
An Analysis of Notification Related Specifications for Web/Grid applications

Shrideep Pallickara and Geoffrey Fox
(spallick, gcf)@indiana.edu

Community Grids Laboratory, Indiana University

Abstract

Notification is especially important in the Service Oriented
Architecture (SOA) model engendered by Web Services.
where Web Services interact with each other through the
exchange of messages. In this paper we compare and
contrast two competing specifications in the area of
notifications. The first one, WS-Notification, is part of the
Web Service Resource Framework (WSRF). The second
one is the WS-Eventing specification. These specifications
are expected to have far reaching implications on the
development of asynchronous, complex, dynamic systems.

Keywords: notifications, publish/subscribe, middleware
systems, Web Services, Grid Services, WSRF

1. Introduction

Messaging is a fundamental primitive in distributed
systems. Entities communicate with each other through the
exchange of messages, which can encapsulate information
of interest such as application data, errors and faults,
system conditions, search and discovery of resources. A
related concept is that of notifications where entities
receive messages based on their registered interest in
certain occurrences or situations. Messaging and
notifications are especially important in the Service
Oriented Architecture (SOA) model engendered by Web
Services. Here, Web Services interact with each other
through the exchange of messages.

In this paper we compare and contrast two competing
specifications in the area of notifications. The first one,
WS-Notification [1], is part of the Web Service Resource
Framework (WSRF) [2]. WSRF is a realignment of the
dominant Open Grid Service Infrastructure [3, 4] to be
more in line with the emerging consensus [5] within the
Web Services community. The second one is the WS-
Eventing [6] specification. These specifications are
expected to have far reaching implications on the
development of asynchronous, loosely-coupled, dynamic
systems.

This paper is organized as follows. In section 2 we
present some background information on notifications. In
section 3 we describe related work in the area of
notifications, which spans the gamut from distributed
objects to peer-to-peer messaging systems. In section 4 we
describe the message exchange patterns available in both
WSDL 1.1 and WSDL 2.0. We then provide an overview
of both WS-Notification and WS-Eventing in section 5.

Comparison of the strategies and concepts provided in
these specifications is included in section 6. In section 7
we identify problems stemming from issues not supported
in either specifications. Finally, we include a strategy to
federate between these specifications. Section 9 outlines
our conclusions.

2. A background on notifications

There are two main entities involved in a notification:
the source which is the generator of notifications and the
sink which is interested in these notifications. A sink first
needs to register its interest in a situation, this operation is
generally referred to as a subscribe operation. The source
first wraps occurrences into notification messages. Next,
the source checks to see if the message satisfies the
constraints specified in the previously registered
subscriptions. If so, the source routes the message to the
sink. This routing of the message from the source to the
sink is referred to as a notification.

It should be noted that there could be multiple sources
and sinks within the system. Furthermore, each sink could
register its interests with multiple sources, while a given
source can manage multiple sinks. The complexity of the
subscriptions registered by a sink could vary from simple
strings such as “Weather/Warnings” to complex XPath or
SQL queries.

Typically a source comprises two distinct roles:
producer and publisher. A producer is responsible for
packing occurrences into notification messages, while the
publisher is responsible for publishing these notifications.
Similarly, a sink comprises two distinct roles: subscriber
and consumer. The subscriber is responsible for registering
the consumer’s interests with a source, while the consumer
is responsible for consuming notifications received from a
source.

Depending on the nature of the underlying frameworks
the coupling between the sources and sinks can vary. In
loosely-coupled systems a source need not be aware of the
sinks: the source generates events and an intermediary,
typically a messaging middleware, is responsible for
routing the message to appropriate sinks. In tightly-
coupled systems there is no intermediary between the
source and the sink.

3. Related Work

The area of notifications and messaging in distributed
systems has been very well studied. Here we briefly
review efforts in the areas of distributed objects, queuing

 1/8

systems, publish-subscribe systems and finally P2P style
messaging.

3.1. Distributed objects

The CORBA Event Service [7] approach adopted by
the OMG is one of establishing channels and subsequently
registering suppliers and consumers to the event channels.
In the CORBA Event Service suppliers, consumers and the
event channel itself are all distributed objects. Furthermore,
both suppliers and consumers can choose one of two
modes – push or pull – to interact with the event channel.
The Notification Service [8] addresses limitations
pertaining to the lack of event filtering capability in the
CORBA Event Service. TAO [9] is a real-time event
service that extends the CORBA event service and
provides rate-based event processing, efficient filtering and
correlation.

