
TERAGRID 2007 CONFERENCE, MADISON, WI 1

Building a Grid Portal for Teragrid’s Big Red
Mehmet A. Nacar, Jong Y. Choi, Marlon E. Pierce, and Geoffrey C. Fox

Abstract— We describe the Big Red Portal, which builds on the Open Grid Computing Environment (OGCE) portal software. In

addition to standard OGCE capabilities, this portal includes MEME job submission and job dashboard portlets that are built using

OGCE and related portlet libraries. To simplify the development of such portlets in the future, we introduce an XML tag library

approach that encapsulates common Grid operations for rapid development

—————————— � ——————————

1 INTRODUCTION

TeraGrid Science Gateways are science portals that are
designed to provide high level, user-centric services and
interfaces to the National Science Foundation’s TeraGrid.
Several of these efforts are described in an upcoming spe-
cial issue of Concurrency and Computation [1]. Although not
strictly speaking a “science gateway”, the TeraGrid User
Portal is a related and similarly architected portal system
[2] that shares many common features with the gateway
project. TeraGrid gateway development tends to be a heroic
effort, requiring full time developers. However, it is possi-
ble to start from a base of reusable software that encapsu-
lates basic gateway operations, such as accessing Grid re-
sources. The Open Grid Computing Environments (OGCE)
project [3] provides one such toolkit for gateway building:
several JSR 168 compliant Grid portlets and gateway ser-
vices are deployed into the GridSphere portlet container
[4]. OGCE Grid portlets are built on top of Java CoG Grid
programming abstractions [5]. On the other hand, there are
parallel efforts such as Grid Portlets by GridSphere team
[6]. Grid portlets provide a set of capabilities that support
Grid services within GridSphere portal framework.
This paper describes our efforts using the OGCE portal
software to build a portal that combines characteristics of a
“system” portal (incorporating some TeraGrid User Portal
features such as GPIR resource browsing) and a science
gateway for bioinformatics applications. Our primary
backend resource is Indiana University’s Big Red super-
computer (part of TeraGrid), but our portlets have been
tested across other TeraGrid resources. However, Big Red
portal can handle community accounts in large by manag-
ing a myproxy repository that stores many certificate au-
thorities including TeraGrid. The second half of the paper
reviews our work to simplify the development of these por-
tlets by using Grid tag libraries, which encapsulate com-
mon Grid tasks. Our work on Grid Tags Libraries And
Beans (GTLAB) provides a set of Java Server Faces (JSF) tag
libraries and backing Grid beans that attempt to solve this
problem [7, 8].
The goal of GTLAB is to simplify the process of Grid port-
let development by encapsulating common Grid operations

as XML tags that can be embedded in portlet pages, enabl-
ing rapid development. GTLAB capabilities include creden-
tial management, remote file operations, remote job execu-
tions, and file transfers.
The remainder of the paper is organized as follows. In the
next section we present Big Red portal effort by using
OGCE portlets. Section 3 discusses efforts to enable Big Red
portal to integrate GTLAB. Finally, section 4 concludes the
paper.

2 EXTENDING OGCE TO SUPPORT BIG RED

PORTAL

Big Red is a major new TeraGrid resource and one of the
most powerful computers in the world. As with all TeraGr-
id resources, it runs the Coordinated TeraGrid Software
and Services, which includes Globus services. One of Big
Red’s initial applications is Mutiple EM for Motif Elicitation
(MEME) [9]. MEME is used to discover common motifs in
groups of DNA or protein sequences. Due to its computa-
tional complexity, MEME should be executed in a rich re-
source environment such as Big Red. However, to execute
MEME on Big Red, a user must not only be familiar with
the application itself: he or she must also understand vari-
ous network tools such as FTP for uploading and down-
loading input and output files, and he or she must under-
stand Big Red’s LoadLeveler and MOAB-based scheduling
and queuing system in order to submit, monitor and con-
trol jobs. This kind of inconvenience can be easily overcome
by making a specific portlet that allows a user to execute
the MEME application by using a science portal based on
the OGCE [3]. In addition to MEME execution, we can add
file management and job control functionality into the port-
let by using Java Commodity Grid (CoG) toolkit [5] to util-
ize Big Red’s Grid infrastructure.

