
Designing Twister2: Efficient Programming Environment
Toolkit for Big Data

Supun Kamburugamuve
School of Informatics and Computing

Indiana University
Bloomington, IN, USA

skamburu@indiana.edu

Geoffrey Fox
School of Informatics and Computing

Indiana University
Bloomington, IN, USA
gcf@indiana.edu

ABSTRACT
Data-driven applications are required to adapt to the ever-
increasing volume, velocity and veracity of data generated
by a variety of sources including the Web and Internet of
Things devices. At the same time, an event-driven compu-
tational paradigm is emerging as the core of modern sys-
tems designed for both database queries, data analytics and
on-demand applications. MapReduce has been generalized
to Map Collective and shown to be very effective in ma-
chine learning. However one often uses a dataflow comput-
ing model, which has been adopted by most major big data
processing runtimes. The HPC community has also devel-
oped several asynchronous many tasks (AMT) systems ac-
cording to the dataflow model. From a different point of
view, the services community is moving to an increasingly
event-driven model where (micro)services are composed of
small functions driven by events in the form of Function as a
Service(Faas) and serverless computing. Such designs allow
the applications to scale quickly as well as be cost effective
in cloud environments.

An event-driven runtime designed for data processing con-
sists of well-understood components such as communication,
scheduling, and fault tolerance. One can make different de-
sign decisions for these components that will determine the
type of applications a system can support efficiently. We find
that modern systems are designed in a monolithic approach
with a fixed set of choices that cannot be changed easily af-
terwards. Because of these design choices their functionality
is limited to specific sets of applications. In this paper we
study existing systems (candidate event-driven runtimes),
the design choices they have made for each component, and
how this affects the type of applications they can support.
Further we propose a loosely coupled component-based ap-
proach for designing a big data toolkit where each compo-
nent can have different implementations to support various
applications. We believe such a polymorphic design would
allow services and data analytics to be integrated seamlessly
and expand from edge to cloud to high performance com-
puting environments.

1. INTRODUCTION
Big data has been characterized by the ever-increasing ve-

locity, volume and veracity of the data generated from vari-
ous sources, ranging from web users to Internet of Things de-
vices to large scientific equipment. The data have to be pro-
cessed as individual streams and analyzed collectively both
in streaming and batch settings for knowledge discovery with
both database queries and sophisticated machine learning.

These applications need to run as services in cloud envi-
ronments as well as traditional high performance clusters.
With the proliferation of cloud-based systems and Internet
of Things, fog computing [12] is adding another dimension
to these applications where part of the processing has to
occur near the devices.

Parallel and distributed computing is essential to pro-
cess big data owing to the data being naturally distributed
and processing often requiring high performance in com-
pute, communicate and I/O arenas. Over the years, the
High Performance Computing (HPC) community has devel-
oped frameworks such as message passing interface (MPI)
to execute computationally intensive parallel applications
efficiently. The HPC applications target high performance
hardware, including low latency networks due to the scale of
the applications and the required tight synchronous parallel
operations. Big data applications have been developed tar-
geting commodity hardware with Ethernet connections seen
in the cloud. Because of this, they are more suitable for
executing asynchronous parallel applications with high com-
putation to communication ratios. Lately we have observed
that more capable hardware comparable to HPC clusters is
being added to modern clouds due to increasing demand for
cloud applications in deep learning and machine learning.
These trends suggest that HPC and cloud are merging, and
we need frameworks that combine the capabilities of both
big data and HPC frameworks.

There are many properties of data applications that in-
fluence the design of those frameworks developed to pro-
cess them. There are many application classes including
database queries, management, and data analytics from com-
plex machine learning to pleasingly parallel event processing.
Common issues include that the data can be too big to fit
into the memory of even a large cluster. Another important
aspect is that it is impractical to always expect a balanced
data set from the processing standpoint across the nodes.
This follows from the fact that initial data in raw form are
usually not load balanced and often require too much time
and disk space to balance the data. Also the batch data pro-
cessing is not enough as much data is streamed and needs to
be processed online with reasonable time constraints before
being stored to disk. Finally the data may be varied and
have processing time that varies between data points and
across iterations of algorithms.

Even though MPI is designed as a generic messaging frame-
work, a developer has to focus on file access, with disks in
case of insufficient memory and using mostly send/receive
operations to develop higher level communication operations



in order to express communication in a big data application.
Adding to this mix is the increasing complexity of hardware,
with the explosion of many-core and multi-core processors
having different memory hierarchies. It is becoming bur-
densome to develop efficient applications on these new ar-
chitectures using the low-level capabilities provided by MPI.
Meanwhile, the success of Harp [62] has highlighted the im-
portance of the Map-Collective computing paradigm.

The dataflow [31] computation model has been presented
as a way to hide some of the system level details from the
user in developing parallel applications. With dataflow, an
application is represented as a graph with nodes doing com-
putations and edges indicating communications between the
nodes. A computation at a node is activated when it re-
ceives events through its inputs. A well-designed dataflow
framework hides the low-level details such as communica-
tions, concurrency and disk I/O, allowing the developer to
focus on the application itself. Every major big data pro-
cessing system has been developed according to the dataflow
model, and the HPC community has also developed asyn-
chronous many tasks (AMT) systems according to the same
model. AMT systems mostly focus on computationally in-
tensive applications, and there is ongoing research to make
them more efficient and productive. We find that big data
systems developed according to a dataflow model are ineffi-
cient in computationally intensive applications with tightly
synchronized parallel operations [38], while AMT systems
are not optimized for data processing.

At the core of the dataflow model is an event-driven ar-
chitecture where tasks act upon incoming events (messages)
and produce output events. In general a task can be viewed
as a function activated by an event. The cloud-based ser-
vices architecture is moving to an increasingly event-driven
model for composing services in the form of Function as a
Service (FaaS). FaaS is especially appealing to IoT appli-
cations where the data is event-based in its natural form.
Coupled with microservices and serverless computing, FaaS
is driving next generation services in the cloud and can be
extended to the edge.

