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Abstract 
We show that one can study several time-series in terms of an underlying time evolution 
operator which can be learned with a recurrent deep learning network. This has been shown for 
Newton’s laws for particles and Covid case and death data from observation and models while 
other work has studied this successfully in transportation systems. We propose to extend this 
research to full epidemiological simulations, earthquake forecasting (in progress) and 
networking and compare the successful deep learning architectures in each case to understand 
how application characteristics map into the most successful deep learning structures 
considering recurrent, convolutional, graph and fully connected linkages as well as sequence to 
sequence mapping approaches such as the transformer network. The role of spatial structure 
and multiple time scales and hierarchical deep networks will be considered. 
 
Introduction 
There is increasing recognition of the importance of deep learning in data-driven discovery 
across a broad range of applications.Here we study time series where the MLPerf ​[1], [2]​ time 
series working group has recently highlighted many areas and available datasets ​[3]​. Logistics, 
network intelligence, manufacturing, smart city, and ride-hailing ​[4]​ (transportation) are major 
Industry areas having important time series while medical data is often of this form. We note that 
similar technical approaches (recurrent neural nets) are often used for both time series and 
“sequence to sequence mapping” as seen in the major voice and translation areas separately 
studied at MLPerf. We focus here on the analysis of time-dependent data where our approach 
can be illustrated by the three examples below 
 
Deep Learning as a Particle Dynamics Integrator 

Fig. 1. The average error in position updates for 16 particles interacting with an LJ potential, The left 
figure is standard MD with error increasing for ∆t as 10, 40, or 100 times robust choice (0.001). On the 
right is the LSTM network with modest error up to t = 10​6​ even for ∆t = 4000 times the robust MD choice. 
 
Molecular dynamics simulations rely on numerical integrators to solve Newton's equations of 
motion. Using a sufficiently small time step to avoid discretization errors, these integrators 
generate a trajectory of particle positions as solutions to the equations of motions. In  ​[5]–[7]​, the 
IU team introduces an integrator based on recurrent neural networks that is trained on 
trajectories generated using the Verlet integrator and learns to propagate the dynamics of 
particles with timestep up to 4000 times larger compared to the Verlet timestep. As shown in fig. 
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1 (right) the error does not increase as one evolves the system for the surrogate while the 
standard integration in fig. 1 (left) has unacceptable errors even for time steps of just 10 times 
that used in an accurate simulation. The surrogate demonstrates a significant net speedup over 
Verlet of up to 32000 for few-particle (1 - 16) 3D systems and over a variety of force fields 
including the Lennard-Jones (LJ) potential.  
 
We often think of the laws of physics described by operators that evolve the system given 
sufficient initial conditions and in this language, we have shown how to represent Newton’s law 
operator by a recurrent network. We expect that the time dependence of many complex 
systems: Covid pandemics, Southern California earthquakes, traffic flow, security events can be 
described by deep learning operators that both capture the dynamics and allow predictions. In 
the covid example below for example one can learn an operator that depends on the 
demographics and social distancing approach for a given region. 
 
Deep Learning to describe Covid Daily Data 

 
Fig 2: Deep Learning fits to Covid case and death data from Feb. 1 to May 25, 2020, with predictions 2 
weeks out and showing a weekly structure 
 
There are extensive collections of daily data for the number of Covid reported cases and 
deaths. These can be described by epidemiological models plus empirical fits ​[8]​ but as 
proposed above and illustrated in fig. 2, we developed a deep learning model ​[9]​ that learned a 
Covid daily evolution operator from 110 separate time series of curated (by the University of 
Pittsburgh) data for different US cities. The time series were 100 days long and the model was a 
2 layer LSTM recurrent network similar to that used to describe the evolution of molecular 
dynamics above.  It differed by learning from the demographics (fixed data for each city) as well 
as time-dependent data and by predicting ahead for two weeks with each series as shown in the 
figure. This capability is important in any application with multiple time scales. For example, in 
earthquake forecasting multiscale in time effects are critical and one might want to combine a 
general forecast for the next time step (days to months) with the probability of the big one 
happening in the next 10 years. For 37 of the 110 cities reliable empirical (not deep learning) fits 
are available to the case and death data up to April 15, 2020 ​[8]​. A single deep learning time 
evolution operator can describe these 37  separate datasets and smooth fitted data leads to 
very accurate deep learning descriptions shown in fig. 3. For both figs. 2 and 3, the data is 
divided into windows of size 5, 9, or 13, and cases and deaths were simultaneously trained 
together with demographic data. This surrogate for an empirical fit will be generalized to a 
surrogate for a sophisticated epidemiological simulation. We will also need to link with 
time-dependent mobility and social distancing data​[10]​. 
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Fig 3: Deep Learning Fits empirical Covid data descriptions with 37 separate results shown as summed 
over cities. The cases and death were learned together in time series for different locations 
 
Above we have given 3 examples of recurrent networks of the time evolution operator for 
complex systems and we are extending this to other areas. We see the mix of dense and 
recurrent networks used above as a base approach applicable to many problems. Some 
examples need additional features: earthquakes (with fault lines) and transportation (road 
systems) need graph networks while mixtures of convolutional and recurrent networks (such as 
convLSTM) are used in weather and again earthquakes where the time series features can 
consist of images. We intend to study deep learning based time evolution operators for different 
complex systems and identify patterns as to which type of network describes which problem 
classes and the amount of data needed to get good results. Hopefully we will also make 
research advances in the best networks to use; this is already seen in the move from recurrent 
networks to transformer and reformer architectures but this was largely motivated by sequence 
to sequence mapping and not by time series. We suggest more research in multiple or 
hierarchical time scales as this is needed in many applications.  
 
We see this collection of time series datasets and reference implementations as playing the 
same role for time series that ImageNet ILSRVC and AlexNet played for images. The different 
implementations establish best practice, get chosen for different application areas to either 
suggest an architecture or an initial network by transfer learning. Interesting complex systems 
that we can quickly look at include virtual tissues ​[11], [12]​ and epidemiology​[13]​ for Covid 
related applications. Such evolution operators are also seen​[3]​ in finance, networking, security, 
monitoring of complex systems from Tokomaks ​[14]​ to operating systems, and environmental 
science.  
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