2.1 Making MEME Portlet Out of GRAM and GridFTP
Libraries

The main function of the MEME portlet (Figure 1) is to
submit a MEME job to a remote TeraGrid resource such as
Big Red. This can be done either interactively (for very
small jobs) or through Big Red’s queuing system. To pro-
vide a more convenient and user-friendly interface, our
MEME portlet also enables a user to transfer input and
output files to/from the remote server and track the status
of a submitted job. For example, a user can upload a gene
sequence file to a remote server and submit a job to execute

————————————————

• Mehmet A. Nacar, Department of Computer Science, Indiana University
• Jong Y. Choi, Department of Computer Science, Indiana University
• Marlon E. Pierce, Community Grids Lab, Indiana University
• Geoffrey C. Fox, Department of Computer Science, Indiana University
• Author emails respectively: {mnacar, jychoi, marpierc, gcf}@indiana.edu

2

MEME application with the file as an input. After submi
sion, a user can check whether the job is completed or not.
Once the job is completed, a user can download output files
from the server to his local machine. From the user’s per
pective, such operations can be done by simply clicking a
few buttons. Under the user interface, the main
that the MEME portlet performs are submitting
running the GridFTP client, and checking the
job’s status.
One may consider more simple approach: instead of
ing multiple Grid tasks be performed in one portlet,
separate them into a few independent portlets
portlet will do one Grid task. Since such a unit

already been made by OGCE [3] or GridSphere
we can simply use off-the-shelf ones without
However, a user should move around multiple portlet
finish a MEME job, which is not a convenient way
for better user interface, to make one portlet integrated
multiple tasks is more important. We will show in the next
section how GTLAB can be used to expedite
For now, without using GTLAB we will explain how
MEME portlet execute these Grid tasks with a typical use
case. First, the user needs to transfer a gene sequence file
from his or her desktop machine to the desired resource
(i.e., Big Red). Since a web portal service (i.e.,
running between a user and a remote server, MEME portlet
should transfer the file from the user’s local system to the
remote server, where MEME application will be executed,
via the server where a web portal service is in operation.
For this end, the MEME portlet executes two consecutive
file transfers: one for the uploading a file from the user
space to the portal server and the other for sending the file
from the portal server to the remote gateway where MEME
will be executed. HTML form based file upload
CoG’s GridFTPClient can be used respectively.
Secondly, the user will fire a job submission by clicking a

Figure 1 The MEME portlet uses OGCE portal libraries to upload

and download files, submit jobs, and monitor their progress.

TERAGRID 2007 CONFER

cation with the file as an input. After submis-
sion, a user can check whether the job is completed or not.
Once the job is completed, a user can download output files
from the server to his local machine. From the user’s pers-

done by simply clicking a
he main Grid tasks

are submitting the job,
the submitted

nstead of mak-
in one portlet, we can
portlets and each
unit portlet has

GridSphere [6] team,
 developing.

multiple portlets to
, which is not a convenient way. Thus,

integrated with
show in the next

expedite this process.
will explain how
with a typical use

a gene sequence file
the desired resource

i.e., OGCE) is
running between a user and a remote server, MEME portlet

transfer the file from the user’s local system to the
remote server, where MEME application will be executed,

server where a web portal service is in operation.
For this end, the MEME portlet executes two consecutive