Because of the underlying event-driven nature of both
data analytics and message-driven services architecture, we
can find many common aspects among the frameworks de-
signed to process data and services. Such architectures can
be decomposed into components such as resource provision-
ing, communication, task scheduling, task execution, data
management, fault tolerance mechanisms and user APIs.
High-level design choices are available at each of these layers
that will determine the type of applications that the frame-
work composed of these layers can support efficiently. We
observe that modern systems are designed with fixed sets of
design choices at each layer, rendering them only suitable
for a narrow set of applications. Because of the common
underlying model, it is possible to build each component
separately with clear abstractions supporting different de-
sign choices. We propose to design and build a polymorphic
system by using these components to produce a system ac-
cording to the requirements of the applications, which we
term the toolkit approach. We believe such an approach
will allow the system to be configured to support different
types of applications efficiently. The authors are actively
pursuing a project called Twister2, encompassing the con-
cept of the toolkit. Serverless FaaS is a good approach to
building cloud native applications [3, 27] and in this way,

Twister2 will be a cloud native framework.
This paper provides the following contributions: 1) A

study of different application areas and how a common com-
putation model fits them; 2) Design choices of different sys-
tems and how they affect each application area; 3) Present-
ing a vision of a big data toolkit (Twister2) that can execute
applications from each area efficiently. Furthermore the pa-
per provides comparisons of big data and MPI styles of pro-
grams to gain better insight into the system requirements.

2. RELATED WORK
Hadoop [58] was the first major open source platform de-

veloped to process large amounts of data in parallel. The
map-reduce [19] functional model introduced by Hadoop is
well understood and adapted for writing distributed pleas-
ingly parallel and one-pass applications. Coupled with Java,
it provides a great tool for average programmers to process
data in parallel. Soon enough, though, the shortcomings
of HadoopâĂŹs simple API and its disk-based communica-
tions [21] became apparent, and systems such as Apache
Spark [61] and Apache Flink [15] were developed to over-
come them. These systems are developed according to the
dataflow model and their execution models and APIs closely
follow dataflow semantics. Some other examples of batch
processing systems include Microsoft Naiad [48], Apache
Apex and Google Dataflow [6]. It is interesting to note
that even with all its well-known inefficiencies, Hadoop is
still being used by many people for data processing. Apart
from the batch processing systems mentioned above, there
are also streaming systems that can process data in real-time
which also adhere to the dataflow model. Some examples of
open source streaming systems include Apache Storm [57],
Twitter Heron [41], Google Millwheel [5], Apache Samza [53]
and Flink [15]. Note that some of the systems process both
streaming and batch data in a unified way such as Apache
Apex, Google Dataflow, Naiad and Apache Flink. Apache
Beam [6] is a project developed to provide a unified API
for both batch and streaming pipelines. It acts as a com-
piler and can translate a program written in its API to a
supported batch or streaming runtime. Prior to modern
distributed streaming systems, research was done on shared
memory streaming systems, including StreamIt [56], Bore-
alis [8], Spade [28] and S4 [50].

There are synergies between HPC and big data systems,
and authors [24, 25] among others [36] have expressed the
need to enhance these systems by taking ideas from each
other. In previous work [22, 23] we have identified the gen-
eral implications of threads and processes, cache, memory
management in NUMA [11], as well as multi-core settings
for machine learning algorithms with MPI. DataMPI [42]
uses MPI to build Hadoop like system while [7] uses MPI
communications in Spark for better performance. A toolkit
approach as in Twister2 makes interoperability easier at the
usage level as one can change lower level components to fit
different environments without changing the programmatic
or user interface.

There is an ongoing effort in the HPC community to de-
velop AMT systems for realizing the full potential of multi-
core and many-core machines, as well as handling irregular
parallel applications in a more robust fashion. It is widely
accepted that writing efficient programs with the existing
capabilities of MPI is difficult due to the bare minimum ca-
pabilities it provides. AMT systems model computations



as dataflow graphs and use shared memory and threading
to achieve best performance out of many-core machines.
Some examples of such systems are OCR [47], DADuE [13],
Charm++ [37], COMPS [17] and HPX [54], all of which
focus on dynamic scheduling of the computation graph. A
portability API is developed in DARMA [35] to AMT sys-
tems to develop applications agnostic to the details of spe-
cific systems. They extract the best available performance of
multicore and many-core systems while reducing the burden
of the user writing such programs using MPI. Prior to this,
there was much focus in the HPC community on developing
programs that could bring automatic parallelism to users
such as Parallel Fortran [14]. Research has been done with
MPI to understand the effect of computer noise on collective
communication operations [34, 33, 4]. For large computa-
tions, computer noise coming from an operating system can
play a major role in reducing performance. Asynchronous
collective operations can be used to reduce the noise in such
situations, but it is not guaranteed to completely eliminate
the burden.

In practice, multiple algorithms and data processing appli-
cations are combined together in workflows to create com-
plete applications. Systems such as Apache NiFi [1], Ke-
pler [45], and Pegasus [20] were developed for this purpose.
The lambda architecture [46] is a dataflow solution to design-
ing such applications in a more tightly coupled way. Amazon
Step functions [2] is bringing the workflow to the FaaS and
microservices.

3. BIG DATA APPLICATIONS
Here we highlight four types of applications with different

processing requirements: 1) Streaming, 2) Data pipelines,
3) Machine learning, and 4) Services. With the explosion of
IoT devices and the cloud as a computation platform, fog
computing is adding a new dimension to these applications,
where part of the processing has to be done near the devices.

Streaming applications work on partial data while batch
applications process data stored in disks as a complete set.
By definition, streaming data is unlimited in size and hard
(and unnecessary) to process as a complete set due to time
requirements. Only temporal data sets observed in data
windows can be processed at a given time. In order to han-
dle a continuous stream of data, it is necessary to create
summaries of the temporal data windows and use them in
subsequent processing of the stream. There can be many
ways to define data windows, including time-based windows
and data count-based windows. In the most extreme case a
single data tuple can be considered as the processing gran-
ularity.

Data pipelines are primarily used for extract, trans-
form and load (ETL) operations even though they can in-
clude steps such as running a complex algorithm. They
mostly deal with unstructured data stored in raw form or
semi-structured data stored in NoSQL [32] databases. Data
pipelines work on arguably the largest data sets possible
out of the three types of applications. In most cases, it
is not possible to load complete data sets into memory at
once and we are required to process data partition by par-
tition. Because the data is unstructured or semi-structured,
the processing has to assume unbalanced data for parallel
processing. The processing requirements are coarse-grained
and pleasingly parallel. Generally we can can consider a
data pipeline as an extreme case of a streaming application,

where there is no order of data and the streaming windows
contain partitions of data.

Machine learning applications execute complex alge-
braic operations and can be made to run in parallel using
synchronized parallel operations. In most cases the data can
be load balanced across the workers as curated data is being
used. The algorithms can be regular or irregular and may
need dynamic load balancing of the computations and data.

Services are moving towards an event-driven model for
scalability, efficiency and cost effectiveness in the cloud. The
old monolithic services are being replaced by leaner mi-
croservices. These microservices are envisioned to be com-
posed of small functions arranged in a workflow [2] or dataflow
to achieve the required functionality.

