
Building a Distributed Block Storage System for Cloud Infrastructure 
 
 
 
 
 
 
 
 

 
 
 

Abstract 
 

The development of cloud infrastructures has 
stimulated interest in virtualized block storage systems, 
exemplified by Amazon Elastic Block Store (EBS), 
Eucalyptus’ EBS implementation, and the Virtual 
Block Store (VBS) system. Compared with other 
solutions, VBS is designed for flexibility, and can be 
extended to support various Virtual Machine 
Managers and Cloud platforms. However, due to its 
single-volume-server architecture, VBS has the 
problem of single point of failure and low scalability. 
This paper presents our latest improvements to VBS for 
solving these problems, including a new distributed 
architecture based on the Lustre file system, new 
workflows, better reliability and scalability, and read-
only volume sharing. We call this improved 
implementation VBS-Lustre. Preliminary tests show 
that VBS-Lustre can provide both better throughput 
and higher scalability in multiple attachment scenarios 
than VBS. VBS-Lustre could potentially be applied to 
solve some challenges for current cluster file systems, 
such as metadata management and small file access. 
 
1. Introduction 
 

The area of cloud computing has been a popular 
topic in both industry and academia in recent years, 
resulting in products such as Amazon Elastic Compute 
Cloud (EC2) [1], Eucalyptus [2], Nimbus [3], 
OpenNebula [4], and OpenStack [5]. These systems 
typically implement Infrastructure as a Service (IaaS) 
in the form of Web services, and dynamically allocate 
computing resources to users in the form of virtual 
machines (VM). In this paper we call software 
implementations of these cloud computing systems 
"cloud platforms", and corresponding physical 
deployments "cloud infrastructures". The development 
of cloud infrastructures stimulates researchers' interests 

in cloud storage systems, including Storage as a 
Service such as Amazon Simple Storage Service (S3) 
[6], distributed file systems such as Hadoop 
Distributed File System (HDFS) [7], and block storage 
systems, such as Amazon Elastic Block Store (EBS) 
[8], the EBS implementation in Eucalyptus, which we 
will call “Eucalyptus EBS” for short, and the Virtual 
Block Store (VBS) [9] system developed by the 
Community Grids Lab of Indiana University. 

Our research in this paper focuses on block storage 
systems and specifically on our VBS system. VBS 
implements similar Web service (WSDL) interfaces to 
EBS, and provides persistent virtual block volumes to 
cloud users. Users can attach their volumes to VM 
instances created in cloud infrastructures, and then use 
the volumes as if they were local disks installed on 
their VMs. 

Different from S3, VBS does not transport data 
through Web service invocations. Web services are 
only used for creating and attaching virtual volumes, 
and data storage is completed in the form of file 
systems or databases created on the volumes. 
Compared with HDFS, VBS is different in the sense 
that it gives users direct control over virtual block 
devices, which can be utilized in various ways – e.g., 
users can deploy a HDFS on a virtual cluster of VMs 
that are using VBS volumes as their storage devices. 
Finally, compared with the storage provided by VM 
instance images, virtual volumes have the advantages 
of persistency and extendibility. Volumes have life 
times that are independent of VM instances, and thus 
can be repeatedly detached from terminated VMs and 
attached to new VMs. Users can create more volumes 
on demand, not limited by the resources of the VM 
images or Virtual Machine Manager (VMM) nodes. 

Going Beyond VBS: VBS is designed to work 
directly with VMMs, with the goal of more flexibility, 
meaning that it can be readily extended to support 
various VMM and cloud platforms. However, due to 
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its single-volume-server architecture, VBS has the 
problems of single point of failure and low scalability. 
To solve these problems, we need to build a new 
distributed storage architecture for VBS, either by 
extending its current architecture with multiple volume 
servers and implementing proper mechanisms for 
integrated storage management and high reliability, or 
by utilizing existing distributed storage technologies 
such as distributed file systems. We find the latter way 
preferable, since it allows us to take advantage of the 
storage management and reliability mechanisms 
provided by existing systems, and concentrate on the 
block storage service implementations. We choose to 
build a new distributed architecture for VBS based on 
the Lustre file system [10], because: (1) it has been 
successfully deployed on many top supercomputers in 
the world, providing high I/O performance and 
excellent scalability and reliability; (2) it is an open 
source project, and thus we can make necessary 
modifications to it to support the functionality of VBS. 
We call the system built on the new architecture “VBS-
Lustre”. By leveraging Lustre’s distributed storage 
solution and fail-over mechanism, VBS-Lustre is able 
to achieve simpler implementation, as well as higher 
reliability, scalability, and I/O throughput than VBS. 
We also have added a set of new features to VBS-
Lustre, including secure access to services, volume 
ownership management, and read-only volume sharing. 
This paper will present the design and implementation 
of VBS-Lustre, compare it with VBS, and discuss its 
merits and shortcomings. 
 
