance measurements indicate performance degradation as

the number of threads increases in LRT-FJ.

5.2. Threads and Processes Affinity Patterns

Modern multicore HPC cluster nodes typically contain more than one physical CPU.

Although memory is shared between these CPUs, memory access is not uniform. CPUs

with their local memory compose NUMA domains or NUMA nodes. Developing parallel

applications in these settings requires paying attention to the locality of memory access in

order to improve performance.

In supported OSs process affinity determines where the OS can schedule a given process

as well as the part of memory it can access. Threads spawned within a process inherit

the affinity policy of the process by default. Also, it is possible to set affinity to threads

explicitly, as desired for performance reasons. This research explores six affinity patterns

and identifies binding options that produce the best and worst performance.

Details of the three process affinity patterns in Table 5.1 are:

Core: binds the process to N cores, where N is the number of threads used for shared

memory parallelism.

Socket: binds the process to a physical CPU or socket.

52



5. PERFORMANCE FACTORS OF BIG DATA

None (All): binds the process to all available cores, which is equivalent to being unbound.

Worker threads may either inherit the process binding or be pinned to a separate core.

K-Means and MDS performance tests revealed that selecting proper affinity settings out of

these patterns can substantially improve overall performance.

5.3. Communication Mechanisms

Processes within a node offer an alternative approach to exploiting intra-node paral-

lelism from that of threads. Long-running processes like those found in MPI programs

avoid frequent scheduling overheads and other pitfalls common to short-activated threads.

However, since nothing is shared across processes, a higher communication burden is

incurred than with threads, especially when making collective calls. Increasing process

count to utilize all cores on modern chips with higher core counts makes this effect even

worse, degrading any computational advantages of using processes.

Figure 5.2, for example, plots arithmetic average, hereafter referred to as “average”,

of MPI allgatherv times over 50 iterations against varying number of processes within

a node. Note that all MPI implementations used default settings aside from the use of

Infiniband transport. The MPI allgatherv test was a micro-benchmark based on the

popular OSU Micro-benchmarks Suite (OMB) [74].

The purple and black lines show C implementations compiled against OpenMPI and

MVAPICH2 [49], while the green line shows the same program in Java compiled against

OpenMPI’s Java binding. The Java binding is a thin wrapper around OpenMPI’s C im-

plementation. All tests used a constant 24 million bytes or three million double values.

The HPC cluster used to run these experiments, Juliet, has 24 cores per node, so there are

53



5. PERFORMANCE FACTORS OF BIG DATA

FIGURE 5.2. MPI allgatherv performance with different MPI implemen-
tations and varying intra-node parallelisms

eight combinations of threads and processes to yield the full 24-way parallelism within

a node. The process numbers on the x-axis of Figure 5.2 correspond to those of the eight

patterns. For example, eight processes imply that each has three threads internally for

computations in a real parallel program such as DA-MDS or DA-PWC. In this experiment,

however, threads were not used, as there was no computation necessary to benchmark

communication performance.

The experiment shows that the communication cost becomes significant as the num-

ber of processes per node increases and that the effect is independent of the choice of

MPI implementation and the use of Java binding in OpenMPI. However, an encouraging

discovery is that all implementations produce a nearly identical performance for the single-

process-per-node case. This led to the development of shared-memory-based, inter-process

communication in Java as discussed below to reduce communication overhead.

Java shared-memory communication uses a custom memory maps implementation from

OpenHFT’s JavaLang [72] project to perform inter-process communication for processes

54



5. PERFORMANCE FACTORS OF BIG DATA

FIGURE 5.3. Intra-node message passing with Java shared memory maps

FIGURE 5.4. Heterogeneous shared memory intra-node messaging

within a node, thus eliminating any intra-node MPI calls. The standard MPI programming

would require O(R2) of communications in a collective call, where R is the number of

processes. In this optimization we have effectively reduced this to O(N̂2), where N̂ is the

number of nodes, significantly less than R.

Figure 5.3 shows the general architecture of this optimization, where two nodes, each

with three processes, are shown as an example. Process ranks range from P0 to P5 and

55



5. PERFORMANCE FACTORS OF BIG DATA

belong to MPI COMM WORLD. One process from each node acts as the communication leader

- C0 and C1. These leaders have a separate MPI communicator called COLLECTIVE COMM.

Similarly, the processes within a node belong to a separate MMAP COMM, for example M00

to M02 in one communicator for Node 0 and M10 to M12 in another for Node 1. Also, all

processes within a node map the same memory region as an off-heap buffer in Java and

compute necessary offsets at the beginning of the program. The takeaway point of this

setup is the use of memory maps to communicate between processes and the reduction in

communication calls. With this setup, a call to an MPI collective will follow the steps below

within the program.

(1) All processes, P0 to P5, write their partial data to the mapped memory region, offset

by their rank and node. See the downward blue arrows for Node 0 and gray arrows

for Node 1 in the figure.

(2) Communication leaders, C0 and C1, wait for the peers, {M01,M02} and {M10,M11}

to finish writing. Note that leaders wait only for their peers in the same node.

(3) Once the partial data is written, the leaders participate in the MPI collective call

with partial data from their peers, the upward blue arrows for Node 0 and gray

arrows for Node 1. Also, the leaders may perform the collective operation locally

on the partial data and use its results before the MPI communication depending

on the type of collective required. MPI allgatherv, for example, will not have

any local operation to be performed, but a collective operation like allreduce

benefits from doing the reduction locally. Note, the peers wait while their leader

performs MPI communication.

56



5. PERFORMANCE FACTORS OF BIG DATA

(4) At the end of the MPI communication, the leaders write the results to the respective

memory maps, downward gray arrows for Node 0 and blue arrows for Node 1.

This data is then immediately available to their peers without requiring further

communication, upward gray arrows for Node 0 and blue arrows for Node 1.

This approach reduces MPI communication to just two processes, in contrast to a

typical MPI call, where six processes would be communicating with each other. The two

wait operations mentioned above are implemented using Java atomic variables. They

could also be implemented using an MPI barrier on the MMAP COMM. This would cause

intra-node messaging within the barrier call, which is negligible compared to the actual

data communication. However, experiments showed that the approach using Java atomic

variables is more efficient than using barriers.

The shared-memory implementation also supports heterogeneous rank distribution and

multiple shared memory groups, as illustrated in Figure 5.4. These modes are described

below.

Non-uniform rank distribution. In some HPC clusters it is possible to have node

groups with different core counts per node. For example, Juliet is a modern Intel Haswell-

based HPC cluster that we used for testing, which has two groups of nodes with 24 and 36

cores per node. In such situations it is possible to spawn a non-uniform number of processes

per node using MPI and this particular shared memory communication implementation

will automatically detect such heterogeneous configuration and adjusts its shared memory

buffers accordingly.

57



5. PERFORMANCE FACTORS OF BIG DATA

Multiple memory groups per node - If more than one memory map per node (M) is

necessary for some reason such as performance testing, this implementation will support

additional communication groups to be created using a parameter. Figure5.4 shows two

memory maps per node. As a result, O(N̂2) communication is now changed to O((N̂M)2),

so it is highly recommended to use a smaller M, ideally M = 1.

5.4. Other Factors

While the above factors are the most important, they alone may not be enough to reach

desirable performance with Big Data and Java. The following sections identify some of the

other factors that are hard to completely avoid, yet can be minimized with careful design

and the use of right libraries within the program.

5.4.1. Garbage Collection (GC). GC is an integral part of high-level languages like

Java and is a convenient feature for programmers so they can develop applications without

being concerned about memory management. However, despite the convenience, frequent

and long GCs are expensive for performance-sensitive applications like those in the SPIDAL

suite.

In Java GC works by segmenting the program’s heap into regions called “generations”

and moving objects between these regions depending on their longevity. Every object

starts in the Young Generation (YG) and gets promoted to the Old Generation (OG) if

they have lived long enough. Minor garbage collections happen in the YG frequently

and short-lived objects are removed without GC going through the entire heap. Also, the

surviving long-lived objects in the YG are moved to the OG. When the OG has reached

58



5. PERFORMANCE FACTORS OF BIG DATA

its maximum capacity, a full GC happens, which is an expensive operation depending on

the size of the heap and can take a considerable amount of time. Moreover, both minor

and major collections stop all the running threads within the process to make sure data

consistency while moving objects. Such GC pauses incur significant delays, especially for

machine-learning-like applications where slowness in one process affects all others since

they must synchronize global communications.

While in most cases it is impractical to avoid GC completely, it is vital to keep GC at

a minimum to improve performance. At the same time the memory footprint should be

minimized in order to scale over larger data sizes. The following techniques can be used

both to lower the GC frequency and memory footprint.

Object Reuse. One of the best ways to reduce GC frequency is to reduce the creation of

new temporary objects. A simple example of the frequent creation of temporary objects is

string concatenation. Java string objects are immutable, meaning any concatenation will

create a whole new string object that contains both the previous and new values. If there is

no reference to the previous string object, then it will become garbage. Similarly, temporary

arrays created within loops are another common garbage generation pattern. Object reuse

allows the reduction of such garbage production by reusing the same allocated memory in

the heap to store updated values. For example, StringBuffer in Java provides a reusable

array-based string buffer, which produces garbage only when array capacity is exceeded.

Moreover, object reuse is helpful not only when dealing with objects that are expensive to

create but also with smaller, less expensive objects. In the latter case object reuse saves the

heap from becoming fragmented due to frequent smaller object allocations.

59



5. PERFORMANCE FACTORS OF BIG DATA

Static Allocation. Static allocation complements object reuse, as allocations are made

on a per-class basis and not a per-object basis. This technique is useful when allocating

data structures for common operations like holding the result of matrix multiplication or to

load initial input data. SPIDAL algorithms use this technique extensively to make one-time

memory allocations for all their common data structures.

5.4.2. Object Serialization and Deserialization. It is unavoidable, as well as prohibi-

tively expensive, to serialize and deserialize objects in Java. The default Java serialization is

too verbose to use for any performance-oriented work. One option to solve this is to use an

efficient serialization library like Kryo [88]. Kryo produces a compact binary representation

of objects. A comparison of serialization libraries can be found in the JVM Serializers

page [86]. The other option to avoid serialization costs is to model data structures around

Java direct buffers [18]. These byte buffers are allocated outside the GC managed heap.

Objects represented by using such buffers do not need explicit serialization. The caveat is

that the programmer has to implement custom object representations, and it is cumbersome

to make changes.

5.4.3. Memory References and Cache. The OOP style provides a rich environment to

create arbitrarily nested objects. A pitfall to OOP is the increase in number of indirect

memory references that the underlying JVM has to make when accessing data elements.

For example, consider accessing a two-dimensional array in a classic nested loop where the

outer loop run across rows and inner one goes through columns. If we were to name the

array A and the loop indices i and j for the outer and inner loops, then from our experience

accesses of the form A[i][j] are more expensive than if A were a single-dimensional array

60



5. PERFORMANCE FACTORS OF BIG DATA

and accessed as A[i*numColumns+j], where numColumns is the number of columns.

Also, if two-dimensional arrays are unavoidable, then caching the row corresponding to the

outer loop as rowA = A[i] and using rowA inside the inner loop is more efficient than

directly accessing A as A[i][j].

5.4.4. Data Read Write. The default approach to read and write data in Java has been

to use the input and output streams [17]. As the name implies, these read data as a stream,

which is a bottleneck when reading large amounts of data. An efficient alternative is to use

bulk loading with Java memory-mapped files. Memory mapping directly maps a given

number of bytes into memory and returns a direct buffer to access the mapped content.