3.1 Dataflow Applications
Parallel computing and distributed computing are two of

the general computing paradigms available for doing com-
putations on large numbers of machines. MPI is the de facto
standard in HPC for developing parallel applications. It pro-
vides a basic but powerful tool to develop parallel applica-
tions. An MPI programmer has to consider low-level details
such as I/O, memory hierarchy and efficient execution of
threads to write a parallel application that scales to large
numbers of nodes. With the increasing availability of multi-
core and many core systems, the burden on the programmer
to get the best available performance has increased dramat-
ically [23, 22]. Because of the load imbalance and velocity
of the big data applications, an MPI program written with
tight synchronized operations across parallel workers may
not perform well. An example HPC application is shown in
Fig. 1 where a workflow system such as Kepler [45] is used
to invoke individual MPI applications. A parallel worker
of an MPI program does computations and communications
within the same process scope, allowing the program to keep
state throughout the execution.

Figure 1: MPI applications arranged in a workflow

Dataflow computing has been around in various forms for
a long time. A dataflow program is a computation graph
with nodes doing computations and edges passing messages
between the nodes. Computation at a node is invoked when
its input data dependencies are satisfied. It is a largely ac-
cepted truth that dataflow programs are easier to write than
MPI-style programs for applications that fit the dataflow
model well. In a dataflow program, the user has to program
the computations in the nodes and define how the nodes
are connected to each other. The dataflow framework han-
dles the details, such as executing the tasks using threads,
scheduling, data placement and communications. A care-
fully designed framework can be tuned to run in different
hardware with NUMA boundaries, caches and memory hi-
erarchies.



3.1.1 Dataflow Application APIs
Over the years, there have been numerous languages and

different types of APIs developed for creating dataflow appli-
cations. Task-based programming and data transformation-
based programming are two popular approaches for dataflow
parallel applications.

Data transformation APIs are used primarily by big
data systems. Data transformation APIs employ a func-
tional programming approach to create the dataflow graph
implicitly. In this approach, distributed data is represented
in some abstract form and functions are applied to it that re-
turn other distributed data. A function takes a user defined
operator as an argument and defines the communication be-
tween the operators. An example function is a partition
function, often called a map in data flow runtimes. A map
function works on partitions of a data set and presents the
partitioned data to the user defined operators. The out-
put of a user defined operator is connected to another user
defined operator by way of another function.

Figure 2: Left: User graph, Right: execution graph
of a data flow

Task-based APIs are primarily used by the HPC com-
munity with AMT systems. A task-based API usually cre-
ates the dataflow tasks at the runtime as the program pro-
gresses. A normal program is used to create the tasks, which
can use complex control operations such as ’if/else’ and ’for’
loops to control the dataflow dynamically at runtime.

3.1.2 Execution Graph
The graph executed by the dataflow runtime is termed

execution/physical graph. This is created by the framework
when the user graph is deployed on the cluster. For exam-
ple, some user functions may run in larger numbers of nodes
depending on the parallelism specified. Also when creating
the execution graph, the framework can apply optimization
to make some dataflow operations more efficient by reduc-
ing data movement and overlapping I/O and computations.
Fig. 2 shows the execution graph and the user graph where
it runs multiple W operations and S operations in parallel.
Each user defined task runs on its own program scope with-
out access to any state regarding other tasks. The only way
to communicate between tasks is by messaging, as tasks can
run in different nodes.

3.1.3 Data Partitioning
A big data application requires the data to be partitioned

in a hierarchical manner due to memory limitations. Fig. 4
shows an example of such partitioning of a large file con-
taining records of data points. The data is first partitioned
according to the number of parallel tasks and then each par-
tition is again split into smaller partitions. At every stage
of the execution, such smaller examples are loaded into the
memory of each worker. This hierarchical partitioning is im-
plicit in streaming applications, as only a small portion of
the data is available at a given time.

Figure 3: Load imbalance and velocity of data

Figure 4: Hierarchical data partitioning of a big data
application

3.1.4 Hiding Latency
It is widely recognized that computer noise can play a huge

role in large-scale parallel jobs that require collective oper-
ations. Many researchers have experimented with MPI to
reduce performance degradation caused by noise in HPC en-
vironments. Such noise is much less compared to what typ-
ical cloud environments observe with multiple VMs sharing
the same hardware, I/O subsystem and networks. Added to
this is the Java JVM noise which most notably comes from
garbage collection. The computations in dataflow model
are somewhat insulated from the effects of such noise due
to the asynchronous nature of the parallel execution. For
streaming settings, the data arrives at the parallel nodes
with different speeds and processing time requirements. Be-
cause of these characteristics, dataflow operations are the
most suitable for such environments. Load balancing [49]
is a much harder problem in streaming settings where data
skew is more common because of the nature of applications.

3.2 Dataflow for Big Data Applications

3.2.1 Streaming Applications
Streaming applications deal with load imbalanced data

coming at different rates to parallel workers at any given mo-
ment. Having an MPI application processing this data will
increase the latency of the individual events. Fig. 3 shows
this point with an example where three parallel workers pro-
cess messages arriving at different speeds and sizes(different
processing times). If an MPI collective operation is invoked,
it is clear that the collective has to wait until the slowest
task finishes, which can vary widely. Also, to handle streams
of data with higher frequencies, the tasks of the streaming
computation must be executed in different CPUs arranged
in pipelines. The dataflow model is a natural fit for such
asynchronous processing of chained tasks.

3.2.2 Data Pipelines
Data pipelines can be viewed as a special case of stream-



Figure 5: Dataflow application execution, Left: Streaming execution, Middle: Data pipelines executing in
stages, Right: Iterative execution

Figure 6: Microservices using FaaS, Left: Functions
using a workflow, Right: Functions in a dataflow

ing applications. They work on hierarchically partitioned
data as shown in Fig 4. This is similar to streaming where
a stream is partitioned among multiple parallel workers and
a parallel worker only processes a small portion of the as-
signed partition at a given time. Data pipelines deal with
the same load imbalance as streaming applications, but the
scheduling of tasks is different in streaming and data pipeline
applications. Usually every task in a data pipeline is exe-
cuted in each CPU sequentially so only a subset of tasks
are active at a given time in contrast to all the tasks being
active in streaming applications. Streaming communication
operations only need to work on data that can be stored in
memory, while data pipelines do communications that re-
quire a disk because of the large size of data. It is necessary
to support iterative computations in data pipelines in case
they execute complex data analytics applications.