2. Previous work and related technologies 
 
2.1. VBS 
 

VBS was our initial approach to building a block-
level cloud storage system. It provides a set of block 
volume operations to cloud users, including 
volume/snapshot creation and deletion, volume 
attachment and detachment, and volume/snapshot 
description. Fig. 1 shows a typical use case of VBS. 
After creating VM instances in a cloud infrastructure 
such as Nimbus, users can create virtual block volumes 
in VBS, and attach them to their (usually Xen-based) 
VMs. After the attachment is complete, they will be 
able to access the volumes from their VMs as if the 
volumes were local disks. Moreover, users can create 
snapshots of their volumes, which are static "copies" of 
the volumes at a certain time point, and then create 
new volumes based on the snapshots, so that they will 
all have the same initial state and data as the snapshots. 
Users can then attach the new volumes to different 
VMs, launch different processes of computation and 

generate different results. Storage on volumes is off-
instance and persistent, because volumes have different 
life times from VM instances, and will be maintained 
by VBS even after VM images are destroyed. 

 
Figure 1. Use of VBS: volumes and snapshots [9] 

VBS is designed to work directly with VMMs, and 
is not coupled with any specific cloud platform. Fig. 2 
shows its Web service architecture. There are two 
types of nodes – one volume server and one or more 
VMM nodes, and three types of Web services – VBS 
Web service, Volume Delegate Web service, and 
VMM Delegate Web service, in the architecture. On 
the volume server, Logical Volume Manager (LVM) 
[11] is used to manage volumes. On VMM nodes, Xen 
[12] is used to manage VM instances, and the 
technique of Virtual Block Device (VBD) is used to 
attach a block device in Dom0 to DomU instances. The 
iSCSI [13] protocol is used for enabling remote access 
from VMM nodes to logical volumes created on the 
volume server. The Volume Delegate service is located 
on the volume server, responsible for completing LVM 
and iSCSI operations. A VMM Delegate service is 
deployed on each VMM node, responsible for 
completing iSCSI and Xen VBD operations. The VBS 
Web service sits in the front end and answers VBS 
clients' requests, and satisfies them by coordinating the 
operations of Volume Delegate service and VMM 
Delegate service. 

 
Figure 2. VBS web service architecture [9] 

This architecture is simple, and can be readily 
extended to support other types of VMMs and various 
cloud platforms [9]. However, the single volume server 
can result in problems of single point of failure and 
low scalability. The failure of the volume server will 
take the whole system down and cause constant disk 



access errors on related VM instances. The bandwidth 
of the volume server is shared among all volume 
attachments; as a result, the I/O throughput of the 
volumes could degrade fast as the number of 
attachments increases. 

To solve these problems, we have built a new 
distributed architecture with better reliability and 
scalability for VBS, as will be discussed in Section 3. 

 
2.2. Eucalyptus EBS 
 

Eucalyptus is a private cloud platform that 
implements the same interfaces as Amazon EC2, S3, 
and EBS. Similar to VBS, Eucalyptus EBS is also built 
on a single-volume-server architecture, and the main 
difference is that Eucalyptus uses ATA over Ethernet 
[14] to enable remote access to volumes, which limits 
its usability within Ethernet networks. Therefore, it 
also suffers from the problems of single point failure 
and low scalability. For example, [15] reports EBS 
performance degradation in Eucalyptus in cases of 
multiple volume attachments, and [16] presents low 
performance results even in single attachment 
configurations. Based on the application scale of 
Amazon EBS, we hypothesize that it is built on a 
distributed architecture, but little is known about its 
actual design and implementation. 
 