the uploading a file from the user
and the other for sending the file

from the portal server to the remote gateway where MEME
file uploading and

Secondly, the user will fire a job submission by clicking a

button. Receiving this event, the portlet will submit a job to
the remote server’s job scheduler, which will pick
MEME application to run. To submit a job, we use two
Java CoG classes: GramJob for managing job submission
and GassServer for receiving outputs from the remote ser
er. If a user wants to see outputs on a screen instead of sa
ing as a file, the MEME portlet will run a GASS server,
which is designed to receive outputs from a remote server
in an on-line manner, so that the user can see outputs d
rectly through the portlet. Regarding the submit options, a
user can choose to submit a job in two modes: interactive
mode and batch mode. While the user
ceive results in interactive mode, in batch mode a user can
check the result later instead of waiting for immediate ou
put. To enable a user to access the result later in batch
submission, the portlet saves a job handle string returned
by GramJob class after job submission into a persistent st
rage so that a user can retrieve job results
after logging out.
Thirdly, after submitting a job in a batch mode, the user
can check from the MEME portlet whether the job is f
nished or not. By retrieving the job handles saved in the
previous step, the portlet will check the status of the job by
using CoG’s Gram class.
Finally, when the batch job is completed, the user can
download outputs from MEME. If the output is saved as a
file in remote server’s file system, we download the file by
the GridFTP protocol, using the GridFTPClient class. Ot
erwise, we execute a remote command to retrieve the ou
put by using the job handle. For this end, our MEME por
let will submit an interactive GRAM job to query output by
giving the job handle as an input.

2.2 Job Tracking with a Dashboard

The Dashboard portlet (Figure 2) is
information about job status by using Big Red’s job mana
er. As a default job manager, Big Red is using
job scheduler. Thus, a submitted job to Big Red can be m
nitored by querying MOAB’s job queue status
be done by using a command line tool, called
vided by MOAB. By executing the showq
behalf of a user in Big Red, our dashboard portlet can di
play job queues and status so that a user can easily access
the information about the submitted job.
this simple approach to work on TeraGrid resources
In many cases, it is desirable to only show a user his or
her specific jobs. This can be done by remotely executing
showq with the proper arguments such as the
ID. However, TeraGrid does not provide a global UNIX
user ID system, so a user can have different
different machines, even though the user’s Grid credential
provides single sign on. One simple solution to evade this
problem is to execute the whoami command to o
correct user ID in a gateway before executing
mand. This can be made into a one-time
user ID as a portlet’s preference value, instead of executing
every time before showq execution.

uses OGCE portal libraries to upload

and download files, submit jobs, and monitor their progress.

TERAGRID 2007 CONFERENCE, MADISON, WI

on. Receiving this event, the portlet will submit a job to
the remote server’s job scheduler, which will pick the

To submit a job, we use two
Java CoG classes: GramJob for managing job submission

ts from the remote serv-
to see outputs on a screen instead of sav-
MEME portlet will run a GASS server,
to receive outputs from a remote server
so that the user can see outputs di-

portlet. Regarding the submit options, a
in two modes: interactive
the user should wait to re-

ceive results in interactive mode, in batch mode a user can
stead of waiting for immediate out-

put. To enable a user to access the result later in batch job
submission, the portlet saves a job handle string returned

after job submission into a persistent sto-
job results anytime even

Thirdly, after submitting a job in a batch mode, the user
can check from the MEME portlet whether the job is fi-
nished or not. By retrieving the job handles saved in the

eck the status of the job by

the batch job is completed, the user can
download outputs from MEME. If the output is saved as a
file in remote server’s file system, we download the file by

GridFTPClient class. Oth-
command to retrieve the out-

put by using the job handle. For this end, our MEME port-
let will submit an interactive GRAM job to query output by

Dashboard Portlet
is designed to provide

information about job status by using Big Red’s job manag-
As a default job manager, Big Red is using the MOAB

job scheduler. Thus, a submitted job to Big Red can be mo-
job queue status, and this can

by using a command line tool, called showq, pro-
showq command on the

behalf of a user in Big Red, our dashboard portlet can dis-
play job queues and status so that a user can easily access

ob. We have adopted
TeraGrid resources.

In many cases, it is desirable to only show a user his or
her specific jobs. This can be done by remotely executing

with the proper arguments such as the user
Grid does not provide a global UNIX

different user IDs on
different machines, even though the user’s Grid credential

olution to evade this
command to obtain the

in a gateway before executing showq com-
time task by saving the

as a portlet’s preference value, instead of executing

NACAR ET AL.: BUILDING A GRID PORTAL FOR TERAGRID’S BIG RE

To execute the remote showq command, our Dashboard
portlet follows a three step procedure: whoami
execution, showq execution, and finally output parsing. E
ecuting whoami and showq command can be done the same
way that we execute MEME commands, using GramJob
and GassServer Java CoG classes. Since we need
results, each execution is performed in interactive mode.
Once obtained from whoami, the right user ID
as an input to the showq execution. After executing showq
command, the output is parsed in order to be displayed
inside portlet as an HTML document. Since the
command on Big Red has an option to output in XML fo
mat, we use a XML parser, known as XML Pull Parser
(XPP) [11], to convert output into a proper HTML object.