3.2. Message queuing systems

Message queuing systems such as IBM MQSeries [10]
and Microsoft’s MSMQ [11] involve the creation of
queues that are statically pre-configured to forward
messages from one queue to another. Queuing systems
employ the store-and-forward approach with a queue
storing messages to a stable storage before forwarding
them to another queue. Typically, these systems do not
allow the specification of subscription constraints for
delivery and are generally deployed in systems where the
interests are static and the delivery requirements are
stringent.

3.3. Publish subscribe systems

In publish/subscribe systems the routing of messages
from the publisher to the subscriber is within the purview
of the message oriented middleware (MOM), which is
responsible for routing the right content from the producer
to the right consumers. Publish/Subscribe systems provide
a clear decoupling of the message producer and consumer
roles that interacting entities might have. This is especially
useful if there are a large number of potential consumers
for a given message. In such cases a producer need not
keep track of the large number of consumers that a
message could potentially be routed to. The middleware
performs this function for the publisher. Examples of
messaging infrastructures based on the publish/subscribe
paradigm include NaradaBrokering [12, 13], Gryphon [14],
Elvin [15] and Sienna [16]. Different systems allow for
different subscription constraints. For e.g. in
NaradaBrokering one can specify SQL, XPath and Regular
expression queries as part of subscriptions.

3.4. Peer to Peer systems

Peer to peer (P2P) style messaging involves peers
interacting directly with each other. Some peer interactions

may traverse through multiple peers before reaching the
targeted peer. Several P2P systems use a simple
forwarding approach, with the propagations being
attenuated by the use of TTL (time-to-live) indicators.
Other systems such as FLAPPS [17] provide a generalized
infrastructure for peer network design with peers being
organized into a peer network comprised of overlapping
peer groups with transit peers efficient routing requests.
Routing here is quite efficient. In Distributed Hash Table
(DHT) based P2P overlay networks the nodes are
organized based on the content that they possess. This is
then used to locate, distribute, retrieve and manage data in
these settings. Examples of DHT based systems include
Pastry [18], Squid [19] and JXTA [20]. One advantage of
these DHT-based systems is that the number of hops for
communications is bounded.

4. WSDL and Message Exchange Patterns

Messaging is fundamental to Web Services, and WSDL
[21] which describes these services facilitate the
description of various message exchange patterns
(hereafter MEP) that are possible between service
endpoints. Since these MEPs are defined to be part of the
WSDL document, any node wishing to interact with the
service knows both the sequence and the cardinality of
messages associated with a given WSDL operation.
WSDL 1.1 defined a basic set of MEPs; this has been
expanded upon in WSDL 2.0.

WSDL 1.1 describes four MEPs defining the sequence
and cardinality of abstract messages –- In, Out, Fault –
that are part of a WSDL operation. The MEPs governing
the exchanges between a service S and a node N are one-
way, request/response, notification and solicit. A one-way
message comprises a single Out message from a service S
to node N. A request/response comprises an In message
sent by a node N that is followed by an Out message by
the service S. The notification MEP is simply an Out
message from a service S to a node N. Finally, a solicit
MEP is an Out message from service S followed by an In
message from node N. It must be noted that the Out
message in the notification MEP and the In message in the
solicit MEP can also be a Fault message.

WSDL 2.0 has defined 4 additional MEPs Robust In-
Only, In-Optional-Out, Robust Out-Only and Out-
Optional-In which are extensions to the four MEPs that
were defined in WSDL 1.1. These patterns occur because
of the new fault propagation rules that are part of WSDL
2.0. The MEPs with the optional tag within them are
patterns that comprise one or two messages, with the
second message being a Fault that was triggered because
of the first message in the pattern. The MEPs with the
robust tag within them are patterns with exactly one
message, however a fault may be triggered because of the
first message.

 2/8

5. An Overview of WS-Notification and WS-
Eventing

In this section we provide an overview of WS-

Notification and WS-Eventing. Both these specifications
leverage WSDL, SOAP [22] and WS-Addressing [23] in
their specifications. These specifications outline a set of
SOAP message exchanges between various components

5.1. WS-Notification

The WS-Notification specification refers to a set of
specifications comprising WS-BaseNotification [24], WS-
Brokered Notification [25] and WS-Topics [26]. WS-
BaseNotification standardizes exchanges and interfaces for
producers and consumers of notifications. WS-Brokered
Notification facilitates the deployment of Message
Oriented Middleware (MOM) to enable brokered
notifications between producers and consumers of the
notifications. WS-Topics deals with the organization of
subscriptions and defines dialects associated with
subscription expressions; this is used in the conjunction
with exchanges that take place in WS-BaseNotification
and WS-Brokered Notification. WS-Notification currently
also uses two related specifications from the WSRF
specification; WS-ResourceProperties [27] to describe data
associated with resources, and WS-ResourceLifetime [28]
to manage lifetimes associated with subscriptions and
publisher registrations (in WS-BrokeredNotifications).