2.3. The Lustre file system 
 

The Lustre file system is a well-known open source 
cluster file system currently owned by Oracle. Lustre 
has been deployed on many of the world’s largest and 
fastest high performance computing (HPC) clusters 
and supercomputers, such as the Jaguar supercomputer 
at Oak Ridge National Laboratory (ORNL), and Big 
Red at Indiana University. 

Lustre uses a highly scalable distributed storage 
architecture, as shown in Fig. 3, and can support up to 
tens of thousands of client systems, scale to petabytes 
(PB) of storage, and provide an aggregate I/O 
throughput of hundreds of gigabytes per second 
(GB/sec). There are four types of roles in this 
architecture: clients, Metadata Server (MDS), Object 
Storage Servers (OSS), and Object Storage Targets 
(OST). MDS manages the metadata of all files in the 
file system, and answer all clients’ namespace 
operation requests. OSSs are responsible for storing the 
actual data of files, and OSTs are storage devices 
connected to OSSs, such as disk arrays or storage area 
networks. A file system can have one MDS and one or 
more OSSs, and each OSS can be connected to one or 
more OSTs. The networking layer of Luster can 

support various network connections, including Elan, 
Myrinet, InfiniBand, and TCP/IP. 

 
Figure 3. Lustre architecture [10] 

The following features of Lustre make it attractive 
for being used as the basis for building a distributed 
architecture for VBS: 

(1) Distributed file storage: Lustre uses an object-
based storage model, and stores data in the form of 
objects on OSTs. File data is striped across objects on 
different OSTs, and users can configure parameters 
such as stripe size and stripe count to achieve best 
performance. The capacity of a Lustre file system 
equals the sum of the capacities of OSTs, and the 
aggregate available bandwidth equals the sum of the 
bandwidth offered by OSSs to clients. Users can 
extend storage capacity by dynamically adding more 
OSSs and OSTs. Data striping balances work load 
among OSSs, leading to high I/O throughput and 
excellent scalability as the number of client increases; 

(2) High reliability mechanisms: as shown in Fig. 3, 
MDSs and OSSs can both be configured into failover 
pairs with shared storage, so that when one node in a 
pair fails, the other one will take over its work load 
until it recovers. OSTs can be configured as RAID to 
handle disk failures better. These mechanisms can be 
utilized to improve the reliability of VBS. 
 
3. VBS-Lustre architecture: a new approach 
 

Leveraging the advantages of Lustre, we have built 
the distributed architecture as shown in Fig. 4 to solve 
the problems of VBS. We call the new system "VBS-
Lustre". In this architecture, a Lustre file system is 
used as the backend for storing all the volumes, and 
each volume or snapshot is implemented as a file. We 
call the file corresponding to a volume or snapshot a 
“volume file” or a “snapshot file”. Therefore, all OSSs 
in Lustre are volume servers for VBS-Lustre, and there 
can be multiple Volume Delegate services deployed. 
However, Volume Delegate services don't have to be 



located on OSSs; they can be running on any Lustre 
client node. Every VMM node is configured as a 
Lustre client, and still has one VMM Delegate service 
running on it. The iSCSI protocol is no longer used, 
since VMM nodes can directly access volumes through 
file system interfaces. We change the name of the 
frontend Web service in VBS-Lustre to "VBSLustre 
service", and this service can be deployed anywhere, as 
long as it can communicate with Volume Delegate 
services and VMM Delegate services. A database is 
used to manage volume metadata, including the 
mapping between volume IDs and Lustre file paths, 
attachment information, etc. It is only accessed by the 
VBSLustre service. As in VBS, the VBSLustre service 
completes clients' volume operation requests by 
coordinating the actions of Volume Delegate services 
and VMM Delegate services. Details about how the 
coordination happens will be covered in Section 4. 