2.3 Other Portlets
The OGCE release comes with several other portlets
(GridFTP, WS-GRAM, Pre-WS GRAM, MyProxy credential
management) that we have adopted as-is. We have also
configured the OGCE GPIR portlet to point to the TeraG
id’s GPIR Web Service [12], thus providing a global view of
resource load and related information (see [2]
formation). In addition to these Grid-centric portlets, the
OGCE IFrame portlet provides a simple mechanism for
integrating non-portlet Web pages. We used this i
Red portal to provide an interface to Indiana University
Knowledge Base website [13].

2.4 Integration with Other TeraGrid Resources

Although designed to work with Big Red, our portlets
can be used with any other gateway in TeraGrid. To pr
vide the same functions transparently, our portlets provide
a few methods to allow a user to customize environmental
settings such as execution path and working directory.
Such values can be redefined by changing portlet.xml
(which must be done by the portal administrator)
using the portlet’s EDIT function, a standar
change user’s preferences. In the case of the
portlet, discordance of user ID between a user certificate
and a remote system can be a problem. To avoid this pro
lem, we can submit a Gram job to execute whoami
to find a correct user ID.

Figure 2 The dashboard portlet allows users to track jobs on the

selected resource. The user can view either his own set of jobs or

get information on all submitted jobs.

R TERAGRID’S BIG RED

d, our Dashboard
whoami command
output parsing. Ex-

command can be done the same
using GramJob

and GassServer Java CoG classes. Since we need immediate
in interactive mode.

ID will be given
execution. After executing showq
parsed in order to be displayed

HTML document. Since the showq
has an option to output in XML for-

mat, we use a XML parser, known as XML Pull Parser
, to convert output into a proper HTML object.

The OGCE release comes with several other portlets
WS GRAM, MyProxy credential

We have also
configured the OGCE GPIR portlet to point to the TeraGr-

, thus providing a global view of
[2] for more in-

centric portlets, the
OGCE IFrame portlet provides a simple mechanism for

portlet Web pages. We used this in the Big
Indiana University’s

Integration with Other TeraGrid Resources
with Big Red, our portlets

can be used with any other gateway in TeraGrid. To pro-
vide the same functions transparently, our portlets provide

to allow a user to customize environmental
working directory.

Such values can be redefined by changing portlet.xml file
(which must be done by the portal administrator) or by

portlet’s EDIT function, a standard interface to
the Dashboard

portlet, discordance of user ID between a user certificate
and a remote system can be a problem. To avoid this prob-

whoami command

3 INTEGRATING GTLAB WITH B

Portlets provide a common component for building po
tals out of reusable parts. For example
viously, the OGCE portal has portlets for job submission,
credential management, and file management that can be
plugged into any standard compliant container. Often,
however, as in the case of the MEME portlet described
above, portlets are not quite fine-grained enough comp
nents. We would like to build portlets that combine several
Grid operations in the same portlet. Our work on
provides a set of Java Server Faces (JSF) tag libraries and
backing JavaBeans (called Grid beans) that attempt to solve
this problem. A full discussion of JSF is out of scope here,
but briefly, JSF generates HTML from a set of XML tags.
HTML form actions are associated with so
JavaBeans, which in turn may act as Web Service clients or
connect to databases. Developers can extend these libraries
to provide their own XML tags.
The goal of GTLAB is to simplify the process of Grid por
let development by encapsulating common Grid
as XML tags that can be embedded in portlet pages, enab
ing rapid development. GTLAB capabilities include
tial management, remote file operations, remote job exec
tions, and file transfers.
The JSF Web application framework
tensible component architecture. Each XML tag is ass
ciated with a backing Grid bean that implements the actual
Grid clients, which we build with the Java CoG kit
use JSF’s built-in functionality to pass a
the XML tags to the backing beans.
ciated with Grid tags and their action methods are fired by
our 'submit' tag. Tracking the jobs and monitoring is also
part of the GTLAB framework.