These buffers exist outside the GC-managed heap, which makes them ideal for other

input and output operations without requiring additional copies. SPIDAL applications

use memory-mapped files for both initial data loading and to communicate with other

processes.

61



CHAPTER 6

Performance Evaluation

This chapter looks at performance improvements for the three major factors introduced in

the previous chapter using two of SPIDAL’s algorithms: DA-MDS and K-Means clustering.

We also present performance of DA-PWC and MDSasChisq to highlight the fact that they

too exhibit poor performance in the absence of the performance improvements discussed

in Chapter 5. All tests were performed on a modern HPC cluster, Juliet, which is a 128-

node Intel Haswell cluster. Of the 128 nodes, 96 nodes have 24 cores (2 sockets x 12 cores

each), and 32 nodes have 36 cores (2 sockets x 18 cores each) per node, totaling 3,456

cores. Each node consists of 128GB of main memory and 56 gigabits per second (Gbps)

Infiniband interconnect. We explicitly look at scaling within a node and across nodes of

these applications.

6.1. Performance of K-Means Clustering

We have implemented six variants of K-Means clustering in this performance study.

Four of them are OpenMPI-based in both Java and C, supporting LRT-FJ and LRT-BSP

thread models. The remainder are based on Flink and Spark. Details of these implementa-

tions are as follows.

62



6. PERFORMANCE EVALUATION

6.1.1. MPI Java and C K-Means. The two C implementations use OpenMPI for mes-

sage passing and OpenMP for shared memory parallelism. LRT-FJ follows the conven-

tional MPI plus #pragma omp parallel regions. LRT-BSP, on the other hand, starts an

OpenMP parallel region after MPI INIT and continues to follow the models illustrated in

Figure 5.1. Intermediate thread synchronization is done through atomic built-ins of the

GNU Compiler Collection (GCC). The source code for LRT-FJ and LRT-BSP is available in

GitHub [28] under branches master and lrt, respectively.

The Java implementations use OpenMPI’s Java binding [73, 92] and Habanero-Java [50]

thread library, which provides similar parallel constructs to OpenMP. In LRT-BSP intermedi-

ate thread synchronization uses Java atomic support, which is more efficient than other lock

mechanisms in Java. The source code for LRT-FJ and LRT-BSP is available in GitHub [29]

under branches master and lrt-debug, respectively.

6.1.2. Flink K-Means. Flink is a distributed dataflow engine for Big Data applications

and provides a dataflow-based programming and execution model. The dataflow compu-

tations composed by the user are converted to an execution dataflow graph by Flink and

executed on a distributed set of nodes.

Flink’s K-Means [54] dataflow graph is shown in Figure 6.1. Inputs to the algorithm

are a set of points and a set of centroids read from the disk. At each iteration a new set of

centroids is calculated and fed back to the beginning of the next iteration. The algorithm

partitions the points into multiple map tasks and uses the full set of centroids in each

map task. Each map task assigns its points to their nearest centroid. For each centroid,

the average of such points is reduced (summed) to get the new set of centroids, which is

63

https://www.researchgate.net/publication/262309267_Towards_the_availability_of_Java_bindings_in_open_MPI?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/266661749_Habanero-Java_library_a_Java_8_framework_for_multicore_programming?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/306083754_Design_and_implementation_of_Java_bindings_in_Open_MPI?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==


6. PERFORMANCE EVALUATION

FIGURE 6.1. Flink and Spark K-Means algorithm. Both Flink and Spark
implementations follow the same data-flow

broadcast to the next iteration. This is essentially the same algorithm as that used in MPI

but expressed as a stream of dataflow transformations. In particular the Flink reduction

and broadcast are equivalent to MPI Allreduce semantics.

6.1.3. Spark K-Means. Spark is a distributed in-memory data processing engine. The

data model in Spark is based around RDDs [97]. The execution model of Spark is based

on RDDs and lineage graphs. The lineage graph captures dependencies between RDDs

and their transformations. The logical execution model is expressed through a chain of

transformations on RDDs by the user.

We used a slightly modified version 1 of the K-Means implementation provided in the

Spark MLlib [69] library . The overall dataflow is shown in Figure 6.1, which is the same as

that of Flink K-Means, and the inputs are read in a similar fashion from disk. The points

data file is partitioned and parallel map operations are performed on each partition. Each

point in a data partition is cached to increase performance. Within the map operations,

1https://github.com/DSC-SPIDAL/spark/tree/1.6.1.modifiedKmeans

64



6. PERFORMANCE EVALUATION

points are assigned to their closest centers. The reduce step gathers all this information

to the driver program where the new set of centers are calculated and broadcast to all the

worker nodes for the next iteration.

6.1.4. Evaluation. Figure 6.2 and Figure 6.3 show K-Means Java and C total runtime

for 1 million 2D points and 1,000 centroids, respectively. Each figure presents performance

of both LRT-FJ and LRT-BSP models over the six binding patterns identified in Table 5.1.

These were run on 24-core nodes; hence the abscissa shows all eight possible combinations

of threads and processes within a node that produce the 24-way parallelism, which utilizes

all cores of the particular node. The left-most pattern, 1x24, indicates all processes, and

the right-most pattern, 24x1, indicates all threads within a node. Note that patterns 8x3

and 24x1 imply that processes span across NUMA memory boundaries, which is known to

be inefficient but is presented here for completeness. The red and orange lines represent

inherited thread affinity for LRT-FJ and LRT-BSP, respectively. Similarly, the black and

green lines illustrate explicit thread pinning, each thread to a core, for these two thread

models.

The Java results suggest LRT-FJ is the worst in performance whatever the affinity

strategy for any pattern other than 1x24, which is all MPI and does not use thread-parallel

regions. A primary reason for this poor performance is the thread scheduling overhead in

Java, as FJ threads are short activated. Also, the JVM spawns extra bookkeeping threads for

GC and other tasks, which compete for CPU resources as well. Of the LRT-BSP lines the

unbound threads (NI) show the worst performance. Affinity patterns NE and CE seem to

give the best runtime as the number of threads increases.

65



6. PERFORMANCE EVALUATION

FIGURE 6.2. Java K-Means 1 mil points and 1k centers performance on 16
nodes for LRT-FJ and LRT-BSP with varying affinity patterns over varying
threads and processes.

The C results show the same behavior for unbounded and explicitly bound threads. The

two thread models, however, show similar performance, unlike Java. Further investigation

of this behavior revealed that OpenMP threads keep the CPUs utilization at 100% between

FJ regions, which suggests that OpenMP internally optimizes threads similar to the Java

LRT-BSP implementation introduced in this paper.

Figure 6.4 illustrates the effect of affinity patterns CE and NE for varying data sizes on

LRT-BSP. These performed similarly, but the results suggested CE is better than NE.

Figure 6.5 compares Java and C LRT-BSP runtimes for K-Means over varying data

sizes across thread and process combinations. Results demonstrate that Java performance

is on par with C. Also, sometimes Java outperforms C, mostly due to Just In Time (JIT)

optimizations, as seen in the figure for 500k centers.

66



6. PERFORMANCE EVALUATION

FIGURE 6.3. C K-Means 1 mil points and 1k centers performance on 16
nodes for LRT-FJ and LRT-BSP with varying affinity patterns over varying
threads and processes.

FIGURE 6.4. Java K-Means LRT-BSP affinity CE vs NE performance for 1
mil points with 1k,10k,50k,100k, and 500k centers on 16 nodes over varying
threads and processes.

67



6. PERFORMANCE EVALUATION

FIGURE 6.5. Java vs C K-Means LRT-BSP affinity CE performance for 1 mil
points with 1k,10k,50k,100k, and 500k centers on 16 nodes over varying
threads and processes.

Figure 6.6 and Figure 6.7 showcase LRT-FJ and LRT-BSP performance over varying data

sizes for affinity pattern CE. In Figure 6.6 the experiment was carried out for increasing

number of centroids as 1k,10k, and 100k. LRT-BSP shows constant performance across

thread and process combinations for all data sizes, whereas LRT-FJ exhibits abysmal perfor-

mance as thread and data sizes increase. Figure 6.7 replicates the same experiment for data

sizes 50k and 500k. Again, the results agree with those of Figure 6.6.

Hitherto the K-Means performance charts have investigated the behavior of different

combinations of threads and processes with LRT-FJ and LRT-BSP thread models in Java and

C over varying data sizes and affinity patterns. The total parallelism within a node was kept

constant at 24, which is the maximum parallelism possible for the particular test nodes in

Juliet. Figure 6.8, in contrast, explores the speedup of these different models with increasing

intra-node parallelism. The green line is Java with all processes, each pinned to a separate

68



6. PERFORMANCE EVALUATION

FIGURE 6.6. Java K-Means 1 mil points with 1k,10k, and 100k centers per-
formance on 16 nodes for LRT-FJ and LRT-BSP over varying threads and
processes. The affinity pattern is CE.

FIGURE 6.7. Java K-Means 1 mil points with 50k, and 500k centers per-
formance on 16 nodes for LRT-FJ and LRT-BSP over varying threads and
processes. The affinity pattern is CE.

69



6. PERFORMANCE EVALUATION

core in each machine. The purple line is Java LRT-BSP with intra-node parallelism and is all

threads. The implication of this is that for parallelisms 16 and 24, threads would span across

NUMA boundaries as these Juliet nodes only have 12 cores per socket. This is known to

be inefficient, hence the dashed purple line with black triangles showing the hybrid use of

processes and threads for these two cases. For example, the 24-way parallelism was run as

12x2, where two processes were run pinned to each socket and 12 threads were spawned

within each process pinned to each core of a particular socket. Similarly, 16-way parallelism

was done as 8x2. The orange lines show Java LRT-FJ, again the black triangles showing the

hybrid approach. All speedup values are based on the single process per node case of the

green line.

The results of this experiment suggest that the performance of Java LRT-BSP threads

is on par with that of all processes, whereas LRT-FJ shows abysmal performance. Fig-

ure 6.8 also includes the C LRT-FJ performance using OpenMP threads. Unlike Java FJ the

OpenMP’s FJ regions appear to implement an optimized version similar to Java’s LRT-BSP.

This agrees with the earlier comparison of Java and C in Figure 6.3. It also is worth noting

how Java performance is competitive with C and produces near linear speedup.

The remainder of K-Means evaluation focuses on comparing Spark and Flink against

MPI. The evaluation was done in 16 nodes, each with 24 cores. We measured the difference

between total time and computation time to estimate overheads including communication.

Note that in both Spark and Flink communications are handled internally to the framework,

and it is not possible to measure the cost of communications through the available API

functions. The results are shown in Figure 6.9 for 1 million 2D data points with varying

70



6. PERFORMANCE EVALUATION

FIGURE 6.8. Java and C K-Means 1 mil points with 100k centers performance
on 16 nodes for LRT-FJ and LRT-BSP over varying intra-node parallelisms.
The affinity pattern is CE.

number of centroids. We observed significant communication overhead in these frameworks

compared to MPI. The primary reason for such poor performance is the sub-optimal

implementation of reductions in Flink and Spark.

Figure 6.10 illustrates the dataflow reduction model implemented in Spark and Flink,

where all parallel tasks send data to a single or multiple reduce tasks to perform the

reduction. K-Means requires an MPI like Allreduce semantics; hence the reduction in

these programs is followed by a broadcast. Similar to the reduction operation, the broadcast

71



6. PERFORMANCE EVALUATION

FIGURE 6.9. K-Means total and compute times for 1 million 2D points and
1k,10,50k,100k, and 500k centroids for Spark, Flink, and MPI Java LRT-BSP
CE. Run on 16 nodes as 24x1.

is implemented serially as well. As the number of parallel tasks and the message size

increase, this two-step approach becomes highly inefficient in performing global reductions.