 
Figure 4. VBS-Lustre architecture 

Compared with the architecture of VBS, this 
architecture has the following advantages: 

(1) Since volumes are implemented as files, volume 
data is striped across objects stored on different OSTs. 
Therefore, the maximum volume size is not limited to 
the capacity of any single OST or OSS. Moreover, 
since Lustre is optimized for I/O access to large files, 
and volume sizes are usually on the level of tens or 
hundreds of gigabytes, VBS-Lustre can get better 
volume throughput than VBS, as will be shown in 
Section 5; 

(2) Accesses to volumes are now distributed across 
all OSSs, so the aggregate throughput is not limited to 
any single volume server, and the whole system is 
much more scalable than VBS; 

(3) Leveraging Lustre's high availability mechanism, 
volume servers (i.e., OSSs) can be configured into 
failover pairs with shared storages, so that the failure 
of any single volume server does not have a significant 
impact on the whole system. Moreover, since volume 

storage is distributed across different OSSs, even the 
failure of a pair of volume servers is not necessarily a 
fatal problem for the whole system. To avoid a single 
point of failure of the VBSLustre service, multiple 
service instances can be deployed on different nodes, 
and they can share the same database. The reliability of 
the database can be guaranteed by utilizing mature 
database reliability technologies in industry. 
 
4. VBS-Lustre implementation 
 
4.1. Workflows 
 

 
Figure 5. VBS-Lustre workflows 

Workflows define the coordination between Web 
services in VBS-Lustre for competing clients' volume 
operation requests. The Web service APIs provided by 
VBS-Lustre are exactly the same as VBS, but due to 
the new architecture, the implementations of most 
operations are different, as shown in Fig. 5. Most 



workflows in VBS-Lustre are simpler, as explained in 
the following: 

(1) Create-volume and describe-volume: after 
receiving a client’s request for creating a new volume 
of a given size, the VBSLustre service will first 
generate a new volume ID and a path for the 
corresponding volume file, and then invoke a Volume 
Delegate service to create the new volume file. The 
Volume Delegate service will first check if there is 
enough space in the Lustre file system for the new file. 
If the answer is yes, the Volume Delegate service will 
first return a temporary success message, and then start 
a new thread to complete the creation of the new file.  

Upon receiving the success message, the 
VBSLustre service will create a new record of 
metadata for the new volume with a status of 
“pending”, and return this record to the client. If there 
is not enough space for the new volume, the Volume 
Delegate service will return a failure message to the 
VBSLustre service, which will then return a failure 
result to the client.  

When starting the new file creation thread, the 
Volume Delegate service checks if the new volume 
should be created based on a snapshot. If the path of a 
snapshot is given, the thread will execute the “cp” 
command to copy the snapshot file to the volume file 
path; otherwise, the thread will execute the “dd” 
command to fill the new volume file with zeroes until 
the file size reaches the requested volume size. After 
the thread finishes, the Volume Delegate service will 
invoke the VBSLustre service to update the status of 
the new volume. If the command succeeds, the status 
will be set to “available”; otherwise to “failure : cmd 
error”, and a detailed error message will be sent to 
VBSLustre service and logged. After the creation of a 
volume, the client can call the describe-volume 
operation on it, and the VBSLustre service will return 
related metadata. 

 (2) Create-snapshot and describe-snapshot: the 
workflows for snapshot creation and description are 
similar to those of volumes. The main difference is that 
the new file creation thread always executes the “cp” 
command to copy the volume file to the path of the 
new snapshot file. 

(3) Attach-volume: an attach-volume request 
specifies which volume should be attached to which 
VM, and which VMM is hosting the VM. Upon 
receiving a request, the VBSLustre service will invoke 
the corresponding VMM Delegate service to execute 
the “xm block-attach” command to attach the volume 
file as a block device onto the requested VM. If the 
command succeeds, the VBSLustre service will add an 
attachment metadata record for the volume, and return 
the attachment information to the client; otherwise a 
failure message is returned. After a volume is attached, 

the response to a describe-volume operation on it will 
contain its attachment information. 

(4) Detach-volume: the workflow of the detach-
volume operation is similar to attach-volume. The 
main difference is that the command executed by the 
Volume Delegate service is “xm block-detach”. 