3.1 How to use GTLAB within Big Red portlets

Typically a Grid portlet stages various related tasks in r
sponse to a user-generated event. These are usually the
nodes of a Directed Acyclic Graph (DAG), which
tags are designed to support. The DAG, or composite task,
is called multitask in GTLAB. Currently, m
allow dependent task units and prevent parallel tasks and
cycles.
After building the sub-tasks, multitask and their depe
dencies, GTLAB then registers multitasks in the
session. In addition, it registers their handler information
within the session to track their lifecycle. All of the objects
are stored in hash tables with a unique key
information can be stored persistently
system (i.e., a database) by setting
multitask.
The following scenario shows the building of
for MEME with dependent multi-staged tasks
developer has been assigned the job of creating a portlet to
do the following basic tasks. First, Task
directory on Big Red. Then, Task B transfers an input file
from a remote host to the newly created directory
Task C is responsible for submitting a command
Big Red using the input file. The following sections explain
the scenario in detail through the use of Gri
the portlet is finished and deployed,

allows users to track jobs on the

selected resource. The user can view either his own set of jobs or

3

BIG RED PORTLETS

component for building por-
tals out of reusable parts. For example, as mentioned pre-

, the OGCE portal has portlets for job submission,
credential management, and file management that can be
plugged into any standard compliant container. Often,

ver, as in the case of the MEME portlet described
grained enough compo-

e would like to build portlets that combine several
Grid operations in the same portlet. Our work on GTLAB

(JSF) tag libraries and
backing JavaBeans (called Grid beans) that attempt to solve

A full discussion of JSF is out of scope here,
but briefly, JSF generates HTML from a set of XML tags.
HTML form actions are associated with so-called backing
aBeans, which in turn may act as Web Service clients or

. Developers can extend these libraries

The goal of GTLAB is to simplify the process of Grid port-
let development by encapsulating common Grid operations
as XML tags that can be embedded in portlet pages, enabl-
ing rapid development. GTLAB capabilities include creden-

file operations, remote job execu-

eb application framework provides us with ex-
Each XML tag is asso-

ciated with a backing Grid bean that implements the actual
Grid clients, which we build with the Java CoG kit [5]. We

in functionality to pass attribute values from
. Grid beans are asso-

ciated with Grid tags and their action methods are fired by
'submit' tag. Tracking the jobs and monitoring is also

How to use GTLAB within Big Red portlets

portlet stages various related tasks in re-
These are usually the

nodes of a Directed Acyclic Graph (DAG), which our Grid
The DAG, or composite task,
Currently, multitasks only

allow dependent task units and prevent parallel tasks and

tasks, multitask and their depen-
multitasks in the browser

session. In addition, it registers their handler information
hin the session to track their lifecycle. All of the objects
stored in hash tables with a unique key. The job handler

ntly to a backend storage
by setting persistent attribute of

shows the building of multitask
staged tasks. Assume a

has been assigned the job of creating a portlet to
Task A makes a working
B transfers an input file

newly created directory. Finally,
Task C is responsible for submitting a command script on

input file. The following sections explain
the scenario in detail through the use of Grid tags. After

users will then submit

4 TERAGRID 2007 CONFERENCE, MADISON, WI

and monitor jobs using the developer’s portlet. Users will
not see the tag libraries and will interact with standard
HTML pages that get generated when the portlet is ren-
dered.