3.2.3 Machine Learning
Complex machine learning applications work mostly with

curated data that are load balanced. This means tight syn-
chronizations required by the MPI-style parallel operations
are possible because the data is available around the time the
communication is invoked. It is not practical to run complex
machine learning algorithms (> O(n2)) on very large data
sets as they have polymorphic time requirements. In those
cases it is required to find heuristic approaches with lower
time complexities. There are machine learning algorithms
which can be run in a pleasingly parallel manner as well.
Because of the expressivity required by the machine learn-
ing applications, the dataflow APIs should be close enough
to MPI-type programming but should hide the details such
as threads and I/O from users. Task-based APIs as used by
AMT systems are suitable for such applications. We note
that large numbers of machine learning algorithms fall into
the map-collective model of computation as described in [16,
29].

3.2.4 Services

The services are composed of event-driven functions which
can be provisioned and scaled without the user having to
know the underlying details of the infrastructure. The func-
tions can be directly exposed to the user for event driven ap-
plications or by proxy through microservices for request/response
applications. Fig. 6 shows microservices using functions ar-
ranged in a workflow and in a dataflow.

4. RUNTIME ARCHITECTURE
The general architecture of a runtime designed for big

data is shown in Fig. 7. An application is created using a
graph API and an optimizer can be used to make the graph
execution efficient. A resource scheduler then allocates the
required computing resources to run the processes required,
including a master process to manage the job and a set of
executors to execute the tasks. There can be additional
processes to manage state and gather statistics but these
are not essential. The executors use threads to invoke the
tasks and manage the communications. The task scheduler
can be distributed to run in each executor or be central.
The task execution model adopted is a hybrid model where
both processes and threads are used. A single executor can
host multiple tasks of the execution graph and execute them
using threads.

Figure 7: Dataflow runtime architecture

4.1 Communication
Communication is a fundamental requirement of distributed

computing because the performance of the applications largely
revolves around efficient implementations. The communica-
tion patterns that can involve more than two parallel tasks



are termed collective communications. These patterns as
identified by the parallel computing community are available
through frameworks such as MPI [26]. Some of the heavily
used communication patterns are Broadcast, Gather, Re-
duce, AllGather and AllReduce [55].

The naive implementation of these communication pat-
terns using point-to-point communication in a straightfor-
ward way produces worst-case performance in practical large-
scale parallel applications. These communication patterns
can be implemented using algorithms that minimize the
bandwidth utilization and latency of the operation. In gen-
eral they are termed collective algorithms.

4.1.1 MPI Collective Operations
In MPI, collective operations and other point-to-point com-

munication operations are driven by control operations. This
means the programmer knows exactly when to execute the
send or receive functions. Once the program is ready to re-
ceive or send data, it can initiate the appropriate operations
which will invoke the network functions. The asynchronous
communications are slightly different than synchronous op-
erations in the sense that after their invocation, the program
can continue to compute while the operation is pending. It
is important to note that even with asynchronous operations
the user needs to use other operations such as wait/probe
to complete the pending operation. MPI has clear standard
APIs defined for collective communication patterns and all
MPI implementations follow these specifications. The un-
derlying implementation for such a communication pattern
can use different algorithms based on factors including mes-
sage size among others. Significant research has been done
on MPI collectives [55, 52] and the current implementations
are optimized to an extremely high extent. A comprehen-
sive summary of MPI collective operations and possible al-
gorithms is found in [59].

4.1.2 Dataflow Collective Operations
A communication pattern defines how the links are ar-

ranged in the dataflow graph. For instance a single node
can broadcast a message to multiple nodes in the graph
when they are arranged in a broadcast communication pat-
tern. One of the best examples of a collective operation in
dataflow is Reduce. Reduce is the opposite of broadcast op-
eration and multiple nodes link to a single node. The most
common dataflow operations include reduce, gather, join [9]
and broadcast.

MPI and big data have adopted the same type of collec-
tive communications but sometimes they have diverged in
supported operations. Table 1 shows some of the collective
operations and their availability in MPI and dataflow sys-
tems. Even though some MPI collective operations are not
present in big data systems, they can be effective. Harp [62]
is a machine learning focused collective library and supports
the standard MPI collectives as well as some other opera-
tions like rotate, push and pull.

It is important to observe that dataflow applications use
keyed collective operations. Unlike in MPI where the opera-
tions happen in-place, dataflow operations happen between
individual tasks. Without keyed operations, it is not possi-
ble to direct the outcome of a collective operation to a task.

4.1.3 Optimized Dataflow Collective Operations
Each task in a dataflow graph can only send and receive

Figure 8: Collective operation with sub-tasks ar-
ranged in a tree

data via its input and output ports and parallel tasks can-
not communicate with each other while performing compu-
tations. The authors of this paper propose collective op-
erations as a dataflow graph enrichment, which introduces
sub-tasks to the original dataflow graph. Fig ?? and Fig. 8
show the naive implementation and our proposed approach
for dataflow collective operations. In this approach, the col-
lective operationâĂŹs computation is moved to a sub-task
under which the collective operation depends. These sub-
tasks can be connected to each other according to differ-
ent data structures like trees and pipes in order to opti-
mize the collective communication. This model preserves
the dataflow nature of the application and the collective
does not act as a synchronization barrier. The collective
operation can run as data becomes available to each indi-
vidual task, and the effects of unbalanced load and timing
issues in MPI are no longer applicable. For collective oper-
ations such as broadcast and scatter, the original tasks will
be arranged according to data structures required by such
operations. We identify several requirements for a dataflow
collective algorithm.

1. The communication and the underlying algorithm should
be driven by data.

2. The algorithm should be able to use disks when the
amount of data is larger than the available memory.

3. The collective communication should work on parti-
tions of data and need to finish only after all the par-
titions are processed.

4.1.4 High Performance Interconnects
RDMA (Remote Direct Memory Access) is one of the

key areas where MPI excels. MPI implementations support
a variety of high-performance communication fabrics and
performs well compared to Ethernet counterparts. Some
RDMA fabrics are developed especially targeting MPI [10]-
type applications. Recently there have been many efforts
to bring RDMA communications to big data systems, in-
cluding HDFS [36], Hadoop [43] and Spark [44]. The big
data applications are primarily written in Java and RDMA
applications are written in C/C++, requiring the integra-
tion to go through JNI. Even by passing through additional
layers such as JNI, the application still performs reasonably
well with RDMA. One of the key forces that drags down the
adoption of RDMA fabrics is their low level APIs. Nowa-
days with unified API libraries such as Libfabric [30] and
Photon [39], this is no longer the case.



