
Runtime Support for Scable Programming in

Java

Sang Boem Lim1, Bryan Carpenter2, Geoffrey Fox3

and Han-Ku Lee4

1 Korea Institute of Science and Technology Information (KISTI)
Daejeon, Korea

slim@kisti.re.kr
2 OMII, University of Southampton

Southampton SO17 1BJ, UK
dbc@ecs.soton.ac.uk

3 Pervasive Technology Labs at Indiana University
Bloomington, IN 47404-3730

gcf@indiana.edu
4 School of Internet and Multimedia Engineering, Konkuk University

Seoul, Korea
hlee@konkuk.ac.kr

Abstract. The paper research is concerned with enabling parallel, high-
performance computation—in particular development of scientific soft-
ware in the network-aware programming language, Java. Traditionally,
this kind of computing was done in Fortran. Arguably, Fortran is becom-
ing a marginalized language, with limited economic incentive for vendors
to produce modern development environments, optimizing compilers for
new hardware, or other kinds of associated software expected of by to-
day’s programmers. Hence, Java looks like a very promising alternative
for the future.
The paper will discuss in detail a particular environment called HPJava.
HPJava is the environment for parallel programming—especially data-
parallel scientific programming–in Java. Our HPJava is based around
a small set of language extensions designed to support parallel compu-
tation with distributed arrays, plus a set of communication libraries. A
high-level communication API, Adlib, is developed as an application level
communication library suitable for our HPJava. This communication li-
brary supports collective operations on distributed arrays. We include
Java Object as one of the Adlib communication data types. So we fully
support communication of intrinsic Java types, including primitive types,
and Java object types.

1 Introduction

The Java programming language is becoming the language of choice for imple-
menting Internet-based applications. Undoubtedly Java provides many benefits—
including access to secure, platform-independent applications from anywhere on

the Internet. Java today goes well beyond its original role of enhancing the func-
tionality of HTML documents. Few Java developers today are concerned with
applets. Instead it is used to develop large-scale enterprise applications, to en-
hance the functionality of World Wide Web servers, to provide applications for
consumer device such as cell phones, pagers and personal digital assistants.

Amongst computational scientists Java may well become a very attractive lan-
guage to create new programming environments that combine powerful object-
oriented technology with potentially high performance computing. The popu-
larity of Java has led to it being seriously considered as a good language to
develop scientific and engineering applications, and in particular for parallel
computing [2] [3] [4]. Sun’s claims on behalf of Java, that is simple, efficient
and platform-natural—a natural language for network programming—make it
attractive to scientific programmers who wish to harness the collective compu-
tational power of parallel platforms as well as networks of workstations or PCs,
with interconnections ranging from LANs to the Internet. This role for Java is
being encouraged by bodies like Java Grande [9].

Over the last few years supporters of the Java Grande Forum have been
working actively to address some of the issues involved in using Java for tech-
nical computation. The goal of the forum is to develop consensus and recom-
mendations on possible enhancements to the Java language and associated Java
standards, for large-scale (“Grande”) applications. Through a series of ACM-
supported workshops and conferences the forum has helped stimulate research
on Java compilers and programming environments.

Our HPJava is an environment for parallel programming, especially suitable
for data parallel scientific programming. HPJava is an implementation of a pro-
gramming model we call the HPspmd nodel. It is a strict extension of its base
language, Java, adding some predefined classes and some extra syntax for dealing
with distributed arrays.

2 Related Works

UC Berkeley is developing Titanium [13] to add a comprehensive set of parallel
extensions to the Java language. Support for a shared address space and compile-
time analysis of patterns of synchronization is supported.

The Timber [1] project is developed from Delft University of Technology. It
extends Java with the Spar primitives for scientific programming, which include
multidimensional arrays and tuples. It also adds task parallel constructs like a
foreach construct.

Jade [8] from University of Illinois at Urbana-Champaign focuses on message-
driven parallelism extracted from interactions between a special kind of dis-
tributed object called a Chare. It introduces a kind of parallel array called a
ChareArray. Jade also supports code migration.

HPJava differs from these projects in emphasizing a lower-level (MPI-like)
approach to parallelism and communication, and by importing HPF-like distri-
bution formats for arrays. Another significant difference between HPJava and

Procs2 p = new Procs2(P, P) ;

on(p) {

Range x = new BlockRange(M, p.dim(0)) ;

Range y = new BlockRange(N, p.dim(1)) ;

float [[-,-]] a = new float [[x, y]], b = new float [[x, y]],

c = new float [[x, y]] ;

... initialize values in ‘a’, ‘b’

overall(i = x for :)

overall(j = y for :)

c [i, j] = a [i, j] + b [i, j] ;

}

Fig. 1. A parallel matrix addition.

the other systems mentioned above is that HPJava translates to Java byte codes,
relying on clusters of conventional JVMs for execution. The systems mentioned
above typically translate to C or C++. While HPJava may pay some price in
performance for this approach, it tends to be more fully compliant with the
standard Java platform.