Figure 1: WS-BaseNotification - Chief components

Figure 1 depicts the chief components of the WS-
BaseNotification specification. Also, depicted in this
figure are the interactions (along with the directions) that
these components have with each other. In WS-
BaseNotification, a subscriber registers a consumer with a
producer, which in turn includes information regarding the
subscription manager in its response. Consumers can pause
and resume subscriptions, with no messages being
delivered while the subscription is in a paused state.

Resumption of subscriptions after a pause can entail replay
of all notifications that occurred in the interim. After a
disconnect, either due to a scheduled downtime or failure,
a consumer may also retrieve the last message issued by a
producer. Finally, notifications from the producer are
issued directly to the consumer. In WS-Notification each
subscription is considered to be a resource (more
appropriately a WS-Resource [29]). A consumer can use
WS-ResourceLifetime or WS-ResourceProperties to
manage lifetimes and properties associated with these
subscriptions.

Figure 2: WS-BrokeredNotification - Chief components

Figure 2 depicts the chief components of the WS-
BrokeredNotification specification. The notification broker
interface performs the function of an intermediary between
the producers and consumers of content. The broker is
responsible for managing the subscriptions and also for
routing the notifications to the subscriber. Furthermore, the
broker also maintains a topic space (based on the WS-
Topics specification) that allows consumers to review the
list of topics to which publishers publish. It should be
noted that each topic is also a resource and can be
inspected for its properties such as dialect and topic
expressions.

5.2. WS-Eventing

Figure 3 depicts the chief components in WS-Eventing.
When the sink subscribes with the source, the source
includes information regarding the subscription manager in
its response. Subsequent operations –- such as getting the
status of, renewing and unsubscribing –- pertaining to
previously registered subscriptions are all directed to the
subscription manager. The source sends both notifications
and a message signifying the end of registered
subscriptions to the sink.

 3/8

Figure 3: WS-Eventing - Chief components

6. Comparisons & differences in approaches

In this section we compare the difference in the
approaches and philosophies towards some of the key
concepts in these specifications. Our comparisons are
based on the following key points.

♦ Complexity of specifications
♦ Notifications of messages
♦ Delivery Modes
♦ Subscription operations
♦ Topic Space management
♦ Publishing

Subsequent subsections elaborate these issues in detail. It
should be noted that both these specifications recommend
the security strategies outlined by the WS-Security suite of
specifications. Table 1 in the appendix summarizes our
comparisons.

6.1. Complexity of specifications

WS-Notification is a complex specification comprising
three other specifications viz. WS-BaseNotification, WS-
BrokeredNotification and WS-Topics. Furthermore several
elements (such as subscriptions and topic spaces) are also
resources (WS-Resource) as outlined in the WSRF suite of
specifications. In their role as resources these
aforementioned elements also need to support inspection
and modification of the associated properties and lifetimes
as outlined in the WS-ResourceProperties and the WS-
ResourceLifetime specifications respectively. WS-
Eventing on the other hand is a self-contained specification.

6.2. Notification of messages

WS-Notification provides support for both a Notify
message as well as raw application-specific messages. A
subscriber can specify either one these two types of
messages that it is interested in receiving. The Notify
message type also encapsulates topic information within
them. This is especially useful in allowing a consumer to
identify the sub-processes responsible for dealing with

specific topics. For e.g. a consumer may be written in such
a way that different modules handle processing related to
different topics. The WS-BrokeredNotification
specification also provides support for loosely-coupled
interactions since a publisher need not keep track of all its
consumers.

WS-Eventing on the other hand provides support only
for raw application specific messages. The specification
does not outline any specific element for encapsulating the
notifications within the body of SOAP messages. WS-
Eventing notifications do not encapsulate any topic
information within them.

6.3. Delivery modes

WS-Notification currently only outlines the push
delivery mode for notifications. The push model is one in
which notifications are pushed to the consumer. An
advantage of the push model is that notifications are routed
to the consumer as soon as they are available. WS-
Notification however incorporates support for delegated
delivery of notifications. Here an intermediary, the broker,
can push notifications to the consumer.