(5) Delete-volume and delete-snapshot: the 
workflows of the delete-volumes and delete-snapshot 
operations are similar. Upon receiving a request, the 
VBSLustre service will invoke a Volume Delegate 
service to execute the “rm –f” command to delete the 
corresponding volume or snapshot file. If the command 
succeeds, the VBSLustre service will delete the 
metadata of the volume or snapshot and return success 
to the client; otherwise a failure message is returned. 
 
4.2. Security and access control 
 

In VBS-Lustre, Web service accesses are protected 
with HTTPS channels; users are authenticated through 
public key authentication and are only authorized to 
take operations on volumes and snapshots they created. 

Web services in VBS-Lustre are deployed with the 
Apache Axis2 [17] technology, and public key 
authentication is implemented by applying the Apache 
Rampart module. New accounts are created by adding 
users’ certificates to the trusted certificate store of the 
VBS-Lustre service, and the subject names contained 
in the certificates are added as user IDs. When the 
VBSLustre service is invoked by a client, it will first 
get the certificate of the client through the “Message 
Context” provided by Axis2, find the subject name as 
the user ID, and then check if the volume or snapshot 
that the client is trying to operate on is created by the 
same user ID. If not, an error message will be returned 
to the client. 
 
4.3. Read-only volume sharing 
 

Here by “read-only volume sharing”, we mean 
attaching a volume to multiple VM instances at the 
same time. This is not supported in either Amazon 
EBS or Eucalyptus EBS, but is potentially a very 
useful feature in many cases, especially when the 
shared volume is large, and it takes a significant 
amount of time and space to duplicate it. For example, 
in the QuakeSim [18] project, there are situations 
where we have a large set of Global Positioning 
System (GPS) data and want to perform different types 
of analysis on it. In this case, we can deploy the 
processes for different analysis on different VMs, 
which share a common volume containing the data set 
in read-only mode, and attach a separate volume in 
writable mode to each VM. After the attachment is 



done, we can start the processes on different VMs at 
the same time, and direct their output to the writable 
volumes. 

VBS-Lustre supports read-only volume sharing by 
adding an “attach-mode” parameter to the attach-
volume operation, and adding this information to 
attachment metadata. When a client tries to attach an 
already attached volume to another VM, the 
VBSLustre service will check if the attach-modes of 
both the existing attachment(s) and the new operation 
are read-only, and will only allow the operation to 
continue if the check is passed. On the VMM node, the 
VMM Delegate service completes a read-only 
attachment by executing the “xm block-attach” 
command with an argument of “r”, instead of “w”. The 
distributed volume storage architecture of VBS-Lustre 
can provide good throughput to concurrent reads from 
multiple VM instances. 
 
5. Preliminary performance test 
 

To complete initial validation of VBS-Lustre and 
compare it with VBS, we set up the test beds as shown 
in Fig. 6. In the VBS-Lustre test bed, Lustre 1.8 is 
installed on 1 MDS and 4 OSSs. The MDS has 4 Intel 
Xeon 2.8G CPUs, 512MB of memory, 1 Lsi Logic 
40GB Ultra320 SCSI hard disk, and 2 Seagate 147GB 
10K RPM Ultra320 SCSI hard disks. Each OSS has 2 
AMD Opteron 2.52G CPUs, 2GB of memory, and 1 
IBM 73GB 10K RPM Ultra320 SCSI hard disk. Each 
VMM has the same hardware configuration as an OSS, 
except the memory size is 1.6GB. All machines are 
running Red Hat Enterprise Linux (RHEL) 5.3 and 
using LVM 2.0 to manage the disks. A 20GB logical 
volume is created on the MDS and used for metadata 
storage. A 25GB logical volume is created on each 
OSS and used as an OST, leading to an aggregate 
storage space of 100GB. A stripe size of 4MB is used 
in Lustre, and each volume file is striped across 2 
OSTs. Xen 3.1 is installed on both VMM nodes, and 1 
VM is created on each VMM, which has 1 AMD 
Opteron 2.52G CPU, 256MB of memory, and a 4GB 
CentOS 5.2 disk image. The same VMMs and VMs are 
used in the VBS test bed and local volume test bed. 
The volume server in the VBS test bed has the same 
configurations as an OSS in the VBS-Lustre test bed. 
All nodes are connected to a 1Gb Ethernet LAN. 