3 Features of HPJava

HPJava is a strict extension of its base language, Java, adding some predefined
classes and some extra syntax for dealing with distributed arrays. HPJava is thus
an environment for parallel programming, especially suitable for data parallel
scientific programming. An HPJava program can freely invoke any existing Java
classes without restrictions because it incorporates all of Java as a subset.

Figure 1 is a simple HPJava program. It illustrates creation of distributed
arrays, and access to their elements. An HPJava program is started concurrently
in some set of processes that are named through grids objects. The class Procs2
is a standard library class, and represents a two dimensional grid of processes.
During the creation of p, P by P processes are selected from the active process

group. The Procs2 class extends the special base class Group which represents a
group of processes and has a privileged status in the HPJava language. An object
that inherits this class can be used in various special places. For example, it can
be used to parameterize an on construct. The on(p) construct is a new control
construct specifying that the enclosed actions are performed only by processes
in group p.

The distributed array is the most important feature HPJava adds to Java. A
distributed array is a collective array shared by a number of processes. Like an
ordinary array, a distributed array has some index space and stores a collection of
elements of fixed type. The type signature of an r-dimensional distributed array

involves double brackets surrounding r comma-separated slots. A hyphen in one
of these slots indicates the dimension is distributed. Asterisks are also allowed in
these slots, specifying that some dimensions of the array are not to be distributed,
i.e. they are “sequential” dimensions (if all dimensions have asterisks, the array
is actually an ordinary, non-distributed, Fortran-like, multidimensional array—a
valuable addition to Java in its own right, as many people have noted [11, 12]).

In HPJava the subscripts in distributed array element references must nor-
mally be distributed indexes (the only exceptions to this rule are subscripts in
sequential dimensions, and subscripts in arrays with ghost regions, discussed
later). The indexes must be in the distributed range associated with the array
dimension. This strict requirement ensures that referenced array elements are
held by the process that references them.

The variables a, b, and c are all distributed array variables. The creation
expressions on the right hand side of the initializers specify that the arrays here
all have ranges x and y—they are all M by N arrays, block-distributed over p. We
see that mapping of distributed arrays in HPJava is described in terms of the
two special classes Group and Range.

The Range is another special class with privileged status. It represents an
integer interval 0,..., N - 1, distributed somehow over a process dimension (a
dimension or axis of a grid like p). BlockRange is a particular subclass of Range.
The arguments in the constructor of BlockRange represent the total size of the
range and the target process dimension. Thus, x has M elements distributed over
first dimension of p and y has N elements distributed over second dimension of
p.

BlockRange

CyclicRange

Range

IrregRange

ExtBlockRange

CollapsedRange

Dimension

Fig. 2. The HPJava Range hierarchy

HPJava defines a class hierarchy of different kinds of range object (Figure
2). Each subclass represents a different kind of distribution format for an array

dimension. The simplest distribution format is collapsed (sequential) format in
which the whole of the array dimension is mapped to the local process. Other
distribution formats (motivated by High Performance Fortran) include regular

block decomposition, and simple cyclic decomposition. In these cases the index
range (thus array dimension) is distributed over one of the dimensions of the
process grid defined by the group object. All ranges must be distributed over
different dimensions of this grid, and if a particular dimension of the grid is
targeted by none of the ranges, the array is said to be replicated in that dimen-
sion5. Some of the range classes allow ghost extensions to support stencil-based
computations.

A second new control construct, overall, implements a distributed parallel
loop. It shares some characteristics of the forall construct of HPF. The symbols
i and j scoped by these constructs are called distributed indexes. The indexes
iterate over all locations (selected here by the degenerate interval “:”) of ranges
x and y.

HPJava also supports Fortran-like array sections. An array section expression

has a similar syntax to a distributed array element reference, but uses double
brackets. It yields a reference to a new array containing a subset of the elements
of the parent array. Those elements can be accessed either through the parent
array or through the array section—HPJava sections behave something like array
pointers in Fortran, which can reference an arbitrary regular section of a target
array. As in Fortran, subscripts in section expressions can be index triplets.
HPJava also has built-in ideas of subranges and restricted groups. These describe
the range and distribution group of sections, and can be also used in array
constructors on the same footing as the ranges and grids introduced earlier.
They allow HPJava arrays to reproduce any mapping allowed by the ALIGN

directive of HPF.