Table 1: MPI and big data collective operations
MPI Big Data Algorithms available

Small Messages Large Messages
Reduce Reduce, Keyed

Reduce
Flat/Binary/N-ary/Binomial Tree Pipelined/Double/Split Binary Tree,

Chain
AllReduce N/A Recursive Doubling, Reduce followed

by Broadcast
Ring, Rabenseifner Algorithm, Recur-
sive Doubling, Vector Halving with
Distance Doubling

Broadcast Broadcast Flat/Binary Tree Pipelined/Double/Split Binary Tree,
Chain

Gather Aggregate, Keyed
Aggregate

Flat/Binary/N-ary/Binomial Tree Pipelined/Double/Split Binary Tree,
Chain

AllGather N/A Recursive Doubling, Reduce followed
by Broadcast

Ring, Rabenseifner Algorithm, Recur-
sive Doubling, Vector Halving with
Distance Doubling

Barrier N/A Flat/Binary/Binomial Tree
Scatter N/A Flat/Binary Tree Pipelined/Double/Split Binary Tree,

Chain
N/A Join Distributed radix hash, sort merge

4.2 Task Scheduling, Threads & Processes
Task scheduling is a key area in which MPI, static and

dynamic dataflow systems differ. From an MPI perspec-
tive, the task scheduling is straightforward, as MPI only
spawns processes to run. It is the responsibility of the user
to spawn threads and assign the computations appropriately.
This process becomes harder for the MPI programmer when
designing applications to run on many-core and multicore
systems. Here it is worth noting that the vast majority of
programmers are not comfortable with threads, let alone
possess the skill to get good performance from them by ef-
ficient use of locks.

Static and dynamic scheduling are the two main paradigms
used in scheduling tasks.

Figure 9: Top: Stream task scheduled in 4 CPU in
a chain. Bottom: All streaming tasks scheduled in
a single CPU.

Static graph scheduling necessitates the graph be avail-
able from the beginning. Because streaming systems require
the entire graph to run continuously, this is the only way for
such systems to operate. However that does make it harder
to express complex applications, especially when containing

loops. So this approach is suitable for data parallel applica-
tions such as streaming and data pipelines. Because the en-
tire graph is available upon submission, graph optimization
techniques can be applied to obtain the execution graph.

Dynamic graph scheduling allocates and schedules tasks
at the run-time as the computation progresses. Because the
graph is generated on the fly by a control program, more
complex operations can be specified easily. AMT systems
are dynamic graph execution systems. Being driven by a
normal program, this method is not suitable for streaming
data applications.

4.2.1 Streaming & Batch Task Scheduling
Streaming systems need to allocate all the tasks of the

graph to run continuously, as well as optimize for latency.
To illustrate requirements of stream task scheduling, let us
take a hypothetical example where we have 4 computations
to execute on a stream of messages with each computation
taking t CPU time. Assume we have 4 CPUs available and
the data rate is 1 msg per t CPU time. If we run all 4
tasks on a single CPU as shown in Fig. 9, it takes t × 4
time to process one message and the computation cannot
keep up with the stream using 1 CPU. So we need to load
balance between the 4 CPUs and the order of the processing
is lost unless explicitly programmed with locks to keep the
state across 4 CPUs. But it is worth noting that the data
remains in a single thread while the processing happens,
thus preserving data locality. If we perform the schedule
as in Fig. 9 the data locality is lost but the task locality is
preserved. [40] describes stream computation scheduling on
multicore systems in great detail.

For batch dataflow applications, the tasks are executed
as the computation progresses. This means sequential tasks
can run on a single CPU as time passes, unlike in a streaming
system. Usually a single thread is scheduled to run on a
single core and when the tasks become ready to run, this
thread can execute them.

4.2.2 Execution of Tasks
As described earlier, a thread-based shared memory model



Figure 10: Task scheduling and execution of dataflow frameworks

is used for executing the tasks of the dataflow. This al-
lows both pipelined execution of tasks and sharing of data
through memory. Such pipelined execution of tasks is crit-
ical for streaming and data pipeline application to achieve
efficient computations. Because of the large number of cores
available in modern systems, it is required to strike a balance
between the number of executor processes run in a single
node. If fewer executors run in a node, that means a single
executor has to cope with larger memory, which can lead to
TLB misses and long JVM GC pauses. If more executors
are used, the data has to be moved among the processes.

4.3 Data Management & Fault Tolerance
Big data applications work with input data and interme-

diate data generated through calculations. Apart from this,
some state has to be maintained about the computations. In
most applications the input data is not updated and model
data is updated frequently. A MPI application delegates
the complete data management to user, allowing her to load
data, partition the data and place the data as needed. The
same data set can be updated though-out the computations
allowing efficient use of memory. Because partitioning and
placement of the data is controlled by the user, this approach
allows the best possible optimizations.

Even-though MPI approach is flexible, user needs to work
with low level details in-order to write such applications.
Distributed shared memory architectures have been pro-
posed to ease some of the burdens of data management from
user. Dataflow runtimes can use distributed shared mem-
ory [51] (DSM) for data and state management. In general
a DSM presents distributed memory as a continuous global
address space to the programmer. In such systems, the tasks
of the graph are only allowed to work with DSM and no lo-
cal process level state is kept. This permits the tasks of
a dataflow graph to be migrated freely among the nodes.
The migration allows the system to recover from node fail-
ures and balance load at runtime. HPC community has
developed systems such as partitioned global address space
(PGAS) [18] distributed memory. The big data community
developed DSM technologies like RDD [60] for the same pur-
pose.

RDD and other big data DSMs are a relaxed implementa-

tion of general DSM architecture where only coarse-gained
operations are allowed. These DSMs are immutable, mean-
ing once created they cannot be changed. Because tasks of a
dataflow application work on partitions of such distributed
memory, when a task fails it can be migrated and recal-
culated without any side effects. If there are global data
dependencies for a partition of such a distributed data set,
complete operations may be required to execute again, so
checkpointing mechanisms are employed to save state in or-
der to reduce deep recalculations. Because these data sets
are immutable, they need to be created every time there are
updates to them. This can lead to unnecessary resource con-
sumption for complex iterative application where the models
change frequently during calculations. These DSMs do not
allow random access and fine grained control of data, which
can lead to inefficiencies in complex applications [38]. It is
worth noting that, they work extremely well for pleasingly
parallel data pipeline type applications.

Fault tolerance is tightly coupled with how the state is
managed. If fine-grained control of state is allowed, the
checkpointing has to take these into account. The frequency
of such checkpointing is mostly given as an option to the
application developer. Such an architecture would require
recalculation of large portions of the application in case of
a failure depending on the rate of checkpointing.