On the other hand, MPI uses a recursive doubling algorithm for doing the reduction and

broadcast together, which is very efficient and happens in-place.

Since the communication overhead was dominant in K-Means algorithm, we performed

a single node experiment with one process and multiple threads to look at computation

costs more closely. With one process there is no network communication in Flink or Spark

and Figure 6.11 illustrates the results. Flink uses an actor-based execution model, which

uses the Akka [45] framework to execute tasks. The framework creates and destroys LRT-FJ-

style threads to execute the individual tasks. Spark uses an executor/task model where an

executor creates at most a single task for each of its allocated cores. With this experiment we

72



6. PERFORMANCE EVALUATION

FIGURE 6.10. Spark and Flink’s all reduction vs MPI all reduction.

have observed execution time imbalances among the parallel tasks for both Spark and Flink.

The same has been observed with the LRT-FJ Java MPI implementation of K-Means, and

we could minimize these effects in MPI Java with the LRT-BSP style executions. Balanced

parallel computations are vital to efficient parallel algorithms as the slowest task dominates

the parallel computation time.

73



6. PERFORMANCE EVALUATION

FIGURE 6.11. K-Means total and compute times for 100k 2D points and
1k,2k,4k,8k, and 16k centroids for Spark, Flink, and MPI Java LRT-BSP CE.
Run on 1 node as 24x1

6.2. Performance of DA-MDS

To evaluate DA-MDS we have implemented two versions for LRT-FJ and LRT-BSP

models. Both these flavors include shared memory communication and other optimizations

discussed in Section 5.4 and in the SPIDAL Java [30] paper. Computations in DA-MDS

grow O(N2) and communications O(N). Also, unlike K-Means, where only one parallel

region is required, DA-MDS requires multiple parallel regions revisited on each iteration

until converged. This hierarchical iteration pattern (parallel conjugate gradient iteration

inside a classic expectation maximization loop) causes issues with the Big Data frameworks

that we will discuss in a latter section.

74



6. PERFORMANCE EVALUATION

6.2.1. Evaluation. Figure 6.12 through Figure 6.17 illustrate DA-MDS performance for

data sizes 50k, 100k, and 200k on 24-core and 36-core nodes. Each figure presents DA-MDS

runtime for the two thread models and affinity patterns CE, SE, NE, and NI. Patterns CI and

SI were omitted as they showed similar abysmal performance as NI in earlier K-Means

results. Thread and process combinations for 24-core nodes were the same as those used

in K-Means experiments. On 36-core nodes, nine patterns were tested from 1x36 to 36x1.

However, as LRT-BSP allocates data for all threads at the process level, 200k decomposition

over 16 nodes produced more data than the Java 1D arrays could hold. Therefore, this

pattern could not be tested for 200k data. LRT-BSP did not face this situation, as data

structures are local to threads and each allocates only the data required for the thread,

which is within Java’s array limit of 231−1 elements.

The above results confirm that Java LRT-FJ has the lowest performance irrespective of

the binding, data size, or the number of threads. On the other hand the LRT-BSP model

produced constant high performance across all these parameters. Investigating these effects

further, an 18x2 run for 100k data produced the perf stats in Table 6.1, which show a vast

number of context switches, CPU migrations, and data translation lookaside buffer load

misses for LRT-FJ compared to LRT-FJ. These statistics are directly related with performance

and hence explain the poor performance of LRT-FJ model.

Table 6.2 presents scaling of DA-MDS across nodes for data sizes 50k, 100k, and 200k.

Speedup values are measured against the all-process – 1x24 or 1x36 – base case. Performance

is expected to double as the number of nodes doubles. However, none of the 12x2 LRT-FJ

values came close to the expected number. These are shown in red. In contrast 12x2 of

75



6. PERFORMANCE EVALUATION

FIGURE 6.12. Java DA-MDS 50k points performance on 16 nodes for LRT-FJ
and LRT-BSP over varying threads and processes. Affinity patterns are
CE,NE,SE, and NI.

TABLE 6.1. Linux perf statistics for DA-MDS run of 18x2 on 32 nodes.
Affinity pattern is CE.

LRT-FJ LRT-BSP

Context Switches 477913 31433

CPU Migrations 63953 864

dTLB load misses 17226323 6493703

LRT-BSP follows the expected doubling in performance and also can produce slightly better

results than 1x24 as data increases.

The previous K-Means results and the DA-MDS explored the effects of thread models

and affinity patterns in detail. The following DA-MDS tests focus on communication

mechanisms and other factors mentioned in Section 5. Figure 6.18 through Figure 6.20

illustrate DA-MDS performance for 100k, 200k, and 400k data sizes over varying threads

and processes combinations. With O(N2) growth in runtime, a 400k test would take four

76



6. PERFORMANCE EVALUATION

FIGURE 6.13. Java DA-MDS 50k points performance on 16 of 36-core nodes
for LRT-FJ and LRT-BSP over varying threads and processes. Affinity pat-
terns are CE,NE,SE, and NI.

FIGURE 6.14. Java DA-MDS 100k points performance on 16 nodes for LRT-FJ
and LRT-BSP over varying threads and processes. Affinity patterns are
CE,NE,SE, and NI.

77



6. PERFORMANCE EVALUATION

FIGURE 6.15. Java DA-MDS 100k points performance on 16 of 36-core nodes
for LRT-FJ and LRT-BSP over varying threads and processes. Affinity pat-
terns are CE,NE,SE, and NI.

FIGURE 6.16. Java DA-MDS 200k points performance on 16 nodes for LRT-FJ
and LRT-BSP over varying threads and processes. Affinity patterns are
CE,NE,SE, and NI.

78



6. PERFORMANCE EVALUATION

FIGURE 6.17. Java DA-MDS 200k points performance on 16 of 36-core nodes
for LRT-FJ and LRT-BSP over varying threads and processes. Affinity pat-
terns are CE,NE,SE, and NI.

TABLE 6.2. Java DA-MDS speedup for varying data sizes on 24-core and
36-core nodes. Red values indicate the suboptimal performance of LRT-FJ
model compared to LRT-BSP. Ideally, these values should be similar to their
immediate left cell values.

Data Size

50k 100k 200k

24-Core
Nodes

1x24
LRT-
BSP

12x2
LRT-
BSP

12x2
LRT-FJ

1x24
LRT-
BSP

12x2
LRT-
BSP

12x2
LRT-FJ

1x24
LRT-
BSP

12x2
LRT-
BSP

12x2
LRT-FJ

16 1 1 0.6 1 1 0.6 1 1 0.4

32 2.2 2 1.1 1.9 1.9 1.1 1.9 2 0.6

64 3.9 3.6 1.9 3.6 3.6 1.9 3.7 3.8 0.9

36-Core
Nodes

1x36
LRT-
BSP

18x2
LRT-
BSP

18x2
LRT-FJ

1x36
LRT-
BSP

18x2
LRT-
BSP

18x2
LRT-FJ

1x36
LRT-
BSP

18x2
LRT-
BSP

18x2
LRT-FJ

16 1 1 0.6 1 1 0.6 1 1.1 0.4

32 2 1.8 0.9 1.9 1.9 1.1 1.9 2.1 0.6

79



6. PERFORMANCE EVALUATION

times that of the corresponding 200k run, so to be within our HPC resource allocation limits

we have limited the number of iterations in 400k tests to a lesser value than those of 200k

runs. Note that this does not affect performance characteristics in any way, as each iteration

is independent and the number of iterations determines only the accuracy of results.

The red line in Figure 6.18 and Figure 6.19 show the LRT-FJ implementation using

standard OpenMPI collective calls. It does not include any other optimizations discussed

in the Section 5. Both the 100k and 200k results exhibit a high degree of variation in

performance across the different thread and process combinations. Notably, the all-process,

1x24 pattern is worse in both cases due to the cost of communication. Also, the standard

implementation has no GC or memory optimizations, which made it impossible to test the

400k data set, as the memory requirement exceeded the physical 128GB memory in Juliet.

The blue line in these graphs shows the performance improvement when communication is

done through shared memory and the thread model is LRT-FJ. It also includes static memory

allocation, which made it possible to run 400k data without hitting the memory limit. The

black line adds other optimizations that give extra performance improvements beyond

mere shared memory communication. These optimizations are collectively identified as

SPIDAL Java in the following graphs. The green line in the figures is SPIDAL Java with

thread model changed to LRT-BSP, which gives the best performance.

Figure 6.21 and Figure 6.22 look at communication times of 100k and 200k tests.

DA-MDS has two call sites to MPI_Allgatherv, identified by BCComm and MMComm in

these graphs. The figures clearly show the poor performance of non-shared-memory-based

communication in standard MPI. With the memory-map-based optimization discussed in

80



6. PERFORMANCE EVALUATION

FIGURE 6.18. DA-MDS 100K performance with varying intra-node parallelism

FIGURE 6.19. DA-MDS 200K performance with varying intra-node parallelism

Section 5, the cost of collective calls is constant across different patterns. Also, the commu-

nication costs follow linear growth with data size, as seen in the 1ms to 2ms increase when

going from 100k to 200k.

81



6. PERFORMANCE EVALUATION

FIGURE 6.20. DA-MDS 400K performance with varying intra-node parallelism

FIGURE 6.21. DA-MDS 100K allgatherv performance with varying intra-
node parallelism

Figure 6.23 shows DA-MDS speedup with different optimization techniques for 200K

data. Parallelism up to and including 1152 was achieved by increasing intra-node par-

allelism over 48 nodes. For example, 1152-way parallelism is 24-way internal across 48

82



6. PERFORMANCE EVALUATION

FIGURE 6.22. DA-MDS 200K allgatherv performance with varying intra-
node parallelism

nodes. Parallelisms beyond 1152 were 24-way internal with the number of nodes alternat-

ing between 96 and 128. The top green line denotes SPIDAL Java optimizations and all

processes. The purple line overlying the green is the SPIDAL Java LRT-BSP hybrid threads.

Here, parallelisms up to 768 were using threads internally to a node and MPI across nodes.

Parallelisms 768 through 3072 were two processes per node each running multiple threads

internally over 48, 96, and 128 nodes. For example, 784-way parallelism was 8x2x48 and

1152-way was 12x2x48. The hybrid LRT-BSP threads and all-processes lines gave the best

speedup. The next best case is LRT-BSP all-threads line depicted in orange color. It uses

threads internally to a node, so parallelisms from 1,152 and upwards have 24 threads

internally. From the previous results it is clear that using 24 threads is not efficient, as Juliet

nodes have two physical CPUs. This explains the performance degradation compared to

the hybrid threads case.

83



6. PERFORMANCE EVALUATION

FIGURE 6.23. DA-MDS speedup for 200K with different optimization techniques

The blue line in Figure 6.23 is the all-processes case, which is similar to the green line

except that blue only represents communication and memory optimizations. The light blue

line shows the case with all the SPIDAL optimizations and using LRT-FJ threads internally.