We created two 5GB volumes in VBS, two 5GB 
volumes in VBS-Lustre, and one 5GB LVM volume 
on the local disk of each VMM node – we call it a 
"local volume". An ext2 file system is created on each 
volume, and we tested the performance of VBS, VBS-
Lustre, and local volumes in both single-volume and 
two-volume situations. In single-volume situations, 

one VBS volume, one VBS-Lustre volume, and one 
local volume were tested respectively by being 
attached to a VM. In two-volume situations, two VBS 
volumes, two VBS-Lustre volumes, and two local 
volumes were tested respectively by being attached to 
two VMs. Bonnie++ 1.03e [19] was used to complete 
the tests, and a file size of 4GB was used in each test to 
exceed the memory cache size at all possible layers, 
including on VM, on VMM, on the VBS volume 
server, and on Lustre OSSs. A block size of 4KB is 
used in the block read/write tests. In each test, the 
testing process was repeated 10 times to alleviate the 
impact of accidental interruptions. In two-volume 
situations, the testing processes on two VMs were 
started at the same time. 

 
Figure 6. Test bed configurations 

Fig. 7 shows the throughput difference between 
VBS, VBS-Lustre, and local volumes. Numbers are 
average values of 10 test runs. The average values of 
two-volume tests are computed by dividing the average 
aggregate throughput by 2. As can be seen, leveraging 
the distributed volume storage architecture, VBS-
Lustre out-performs VBS on all kinds of operations in 
the single-volume test. VBS-Lustre also performs 
better than local volumes on block operations, although 
not as good on per-char operations, mainly because 
these operations are CPU-intensive, and the overhead 
of VBS-Lustre on them exceeds the benefits of 
distributed volume storage. Moreover, while VBS 
experiences a performance degradation of ~50% or 



even more in the two-volume test, VBS-Lustre is able 
to make use of the bandwidth and disks on all related 
nodes in an aggregated way, and provide both 
consistent per-volume performance and aggregate 
throughput that is not limited by any single server. 
VBS-Lustre has a slight throughput degradation on 
block operations in the two-volume tests, but mainly 
due to different hardware performance on OSS nodes. 

 
Figure 7. Throughput Comparison 

Since a major use case of VBS-Lustre volumes is to 
host file systems, file system metadata operation 
performance is an important concern in our tests. Table 
1 presents the metadata performance of VBS-Lustre in 
both single-volume and two-volume tests. The 
numbers are average values of 10 runs. As can be seen, 
the difference between the two situations is trivial, and 
the aggregate metadata operation throughputs in the 
two-volume tests are almost twice as high as in the 
single-volume tests. 
Table 1. VBS-Lustre metadata performance (files/s) 
Test type Sequential 

create 
Random 
create 

Random 
delete 

single-volume 6629 6654 23211 
two-volume VM1 6510 6724 23312 
two-volume VM2 6565 6771 23274 
two-volume Agg. 13075 13495 46586 
 
6. Conclusion and future work 
 

The primary contribution of this paper is the 
description and initial evaluation of VBS-Lustre, an 
extension of our previous VBS system. Compared with 
VBS, the most significant difference with VBS-Lustre 
is its distributed architecture based on the Lustre file 
system. Leveraging Lustre's distributed storage and 
high availability mechanisms, VBS-Lustre avoids the 
problem of single point of failure, and provides higher 
I/O throughput and better scalability than VBS. VBS-
Lustre also has simpler workflow implementations and 
many new features, including Web service security, 
user access control, and read-only volume sharing. Our 
preliminary performance tests show that VBS-Lustre 

can provide higher throughput than VBS in both single 
attachment and multiple attachments scenarios. 

There are two directions that we will continue to 
work on in the future. On one hand, we will keep 
improving VBS-Lustre for better performance and 
more features. On the other hand, we will consider 
applying VBS-Lustre in other fields, such as 
distributed file systems. 
 
