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Abstract—Deep learning for time series is an emerging area
with close ties to industry, yet under represented in performance
benchmarks for machine learning systems. In this paper, we
present a landscape of deep learning applications applied to time
series, and discuss the challenges and directions towards building
a robust performance benchmark of deep learning workloads for
time series data.

Index Terms—machine learning, deep learning, time series,
performance, benchmark

I. INTRODUCTION

With the rapid growth of hardware and software (HW/SW)
innovation in machine learning (ML), there is a need for
representative benchmarks to enable fair and reproducible
performance benchmarks that can accelerate the development
of new algorithms and ML systems. Deep learning (DL) is a
popular branch of ML that poses unique challenges to ML
systems due to its high demand and complex workload in
a combination of computation, network and storage. In the
recent years, a variety of works in DL benchmark have evolved
[1]–[4], among which MLPerf [4] is becoming a leading
standard with vast adoption in both industry and academia.
Designed as an end-to-end system performance benchmark
suite, MLPerf and its predecessors provide a select set of
reference workloads that aims to represent real-world ML/DL
use cases covering image classification, object detection, trans-
lation, speech recognition, recommendation and reinforcement
learning. While those are undoubtedly of high commercial
values, lots of blanks are yet to be filled in many industry
focusing application domains, where time series is one of the
representing problems.

Time series analysis plays an important role in various
industrial areas including manufacturing, transportation, se-
curity, health, finance, and scientific computing, etc. (Table
I) While statistical and econometric models have been well
studied for decades in classical tasks such like forecasting
and anomaly detection [5], [6], DL based approaches have
only recently demonstrated the high potential of success as
they bring new solutions to complex time series problems [7],
[8]. Currently, most of the work has been concentrated on the

measurements of model accuracy. System-wide performance,
however, plays an equally important role. ML/DL based ap-
plications for time series problems have various performance
issues in both training and inference stages of its life cycle,
which justifies the need for proper methodologies to evaluate
performance in such systems.

Inspired by the state-of-the-art works in ML benchmarks,
and driven by the needs for performance evaluation in time
series systems, we look into the intersection between the two
with a specific focus on DL based use cases. The goal of
this paper is to establish a starting point for future research
of DL performance benchmarks for time series. The paper
is organized in the following way, Section II provides an
overview of the variety of application domains where DL is
applied to time series problems. Section III discusses about
the challenges and propose potential directions in the design
of performance benchmarks time series DL systems. We
conclude in Section IV with some future directions.

II. APPLICATIONS, MODELS AND DATASETS

We base our work on a study of application areas that have
high impacts in industry and potential value for system per-
formance evaluation, and that have not been well represented
in existing benchmarks.

As Table I shows, DL has been applied to a diverse set of
time series use cases. Not only is it competent in classical
tasks such as forecasting [62], classification [7], and anomaly
detection [63], it also proved to be capable of addressing new
complex tasks that were hard for traditional algorithms such
like spatiotemporal data mining [15], representation learning
[25], [29], etc. It is interesting to notice that, although being
relatively costly in computation, there have been exploratory
works applying DL under a real-time, low-latency streaming
context such like high-frequency trading [43], [45].

Model structures for time series diverge by use cases.
While CNN and RNN/LSTM are popular choices for many
applications, there are a variety of works employing hybrid or
other models. Hybrid models combining traditional statistical
algorithms with deep neural networks proved to be superior
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TABLE I
LANDSCAPE OF DEEP LEARNING APPLIED TO TIME SERIES

Areas Applications Model types Data sets Papers

Transportation Cars, Taxis, Freeway Detec-
tors RNN1, GCN2, BNN3 Caltrans highway traffic[9],

Taxi/Uber trips[10]–[12] [13]–[16]

Health Medical sensors: EEG, ECG,
ERP, Patient data analysis CNN, RNN1, Markov OPPORTUNITY[17], [18],

EEG[19]–[22], MIMIC[23] [24]–[30]

Human activities wearable devices, motion de-
tection, gesture recognition CNN, RNN1 CMU-MoCap[31], Soli[32] [29], [33], [34]

Cybersecurity Intrusion, traffic classifica-
tion, anomaly detection CNN, RNN1 IDS2018[35], SherLock[36] [37]–[39]

Finance
high frequency trading,
stock prices, cryptocurrency
anomaly detection

CNN, RNN1, GCN2 FI2010[40], Elliptic Dataset
[41] [42]–[45]

Industrial operation Software operation, industry
process control, anomaly RNN1 Enterprise software system[46],

GPL-loop[47] [47], [48]

Science Climate, Tokomak,
Earthquake RNN1, Markov USHCN[49], Earthquake[50],

[51] [30], [52]–[56]

General social statistics Economic, Finance, Demo-
graphics, Industry, etc. CNN, RNN1, AR4 M4[57], electricity[58] [59]–[61]

1 includes variants e.g. LSTM etc. 2 graph convolutional network 3 Bayesian neural network 4 variants of auto-regressive models

than either approach alone in certain general forecasting areas
[64]. Models combining CNN and RNN/LSTM are popular
among problems with both spatial and temporal features
[15]. Graph based model is an emerging new method often
applied to problems with large scale graph representations (e.g.
financial transactions [44], transportation networks [65], etc.).