Comparing this to the orange line, it is evident how LRT-BSP improves performance

significantly even when other optimizations are kept the same. The pink line has the same

optimizations as the earlier dark blue line (Java+SM - Procs) but uses LRT-FJ threads. Both

the pink and light blue lines overlap, suggesting that the overhead of LRT-FJ model is too

high, making other optimizations insignificant. The last two lines are the standard Java

plus MPI and thread implementations. The red line represents all processes, and the black

line represents all threads internally and using LRT-FJ model. With the overhead from

typical MPI collective communications, the all-processes (red) line shows much slower

performance compared to even the LRT-FJ all-threads (black) line.

84



6. PERFORMANCE EVALUATION

FIGURE 6.24. DA-MDS speedup with varying data sizes

Figure 6.24 extends the SPIDAL Java all-processes line in Figure 6.23 to other data sizes.

With computations growing at O(N2) and communications at O(N), better speedups should

be achieved as data size increases. The three lines in the figure confirm this expectation,

showing the highest speedup for 400k data.

6.3. Performance of MDSasChisq and DA-PWC

MDSasChisq is similar to DA-MDS in functionality but is based on the LevenbergMar-

quardt algorithm [65]. it does not support optimizations included in DA-MDS currently.

Similarly, DA-PWC supports only a limited number of optimizations. The following results

show that the performance of these algorithms in the absence of any optimizations agrees

with that of DA-MDS and K-Means implying MDSasChisq and DA-PWC could benefit

from the same optimizations such as SM based communications, LRT-BSP threads, and

correct thread pinning.

85

https://www.researchgate.net/publication/216212779_A_Method_for_The_Solution_of_Certain_Non-Linear_Problem_in_Least_Squares?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==


6. PERFORMANCE EVALUATION

FIGURE 6.25. Java MDSasChisq 10k points performance on 32 nodes for
LRT-FJ over varying threads and processes. Affinity pattern is CI

Figure 6.25 illustrates MDSasChisq LRT-FJ performance over varying threads and pro-

cesses combinations. The poor performance of all-process – 1x24 – case suggest MDSasChisq

could benefit from SM based communications discussed previously.

Figure 6.26 shows the effect of varying intra-node parallelism for all-process and all-

threads approaches. With no SM based communication in all-process case, all-threads show

better speedup. However, both these cases deviate greatly from the ideal speedup line as

the number parallel tasks increase beyond 4 in this case.

Figure 6.27 illustrates DA-PWC LRT-FJ performance over varying threads and processes

combinations. It supports SM based communication, which explains the better performance

for 1x24 case over other patterns. Affinity and LRT-BSP threads could further improve

DA-PWC.

86



6. PERFORMANCE EVALUATION

FIGURE 6.26. Java MDSasChisq 10k points speedup on 32 nodes for LRT-FJ
over varying intra-node parallelism. Affinity pattern is CI

FIGURE 6.27. Java DA-PWC LRT-FJ performance on 32 nodes over varying
varying threads and processes. Affinity pattern is CE

87



CHAPTER 7

Conclusion

While there are frameworks to support complex Big Data analytics, programming them for

high performance is challenging. This difficulty is partly due to running them on virtualized

commodity infrastructure, but we have found performance gains to be insignificant even

on advanced HPC environments.

We have performed a systematic study of performance scaling across nodes and inter-

nally over many cores using two parallel machine-learning applications in Chapter 6. This

study identified that the nature of Big Data problems and the use of high-level languages

such as Java incur significant computation and communication costs, which hinder per-

formance scaling. Chapter 5 introduced these factors in detail, where the thread model,

affinity, and the communication mechanism are prominent factors.

The typical thread model used in parallel applications is the LRT-FJ model, which

causes threads to release and acquire CPU resources frequently. The implementations of

this model behave poorly and suffer greatly from context switches. The LRT-BSP model

introduced in Chapter 5 overcomes these overheads by keeping threads busy throughout the

application. The affinity of processes and threads matter as much as the thread model, where

unbounded threads hinder performance even with LRT-BSP. The best affinity strategy was

to pin worker threads to a separate core while setting the process affinity to all the cores

utilized by threads (affinity pattern CE). Also, it was revealed that threads should be kept

88



7. CONCLUSION

within NUMA boundaries to avoid memory access costs across physical CPUs. The results

of both DA-MDS and K-Means supported these findings and exemplified that the hybrid

pattern of one process per socket and all-threads internally to a socket produced the best

results over any other pattern having threads internally to a process. While thread pinning

is discussed in the literature, this research is the first to perform a detailed analysis over six

strategies, especially for Java threads. The third improvement introduced in Chapter 5 is

the shared-memory-based communication for processes within the same node. The typical

inter-process communication proved prohibitively expensive, especially when the number

of processes per node grows as large as there are cores. The memory-mapping technique

introduced in this dissertation allowed Java processes to communicate with a minimal

and constant cost despite the number of processes. Apart from the Chronicle Queue [63]

software, this work is the first to use memory mapping with Java to do inter-process

communication for Big Data.

Chapter 6 also looked at the performance of two Big Data systems, Apache Spark

and Flink that implement the dataflow model. It suggested that while the dataflow pro-

gramming model is attractive, its implementations can be further improved based on the

previous findings of DA-MDS and K-Means clustering.

The work presented in this dissertation shows that Java Big Data performance could

be improved significantly by adhering to certain advanced techniques. While it focuses

on parallel machine-learning applications, the experience and guidelines can be general-

ized in performing systematic performance studies over other Big Data applications and

frameworks. For example, bringing systems such as Apache Spark and Flink into HPC

89



7. CONCLUSION

while retaining the productivity and usability features but improving performance based

on the ideas presented here would constitute a promising future research direction of this

work. Another step would be to extend and apply the CD classification in Chapter 4 for

existing Big Data use cases. Finally, an indirect research direction would be to come up with

high-performance idioms to write Big Data applications on existing frameworks.

90



Bibliography

[1] Apache Flink: Scalable Batch and Stream Data Processing.

[2] CIDR 2013, Sixth Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA, January 6-9,

2013, Online Proceedings. www.cidrdb.org, 2013.

[3] I. Anagnostopoulos, S. Zeadally, and E. Exposito. Handling big data: research challenges and future

directions. The Journal of Supercomputing, 72(4):1494–1516, 2016.

[4] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. Du Croz, S. Hammerling, J. Demmel,

C. Bischof, and D. Sorensen. Lapack: A portable linear algebra library for high-performance computers.

In Proceedings of the 1990 ACM/IEEE Conference on Supercomputing, Supercomputing ’90, pages 2–11, Los

Alamitos, CA, USA, 1990. IEEE Computer Society Press.

[5] Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark Callaghan. Linkbench: a

database benchmark based on the facebook social graph, 2013.

[6] Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, Kurt Keutzer, John Kubiatowicz, Nelson

Morgan, David Patterson, Koushik Sen, John Wawrzynek, David Wessel, and Katherine Yelick. A view of

the parallel computing landscape. Commun. ACM, 52(10):56–67, October 2009.

[7] Mark Baker, Bryan Carpenter, and Aamir Shafi. MPJ Express: towards thread safe Java HPC. In 2006

IEEE International Conference on Cluster Computing, pages 1–10. IEEE, 2006.

[8] Chaitanya Baru, Milind Bhandarkar, Raghunath Nambiar, Meikel Poess, and Tilmann Rabl. Setting the

Direction for Big Data Benchmark Standards, pages 197–208. Springer Berlin Heidelberg, Berlin, Heidelberg,

2013.

[9] L. S. Blackford, J. Choi, A. Cleary, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet,

K. Stanley, D. Walker, and R. C. Whaley. Scalapack: A portable linear algebra library for distributed

91

https://www.researchgate.net/publication/295870219_Handling_big_data_research_challenges_and_future_directions?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/295870219_Handling_big_data_research_challenges_and_future_directions?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/262237774_LinkBench_a_database_benchmark_based_on_the_Facebook_social_graph?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/262237774_LinkBench_a_database_benchmark_based_on_the_Facebook_social_graph?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/220781801_LAPACK_A_Portable_Linear_Algebra_Library_for_High-Performance_Computers?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/220781801_LAPACK_A_Portable_Linear_Algebra_Library_for_High-Performance_Computers?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/232632881_MPJ_Express_towards_thread_safe_Java_HPC?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/232632881_MPJ_Express_towards_thread_safe_Java_HPC?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/220424407_A_View_of_the_Parallel_Computing_Landscape?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/220424407_A_View_of_the_Parallel_Computing_Landscape?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/220424407_A_View_of_the_Parallel_Computing_Landscape?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==


BIBLIOGRAPHY

memory computers - design issues and performance. In Supercomputing, 1996. Proceedings of the 1996

ACM/IEEE Conference on, pages 5–5, 1996.

[10] I. Borg and P.J.F. Groenen. Modern Multidimensional Scaling: Theory and Applications. Springer, 2005.

[11] David Camp, Christoph Garth, Hank Childs, David Pugmire, and Kenneth Joy. Streamline integration

using MPI-hybrid parallelism on a large multicore architecture. IEEE Transactions on Visualization and

Computer Graphics, 17(11):1702–1713, 2011.

[12] Paris Carbone, Gyula Fóra, Stephan Ewen, Seif Haridi, and Kostas Tzoumas. Lightweight asynchronous

snapshots for distributed dataflows. arXiv preprint arXiv:1506.08603, 2015.

[13] Maria Carpen-Amarie, Patrick Marlier, Pascal Felber, and Gaël Thomas. A performance study of java

garbage collectors on multicore architectures. In Proceedings of the Sixth International Workshop on Program-

ming Models and Applications for Multicores and Manycores, pages 20–29. ACM, 2015.

[14] Martin J Chorley and David W Walker. Performance analysis of a hybrid MPI/OpenMP application on

multi-core clusters. Journal of Computational Science, 1(3):168–174, 2010.

[15] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. Benchmarking

cloud serving systems with ycsb. In Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC ’10,

pages 143–154, New York, NY, USA, 2010. ACM.

[16] Microsoft Corporation. Microsoft mpi. https://msdn.microsoft.com/en-us/library/

bb524831(v=vs.85).aspx, 2016. Accessed: May 10 2016.

[17] Oracle Corporation. Java i/o streams. https://docs.oracle.com/javase/tutorial/

essential/io/streams.html, 2015. Accessed: September 8 2016.

[18] Oracle Corporation. Java direct buffers. https://docs.oracle.com/javase/7/docs/api/java/

nio/ByteBuffer.html, 2016. Accessed: September 8 2016.

[19] Standard Performance Evaluation Corporation. Spec cpu 2006. https://www.spec.org/cpu2006/,

2015. Accessed: September 8 2016.

[20] Transaction Processing Council. Tpc express benchmark hs specification. http://www.tpc.org/tpc_

documents_current_versions/pdf/tpcx-hs_v1.4.1.pdf, 2016. Accessed: September 8 2016.