5. SYSTEMS DESIGN
We have chosen a representative set of runtimes that can

support at least one of the application areas comfortably,
then studied their strengths and weaknesses related to the
design choices they have made. Table 2 shows these systems
along with design choices and their applicability to the three
application areas. MPI is the default choice for HPC appli-
cations and HPX-5 is an AMT system. Both can handle
applications with tightly synchronized parallel operations.
Spark and Flink are mainly data pipeline systems, with
Flink being able to handle streaming computations naively
because of its static scheduling. Spark is a dynamic schedul-
ing system and cannot handle low latency streaming com-
putations. Storm/Heron are streaming systems that cannot
handle batch applications but are well suited for streaming
analytics.



Table 2: Design choices of current runtimes
Frameworks

MPI HPX-5 Spark Flink Naiad Storm/Heron
Task Scheduling Static Dynamic Dynamic Static Static Static
Execution User control Task-based

threads
Task-based
threads

Task-based
threads

Task-based
threads

Task-based
threads

API In-place com-
munication

Task-based Data transfor-
mation

Data transfor-
mation

Data transfor-
mation

Explicit graph
creation

Optimized commns Yes Yes No No No No
RDMA Yes Yes No No No No
DSM No Fine grained Coarse

Grained
Coarse
Grained

Coarse
Grained

No

Streaming No No Yes - high la-
tency

Yes Yes Yes

Data pipelines No No Yes Yes Yes N/A
Machine learning Yes Yes Performance

can be poor
Performance
can be poor

N/A N/A

5.1 A Toolkit for Big Data
Our study has identified high level features of a big data

runtime that determine the type of application which can
be executed efficiently. This toolkit aims to compose sys-
tems using well-defined components, and has the following
implications: 1) It will allow developers to choose only the
components that they need in order to develop the appli-
cation. For example, a user may only want MPI-style com-
munication with a static scheduling and distributed shared
memory for their application; 2) Each component will have
multiple implementations, allowing the user to support
different types of applications, e.g., the toolkit can be used
to compose a system that can perform streaming computa-
tions as well as data pipelines. We observed that communi-
cations, task scheduling and distributed shared memory (if
required) are the three main factors affecting the applica-
tions. The API needs to adapt to each of these choices as
well. Table 3 shows the different capabilities expected from
different types of big data applications described herein.

Figure 11: The toolkit approach

We propose a high performance communication library
including both MPI and dataflow style communications, a

task scheduler capable of scheduling according to different
requirements, a thread-based task executor, and a low-level
graph representation API as the basis of the toolkit. This
can be further enhanced with a distributed shared memory
implementation supporting coarse-grained and fine-grained
operations. Different APIs can be built on top of such a
system including low-level and high-level APIs to support
different use cases. High level APIs can be in the form of
languages, SQL queries or domain specific APIs. The sup-
port of classic HPC communications such as MPI will further
enhance the system’s adaptability to existing legacy appli-
cations.

6. CONCLUSIONS & FUTURE WORK
We foresee that the share of large-scale applications driven

by data will increase rapidly in the future. The HPC com-
munity has tended to focus mostly on heavy computational
bound applications, and with these new developments there
is an opportunity to explore data-driven applications with
HPC features such as high-speed interconnects and many-
core machines. The data-driven computing frameworks are
still in the early stages, and as we discussed there are four
driving application areas (streaming, data pipelines, ma-
chine learning, service) with different processing require-
ments. In this paper we discussed the convergence of these
application areas with a common event driven model. We
also examined the choices available in the design of frame-
works supporting big data with different components. Ev-
ery choice made by a component has ramifications for per-
formance of the applications the system can support. We
believe the toolkit approach gives user the required flexibil-
ity to strike a balance between performance and usability
and allows the inclusion of proven existing technologies in a
unified environment. This will enable a programming envi-
ronment that is interoperable across application types and
system infrastructure including both HPC and clouds where
in latter case it supports a cloud native framework [3]. The
authors are actively working on the implementation of vari-
ous components of the toolkit and APIs in order to deliver
on the promised flexibility across various applications and
systems.



Table 3: Requirements of applications
Type of applications Capabilities

Scheduling API Communications Data and State
Streaming Static Scheduling Static graph API Optimized Dataflow

Collectives
Coarse grain DSM, Lo-
cal

Data Pipelines Static/Dynamic
Scheduling

Static or dynamic
graph generation

Optimized dataflow
collectives

Coarse grain DSM, Lo-
cal

Machine learning Dynamic Scheduling Dynamic graph gener-
ation

Optimized
dataflow/MPI col-
lectives

Fine grain DSM, Local

FaaS Dynamic Scheduling Dataflow or Workflow P2P Communication Local

Acknowledgments
This work was partially supported by the Indiana Univer-
sity Precision Health Initiative and by NSF CIF21 DIBBS
1443054 and NSF RaPyDLI 1415459. We thank Intel for
their support of the Juliet system, and extend our grati-
tude to the FutureSystems team for their support with the
infrastructure.

7. REFERENCES
[1] Apache NiFi. https://nifi.apache.org/. Accessed: July

19 2017.

[2] AWS Step Functions.
https://aws.amazon.com/step-functions/. Accessed:
July 19 2017.

[3] Cloud Native Computing Foundation.
https://www.cncf.io/. Accessed: 2017-Aug-06.

[4] S. Agarwal, R. Garg, and N. K. Vishnoi. The Impact
of Noise on the Scaling of Collectives: A Theoretical
Approach, pages 280–289. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2005.

[5] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak,
J. Haberman, R. Lax, S. McVeety, D. Mills,
P. Nordstrom, and S. Whittle. Millwheel:
Fault-tolerant stream processing at internet scale.
Proc. VLDB Endow., 6(11):1033–1044, Aug. 2013.

[6] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak,
R. J. Fernández-Moctezuma, R. Lax, S. McVeety,
D. Mills, F. Perry, E. Schmidt, and S. Whittle. The
Dataflow Model: A Practical Approach to Balancing
Correctness, Latency, and Cost in Massive-scale,
Unbounded, Out-of-order Data Processing. Proc.
VLDB Endow., 8(12):1792–1803, Aug. 2015.

[7] M. Anderson, S. Smith, N. Sundaram, M. Capotă,
Z. Zhao, S. Dulloor, N. Satish, and T. L. Willke.
bridging the gap between hpc and big data
frameworks.

[8] M. Balazinska, H. Balakrishnan, S. R. Madden, and
M. Stonebraker. Fault-tolerance in the Borealis
Distributed Stream Processing System. ACM Trans.
Database Syst., 33(1):3:1–3:44, Mar. 2008.

[9] C. Barthels, I. Müller, T. Schneider, G. Alonso, and
T. Hoefler. Distributed Join Algorithms on Thousands
of Cores. Proc. VLDB Endow., 10(5):517–528, Jan.
2017.