4 Usage of high-level communication library

In this section we discuss extra syntax and usage of high-level communication
library in HPJava programs. Two characteristic collective communication meth-
ods remap() and writeHalo() are described as examples.

The general purpose matrix multiplication routine (Figure 3) has two tem-
porary arrays ta, tb with the desired distributed format. This program is also
using information which is defined for any distributed array: grp() to fetch the
distribution group and rng() to fetch the index ranges.

This example relies on a high-level Adlib communication schedule that deals
explicitly with distributed arrays; the remap() method. The remap() operation
can be applied to various ranks and type of array. Any section of an array with
any allowed distribution format can be used. Supported element types include

5 So there is no direct relation between the array rank and the dimension of the process
grid: collapsed ranges means the array rank can be higher; replication allows it to
be lower.

public void matmul(float [[-,-]] c, float [[-,-]] a, float [[-,-]] b) {

Group2 p = c.grp();

Range x = c.rng(0); Range y = c.rng(1);

int N = a.rng(1).size();

float [[-,*]] ta = new float [[x, N]] on p;

float [[*,-]] tb = new float [[N, y]] on p;

Adlib.remap(ta, a);

Adlib.remap(tb, b);

on(p)

overall(i = x for :)

overall(j = y for :) {

float sum = 0;

for(int k = 0; k < N ; k++)

sum += ta [i, k] * tb [k, j];

c[i, j] = sum;

}

}

Fig. 3. A general Matrix multiplication in HPJava.

Java primitive and Object type. A general API for the remap function is

void remap (T [[]] dst, T [[]] src) ;

void remap (T [[-]] dst, T [[-]] src) ;

void remap (T [[-,-]] dst, T [[-,-]] src) ;

...

where T is a Java primitive or Object type. The arguments here are zero-
dimensional, one-dimensional, two-dimensional, and so on. We will often sum-
marize these in the shorthand interface:

void remap (T # dst, T # src) ;

where the signature T # means any distributed array with elements of type T

(This syntax is not supported by the current HPJava compiler, but it supports
method signatures of this generic kind in externally implemented libraries—ie.
libraries implemented in standard Java. This more concise signature does not
incorporate the constraint that dst and src have the same rank—that has to
be tested at run-time.)

As another example, Figure 4 is a HPJava program for the Laplace program
that uses ghost regions. It illustrates the use the library class ExtBlockRange

to create arrays with ghost extensions. In this case, the extensions are of width
1 on either side of the locally held “physical” segment. Figure 5 illustrates this
situation.

Procs2 p = new Procs2(P, P) ;

on(p) {

Range x = new ExtBlockRange(M, p.dim(0), 1) ;

Range y = new ExtBlockRange(N, p.dim(1), 1) ;

float [[-,-]] a = new float [[x, y]] ;

... initialize edge values in ’a’

float [[-,-]] b = new float [[x, y]], r = new float [[x, y]] ;

do {

Adlib.writeHalo(a) ;

overall(i = x for 1 : N - 2)

overall(j = y for 1 : N - 2) {

float newA = 0.25 * (a[i - 1, j] + a[i + 1, j] +

a[i, j - 1] + a[i, j + 1]);

r[i,j] = Math.abs(newA - a[i,j]);

b[i,j] = newA ;

}

HPutil.copy(a,b) ; // Jacobi relaxation.

} while(Adlib.maxval(r) > EPS);

}

Fig. 4. Solution of Laplace equation by Jacobi relaxation.

From the point of view of this paper the most important feature of this ex-
ample is the appearance of the function Adlib.writeHalo(). This is a collective

communication operation. This particular one is used to fill the ghost cells or
overlap regions surrounding the “physical segment” of a distributed array. A
call to a collective operation must be invoked simultaneously by all members of
some active process group (which may or may not be the entire set of processes
executing the program). The effect of writeHalo is to overwrite the ghost region
with values from processes holding the corresponding elements in their physical
segments. Figure 6 illustrates the effect of executing the writeHalo function.
More general forms of writeHalo may specify that only a subset of the available
ghost area is to be updated, or may select cyclic wraparound for updating ghost
cells at the extreme ends of the array.