92

https://msdn.microsoft.com/en-us/library/bb524831(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/bb524831(v=vs.85).aspx
https://docs.oracle.com/javase/tutorial/essential/io/streams.html
https://docs.oracle.com/javase/tutorial/essential/io/streams.html
https://docs.oracle.com/javase/7/docs/api/java/nio/ByteBuffer.html
https://docs.oracle.com/javase/7/docs/api/java/nio/ByteBuffer.html
https://www.spec.org/cpu2006/
http://www.tpc.org/tpc_documents_current_versions/pdf/tpcx-hs_v1.4.1.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpcx-hs_v1.4.1.pdf
https://www.researchgate.net/publication/220430209_Performance_analysis_of_a_hybrid_MPIOpenMP_application_on_multi-core_clusters?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/220430209_Performance_analysis_of_a_hybrid_MPIOpenMP_application_on_multi-core_clusters?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/279458648_Lightweight_Asynchronous_Snapshots_for_Distributed_Dataflows?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/279458648_Lightweight_Asynchronous_Snapshots_for_Distributed_Dataflows?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/279458648_Lightweight_Asynchronous_Snapshots_for_Distributed_Dataflows?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/51613866_Streamline_Integration_Using_MPI-Hybrid_Parallelism_on_a_Large_Multicore_Architecture?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/51613866_Streamline_Integration_Using_MPI-Hybrid_Parallelism_on_a_Large_Multicore_Architecture?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/51613866_Streamline_Integration_Using_MPI-Hybrid_Parallelism_on_a_Large_Multicore_Architecture?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/282182835_A_Performance_Study_of_Java_Garbage_Collectors_on_Multicore_Architectures?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/282182835_A_Performance_Study_of_Java_Garbage_Collectors_on_Multicore_Architectures?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/282182835_A_Performance_Study_of_Java_Garbage_Collectors_on_Multicore_Architectures?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/220831908_Benchmarking_cloud_serving_systems_with_YCSB?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/220831908_Benchmarking_cloud_serving_systems_with_YCSB?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/220831908_Benchmarking_cloud_serving_systems_with_YCSB?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/230221658_Modern_Multidimensional_Scaling_Theory_and_Applications?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==


BIBLIOGRAPHY

[21] Leonardo Dagum and Ramesh Menon. Openmp: An industry-standard api for shared-memory program-

ming. IEEE Comput. Sci. Eng., 5(1):46–55, January 1998.

[22] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters. In Proceed-

ings of the 6th Conference on Symposium on Opearting Systems Design & Implementation - Volume 6, OSDI’04,

pages 10–10, Berkeley, CA, USA, 2004. USENIX Association.

[23] Jack J. Dongarra. Supercomputing: 1st International Conference Athens, Greece, June 8–12, 1987 Proceedings,

chapter The LINPACK Benchmark: An explanation, pages 456–474. Springer Berlin Heidelberg, Berlin,

Heidelberg, 1988.

[24] Jack J. Dongarra. Performance of various computers using standard linear equations software. SIGARCH

Comput. Archit. News, 20(3):22–44, June 1992.

[25] Jack J. Dongarra, Piotr Luszczek, and Antoine Petitet. The linpack benchmark: Past, present, and

future. concurrency and computation: Practice and experience. Concurrency and Computation: Practice and

Experience, 15:2003, 2003.

[26] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-Hee Bae, Judy Qiu, and Geoffrey

Fox. Twister: A Runtime for Iterative MapReduce. In Proceedings of the 19th ACM International Symposium

on High Performance Distributed Computing, HPDC ’10, pages 810–818, New York, NY, USA, 2010. ACM.

[27] Saliya Ekanayake. Study of biological sequence structure: Clustering and visualization.

http://grids.ucs.indiana.edu/ptliupages/publications/study_of_sequence_

clustering_formatted_v2.pdf, 2013. Accessed: September 8 2016.

[28] Saliya Ekanayake. C mpi k-means. https://github.com/DSC-SPIDAL/KMeansC, 2016. Accessed:

May 4, 2016.

[29] Saliya Ekanayake. Java mpi k-means. https://github.com/DSC-SPIDAL/KMeans, 2016. Accessed:

May 4, 2016.

[30] Saliya Ekanayake, Supun Kamburugamuve, and Geoffrey Fox. Spidal: High performance data analytics

with java and mpi on large multicore hpc clusters. In Proceedings of the 2016 Spring Simulation Multi-

Conference (SPRINGSIM), Pasadena, CA, USA, 3–6, 2016.

93

http://grids.ucs.indiana.edu/ptliupages/publications/study_of_sequence_clustering_formatted_v2.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/study_of_sequence_clustering_formatted_v2.pdf
https://github.com/DSC-SPIDAL/KMeansC
https://github.com/DSC-SPIDAL/KMeans
https://www.researchgate.net/publication/220717676_Twister_A_Runtime_for_Iterative_Mapreduce?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/220717676_Twister_A_Runtime_for_Iterative_Mapreduce?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/220717676_Twister_A_Runtime_for_Iterative_Mapreduce?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/291695527_SPIDAL_Java_High_Performance_Data_Analytics_with_Java_and_MPI_on_Large_Multicore_HPC_Clusters?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/291695527_SPIDAL_Java_High_Performance_Data_Analytics_with_Java_and_MPI_on_Large_Multicore_HPC_Clusters?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/291695527_SPIDAL_Java_High_Performance_Data_Analytics_with_Java_and_MPI_on_Large_Multicore_HPC_Clusters?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/2543892_Performance_of_Various_Computers_Using_Standard_Linear_Equations_Software?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/2543892_Performance_of_Various_Computers_Using_Standard_Linear_Equations_Software?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/220851866_MapReduce_Simplified_Data_Processing_on_Large_Clusters?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/220851866_MapReduce_Simplified_Data_Processing_on_Large_Clusters?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/220851866_MapReduce_Simplified_Data_Processing_on_Large_Clusters?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/3344403_OpenMP_An_Industry-Standard_API_for_Shared-Memory_Programming?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/3344403_OpenMP_An_Industry-Standard_API_for_Shared-Memory_Programming?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/267391438_Study_of_Biological_Sequence_Structure_Clustering_and_Visualization?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==


BIBLIOGRAPHY

[31] Charles Elkan. Using the triangle inequality to accelerate k-means. In Tom Fawcett and Nina Mishra,

editors, ICML, pages 147–153. AAAI Press, 2003.

[32] Roberto R. Expósito, Sabela Ramos, Guillermo L. Taboada, Juan Touriño, and Ramón Doallo. Fastmpj: A

scalable and efficient java message-passing library. Cluster Computing, 17(3):1031–1050, September 2014.

[33] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad Alisafaee, Djordje

Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ailamaki, and Babak Falsafi. Clearing the

clouds: A study of emerging scale-out workloads on modern hardware. In Proceedings of the Seventeenth

International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS

XVII, pages 37–48, New York, NY, USA, 2012. ACM.

[34] Apache Software Foundation. Terasort. https://hadoop.apache.org/docs/r2.7.1/api/org/

apache/hadoop/examples/terasort/package-summary.html, 2015. Accessed: September 8

2016.

[35] G. Fox, D.R. Mani, and S. Pyne. Parallel deterministic annealing clustering and its application to lc-ms

data analysis. In Big Data, 2013 IEEE International Conference on, pages 665–673, Oct 2013.

[36] G.C. Fox, J. Qiu, S. Kamburugamuve, S. Jha, and A. Luckow. Hpc-abds high performance computing

enhanced apache big data stack. In Cluster, Cloud and Grid Computing (CCGrid), 2015 15th IEEE/ACM

International Symposium on, pages 1057–1066, May 2015.

[37] Geoffrey Fox. Robust scalable visualized clustering in vector and non vector semi-metric spaces. Parallel

Processing Letters, 23(2), 2013.

[38] Geoffrey Fox, Judy Qiu, Shantenu Jha, Saliya Ekanayake, and Supun Kamburugamuve. Big

data, simulations and hpc convergence. http://dsc.soic.indiana.edu/publications/

HPCBigDataConvergence.pdf, 2016. Accessed: June 16 2016.

[39] Geoffrey C. Fox. Deterministic annealing and robust scalable data mining for the data deluge. In Proceed-

ings of the 2Nd International Workshop on Petascal Data Analytics: Challenges and Opportunities, PDAC ’11,

pages 39–40, New York, NY, USA, 2011. ACM.

94

https://hadoop.apache.org/docs/r2.7.1/api/org/apache/hadoop/examples/terasort/package-summary.html
https://hadoop.apache.org/docs/r2.7.1/api/org/apache/hadoop/examples/terasort/package-summary.html
http://dsc.soic.indiana.edu/publications/HPCBigDataConvergence.pdf
http://dsc.soic.indiana.edu/publications/HPCBigDataConvergence.pdf
https://www.researchgate.net/publication/2480121_Using_the_Triangle_Inequality_to_Accelerate_K-Means?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/2480121_Using_the_Triangle_Inequality_to_Accelerate_K-Means?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/241623777_Clearing_the_Clouds_A_Study_of_Emerging_Scale-out_Workloads_on_Modern_Hardware?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/241623777_Clearing_the_Clouds_A_Study_of_Emerging_Scale-out_Workloads_on_Modern_Hardware?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/241623777_Clearing_the_Clouds_A_Study_of_Emerging_Scale-out_Workloads_on_Modern_Hardware?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/241623777_Clearing_the_Clouds_A_Study_of_Emerging_Scale-out_Workloads_on_Modern_Hardware?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/241623777_Clearing_the_Clouds_A_Study_of_Emerging_Scale-out_Workloads_on_Modern_Hardware?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/254004601_Deterministic_annealing_and_robust_scalable_data_mining_for_the_data_deluge?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/254004601_Deterministic_annealing_and_robust_scalable_data_mining_for_the_data_deluge?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/254004601_Deterministic_annealing_and_robust_scalable_data_mining_for_the_data_deluge?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/273568436_Robust_scalable_visualized_clustering_in_vector_and_non_vector_semi-metric_spaces?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/273568436_Robust_scalable_visualized_clustering_in_vector_and_non_vector_semi-metric_spaces?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/283469883_Towards_a_comprehensive_set_of_big_data_benchmarks?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/283469883_Towards_a_comprehensive_set_of_big_data_benchmarks?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/283469883_Towards_a_comprehensive_set_of_big_data_benchmarks?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/261230844_Parallel_deterministic_annealing_clustering_and_its_application_to_LC-MS_data_analysis?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/261230844_Parallel_deterministic_annealing_clustering_and_its_application_to_LC-MS_data_analysis?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/301231174_Big_Data_Simulations_and_HPC_Convergence?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/301231174_Big_Data_Simulations_and_HPC_Convergence?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/301231174_Big_Data_Simulations_and_HPC_Convergence?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==


BIBLIOGRAPHY

[40] Geoffrey C. Fox, Shantenu Jha, Judy Qiu, and Andre Luckow. Towards an Understanding of Facets and

Exemplars of Big Data Applications. In Proceedings of the 20 Years of Beowulf Workshop on Honor of Thomas

Sterling’s 65th Birthday, Beowulf ’14, pages 7–16, New York, NY, USA, 2015. ACM.

[41] Ahmad Ghazal, Tilmann Rabl, Minqing Hu, Francois Raab, Meikel Poess, Alain Crolotte, and Hans-Arno

Jacobsen. Bigbench: Towards an industry standard benchmark for big data analytics. In Proceedings of the

2013 ACM SIGMOD International Conference on Management of Data, SIGMOD ’13, pages 1197–1208, New

York, NY, USA, 2013. ACM.

[42] Bhaskar D Gowda and Nishkam Ravi. Bigbench: Toward an industry-standard

benchmark for big data analytics. http://blog.cloudera.com/blog/2014/11/

bigbench-toward-an-industry-standard-benchmark-for-big-data-analytics/,

2014. Accessed: Ja 04 2015.

[43] Richard L. Graham, Timothy S. Woodall, and Jeffrey M. Squyres. Open MPI: A Flexible High Performance

MPI, pages 228–239. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[44] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel Programming with the

Message-passing Interface. MIT Press, Cambridge, MA, USA, 1994.

[45] Munish Gupta. Akka essentials. Packt Publishing Ltd, 2012.