[10] M. S. Birrittella, M. Debbage, R. Huggahalli, J. Kunz,
T. Lovett, T. Rimmer, K. D. Underwood, and R. C.
Zak. Intel x00AE; Omni-path Architecture: Enabling

Scalable, High Performance Fabrics. In 2015 IEEE
23rd Annual Symposium on High-Performance
Interconnects, pages 1–9, Aug 2015.

[11] S. Blagodurov, S. Zhuravlev, A. Fedorova, and
A. Kamali. A Case for NUMA-aware Contention
Management on Multicore Systems. In Proceedings of
the 19th International Conference on Parallel
Architectures and Compilation Techniques, PACT ’10,
pages 557–558, New York, NY, USA, 2010. ACM.

[12] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. fog
computing and its role in the internet of things.

[13] G. Bosilca, A. Bouteiller, A. Danalis, T. Herault,
P. Lemarinier, and J. Dongarra. DAGuE: A generic
distributed DAG engine for High Performance
Computing. Parallel Computing, 38(1):37 – 51, 2012.
Extensions for Next-Generation Parallel Programming
Models.

[14] Z. Bozkus, A. Choudhary, G. Fox, T. Haupt, and
S. Ranka. Fortran 90D/HPF Compiler for Distributed
Memory MIMD Computers: Design, Implementation,
and Performance Results. In Proceedings of the 1993
ACM/IEEE Conference on Supercomputing,
Supercomputing ’93, pages 351–360, New York, NY,
USA, 1993. ACM.

[15] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl,
S. Haridi, and K. Tzoumas. Apache flink: Stream and
batch processing in a single engine. Bulletin of the
IEEE Computer Society Technical Committee on Data
Engineering, 36(4), 2015.

[16] C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski,
A. Y. Ng, and K. Olukotun. Map-reduce for machine
learning on multicore. In Proceedings of the 19th
International Conference on Neural Information
Processing Systems, NIPS’06, pages 281–288,
Cambridge, MA, USA, 2006. MIT Press.

[17] J. Conejero, S. Corella, R. M. Badia, and J. Labarta.
task-based programming in compss to converge from
hpc to big data.

[18] M. De Wael, S. Marr, B. De Fraine, T. Van Cutsem,
and W. De Meuter. partitioned global address space
languages.

[19] J. Dean and S. Ghemawat. MapReduce: A Flexible
Data Processing Tool. Commun. ACM, 53(1):72–77,
Jan. 2010.

[20] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil,
C. Kesselman, G. Mehta, K. Vahi, G. B. Berriman,
J. Good, et al. Pegasus: A framework for mapping
complex scientific workflows onto distributed systems.



Scientific Programming, 13(3):219–237, 2005.

[21] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H.
Bae, J. Qiu, and G. Fox. Twister: A Runtime for
Iterative MapReduce. In Proceedings of the 19th ACM
International Symposium on High Performance
Distributed Computing, HPDC ’10, pages 810–818,
New York, NY, USA, June, 2010. ACM.

[22] S. Ekanayake, S. Kamburugamuve, and G. C. Fox.
Spidal java: High performance data analytics with
java and mpi on large multicore hpc clusters. In
Proceedings of the 24th High Performance Computing
Symposium, HPC ’16, pages 3:1–3:8, San Diego, CA,
USA, 2016. Society for Computer Simulation
International.

[23] S. Ekanayake, S. Kamburugamuve,
P. Wickramasinghe, and G. C. Fox. Java thread and
process performance for parallel machine learning on
multicore hpc clusters. In 2016 IEEE International
Conference on Big Data (Big Data), pages 347–354,
Washington, DC, USA, Dec 2016. IEEE.

[24] G. Fox, J. Qiu, S. Jha, S. Ekanayake, and
S. Kamburugamuve. Big Data, Simulations and HPC
Convergence, pages 3–17. Springer International
Publishing, Cham, 2016.

[25] G. Fox, J. Qiu, S. Kamburugamuve, S. Jha, and
A. Luckow. Hpc-abds high performance computing
enhanced apache big data stack. In Cluster, Cloud and
Grid Computing (CCGrid), 2015 15th IEEE/ACM
International Symposium on, pages 1057–1066, New
York, NY, USA, May 2015. IEEE.

[26] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J.
Dongarra, J. M. Squyres, V. Sahay, P. Kambadur,
B. Barrett, A. Lumsdaine, R. H. Castain, D. J.
Daniel, R. L. Graham, and T. S. Woodall. Open MPI:
Goals, Concept, and Design of a Next Generation MPI
Implementation, pages 97–104. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2004.

[27] D. Gannon, R. Barga, and N. Sundaresan. Cloud
Native Applications. IEEE Cloud Computing
Magazine special issue on cloud native computing, to
be published.

[28] B. Gedik, H. Andrade, K.-L. Wu, P. S. Yu, and
M. Doo. SPADE: The System s Declarative Stream
Processing Engine. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’08, pages 1123–1134, New York, NY,
USA, 2008. ACM.

[29] A. Ghoting, R. Krishnamurthy, E. Pednault,
B. Reinwald, V. Sindhwani, S. Tatikonda, Y. Tian,
and S. Vaithyanathan. Systemml: Declarative machine
learning on mapreduce. In 2011 IEEE 27th
International Conference on Data Engineering, pages
231–242, April 2011.

[30] P. Grun, S. Hefty, S. Sur, D. Goodell, R. D. Russell,
H. Pritchard, and J. M. Squyres. A Brief Introduction
to the OpenFabrics Interfaces - A New Network API
for Maximizing High Performance Application
Efficiency. In 2015 IEEE 23rd Annual Symposium on
High-Performance Interconnects, pages 34–39, Aug
2015.

[31] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The synchronous data flow programming language

LUSTRE. Proceedings of the IEEE, 79(9):1305–1320,
1991.

[32] J. Han, H. E, G. Le, and J. Du. Survey on nosql
database. In 2011 6th International Conference on
Pervasive Computing and Applications, pages
363–366, Oct 2011.

[33] T. Hoefler, T. Schneider, and A. Lumsdaine. The
impact of network noise at large-scale communication
performance. In 2009 IEEE International Symposium
on Parallel Distributed Processing, pages 1–8, May
2009.

[34] T. Hoefler, T. Schneider, and A. Lumsdaine.
Characterizing the Influence of System Noise on
Large-Scale Applications by Simulation. In
Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’10, pages 1–11,
Washington, DC, USA, 2010. IEEE Computer Society.

[35] D. Hollman, J. Lifflander, J. Wilke, N. Slattengren,
A. Markosyan, H. Kolla, and F. Rizzi. Darma v. beta
0.5, Mar 2017.