6.1. Future improvements to VBS-Lustre 
 

First, the tests in Section 5 are carried out for just 
validating the implementation of VBS-Lustre, and thus 
not large in scale. We plan to use FutureGrid [22] 
resources to test VBS-Lustre on larger scales in the 
next step. 

Second, the creation of new volumes and snapshots 
are completed with the “dd” and “cp” command, which 
could be a long process for large volumes. We will 
consider modifying Lustre to invent faster solutions. 

Third, new users are now created by directly adding 
their self-signed certificates to the services’ trusted 
certificate store. We will add a certificate authority 
(CA) to VBS-Lustre and implement user creation by 
signing new user’s certificate with this CA. 

Fourth, although Lustre supports commodity 
hardware as OSSs and OSTs, it does not provide 
solutions for their reliability. Therefore, we need to 
find a good reliability mechanism for commodity 
hardware in order to use them in VBS-Lustre. 
 
6.2. Applying VBS-Lustre to build a new type 
of distributed file system 
 

 
Figure 8. VBS File System 

In the previous sections we reviewed the advantages 
of adopting Lustre as a substrate technology for VBS.  
In this section we review potential contributions of 
VBS-Lustre to Lustre. Traditional cluster file systems 
are facing many challenges, such as metadata 
maintenance, small file access, and performance 
degradation when the number of concurrent processes 
increases. For example, currently there is only one 



active MDS in a Lustre file system, which could finish 
3000-15000 metadata operations per second [10]. 
When the number of concurrent processes gets large, 
the MDS could become a performance bottleneck of 
the whole cluster. Based on VBS-Lustre, it is possible 
to build a new type of distributed file system as shown 
in Fig. 8, which we call "VBS File System" (VBSFS). 
VBSFS can provide the same functionalities as cluster 
file systems in certain use cases, and help solve these 
challenges by limiting the scope of competition for 
resources to a smaller number of concurrent processes. 

In VBSFS, all nodes can be attached to volumes in 
VBS-Lustre. Each user of VBSFS is provided with a 
private volume, which is used to create a file system as 
the user's home directory. VBSFS also provides a 
public volume containing a file system where all public 
software and data are installed. The public volume is 
attached to all nodes in read-only mode, and updated 
by system administrators during maintenance time. 
When a user tries to run a process on a node, that node 
will first be attached to the user's private volume, so 
that the process can access all the files in his/her home 
directory. Since VBS-Lustre only supports read-only 
sharing on the volume level, VBSFS cannot handle the 
situations where processes on different nodes are trying 
to write to the same home directory. But for the other 
cases that VBSFS can handle, it has the following 
advantages: 

(1) The workload of Lustre MDS is tremendously 
relieved, since it only needs to maintain the volume 
files' metadata, which are mostly stable; 

(2) User processes' metadata operations happen 
within their private virtual volumes, which are actually 
translated to I/O operations to volume files in Lustre. 
Lustre’s caching and parallel I/O mechanisms can 
make these operations much more efficient than the 
metadata operations taken on Lustre MDS. Therefore, 
VBSFS can potentially achieve a much larger 
aggregate metadata throughput than Lustre. Table 1 in 
Section 5 shows an example of this merit; 

(3) I/O operations to small files in VBSFS are 
translated to I/O’s to sections of big volume files in 
Lustre, and thus can benefit from the caching and 
parallel I/O mechanisms of Lustre, which are specially 
optimized for access to large files; 

(4) In Lustre, every process has to go through the 
MDS for synchronization, so the concurrency domain 
is the whole cluster. In VBSFS, the concurrency 
domains of users' processes are separated by the scope 
of the virtual volumes they access, mostly only the 
users' private volumes. Processes only compete with 
other processes that are accessing the same virtual 
volumes, and the synchronization is handled by the 
driver modules of the on-volume file systems, which 
are running on client nodes. 

While traditional distributed file systems are trying 
to separate concurrency domains by namespace 
partitions or server nodes [10][20][21], VBSFS is 
actually trying to separate concurrency domains by 
users. We believe these ideas of VBSFS are valuable 
for solving various challenges to current cluster file 
systems, and we look forward to combining them with 
traditional systems in our future efforts for conquering 
the challenges. 
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