WS-Eventing also outlines the push model for
notifications. A related specification from Microsoft and
Intel, WS-Management [30] outlines three other modes for
delivery: batched, pull and trap. The first mode, batched,
allows an event source to batch multiple notifications into
a single SOAP envelope. This is an way effective of
reducing the number of notifications from a high volume
notification source without sacrificing too much on
timeliness. The second mode is the pull mode; here a sink
is responsible for polling the source at regular intervals and
pulling notifications if any are available. Though a sink
may not receive notifications instantly, one advantage of
the pull mode is that a sink is always in control of the rate
at which it process notifications. One disadvantage of the
pull mode is the need for continuous polling. The final
mode, the trap mode, leverages the SOAP over UDP
specification and indicates that the sink is interested in
receiving notifications over UDP. It should be noted that in
these extended modes, individual SOAP messages are
expected to include information regarding the subscription
that triggered the receipt of these notifications.

6.4. Subscription operations

Both specifications provide support for delegated
management of subscriptions through the Subscription
Manager interface. Furthermore, the specifications also
allow the specification of XPath constraints to filter
notifications. There are however a few differences in
aspects related to subscriptions.

In WS-Notification the subscription related operations
include subscribe, pause and resume. Pause and resume
relate to the ability to suppress receipt of notifications in

 4/8

the intervening period between them. WS-Notification also
includes support for retrieving the last message that was
published by a publisher on a given topic. The
specification also allows consumers to modify their
termination times. It should be noted that there is no
operation for unsubscribe. Instead, the WS-Notification
specification expects consumers to adjust the time for
expiration of the subscription resource as governed by the
WS-ResourceLifetime specification. This is a problematic
issue since an unsubscribe operation is semantically
different from the expiry of a subscription.

In WS-Notification there is also no exchange which
announces the end of a subscription to a consumer. This is
especially important since the expiration times are based
on the time at the publisher; there is thus no way for a
consumer to know that it is not receiving notifications in
case the clocks at the publisher and consumer are out of
sync (which will most likely be the case). Finally, the filter
expressions supported within the subscriptions include
XPath.

In WS-Eventing the subscription related operations
include subscribe, renew, unsubscribe and subscription-
end. The renew operation relates to the ability to extend
the lifetime of a subscription. There is also a separate
unsubscribe method which allows a sink to unsubscribe its
previously registered interests. A sink receives a
Subscription End notification either as a result of the
lifetime expiring or an unsubscribe operation. Though the
WS-Eventing specification does not support the pause-
renew set of operations, the WS-Management specification
facilitates this operation. There is no separate message in
WS-Eventing to retrieve the last message published by a
source, though this is not really needed if one has the
pause-resume feature from WS-Management. XPath is the
filter expression used within subscriptions.

6.5. Topic Space Management

WS-Notification includes a separate specification, WS-
Topics, which deals with the management of a topic space.
A topic space is essentially a collection of topics. The topic
space also supports inspection based on the exchanges that
are supported in the WS-ResourceProperties specification.
The topic space facilitates hierarchical organization of the
topics within the topic space, though nothing precludes a
topic space from comprising only of root topics. The topic
space also supports two wildcard operators, * and //, for
the selection of topics within a topic tree. In WS-
Notification there is also support for advertisements where
a publisher publishes information regarding the topics that
it will publish to. Furthermore, a consumer can also inspect
the topics available at a producer through the Notification
Producer interface. This consumer can also retrieve
information regarding the topic expression dialects
available at a publisher.

In WS-Eventing there is no formal specification
regarding the management of topics. There is thus no

support for hierarchical topics or the ability to navigate a
topic space to retrieve topics of interest.

6.6. Publishing

In WS-Notification a publisher need not keep track of
all the subscriptions or the routing of events to consumers.
This task is performed by the broker intermediary. WS-
Notification, also supports an important feature known as
on-demand publishing. Here a publisher will publish or
issue notifications only if there is at least one consumer
which is interested in the receipt of these notifications.
This features ensures that bandwidth and computational
resources are not wasted in the creation and publishing of
notifications that no one is interested in. This feature is
also referred to as quenching in distributed middleware
systems.

In WS-Eventing the source keeps track of all sinks, and
is responsible for routing notifications to the sinks. WS-
Eventing does not support delegation of routing related
operations. Since a source always keeps track of all its
consumers, the default mode is on-demand publishing. It
should be noted that the same holds true for WS-
BaseNotification.