[36] N. S. Islam, M. W. Rahman, J. Jose,
R. Rajachandrasekar, H. Wang, H. Subramoni,
C. Murthy, and D. K. Panda. High performance
rdma-based design of hdfs over infiniband. In
Proceedings of the International Conference on High
Performance Computing, Networking, Storage and
Analysis, SC ’12, pages 35:1–35:35, Los Alamitos, CA,
USA, 2012. IEEE Computer Society Press.

[37] L. V. Kale and S. Krishnan. Charm++: A portable
concurrent object oriented system based on c++. In
Proceedings of the Eighth Annual Conference on
Object-oriented Programming Systems, Languages, and
Applications, OOPSLA ’93, pages 91–108, New York,
NY, USA, 1993. ACM.

[38] S. Kamburugamuve, P. Wickramasinghe,
S. Ekanayake, and G. C. Fox. anatomy of machine
learning algorithm implementations in mpi, spark, and
flink.

[39] E. Kissel and M. Swany. Photon: Remote Memory
Access Middleware for High-Performance Runtime
Systems. In 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops
(IPDPSW), pages 1736–1743, May 2016.

[40] M. Kudlur and S. Mahlke. Orchestrating the
Execution of Stream Programs on Multicore
Platforms. In Proceedings of the 29th ACM SIGPLAN
Conference on Programming Language Design and
Implementation, PLDI ’08, pages 114–124, New York,
NY, USA, 2008. ACM.

[41] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli,
C. Kellogg, S. Mittal, J. M. Patel, K. Ramasamy, and
S. Taneja. Twitter heron: Stream processing at scale.
In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’15, pages 239–250, New York, NY, USA,
2015. ACM.

[42] F. Liang, C. Feng, X. Lu, and Z. Xu. Performance
benefits of datampi: A case study with bigdatabench.
In J. Zhan, R. Han, and C. Weng, editors, Big Data
Benchmarks, Performance Optimization, and
Emerging Hardware: 4th and 5th Workshops, BPOE



2014, Salt Lake City, USA, March 1, 2014 and
Hangzhou, China, September 5, 2014, Revised Selected
Papers, pages 111–123, Cham, 2014. Springer
International Publishing.

[43] X. Lu, N. S. Islam, M. Wasi-Ur-Rahman, J. Jose,
H. Subramoni, H. Wang, and D. K. Panda.
High-performance design of hadoop rpc with rdma
over infiniband. In 2013 42nd International
Conference on Parallel Processing, pages 641–650,
New York, NY, USA, Oct 2013. IEEE.

[44] X. Lu, D. Shankar, S. Gugnani, and D. K. D. K.
Panda. High-performance design of apache spark with
RDMA and its benefits on various workloads. In 2016
IEEE International Conference on Big Data (Big
Data), pages 253–262, Dec 2016.

[45] B. LudÃd’scher, I. Altintas, C. Berkley, D. Higgins,
E. Jaeger, M. Jones, E. A. Lee, J. Tao, and Y. Zhao.
Scientific workflow management and the Kepler
system. Concurrency and Computation: Practice and
Experience, 18(10):1039–1065, 2006.

[46] N. Marz and J. Warren. Big Data: Principles and
Best Practices of Scalable Realtime Data Systems.
Manning Publications Co., Greenwich, CT, USA, 1st
edition, 2015.

[47] T. G. Mattson, R. Cledat, V. CavÃl’, V. Sarkar,

Z. BudimliÄĞ, S. Chatterjee, J. Fryman, I. Ganev,
R. Knauerhase, M. Lee, B. Meister, B. Nickerson,
N. Pepperling, B. Seshasayee, S. Tasirlar, J. Teller,
and N. Vrvilo. The open community runtime: A
runtime system for extreme scale computing. In 2016
IEEE High Performance Extreme Computing
Conference (HPEC), pages 1–7, Sept 2016.

[48] D. G. Murray, F. McSherry, R. Isaacs, M. Isard,
P. Barham, and M. Abadi. naiad: A timely dataflow
system.

[49] M. A. U. Nasir, G. D. F. Morales, D. Garcia-Soriano,
N. Kourtellis, and M. Serafini. The power of both
choices: Practical load balancing for distributed
stream processing engines. In 2015 IEEE 31st
International Conference on Data Engineering, pages
137–148, April 2015.

[50] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4:
Distributed Stream Computing Platform. In 2010
IEEE International Conference on Data Mining
Workshops, pages 170–177, Dec 2010.

[51] B. Nitzberg and V. Lo. distributed shared memory: a
survey of issues and algorithms. Computer.

[52] J. Pješivac-Grbović, T. Angskun, G. Bosilca, G. E.
Fagg, E. Gabriel, and J. J. Dongarra. Performance
analysis of MPI collective operations. Cluster
Computing, 10(2):127–143, 2007.

[53] R. Ranjan. streaming big data processing in
datacenter clouds. IEEE Cloud Computing.

[54] T. Sterling, M. Anderson, P. K. Bohan, M. Brodowicz,
A. Kulkarni, and B. Zhang. Towards Exascale
Co-design in a Runtime System, pages 85–99. Springer
International Publishing, Cham, 2015.

[55] R. Thakur and W. D. Gropp. Improving the
Performance of Collective Operations in MPICH,
pages 257–267. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2003.

[56] W. Thies, M. Karczmarek, and S. Amarasinghe.
StreamIt: A Language for Streaming Applications,
pages 179–196. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2002.

[57] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy,
J. M. Patel, S. Kulkarni, J. Jackson, K. Gade, M. Fu,
J. Donham, N. Bhagat, S. Mittal, and D. Ryaboy.
Storm@twitter. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’14, pages 147–156, New York, NY,
USA, 2014. ACM.

[58] T. White. Hadoop: The Definitive Guide. O’Reilly
Media, Inc., Sebastopol, CA, USA, 1st edition, 2009.

[59] U. Wickramasinghe and A. Lumsdaine. A survey of
methods for collective communication optimization
and tuning. arXiv preprint arXiv:1611.06334, 2016.

[60] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient Distributed Datasets: A
Fault-tolerant Abstraction for In-memory Cluster
Computing. In Proceedings of the 9th USENIX
Conference on Networked Systems Design and
Implementation, NSDI’12, pages 2–2, Berkeley, CA,
USA, 2012. USENIX Association.

[61] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: Cluster computing
with working sets. In Proceedings of the 2Nd USENIX
Conference on Hot Topics in Cloud Computing,
HotCloud’10, pages 10–10, Berkeley, CA, USA, 2010.
USENIX Association.

[62] B. Zhang, Y. Ruan, and J. Qiu. Harp: Collective
Communication on Hadoop. In 2015 IEEE
International Conference on Cloud Engineering, pages
228–233, March 2015.