3.2 Preparing Application Pages

The developer starts by creating a JSF form that generates
the HTML interface (Table 1). After the HTML form is pro-
totyped, the developer can now add GTLAB tags to Grid-
enable the HTML form submission components. GTLAB
tags consist of non-visual page action components with one
exception: we override the 'submit’ button tag that propa-
gates user events to the backend.
A full example is given in Table 1. The GTLAB tag part
that specifies the Grid actions is surrounded by GTLAB
submit tag, which in turn is contained within JSF view page.
Table 1 shows the key GTLAB tags for constructing the
Dashboard portlet. As explained in the previous section,
this portlet basically gets user credential from myproxy
repository and submits two dependent jobs using GRAM
service. End users provide username and password values
that are bound to o:myproxy tag attributes in the web from.
The first job is to retrieve the user ID on the specific TeraGr-
id resource, and the second is to submit the showq com-
mand. These two jobs and their dependency are shown in
Table 1. Note resulting output data must still be formatted
for display.
To generalize this portlet, we will need to associate tag

attributes with information collected from the user. These
inputs (i.e., the specific computer hostname to use or the
name of the task) correspond to XML tag attribute fields
with dynamic parameters. In other words, attribute values
should be supplied by the user in a dynamic web user in-
terface. We have defined resource bean to manage these
specific user inputs. The resource bean represents all prop-
erties of the GTLAB tags and supplies default values. The
application programmer has to tie the user inputs with cor-
responding property using resource bean as follows:

<h:outputText value="Taskname: "/>
 <h:inputText value="#{resource.taskname}" />
 <o:multitask id="multi" persistent="true" task
 name="#{resource.taskname}" />
Here, <h:outputText> and <h:inputText> are standard JSF
tags that are rendered as text and input text fields, respec-
tively. The attribute value #{resource.taskname} uses JSF’s
Expression Language (EL) syntax. The user will be
prompted to provide a name for the particular task, which
will also be used by GTLAB’s <multitask> tag as the value
for its name attribute.

3.3 Tracking and Managing Jobs with GTLAB
Grid applications typically must submit jobs to batch
queues, and even interactive jobs may take a several mi-
nutes to finish. Thus we must provide a callback system
that lets jobs run while allowing the portal to return control
to the user. Thus the GTLAB tags need to track the jobs’
lifecycle and monitor their status, displaying this informa-
tion back to the user.
GTLAB creates a handler for every submitted job and
displays status information using JSF data tables (which are
rendered as HTML tables for display). These data tables are
fed by job handlers that are saved in hash tables within the
session. The visual design of the job tracking’s display table
and filtering on the values are left to the developers.
After submission, the GTLAB job handlers can be used to
manage, stop, or cancel running jobs. Permanent job arc-

hiving is also tied to job handlers. For example, users can
keep good samples, remove old jobs or failed jobs, and oth-
erwise organize their repository. The job’s metadata fea-
tures (submit time, status, finish time, output location and
input parameters) are stored and can also be listed.

<o:handler id=”delete” action="#{monitor.delete}" >
 <f:param id="task" name="taskname"
 value="#{task}"/>
</o:handler>

<o:submit id=”track” action=”list_page” />

 <o:multitask id=”dashboard” taskname=”track” persistent=”true” >

 <o:myproxy id=”proxy” hostname=”gf1.ucs.indiana.edu” lifetime=”2”

 username=”#{resource.username}” password=”#{resource.password}” />

 <o:jobsubmit id=”jobA” hostname=”cobalt.ncsa.teragrid.org”

 provider=”GT4” executable=”/bin/whoami”

 stdout=”tmp/result”

 stderr=”tmp/error” />

 <o:jobsubmit id=”jobB” hostname=”cobalt.ncsa.teragrid.org”

 provider=”GT4” executable=”/bin/showq”

 stdin=”tmp/result” stdout=”tmp/list”

 stderr=”tmp/error” />

 <o:dependency id=”depend” task=”jobB” dependsOn=”jobA” />

 </o:multitask>
</o:submit>

Table 1 GTLAB example for creating Grid portlets to collect data for the dashboard portlet.

NACAR ET AL.: BUILDING A GRID PORTAL FOR TERAGRID’S BIG RED 5

Here, <o:handler> tag is another visual tag to process job
handlers within GTLAB framework using standard JSF
data tables. <o:handler> basically submits monitor bean me-
thods to as actions of monitoring. <f:param> passes task-
name parameter to monitor bean by identifying which table
row is selected by the user. Each row in the table corres-
ponds to an entity in the job handlers hash table. Thus, the
users can retrieve the job handlers and can take the moni-
toring actions as specified.