If an array has ghost regions the rule that the subscripts must be simple
distributed indices is relaxed; shifted indices, including a positive or negative
integer offset, allow access to elements at locations neighboring the one defined
by the overall index.

a[0,0] a[0,1] a[0,2]
a[1,0] a[1,1] a[1,2]
a[2,0] a[2,1] a[2,2]

a[2,0] a[2,1] a[2,2]

a[3,0] a[3,1] a[3,2]
a[4,0] a[4,1] a[4,2]

a[3,0] a[3,1] a[3,2]

a[0,1] a[0,2] a[0,3]
a[1,1] a[1,2] a[1,3]

a[3,1] a[3,2] a[3,3]

a[2,1] a[2,2] a[2,3]

a[5,0] a[5,1] a[5,2]

a[2,1] a[2,2] a[2,3]

a[3,1] a[3,2] a[3,3]
a[4,1] a[4,2] a[4,3]
a[5,1] a[5,2] a[5,3]

0 1

0

1

Fig. 5. Example of a distributed array with ghost regions.

Physical
segment
of array

��������
��������
��������

��������
��������
��������

��������
��������
��������

��������
��������
��������

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

������
������
������
������
������
������

������
������
������
������
������
������

����������

 by WriteHalo
Ghost area written

Fig. 6. Illustration of the effect of executing the writeHalo function.

We will discuss implementation issues of high-level communication libraries
in following section.

5 Implementation of Collectives

In this section we will discuss Java implementation of the Adlib collective op-
erations. For illustration we concentrate on the important Remap operation. Al-
though it is a powerful and general operation, it is actually one of the more
simple collectives to implement in the HPJava framework.

General algorithms for this primitive have been described by other authors
in the past. For example it is essentially equivalent to the operation called Regu-

lar Section Copy Sched in [5]. In this section we want to illustrate how this kind
of operation can be implemented in term of the particular Range and Group

classes of HPJava, complemented by suitable set of messaging primitives.
All collective operations in the library are based on communication schedule

objects. Each kind of operation has an associated class of schedules. Particular
instances of these schedules, involving particular data arrays and other param-
eters, are created by the class constructors. Executing a schedule initiates the
communications required to effect the operation. A single schedule may be ex-
ecuted many times, repeating the same communication pattern. In this way,
especially for iterative programs, the cost of computations and negotiations in-
volved in constructing a schedule can often be amortized over many executions.
This pattern was pioneered in the CHAOS/PARTI libraries [7]. If a communi-
cation pattern is to be executed only once, simple wrapper functions are made
available to construct a schedule, execute it, then destroy it. The overhead of
creating the schedule is essentially unavoidable, because even in the single-use
case individual data movements generally have to be sorted and aggregated, for
efficiency. The data structures for this are just those associated with schedule
construction.

Constructor and public method of the remap schedule for distributed arrays
of float element can be summarized as follows:

class RemapFloat extends Remap {

public RemapFloat (float # dst, float # src) {...}

public void execute() {...}

. . .

}

The # notation was explained in previous section.
The remap schedule combines two functionalities: it reorganizes data in the

way indicated by the distribution formats of source and destination array. Also,
if the destination array has a replicated distribution format, it broadcasts data
to all copies of the destination. Here we will concentrate on the former aspect,
which is handled by an object of class RemapSkeleton contained in every Remap

object.

public abstract class BlockMessSchedule {

BlockMessSchedule(int rank, int elementLen,boolean isObject) { ... }

void sendReq(int offset, int[] strs, int[] exts, int dstId) { ... }

void recvReq(int offset, int[] strs, int[] exts, int srcId) { ... }

void build() { ... }

void gather() { ... }

void scatter() { ... }

...

}

Fig. 7. API of the class BlockMessSchedule

During construction of a RemapSkeleton schedule, all send messages, receive
messages, and internal copy operations implied by execution of the schedule are
enumerated and stored in light-weight data structures. These messages have to
be sorted before sending, for possible message agglomeration, and to ensure a
deadlock-free communication schedule. These algorithms, and maintenance of
the associated data structures, are dealt with in a base class of RemapSkeleton
called BlockMessSchedule. The API for the superclass is outlined in Figure 7.
To set-up such a low-level schedule, one makes a series of calls to sendReq and
recvReq to define the required messages. Messages are characterized by an offset
in some local array segment, and a set of strides and extents parameterizing a
multi-dimensional patch of the (flat Java) array. Finally the build() operation
does any necessary processing of the message lists. The schedule is executed in
a “forward” or “backward” direction by invoking gather() or scatter().