[46] Geoffrey L. House, Saliya Ekanayake, Yang Ruan, Ursel M.E. Schtte, Wittaya Kaonongbua, Geoffrey Fox,

Yuzhen Ye, and James D. Bever. Phylogenetically structured differences in rrna gene sequence variation

among species of arbuscular mycorrhizal fungi and their implications for sequence clustering. Applied

and Environmental Microbiology, 2016.

[47] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. The HiBench Benchmark Suite:

Characterization of the MapReduce-Based Data Analysis, volume 74 of Lecture Notes in Business Information

Processing, book section 9, pages 209–228. Springer Berlin Heidelberg, 2011.

[48] W. Huang, G. Santhanaraman, H.-W. Jin, Q. Gao, and D. K. x. D. K. Panda. Design of high performance

mvapich2: Mpi2 over infiniband. In Proceedings of the Sixth IEEE International Symposium on Cluster

Computing and the Grid, CCGRID ’06, pages 43–48, Washington, DC, USA, 2006. IEEE Computer Society.

95

http://blog.cloudera.com/blog/2014/11/bigbench-toward-an-industry-standard-benchmark-for-big-data-analytics/
http://blog.cloudera.com/blog/2014/11/bigbench-toward-an-industry-standard-benchmark-for-big-data-analytics/
https://www.researchgate.net/publication/220691734_Using_MPI_-_portable_parallel_programming_with_the_message-parsing_interface?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/220691734_Using_MPI_-_portable_parallel_programming_with_the_message-parsing_interface?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/261860342_BigBench_Towards_an_industry_standard_benchmark_for_big_data_analytics?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/261860342_BigBench_Towards_an_industry_standard_benchmark_for_big_data_analytics?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/261860342_BigBench_Towards_an_industry_standard_benchmark_for_big_data_analytics?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/261860342_BigBench_Towards_an_industry_standard_benchmark_for_big_data_analytics?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/301372368_Towards_an_Understanding_of_Facets_and_Exemplars_of_Big_Data_Applications?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/301372368_Towards_an_Understanding_of_Facets_and_Exemplars_of_Big_Data_Applications?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/301372368_Towards_an_Understanding_of_Facets_and_Exemplars_of_Big_Data_Applications?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/224132954_The_HiBench_Benchmark_Suite_Characterization_of_the_MapReduce-Based_Data_Analysis?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/224132954_The_HiBench_Benchmark_Suite_Characterization_of_the_MapReduce-Based_Data_Analysis?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/224132954_The_HiBench_Benchmark_Suite_Characterization_of_the_MapReduce-Based_Data_Analysis?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/303797070_Phylogenetically_structured_differences_in_rRNA_gene_sequence_variation_among_species_of_arbuscular_mycorrhizal_fungi_and_their_implications_for_sequence_clustering?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/303797070_Phylogenetically_structured_differences_in_rRNA_gene_sequence_variation_among_species_of_arbuscular_mycorrhizal_fungi_and_their_implications_for_sequence_clustering?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/303797070_Phylogenetically_structured_differences_in_rRNA_gene_sequence_variation_among_species_of_arbuscular_mycorrhizal_fungi_and_their_implications_for_sequence_clustering?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/303797070_Phylogenetically_structured_differences_in_rRNA_gene_sequence_variation_among_species_of_arbuscular_mycorrhizal_fungi_and_their_implications_for_sequence_clustering?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/220697964_Open_MPI_A_flexible_high_performance_MPI?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/220697964_Open_MPI_A_flexible_high_performance_MPI?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==


BIBLIOGRAPHY

[49] W. Huang, G. Santhanaraman, H.W. Jin, Q. Gao, and D.K. Panda. Design of high performance mvapich2:

Mpi2 over infiniband. In Cluster Computing and the Grid, 2006. CCGRID 06. Sixth IEEE International

Symposium on, volume 1, pages 43–48, May 2006.

[50] Shams Imam and Vivek Sarkar. Habanero-java library: A java 8 framework for multicore programming.

In Proceedings of the 2014 International Conference on Principles and Practices of Programming on the Java

Platform: Virtual Machines, Languages, and Tools, PPPJ ’14, pages 75–86, New York, NY, USA, 2014. ACM.

[51] Cray Inc. Cray message passing toolkit (mpt). http://docs.cray.com/cgi-bin/craydoc.

cgi?mode=View;id=sw_releases-o23alcrv-1426185385;idx=man_search;this_sort=

title;q=;type=man;title=Message%20Passing%20Toolkit%20%28MPT%29%207.2%

20Man%20Pages, 2016. Accessed: May 10 2016.

[52] Intel. Intel mpi library. https://software.intel.com/en-us/intel-mpi-library, 2016. Ac-

cessed: May 10 2016.

[53] Zhen Jia, Jianfeng Zhan, Lei Wang, Rui Han, Sally A. McKee, Qiang Yang, Chunjie Luo, and Jingwei Li.

Characterizing and subsetting big data workloads. CoRR, abs/1409.0792, 2014.

[54] Supun Kamburugamuve. Flink k-means. https://github.com/DSC-SPIDAL/flink-apps, 2016.

Accessed: May 4, 2016.

[55] Supun Kamburugamuve, Saliya Ekanayake, Milinda Pathirage, and Geoffrey Fox. Towards High Perfor-

mance Processing of Streaming Data in Large Data Centers. In HPBDC 2016 IEEE International Workshop on

High-Performance Big Data Computing in conjunction with The 30th IEEE International Parallel and Distributed

Processing Symposium (IPDPS 2016), Chicago, Illinois USA, 2016.

[56] Supun Kamburugamuve, Pulasthi Wickramasinghe, Saliya Ekanayake, Milinda Pathirage, and Geoffrey C.

Fox. Webplotviz. https://spidal-gw.dsc.soic.indiana.edu/, 2015. Accessed: September 8

2016.

[57] Supun Kamburugamuve, Pulasthi Wickramasinghe, Saliya Ekanayake, Chathuri Wimalasena, Milinda

Pathirage, and Geoffrey Fox. Tsmap3d: Browser visualization of high dimensional time series data.

http://dsc.soic.indiana.edu/publications/tsmap3d.pdf, 2016. Accessed: June 16 2016.

96

http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=sw_releases-o23alcrv-1426185385;idx=man_search;this_sort=title;q=;type=man;title=Message%20Passing%20Toolkit%20%28MPT%29%207.2%20Man%20Pages
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=sw_releases-o23alcrv-1426185385;idx=man_search;this_sort=title;q=;type=man;title=Message%20Passing%20Toolkit%20%28MPT%29%207.2%20Man%20Pages
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=sw_releases-o23alcrv-1426185385;idx=man_search;this_sort=title;q=;type=man;title=Message%20Passing%20Toolkit%20%28MPT%29%207.2%20Man%20Pages
http://docs.cray.com/cgi-bin/craydoc.cgi?mode=View;id=sw_releases-o23alcrv-1426185385;idx=man_search;this_sort=title;q=;type=man;title=Message%20Passing%20Toolkit%20%28MPT%29%207.2%20Man%20Pages
https://software.intel.com/en-us/intel-mpi-library
https://github.com/DSC-SPIDAL/flink-apps
https://spidal-gw.dsc.soic.indiana.edu/
http://dsc.soic.indiana.edu/publications/tsmap3d.pdf
https://www.researchgate.net/publication/265295177_Characterizing_and_Subsetting_Big_Data_Workloads?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/265295177_Characterizing_and_Subsetting_Big_Data_Workloads?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/296692116_Towards_High_Performance_Processing_of_Streaming_Data_in_Large_Data_Centers?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/296692116_Towards_High_Performance_Processing_of_Streaming_Data_in_Large_Data_Centers?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/296692116_Towards_High_Performance_Processing_of_Streaming_Data_in_Large_Data_Centers?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/296692116_Towards_High_Performance_Processing_of_Streaming_Data_in_Large_Data_Centers?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/266661749_Habanero-Java_library_a_Java_8_framework_for_multicore_programming?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/266661749_Habanero-Java_library_a_Java_8_framework_for_multicore_programming?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/266661749_Habanero-Java_library_a_Java_8_framework_for_multicore_programming?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/4241890_Design_of_High_Performance_MVAPICH2_MPI2_over_InfiniBand?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/4241890_Design_of_High_Performance_MVAPICH2_MPI2_over_InfiniBand?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/4241890_Design_of_High_Performance_MVAPICH2_MPI2_over_InfiniBand?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==


BIBLIOGRAPHY

[58] Rajesh K Karmani, Amin Shali, and Gul Agha. Actor frameworks for the JVM platform: a comparative

analysis. In Proceedings of the 7th International Conference on Principles and Practice of Programming in Java,

pages 11–20. ACM, 2009.

[59] Michael Klemm, Matthias Bezold, Ronald Veldema, and Michael Philippsen. JaMP: an implementation of

OpenMP for a Java DSM. Concurrency and Computation: Practice and Experience, 19(18):2333–2352, 2007.

[60] Hansjörg Klock and Joachim M. Buhmann. Multidimensional scaling by deterministic annealing. In

Proceedings of the First International Workshop on Energy Minimization Methods in Computer Vision and Pattern

Recognition, EMMCVPR ’97, pages 245–260, London, UK, UK, 1997. Springer-Verlag.

[61] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher Kellogg, Sailesh Mittal,

Jignesh M. Patel, Karthik Ramasamy, and Siddarth Taneja. Twitter heron: Stream processing at scale. In

Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, SIGMOD ’15, pages

239–250, New York, NY, USA, 2015. ACM.

[62] Berkeley AMP Labs. Big data benchmark. https://amplab.cs.berkeley.edu/benchmark/, 2014.

Accessed: September 8 2016.

[63] Peter Lawrey. Chronicle queue. http://chronicle.software/products/chronicle-queue/,

2015. Accessed: June 16 2016.

[64] Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. The design of a task parallel library. In Pro-

ceedings of the 24th ACM SIGPLAN Conference on Object Oriented Programming Systems Languages and

Applications, OOPSLA ’09, pages 227–242, New York, NY, USA, 2009. ACM.

[65] Kenneth Levenberg. A method for the solution of certain non-linear problems in least squares. Quarterly

Journal of Applied Mathmatics, II(2):164–168, 1944.

[66] Chunjie Luo, Wanling Gao, Zhen Jia, Rui Han, Jingwei Li, Xinlong Lin, Lei Wang, Yuqing Zhu, and

Jianfeng Zhan. Handbook of bigdatabench (version 3.1) - a big data benchmark suite. Report.

[67] D. A. Malln, G. L. Taboada, J. Tourio, and R. Doallo. Npb-mpj: Nas parallel benchmarks implementation

for message-passing in java. In 2009 17th Euromicro International Conference on Parallel, Distributed and

Network-based Processing, pages 181–190, Feb 2009.

97

https://amplab.cs.berkeley.edu/benchmark/
http://chronicle.software/products/chronicle-queue/
https://www.researchgate.net/publication/220105283_Jamp_an_implementation_of_openMP_for_a_Java_DSM?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/220105283_Jamp_an_implementation_of_openMP_for_a_Java_DSM?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/221302944_Actor_frameworks_for_the_JVM_platform?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/221302944_Actor_frameworks_for_the_JVM_platform?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/221302944_Actor_frameworks_for_the_JVM_platform?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/221320612_The_Design_of_a_Task_Parallel_Library?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/221320612_The_Design_of_a_Task_Parallel_Library?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/221320612_The_Design_of_a_Task_Parallel_Library?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/224441333_NPB-MPJ_NAS_parallel_benchmarks_implementation_for_message-passing_in_Java?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/224441333_NPB-MPJ_NAS_parallel_benchmarks_implementation_for_message-passing_in_Java?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/224441333_NPB-MPJ_NAS_parallel_benchmarks_implementation_for_message-passing_in_Java?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/216212779_A_Method_for_The_Solution_of_Certain_Non-Linear_Problem_in_Least_Squares?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/216212779_A_Method_for_The_Solution_of_Certain_Non-Linear_Problem_in_Least_Squares?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==


BIBLIOGRAPHY

[68] Big data: The next frontier for innovation, competition, and productivity. http://www.mckinsey.

com/insights/business_technology/big_data_the_next_frontier_for_innovation.