4 CONCLUSIONS

We have described in this paper our work to build a sim-
ple science gateway for Indiana University’s Big Red super-
computer, based on the OGCE portal software release. In
our discussion, we have focused on new portlets for MEME
job submission and job tracking that we developed from
OGCE and related libraries. We then described our work to
simplify the process for creating new Grid portlets using
Java Server Faces tag library extensions.

ACKNOWLEDGMENT

This work was supported by the National Science Founda-
tion’s National Middleware Initiative program.

REFERENCES

[1] Nancy Wilkins-Diehr, Special Issue: Science Gateways -
Common Community Interfaces to Grid Resources.
Published Online: 10 Oct 2006 DOI: 10.1002/cpe.1098.
Available from
http://www3.interscience.wiley.com/cgi-
bin/fulltext/113391281/PDFSTART.

[2] Maytal Dahan, Eric Roberts, “TeraGrid User Portal
v1.0: Architecture, Design, and Technologies.” Second
International Workshop on Grid Computing Environ-
ments GCE06 at SC06, Tampa, FL. Nov. 12-13 2006.

[3] Jay Alameda, Marcus Christie, Geoffrey Fox, Joe Fu-
trelle, Dennis Gannon, Mihael Hategan, Gopi Kandas-
wamy, Gregor von Laszewski, Mehmet A. Nacar, Mar-
lon Pierce, Eric Roberts, Charles Severance, Mary Tho-
mas, The Open Grid Computing Environments collabora-

tion: portlets and services for science gateways. Concurren-
cy - Practice and Experience 19(6): 921-942 (2007).

[4] Jason Novotny, Michael Russell, Oliver Wehrens:
GridSphere: a portal framework for building collabora-
tions. Concurrency - Practice and Experience 16(5): 503-
513 (2004).

[5] Kaizar Amin, Mihael Hategan, Gregor von Laszewski,
Nestor J. Zaluzec: Abstracting the Grid. PDP 2004: 250-
257.

[6] Michael, R., N. Jason, and W. Oliver, The Grid Portlets
Web Application: A Grid Portal Framework. Parallel
Processing and Applied Mathematics. 2006. 691-698.

[7] Mehmet Nacar, Marlon Pierce, Gordon Erlebacher,
Geoffrey Fox. “Designing Grid Tag Libraries and Grid
Beans.” Second International Workshop on Grid Com-
puting Environments GCE’06 at SC06, Tampa, FL. Nov.
12-13 2006.

[8] Mehmet A. Nacar, Mehmet S. Aktas, Marlon Pierce,

Zhenyu Lu and Gordon Erlebacher, Dan Kigelman,
Evan F. Bollig, Cesar De Silva, Benny Sowell, and
David A. Yuen VLab: Collaborative Grid Services
and Portals to Support Computational Material
Science. Dec 30, 2005. Special Issue on Grid Portals
based on SC05 GCE'05 Workshop, Concurrency and
Computation: Practice and Experience.

[9] The MEME/MAST System. [Online]
http://meme.sdsc.edu/meme/intro.html.

[10] Karl Czajkowski, Ian Foster, Nick Karonis, Carl Kes-
selman, Stuart Martin, Warren Smith, Steven Tuecke.
“A Resource Management Architecture for Metacom-
puting Systems”. LNCS Vol. 1459, 1998

[11] Aleksander Slominski. Design of a Pull and Push
Parser System for Streaming XML. Technical report,
Indiana University Computer Science Department,
2002. Available from
http://www.extreme.indiana.edu/xgws/papers/xml_
push_pull/. last accessed in April 2007.

[12] M. Dahan, M. Thomas, E. Roberts, A. Seth, T. Urban, D.
Walling, J.R. Boisseau. ”Grid Portal Toolkit 3.0 (Grid-
Port)”, in Proceedings. 13th IEEE International Sympo-
sium on High performance Distributed Computing, 4-
6, pp.272 - 273, June 2004

[13] Indiana University Knowledge Base. [Online]
http://kb.iu.edu/.