In general Top-level schedules such as Remap, which deal explicitly with dis-
tributed arrays, are implemented in terms of some lower-level schedules such as
BlockMessSchedule that simply operate on blocks and words of data. These
lower-level schedules do not directly depend on the Range and Group classes.
The lower level schedules are tabulated in Table 1. Here “words” means con-
tiguous memory blocks of constant (for a given schedule instance) size. “Blocks”
means multidimensional (r-dimensional) local array sections, parameterized by
a vector of r extents and a vector of memory strides. The point-to-point sched-
ules are used to implement collective operations that are deterministic in the
sense that both sender and receiver have advanced knowledge of all required
communications. Hence Remap and other regular communications such as Shift
are implemented on top of BlockMessSchedule. The “remote access” schedules
are used to implement operations where one side must inform the other end that
a communication is needed. These negotiations occur at schedule-construction

Table 1. Low-level Adlib schedules

operations on “words” operations on “blocks”

Point-to-point MessSchedule BlockMessSchedule

Remote access DataSchedule BlockDataSchedule

TreeSchedule BlockTreeSchedule

Tree operations RedxSchedule BlockRedxSchedule

Redx2Schedule BlockRedx2Schedule

time. Irregular communication operations such as collective Gather and Scatter

are implemented on these schedules. The tree schedules are used for various sorts
of broadcast, multicast, synchronization, and reduction.

We will describe in more detail the implementation of the higher-level RemapSkeleton
schedule on top of BlockMessSchedule. This provides some insight into the
structure HPJava distributed arrays, and the underlying role of the special Range
and Group classes.

To produce an implementation of the RemapSkeleton class that works in-
dependently of the detailed distribution format of the arrays we rely on virtual
functions of the Range class to enumerate the blocks of index values held on each
processor. These virtual functions, implemented differently for different distribu-
tion formats, encode all important information about those formats. To a large
extent the communication code itself is distribution format independent.

The range hierarchy of HPJava was illustrated in Figure 2, and some of the
relevant virtual functions are displayed in the API of Figure 8. Most methods
optionally take arguments that allow one to specify a contiguous or strided
subrange of interest. The Triplet and Block instances represent simple struct-
like objects holding a few int fields. Those integer files are describing respectively
a “triplet” interval, and the strided interval of “global” and “local” subscripts
that the distribution format maps to a particular process. In the examples here
Triplet is used only to describe a range of process coordinates that a range or
subrange is distributed over.

Now the RemapSkeleton communication schedule is built by two methods
called sendLoop and recvLoop that enumerate messages to be sent and received
respectively. Figure 9 sketches the implementation of sendLoop. This is a recur-
sive function—it implements a multidimensional loop over the rank dimensions
of the arrays. It is initially called with r = 0. An important thing to note is
how this function uses the virtual methods on the range objects of the source
and destination arrays to enumerate blocks—local and remote—of relevant sub-
ranges, and enumerates the messages that must be sent. Figure 10 illustrates
the significance of some of the variables in the code. When the offset and all ex-
tents and strides of a particular message have been accumulated, the sendReq()
method of the base class is invoked. The variables src and dst represent the
distributed array arguments. The inquiries rng() and grp() extract the range
and group objects of these arrays.

public abstract class Range {

public int size() {...}

public int format() {...}

...

public Block localBlock() {...}

public Block localBlock(int lo, int hi) {...}

public Block localBlock(int lo, int hi, int stp) {...}

public Triplet crds() {...}

public Block block(int crd) {...}

public Triplet crds(int lo, int hi) {...}

public Block block(int crd, int lo, int hi) {...}

public Triplet crds(int lo, int hi, int stp) {...}

public Block block(int crd, int lo, int hi, int stp) {...}

. . .

}

Fig. 8. Partial API of the class Range

Not all the schedules of Adlib are as “pure” as Remap. A few, like WriteHalo

have built-in dependency on the distribution format of the arrays (the existence
of ghost regions in the case of WriteHalo). But they all rely heavily on the meth-
ods and inquiries of the Range and Group classes, which abstract the distribution
format of arrays. The API of these classes has evolved through C++ and Java
versions of Adlib over a long period.

In the HPJava version, the lower-level, underlying schedules like BlockMessS-

chedule (which are not dependent on higher-level ideas like distributed ranges and
distributed arrays) are in turn implemented on top of a messaging API, called
mpjdev. To deal with preparation of the data and to perform the actual com-
munication, it uses methods of the mpjdev like read(), write(), strGather(),
strScatter(), isend(), and irecv().

The write() and strGather() are used for packing the data and read()

and strScatter() are used for unpacking the data where two of those methods
(read() and write()) are dealing with a contiguous data and the other two
(strGather() and strScatter()) are dealing with non-contiguous data. The
usage of strGather() is to write a section to the buffer from a multi-dimensional,
strided patch of the source array. The behaviour of strScatter() is opposite of
strGather(). It reads a section from the buffer into a multi-dimensional, strided
patch of the destination array. The isend() and irecv() are used for actual
communication.

private void sendLoop(int offset, Group remGrp, int r){

if(r == rank) {

sendReq(offset, steps, exts, world.leadId(remGrp));

} else {

Block loc = src.rng(r).localBlock();

int offsetElem = offset + src.str(r) * loc.sub_bas;

int step = src.str(r) * loc.sub_stp;