Time series data being one of the most natural and
widespread type of data is found in many domains. PhysioNet
[20], [23] is a large collection of synthetic, clinical and
waveform data from health domain. Transportation [9]–[12]
and science [49]–[51] domains provide large, mostly spatio-
temporal, datasets. Industrial datasets are considered highly
valuable and sensitive data and are not generally available
publicly. Existing datasets [35], [36], [47], [48] are datasets
specifically collected/simulated for research purposes. Multi-
ple approaches are used to construct datasets when they either
do not exist or do not satisfy certain conditions such as quality,
size etc. The first approach is to collect data in controlled or
semi-controlled environments [17], [18], [31], [35], [36], [48].
The second approach is to model on a computer the process
or processes that generate corresponding time series data [47].

III. CHALLENGES AND DIRECTIONS

DL for time series problems poses unique challenges to the
design of performance benchmarks. We discuss four of the
aspects that we consider most important.

A. Diverse application domains and models

Unlike other domains such as computer vision (CV) or
natural language processing (NLP), where the majority of
applications share common focuses on certain set of learn-
ing tasks and models, the field of time series has a broad
range of applications with various types of learning tasks
and models. In order to be representative of the field, the
selection of reference workloads in a time series benchmark
should be conducted with careful consideration of trade-offs
between number of reference workloads and coverage of the

following aspects: (1) use cases such as forecasting (e.g. traffic
prediction), classification (activity recognition) and anomaly
detection (intrusion detection) etc.; (2) properties of data
such as single- and multi-variate time series, sequence length,
number of time series and variability in sampling rates etc; (3)
feature engineering including features from time and frequency
domains; and (4) design choices for output variables, for
instance, in case of forecasting it is common to use multiple
horizons, e.g. forecast 5, 10 and 20 minutes forward etc.

B. Diverse systems and performance requirements

The training-inference life cycle of time series applications
can involve multiple kinds of hardware systems ranging from
low power embedded devices (e.g. IoT sensors, wearable
devices, edge computing, etc.), compute intensive accelerators
(e.g. GPU, TPU, FPGA, etc.) to cloud scale high performance
clusters. Real-world time series systems may also involve
special software stacks. For example, time series databases
(TSDB) and extract-transform-load (ETL) stacks are often
used in production systems for storage, querying and online
transformation of continuously ingested time series samples.
In cases of large scale distributed training and real-time, low-
latency inference, the combination of these HW/SW stacks
can leave spaces for performance optimizations that other ML
benchmarks may not reveal.

C. Performance measurement and workload characterization

We consider two aspects of performance analysis for a ML
benchmark. Measurement of end-to-end system performance is
one aspect that enables fair and reproducible evaluations under
real-world usage scenarios. The end-to-end performance can
be measured using satisficing and optimizing metrics [66]. For
example, the training benchmarks can set a target quality for
a model and measure time-to-train as the performance metric
[4], and the inference benchmarks can set a pre-determined
QoS target and measure latency, number-of-stream, through-
put, or throughput distribution depending on deployment sce-



nario [67]. Workload characterization is an equally important
aspect which helps understanding performance bottlenecks
and drives optimizations. Prior works provide a diverse set
of measurement for both training and inference workloads,
which includes accelerator resource utilization [2], [68] and
multi-layer profiling from kernel operations, ML frameworks
to models and applications [1], [69].

We expect that the directions of existing performance anal-
ysis approaches can be adopted by new benchmarks for time
series DL workloads. However, several specific characteristics
need to be considered in detailed design. For example, in end-
to-end evaluation, specific rules for target quality selection
need to be determined so as to minimize the impact of
randomness in model’s convergence curves, where the target
quality may involve multiple accuracy metrics constrained
by different time windows. In workload characterization, the
special designs of model architectures, such like hybrid models
and graph-based models, may introduce new computation
patterns that are less studied than those of well understood
workloads in CV and NLP.

D. Open and standard datasets

Dataset is an essential part of the workloads in a ML
benchmark. The success of ImageNet [70] and the likes
have proved that well adopted, public accessible datasets
can strongly impact the progress of a ML field. We notice
that, in spite of the wide existence of public datasets in the
time series domain, often the scale and dimension of data
in real production can be orders of magnitude larger than
those available to the public (e.g. [13], [60]). A public, well
designed dataset representing various real-world workloads for
time series is a huge gap.

IV. CONCLUSION

DL for time series is an important field with high impact in
the industry, yet it lacks representation in today’s performance
benchmarks for ML systems. In this paper, we reviewed
various application domains, discussed the unique challenges
as well as potential directions in the performance evaluation of
HW/SW systems in this field. We hope that this work can serve
as a starting point for future work towards a representative
performance benchmark of DL for time series.
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