[69] Xiangrui Meng, Joseph Bradley, B Yuvaz, Evan Sparks, Shivaram Venkataraman, Davies Liu, Jeremy

Freeman, D Tsai, Manish Amde, Sean Owen, et al. Mllib: Machine learning in apache spark. JMLR,

17(34):1–7, 2016.

[70] Ramanathan Narayanan, Berkin O zs.kylmaz, Joseph Zambreno, Gokhan Memik, Alok Choudhary,

and Jayaprakash Pisharath. Minebench: A benchmark suite for data mining workloads. In Workload

Characterization, 2006 IEEE International Symposium on, pages 182–188.

[71] Saul B. Needleman and Christian D. Wunsch. A general method applicable to the search for similarities

in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3):443 – 453, 1970.

[72] OpenHFT JavaLang Project. https://github.com/OpenHFT/Java-Lang.

[73] Jeffrey M. Squyres Oscar Vega-Gisbert, Jose E. Roman. Design and implementation of java bindings in

open mpi. users.dsic.upv.es/˜jroman/preprints/ompi-java.pdf.

[74] OSU Micro-Benchmarks. http://mvapich.cse.ohio-state.edu/benchmarks/.

[75] B. Ozisikyilmaz, R. Narayanan, J. Zambreno, G. Memik, and A. Choudhary. An architectural charac-

terization study of data mining and bioinformatics workloads. In Workload Characterization, 2006 IEEE

International Symposium on, pages 61–70.

[76] Jelica Protic, Milo Tomasevic, and Veljko Milutinovic. Distributed shared memory: Concepts and systems.

IEEE Parallel Distrib. Technol., 4(2):63–79, June 1996.

[77] Rolf Rabenseifner, Georg Hager, and Gabriele Jost. Hybrid MPI/OpenMP parallel programming on

clusters of multi-core SMP nodes. In 2009 17th Euromicro international conference on parallel, distributed and

network-based processing, pages 427–436. IEEE, 2009.

[78] Tilmann Rabl and Meikel Poess. Parallel data generation for performance analysis of large, complex

rdbms. In Proceedings of the Fourth International Workshop on Testing Database Systems, DBTest ’11, pages

5:1–5:6, New York, NY, USA, 2011. ACM.

98

http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation
http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation
https://github.com/OpenHFT/Java-Lang
users.dsic.upv.es/~jroman/preprints/ompi-java.pdf
http://mvapich.cse.ohio-state.edu/benchmarks/
https://www.researchgate.net/publication/224761440_An_Architectural_Characterization_Study_of_Data_Mining_and_Bioinformatics_Workloads?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/224761440_An_Architectural_Characterization_Study_of_Data_Mining_and_Bioinformatics_Workloads?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/224761440_An_Architectural_Characterization_Study_of_Data_Mining_and_Bioinformatics_Workloads?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/221392799_Hybrid_MPIOpenMP_parallel_programming_on_clusters_of_multi-core_SMP_nodes?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/221392799_Hybrid_MPIOpenMP_parallel_programming_on_clusters_of_multi-core_SMP_nodes?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/221392799_Hybrid_MPIOpenMP_parallel_programming_on_clusters_of_multi-core_SMP_nodes?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/3333209_Distributed_shared_memory_concepts_and_systems?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/3333209_Distributed_shared_memory_concepts_and_systems?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/306083754_Design_and_implementation_of_Java_bindings_in_Open_MPI?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/306083754_Design_and_implementation_of_Java_bindings_in_Open_MPI?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/221213047_Parallel_data_generation_for_performance_analysis_of_large_complex_RDBMS?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/221213047_Parallel_data_generation_for_performance_analysis_of_large_complex_RDBMS?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/221213047_Parallel_data_generation_for_performance_analysis_of_large_complex_RDBMS?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/17749606_A_General_Method_Applicable_to_Search_for_Similarities_in_Amino_Acid_Sequence_of_2_Proteins?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/17749606_A_General_Method_Applicable_to_Search_for_Similarities_in_Amino_Acid_Sequence_of_2_Proteins?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==


BIBLIOGRAPHY

[79] Tilmann Rabl, Meikel Poess, Chaitanya Baru, and Hans-Arno Jacobsen. Specifying big data benchmarks:

First workshop, wbdb 2012, san jose, ca, usa, may 8-9, 2012 and second workshop, wbdb 2012, pune,

india, december 17-18, 2012, revised selected papers. Springer Berlin Heidelberg.

[80] Karthik Ramasamy. Flying faster with twitter heron. https://blog.twitter.com/2015/

flying-faster-with-twitter-heron, 2015. Accessed: September 8 2016.

[81] James Reinders. Intel Threading Building Blocks. O’Reilly & Associates, Inc., Sebastopol, CA, USA, first

edition, 2007.

[82] K. Rose, E. Gurewwitz, and G. Fox. A deterministic annealing approach to clustering. Pattern Recogn.

Lett., 11(9):589–594, September 1990.

[83] Yang Ruan, Saliya Ekanayake, Mina Rho, Haixu Tang, Seung-Hee Bae, Judy Qiu, and Geoffrey Fox.

Dacidr: Deterministic annealed clustering with interpolative dimension reduction using a large collection

of 16s rrna sequences. In Proceedings of the ACM Conference on Bioinformatics, Computational Biology and

Biomedicine, BCB ’12, pages 329–336, New York, NY, USA, 2012. ACM.

[84] Yang Ruan and Geoffrey Fox. A robust and scalable solution for interpolative multidimensional scaling

with weighting. In 9th IEEE International Conference on eScience, eScience 2013, Beijing, China, October 22-25,

2013, pages 61–69, 2013.

[85] Yang Ruan, Geoffrey L. House, Saliya Ekanayake, Ursel Schutte, James D. Bever, Haixu Tang, and

Geoffrey C. Fox. Integration of clustering and multidimensional scaling to determine phylogenetic trees

as spherical phylograms visualized in 3 dimensions. In CCGRID, pages 720–729. IEEE Computer Society,

2014.

[86] Eishay Smith. Jvm serializers. https://github.com/eishay/jvm-serializers/wiki, 2016. Ac-

cessed: September 8 2016.

[87] T.F. Smith and M.S. Waterman. Identification of common molecular subsequences. Journal of Molecular

Biology, 147(1):195 – 197, 1981.

[88] Esoteric Software. Kryo. https://github.com/EsotericSoftware/kryo, 2016. Accessed: May 10

2016.

99

https://blog.twitter.com/2015/flying-faster-with-twitter-heron
https://blog.twitter.com/2015/flying-faster-with-twitter-heron
https://github.com/eishay/jvm-serializers/wiki
https://github.com/EsotericSoftware/kryo
https://www.researchgate.net/publication/267391261_Integration_of_Clustering_and_Multidimensional_Scaling_to_Determine_Phylogenetic_Trees_as_Spherical_Phylograms_Visualized_in_3_Dimensions?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/267391261_Integration_of_Clustering_and_Multidimensional_Scaling_to_Determine_Phylogenetic_Trees_as_Spherical_Phylograms_Visualized_in_3_Dimensions?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/267391261_Integration_of_Clustering_and_Multidimensional_Scaling_to_Determine_Phylogenetic_Trees_as_Spherical_Phylograms_Visualized_in_3_Dimensions?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/267391261_Integration_of_Clustering_and_Multidimensional_Scaling_to_Determine_Phylogenetic_Trees_as_Spherical_Phylograms_Visualized_in_3_Dimensions?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/223616307_A_deterministic_annealing_approach_to_clustering?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/223616307_A_deterministic_annealing_approach_to_clustering?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/261041010_A_Robust_and_Scalable_Solution_for_Interpolative_Multidimensional_Scaling_with_Weighting?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/261041010_A_Robust_and_Scalable_Solution_for_Interpolative_Multidimensional_Scaling_with_Weighting?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/261041010_A_Robust_and_Scalable_Solution_for_Interpolative_Multidimensional_Scaling_with_Weighting?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/262396796_DACIDR_Deterministic_annealed_clustering_with_interpolative_dimension_reduction_using_a_large_collection_of_16S_rRNA_sequences?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/262396796_DACIDR_Deterministic_annealed_clustering_with_interpolative_dimension_reduction_using_a_large_collection_of_16S_rRNA_sequences?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/262396796_DACIDR_Deterministic_annealed_clustering_with_interpolative_dimension_reduction_using_a_large_collection_of_16S_rRNA_sequences?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/15934339_Identification_of_Common_Molecular_Subsequences?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/15934339_Identification_of_Common_Molecular_Subsequences?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==


BIBLIOGRAPHY

[89] Larissa Stanberry, Roger Higdon, Winston Haynes, Natali Kolker, William Broomall, Saliya Ekanayake,

Adam Hughes, Yang Ruan, Judy Qiu, Eugene Kolker, and Geoffrey Fox. Visualizing the protein sequence

universe. In Proceedings of the 3rd International Workshop on Emerging Computational Methods for the Life

Sciences, ECMLS ’12, pages 13–22, New York, NY, USA, 2012. ACM.

[90] Guillermo L Taboada, Sabela Ramos, Roberto R Expósito, Juan Touriño, and Ramón Doallo. Java in the

high performance computing arena: Research, practice and experience. Science of Computer Programming,

78(5):425–444, 2013.

[91] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad Agarwal, Mahadev Konar, Robert

Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth Seth, Bikas Saha, Carlo Curino, Owen

O’Malley, Sanjay Radia, Benjamin Reed, and Eric Baldeschwieler. Apache hadoop yarn: Yet another

resource negotiator. In Proceedings of the 4th Annual Symposium on Cloud Computing, SOCC ’13, pages

5:1–5:16, New York, NY, USA, 2013. ACM.

[92] Oscar Vega-Gisbert, Jose E. Roman, Siegmar Groß, and Jeffrey M. Squyres. Towards the availability of

java bindings in open mpi. In Proceedings of the 20th European MPI Users’ Group Meeting, EuroMPI ’13,

pages 141–142, New York, NY, USA, 2013. ACM.

[93] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi, S. Zhang, C. Zheng, G. Lu, K. Zhan,

X. Li, and B. Qiu. Bigdatabench: A big data benchmark suite from internet services. In 2014 IEEE 20th

International Symposium on High Performance Computer Architecture (HPCA), pages 488–499, Feb 2014.

[94] Lei Wang, Jianfeng Zhan, Chunjie Luo, Yuqing Zhu, Qiang Yang, Yongqiang He, Wanling Gao, Zhen Jia,

Yingjie Shi, Shujie Zhang, Chen Zheng, Gang Lu, Kent Zhan, Xiaona Li, and Bizhu Qiu. Bigdatabench: a

big data benchmark suite from internet services. CoRR, abs/1401.1406, 2014.

[95] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2012.

[96] Reynold Xin and Josh Rosen. Project tungsten: Bringing apache spark

closer to bare metal. https://databricks.com/blog/2015/04/28/

project-tungsten-bringing-spark-closer-to-bare-metal.html, 2015. Accessed: June 6,

2016.