Range rng = dst.rng(r);

Triplet crds = rng.crds(loc.glb_lo, loc.glb_hi, loc.glb_stp);

for (int i = 0, crd = crds.lo; i < crds.count; i++, crd += crds.stp){

Block rem = rng.block3(crd, loc.glb_lo, loc.glb_hi, loc.glb_stp);

exts[r] = rem.count;

steps[r] = step * rem.glb_stp;

sendLoop(offsetElem + step * rem.glb_lo,

remGrp.restrict(rng.dim(), crd),

r + 1) ;

}

}

}

Fig. 9. sendLoop method for Remap

6 Collective Communications

In the previous section we described the Adlib communication implementation
issues with a characteristic collective operation example, remap(). In this section
we will overview functionalities of all collective operations in Adlib. The Adlib
has three main families of collective operation: regular communications, reduc-
tion operations, and irregular communications. We discuss usage and high-level
API overview of Adlib methods.

6.1 Regular Collective Communications

We already described two characteristic example of the regular communications,
remap() and writeHalo(), in depth. In this section we describe other regular
collective communications.

The method shift() is a communication schedule for shifting the elements
of a distributed array along one of its dimensions, placing the result in another

������
������
������
������

������
������
������
������

���
���
���
���

���
���
���
���

re
m

.g
lb_

lo

re
m

.g
lb_

hi

loc
.g

lb_
hi

crd
0 N − 1

0 N − 1

dst

src

loc
.g

lb_
lo

loc
.g

lb_
lo

re
m

.g
lb_

lo

loc
.g

lb_
hi

re
m

.g
lb_

hi

Fig. 10. Illustration of sendLoop operation for remap

array. In general we have the signatures:

void shift(T [[-]] destination, T [[-]] source,

int shiftAmount)

and
void shift(T # destination, T # source,

int shiftAmount, int dimension)

where the variable T runs over all primitive types and Object, and the notation
T # means a multiarray of arbitrary rank, with elements of type T . The first
form applies only for one dimensional multiarrays. The second form applies to
multiarrays of any rank. The shiftAmount argument, which may be negative,
specifies the amount and direction of the shift. In the second form the dimension
argument is in the range 0, . . . , R−1 where R is the rank of the arrays: it selects
the array dimension in which the shift occurs. The source and destination arrays
must have the same shape, and they must also be identically aligned. By design,
shift() implements a simpler pattern of communication than general remap().
The alignment relation allows for a more efficient implementation. The library
incorporates runtime checks on alignment relations between arguments, where
these are required.

The shift() operation does not copy values from source that would go
past the edge of destination, and at the other extreme of the range elements
of destination that are not targetted by elements from source are unchanged
from their input value. The related operation cshift() is essentially identical
to shift() except that it implements a circular shift, rather than an “edge-off”
shift.

6.2 Reductions

Reduction operations take one or more distributed arrays as input. They combine
the elements to produce one or more scalar values, or arrays of lower rank.

Adlib provides a large set of reduction operations, supporting the many kinds of
reduction available as “intrinsic functions” in Fortran. Here we mention only a
few of the simplest reductions. One difference between reduction operations and
other collective operations is reduction operations do not support Java Object

type.
The maxval() operation simply returns the maximum of all elements of an

array. It has prototypes
t maxval (t # a)

where t now runs over all Java numeric types—that is, all Java primitive types
except boolean. The result is broadcast to the active process group, and returned
by the function. Other reduction operations with similar interfaces are minval(),
sum() and product(). Of these minval() is minimum value, sum() adds the
elements of a in an unspecified order, and product() multiplies them.

The boolean reductions:

boolean any (boolean # a)

boolean all (boolean # a)

int count (boolean # a)

behave in a similar way. The method any() returns true if any element of a is
true. The method all() returns true if all elements of a are true. The method
count() returns a count of the number of true elements in a.

6.3 Irregular Collective Communications

Adlib has some support for irregular communications in the form of collective
gather() and scatter() operations. The simplest form of the gather operation
for one-dimensional arrays has prototypes

void gather(T [[-]] destination, T [[-]] source, int [[-]] subscripts) ;

The subscripts array should have the same shape as, and be aligned with, the
destination array. In pseudocode, the gather operation is equivalent to

for all i in {0, . . . , N − 1} in parallel do

destination [i] = source [subscripts [i]] ;

where N is the size of the destination (and subscripts) array. If we are
implementing a parallel algorithm that involves a stage like

for all i in {0, . . . , N − 1} in parallel do

a [i] = b [fun(i)] ;

where fun is an arbitrary function, it can be expressed in HPJava as

int [[-]] tmp = new int [[x]] on p ;

on(p)

overall(i = x for :)

tmp [i] = fun(i) ;

Adlib.gather(a, b, tmp) ;

where p and x are the distribution group and range of a. The source array may
have a completely unrelated mapping.

7 Application of HPJava

The multigrid method [6] is a fast algorithm for solution of linear and nonlinear
problems. It uses a hierarchy or stack of grids of different granularity (typically
with a geometric progression of grid-spacings, increasing by a factor of two up
from finest to coarsest grid). Applied to a basic relaxation method, for example,
multigrid hugely accelerates elimination of the residual by restricting a smoothed
version of the error term to a coarser grid, computing a correction term on the
coarse grid, then interpolating this term back to the original fine grid. Because
computation of the correction term on the fine grid can itself be handled as a
relaxation problem, the strategy can be applied recursively all the way up the
stack of grids.

The experiments were performed on the SP3 installation at Florida State
University. The system environment for SP3 runs were as follows:

– System: IBM SP3 supercomputing system with AIX 4.3.3 operating system
and 42 nodes.

– CPU: A node has Four processors (Power3 375 MHz) and 2 gigabytes of
shared memory.

– Network MPI Settings: Shared “css0” adapter with User Space(US) commu-
nication mode.

– Java VM: IBM ’s JIT
– Java Compiler: IBM J2RE 1.3.1

For best performance, all sequential and parallel Fortran and Java codes were
compiled using -O5 or -O3 with -qhot or -O (i.e. maximum optimization) flag.

First we present some results for the computational kernel of the multigrid
code, namely unaccelerated red-black relaxation algorithm. Figure 11 gives our
results for this kernel on a 512 by 512 matrix. The results are encouraging. The
HPJava version scales well, and eventually comes quite close to the HPF code
(absolute megaflop performances are modest, but this feature was observed for
all our codes, and seems to be a property of the hardware).

The flat lines at the bottom of the graph give the sequential Java and Fortran
performances, for orientation. We did not use any auto parallelization feature
here. Corresponding results for the complete multigrid code are given in Figure
12. The results here are not as good as for simple red-black relaxation-both
HPJava speed relative to HPF, and the parallel speedup of HPF and HPJava
are less satisfactory.

The poor performance of HPJava relative to Fortran in this case can be
attributed largely to the naive nature of the translation scheme used by the
current HPJava system. The overheads are especially significant when there are
many very tight overall constructs (with short bodies). Experiments done else-
where [10] leads us to believe these overheads can be reduced by straightforward

1 4 9 16 25 36
Number of Processors

0

250

500

750

1000

1250

1500

M
flo

ps
 p

er
 s

ec
on

d

HPF
HPJava
Fortran
Java

LaplaceEquationusingRed�blackRelaxation
512 x 512

Fig. 11. Laplace Equation with Size of 5122.

1 2 3 4 6 9
Number of Processors

0

100

200

300

400

M
flo

ps
 p

er
 s

ec
on

d

HPF
HPJava

Multigrid Solver
512 x 512

Fig. 12. Multigrid solver with size of 5122.

optimization strategies which, however, are not yet incorporated in our source-
to-source translator.

The modest parallel speedup of both HPJava and HPF is due to communi-
cation overheads. The fact that HPJava and HPF have similar scaling behavior,
while absolute performance of HPJava is lower, suggests the communication li-
brary of HPJava is slower than the communications of the native SP3 HPF
(otherwise the performance gap would close for larger numbers of processors).
This is not too surprising because Adlib is built on top of a portability layer
called mpjdev, which is in turn layered on MPI. We assume the SP3 HPF is
more carefully optimized for the hardware. Of course the lower layers of Adlib
could be ported to exploit low-level features of the hardware.

8 HPJava with GUI

In this section we will illustrate how our HPJava can be used with a Java graph-
ical user interface. The Java multithreaded implementation of mpjdev makes it
possible for HPJava to cooperate with Java AWT. We ported the mpjdev layer
to communicate between the threads of a single Java Virtual Machine . The
threads cooperate in solving a problem by communicating through our commu-
nication library, Adlib, with pure Java version of the mpjdev. By adding pure
Java version of the mpjdev to the Adlib communication library, it gives us the
possibility to use the Java AWT and other Java graphical packages to support a
GUI and visualize graphical output of the parallel application. Visualization of
the collected data is a critical element in providing developers or educators with
the needed insight into the system under study.

Fig. 13. A 2 dimensional inviscid flow simulation.