100

https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://www.researchgate.net/publication/233209169_Visualizing_the_Protein_Sequence_Universe?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/233209169_Visualizing_the_Protein_Sequence_Universe?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/233209169_Visualizing_the_Protein_Sequence_Universe?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/233209169_Visualizing_the_Protein_Sequence_Universe?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/262309267_Towards_the_availability_of_Java_bindings_in_open_MPI?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/262309267_Towards_the_availability_of_Java_bindings_in_open_MPI?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/262309267_Towards_the_availability_of_Java_bindings_in_open_MPI?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/259584511_BigDataBench_a_Big_Data_Benchmark_Suite_from_Internet_Services?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/259584511_BigDataBench_a_Big_Data_Benchmark_Suite_from_Internet_Services?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/259584511_BigDataBench_a_Big_Data_Benchmark_Suite_from_Internet_Services?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/262241359_Apache_Hadoop_YARN_yet_another_resource_negotiator?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/262241359_Apache_Hadoop_YARN_yet_another_resource_negotiator?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/262241359_Apache_Hadoop_YARN_yet_another_resource_negotiator?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/262241359_Apache_Hadoop_YARN_yet_another_resource_negotiator?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/262241359_Apache_Hadoop_YARN_yet_another_resource_negotiator?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==


BIBLIOGRAPHY

[97] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley,

Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets: A fault-tolerant abstrac-

tion for in-memory cluster computing. In Proceedings of the 9th USENIX conference on Networked Systems

Design and Implementation, pages 2–2. USENIX Association, 2012.

[98] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica. Spark: Cluster

computing with working sets. In Proceedings of the 2Nd USENIX Conference on Hot Topics in Cloud Computing,

HotCloud’10, pages 10–10, Berkeley, CA, USA, 2010. USENIX Association.

[99] B. Zhang, Y. Ruan, and J. Qiu. Harp: Collective communication on hadoop. In Cloud Engineering (IC2E),

2015 IEEE International Conference on, pages 228–233, March 2015.

[100] Bingjing Zhang, Yang Ruan, and Judy Qiu. Harp: Collective communication on hadoop. In Cloud

Engineering (IC2E), 2015 IEEE International Conference on, pages 228–233. IEEE, 2015.

101

https://www.researchgate.net/publication/262233351_Resilient_distributed_datasets_A_fault-tolerant_abstraction_for_in-memory_cluster_computing?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/262233351_Resilient_distributed_datasets_A_fault-tolerant_abstraction_for_in-memory_cluster_computing?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/262233351_Resilient_distributed_datasets_A_fault-tolerant_abstraction_for_in-memory_cluster_computing?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/262233351_Resilient_distributed_datasets_A_fault-tolerant_abstraction_for_in-memory_cluster_computing?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/234790155_Spark_Cluster_Computing_with_Working_Sets?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/234790155_Spark_Cluster_Computing_with_Working_Sets?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/234790155_Spark_Cluster_Computing_with_Working_Sets?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==


Saliya Ekanayake

Research Interests
Developing Big Data applications and systems, distributed systems, parallel machine learn-
ing, high-performance computing, parallel architectures.

Education
Indiana University
Ph.D., Computer Science, October 2016.

Indiana University
M.Sc., Computer Science, May 2011.

University of Moratuwa, Sri Lanka
B.Sc., Computer Science and Engineering, May 2008.

Employment Experience
Indiana University, Research Assistant, August 2009 – October 2016.

WSO2 Inc., Senior Software Engineer, January 2009 – August 2009.

WSO2 Inc., Software Engineer, May 2008 – January 2009.

University of Moratuwa, Sri Lanka, Visiting Lecturer, May 2008 – August 2009.

St. Mary’s Convent, Sri Lanka, Assistant Physics Teacher, May 2003 – January 2004.

Publications
[1] Saliya Ekanayake, S. Kamburugamuve, P. Wickramasinghe, and G. C. Fox, “Java

thread and process performance for parallel machine learning on multicore hpc clus-
ters,” Submitted to IEEE Big Data, 2016.

[2] G. L. House, Saliya Ekanayake, Y. Ruan, U. M. Schütte, W. Kaonongbua, G. Fox,
Y. Ye, and J. D. Bever, “Phylogenetically structured differences in rrna gene sequence
variation among species of arbuscular mycorrhizal fungi and their implications for
sequence clustering,” Applied and Environmental Microbiology, 2016.

https://www.researchgate.net/publication/305994537_Java_Thread_and_Process_Performance_for_Parallel_Machine_Learning_on_Multicore_HPC_Clusters?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/305994537_Java_Thread_and_Process_Performance_for_Parallel_Machine_Learning_on_Multicore_HPC_Clusters?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/305994537_Java_Thread_and_Process_Performance_for_Parallel_Machine_Learning_on_Multicore_HPC_Clusters?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==


[3] Saliya Ekanayake, S. Kamburugamuve, and G. C. Fox, “SPIDAL: High perfor-
mance data analytics with java and mpi on large multicore hpc clusters,” in Proceed-
ings of the 24th High Performance Computing Symposium (HPC 2016), Pasadena,
California, 2016.

[4] S. Kamburugamuve, Saliya Ekanayake, M. Pathirage, and G. C. Fox, “Towards
high performance processing of streaming data in large data centers,” in IPDPS
Workshops, IEEE Computer Society, 2016, pp. 1637–1644.

[5] G. C. Fox, S. Jha, J. Qiu, Saliya Ekanayake, and A. Luckow, “Towards a compre-
hensive set of big data benchmarks,” in High Performance Computing Workshop, ser.
Advances in Parallel Computing, vol. 26, IOS Press, 2014, pp. 47–66.

[6] Y. Ruan, G. L. House, Saliya Ekanayake, U. Schutte, J. D. Bever, H. Tang, and
G. C. Fox, “Integration of clustering and multidimensional scaling to determine phylo-
genetic trees as spherical phylograms visualized in 3 dimensions,” in CCGRID, IEEE
Computer Society, 2014, pp. 720–729.

[7] Y. Ruan, Saliya Ekanayake, M. Rho, H. Tang, S.-H. Bae, J. Qiu, and G. Fox,
“DACIDR: Deterministic annealed clustering with interpolative dimension reduction
using a large collection of 16s rrna sequences,” in Proceedings of the ACM Conference
on Bioinformatics, Computational Biology and Biomedicine, ser. BCB ’12, Orlando,
Florida: ACM, 2012, pp. 329–336.

[8] L. Stanberry, R. Higdon, W. Haynes, N. Kolker, W. Broomall, Saliya Ekanayake,
A. Hughes, Y. Ruan, J. Qiu, E. Kolker, and G. C. Fox, “Visualizing the protein
sequence universe,” Concurrency and Computation: Practice and Experience, vol. 26,
no. 6, pp. 1313–1325, 2014.

[9] A. Hughes, Y. Ruan, Saliya Ekanayake, S. Bae, Q. Dong, M. Rho, J. Qiu, and
G. C. Fox, “Interpolative multidimensional scaling techniques for the identification
of clusters in very large sequence sets,” BMC Bioinformatics, vol. 13, no. S-2, S9,
2012.

[10] J. Qiu, J. Ekanayake, T. Gunarathne, J. Y. Choi, S. Bae, H. Li, B. Zhang, T. Wu,
Y. Ruan, Saliya Ekanayake, A. Hughes, and G. C. Fox, “Hybrid cloud and cluster
computing paradigms for life science applications,” BMC Bioinformatics, vol. 11, no.
S-12, S3, 2010.

[11] J. Qiu, S. Beason, S. Bae, Saliya Ekanayake, and G. C. Fox, “Performance of
windows multicore systems on threading and MPI,” in CCGRID, IEEE Computer
Society, 2010, pp. 814–819.

Awards and Honors
Best Intern Presentation Awarded by the Institute of Engineers in Sri Lanka (IESL)
for implementing and presenting the JavaScript support in Apache Axis2 Web services
engine.

https://www.researchgate.net/publication/220941686_Performance_of_Windows_Multicore_Systems_on_Threading_and_MPI?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/220941686_Performance_of_Windows_Multicore_Systems_on_Threading_and_MPI?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/220941686_Performance_of_Windows_Multicore_Systems_on_Threading_and_MPI?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/291695433_SPIDAL_Java_High_Performance_Data_Analytics_with_Java_and_MPI_on_Large_Multicore_HPC_Clusters?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/291695433_SPIDAL_Java_High_Performance_Data_Analytics_with_Java_and_MPI_on_Large_Multicore_HPC_Clusters?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/291695433_SPIDAL_Java_High_Performance_Data_Analytics_with_Java_and_MPI_on_Large_Multicore_HPC_Clusters?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/291695433_SPIDAL_Java_High_Performance_Data_Analytics_with_Java_and_MPI_on_Large_Multicore_HPC_Clusters?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/49733333_Hybrid_Cloud_and_Cluster_Computing_Paradigms_for_Life_Science_Applications?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/49733333_Hybrid_Cloud_and_Cluster_Computing_Paradigms_for_Life_Science_Applications?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/49733333_Hybrid_Cloud_and_Cluster_Computing_Paradigms_for_Life_Science_Applications?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/49733333_Hybrid_Cloud_and_Cluster_Computing_Paradigms_for_Life_Science_Applications?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/224868870_Interpolative_multidimensional_scaling_techniques_for_the_identification_of_clusters_in_very_large_sequence_sets?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/224868870_Interpolative_multidimensional_scaling_techniques_for_the_identification_of_clusters_in_very_large_sequence_sets?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/224868870_Interpolative_multidimensional_scaling_techniques_for_the_identification_of_clusters_in_very_large_sequence_sets?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==
https://www.researchgate.net/publication/224868870_Interpolative_multidimensional_scaling_techniques_for_the_identification_of_clusters_in_very_large_sequence_sets?el=1_x_8&enrichId=rgreq-adc8f11e0c607d9b82ef7309e43c57af-XXX&enrichSource=Y292ZXJQYWdlOzMwODcyMDQyMTtBUzo0MTE1NTQ2MjIyNjMyOTdAMTQ3NTEzMzY3NjY0MQ==

	dissertation_submission (6)
	Abstract
	Contents
	List of Figures
	Chapter 1. Introduction
	Chapter 2. Background
	2.1. Shared Memory (SM)
	2.2. Distributed Memory (DM)
	2.3. Hybrid of SM and DM
	2.4. Dataflow Programming

	Chapter 3. Related Work
	3.1. Survey of the Current Benchmarks
	3.2. Technical Improvements
	3.3. Benchmarking Guidelines

	Chapter 4. Scalable Parallel Interoperable Data Analytics Library (SPIDAL)
	4.1. DA-MDS
	4.2. DA-PWC
	4.3. DA-VS
	4.4. MDSasChisq
	4.5. K-Means Clustering
	4.6. Elkan's K-Means Clustering
	4.7. WebPlotViz
	4.8. SPIDAL Use Cases
	4.9. Convergence Diamonds: A Novel Approach to Benchmark Classification

	Chapter 5. Performance Factors of Big Data
	5.1. Thread Models
	5.2. Threads and Processes Affinity Patterns
	5.3. Communication Mechanisms
	5.4. Other Factors

	Chapter 6. Performance Evaluation
	6.1. Performance of K-Means Clustering
	6.2. Performance of DA-MDS
	6.3. Performance of MDSasChisq and DA-PWC

	Chapter 7. Conclusion
	Bibliography

	dissertation_cv