For test and demonstration of multithreaded version of mpjdev, we imple-
mented computational fluid dynamics (CFD) code using HPJava which simulates
2 dimensional inviscid flow through an axisymmetric nozzle(Figure 13). The sim-
ulation yields contour plots of all flow variables, including velocity components,
pressure, Mach number, density and entropy, and temperature. The plots show
the location of any shock wave that would reside in the nozzle. Also, the code
finds the steady state solution to the 2 dimensional Euler equations, seen below.

∂U

∂t
+

∂E

∂x
+

∂F

∂y
= αH (1)

Here U =









ρ

ρu

ρv

et









, E =









ρu

ρu2 + p

ρuv

(et + p)u









, and F =









ρv

ρuv

ρv2 + p

(et + p)v









.

The source vector H is zero for this case.
The demo consists of 4 independent Java applets communicating through

the Adlib communication library which is layered on top of mpjdev. Applet 1
is handling all events and broadcasting control variables to other applets. Each
applet has the responsibility to draw its own portion of the data set into the
screen, as we can see in the figure. That this demo also illustrates usage of
Java object in our communication library. We are using writeHalo() method
to communicate Java class object between threads.

This unusual interpretation of parallel computing, in which several applets in
a single Web browser cooperate on a scientific computation, is for demonstration
purpose only. The HPJava simulation code can also be run on a collection of
virtual machines distributed across heterogeneous platforms like the native MPI
of MPICH, SunHPC-MPI, and IBM POE.

You can view this demonstration and source code at

http://www.hpjava.org/demo.html

9 Conclusions and Future Work

We have explored enabling parallel, high-performance computation-in particular
development of scientific software in the network-aware programming language,
Java. Traditionally, this kind of computing was done in Fortran. Arguably, For-
tran is becoming a marginalized language, with limited economic incentive for
vendors to produce modern development environments, optimizing compilers for
new hardware, or other kinds of associated software expected by today’s pro-
grammers. Java looks like a promising alternative for the future.

We have discussed in detail the design and development of high-level library
for HPJava-this is essentially communication library. The Adlib API is pre-
sented as high-level communication library. This API is intended as an example
of an application level communication library suitable for data parallel program-
ming in Java. This library fully supports Java object types, as part of the basic

data types. We discussed implementation issues of collective communications in
depth. The API and usage of other types of collective communications were also
presented.

References

1. Timber Compiler Home Page. http://pds.twi.tudelft.nl/timber.
2. Java for Computational Science and Engineering–Simulation and Modelling. Con-

currency: Practice and Experience, 9(6), June 1997.
3. Java for Computational Science and Engineering–Simulation and Modelling II.

Concurrency: Practice and Experience, 9(11):1001–1002, November 1997.
4. ACM 1998 Workshop on Java for high-performance network computing. Concur-

rency: Practice and Experience, 10(11-13):821–824, September 1998.
5. A. Agrawal, A. Sussman, and J. Saltz. An integrated runtime and compiletime

approach for parallelizing structured and block structured applications. IEEE
Transactions on Parallel and Distributed Systems, 6, 1995.

6. William L. Briggs, Van Emden Henson, and Steve F. McCormick. A Multigrid
Tutorial. The Society for Industrial and Applied Mathematics (SIAM), 2000.

7. R. Das, M. Uysal, J.H. Salz, and Y.-S. Hwang. Communication optimizations for
irregular scientific computations on distributed memory architectures. Journal of
Parallel and Distributed Computing, 22(3):462–479, September 1994.

8. Jayant DeSouza and L. V. Kale. Jade: A parallel message-driven
java. In Proceedings of the 2003 Workshop on Java in Com-
putational Science, Melbourne, Australia, 2003. Available from
http://charm.cs.uiuc.edu/papers/ParJavaWJCS03.shtml.

9. Java Grande Forum home page. http://www.javagrande.org.
10. Han-Ku Lee. Towards Efficient Compilation of the HPJava Language for High

Performance Computing. PhD thesis, Florida State University, June 2003.
11. J. E. Moreira, S. P. Midkiff, M. Gupta, and R. Lawrence. High Performance

Computing with the Array Package for Java: A Case Study using Data Mining. In
Supercomputing 99, November 1999.

12. J.E. Moreira, S.P. Midkiff, and M. Gupta. A comparision of three approaches to
language, compiler and library support for multidimensional arrays in Java. In
ACM 2001 Java Grande/ISCOPE Conference. ACM Press, June 2001.

13. Kathy Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamoto, Ben Liblit, Arvind
Krishnamurthy, Paul Hilfinger, Susan Graham, David Gay, Phil Colella, and Alex
Aiken. Titanium: A high-performance Java dialect. In ACM workshop on Java for
High-performance Network Computing, 1998. To appear in Concurrency: Practice
and Experience.