7. Issues in the specifications

Subscriptions, in both WS-Notification and WS-
Eventing, do not have a unique identifier associated with
them. This means that if a consumer has its subscription
registered twice, it would be considered as two separate
subscriptions. This situation can easily arise if the
subscription response to the first subscription request was
lost, in which case a subscriber may issue the same request
again. This situation results in the following problems
related to the receipt of messages.
♦ Duplicate receipt of messages: A consumer will

receive duplicate (corresponding to the number of
duplicate subscriptions) copies of notifications from
the producer. Since the consumer has no way of
recognizing these duplicates, it may process these as
separate notifications. In some cases depending on the
application, this may result in unpredictable behavior.
These specification themselves do not have any
information which can be used to identify such
duplicates. It is possible for a producer to include an
additional field, the message identifier to circumvent
this problem. But this feature would then need to be
implemented in a proprietary manner by each system.

♦ Bandwidth utilization problems: Since every
notification is being received multiple times the
bandwidth utilization is not optimal. This problem is
further exacerbated under conditions where the rate
and size of these notifications are quite high.

♦ Management of expiration times. Since a consumer is
aware of only one subscription that is registered at a
producer, even after it unsubscribes/terminates the
subscription in question, it will continue to receive

 5/8

notifications as a result of the duplicated
subscription(s). Once again this may result in
unpredictable behavior at a consumer.

This problem can be assuaged if there were a way for
consumers/sinks to retrieve the list of subscriptions
registered at a producer/source. However, this operation is
not supported in either specification.

8. Federation between the specifications

We believe that it is possible that these specifications
might be deployed concurrently. Federation between these
specifications will allow endpoints in these specifications
to interact with each other. This would involve mapping
the semantics of operations involved in these specifications.
These operations need to be managed by a middleware.
Here we briefly review some of the key issues involved.
First, the operations related to subscriptions need to be
mapped. Here, the requests to unsubscribe and to renew
subscriptions in WS-Eventing should be mapped into the
appropriate calls using WS-ResourceLifetime if needed.
Second, the middleware also needs to maintain a list of
properties that are automatically generated. This would
enable WS-Eventing components to behave as WS-
Resources that facilitate inspection of properties. Delivery
modes supported in either specifications need to be
mapped appropriately. Issues pertaining to pausing and
renewing of subscriptions need to be handled by the
federation module by appropriately keeping track of issued
notifications.

8.1. Deployment of the federation module

To facilitate incremental addition of capabilities to
service endpoints one can also configure filters (examples
include filters for encryption, compression, logging etc.) in
the processing path between the service endpoints. Since
the service endpoints communicate using SOAP messages
these filters operate on SOAP messages. Several of these
filters can be cascaded to constitute a filter pipeline. In
Java these filters are referred to as JAX-RPC handlers, in
gSOAP they are referred to as plugins; while in
Microsoft’s WSE these are referred to as filters. The
federation module can be implemented as a filter and
configured during the deployment phase of the service in
question. Note that this filter strategy while not entail any
changes to the service implementations and applications
using either specifications. Another deployment strategy is
to implement the federation as a proxy, which receives
messages and routes mapped messages appropriately.

9. Conclusions

In this paper we have analyzed and contrasted the two
dominant specifications in the area of Web Services
notifications. Depending on the needs of the application
deployments can choose to leverage either of these
specifications. Table 1 in the appendix summarizes some
of our comparisons.

10. References
1. Web Services Notification (WS-Notification). IBM,

Globus, Akamai et al.
http://www-
106.ibm.com/developerworks/library/specification/ws
-notification/

2. The Web Services Resource Framework.
http://www.globus.org/wsrf/

3. I. Foster, C. Kesselman, J. Nick, S. Tuecke, “The
Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration.”
Open Grid Service Infrastructure WG, Global Grid
Forum, June 22, 2002. Available from
http://www.globus.org/research/papers/ogsa.pdf.

4. The Open Grid Services Infrastructure (OGSI).
http://www.gridforum. org/Meetings/ggf7/drafts/draft-
ggf-ogsi-gridservice-23_2003-02-17.pdf

5. D. Booth, H. Haas, F. McCabe, E. Newcomer, M.
Champion, C. Ferris, and D. Orchard, “Web Services
Architecture.” W3C Working Group Note 11
February 2004. Available from
http://www.w3.org/TR/2004/NOTE-ws-arch-
20040211/.

6. Web Services Eventing. Microsoft, IBM & BEA.
http://ftpna2.bea.com/pub/downloads/WS-
Eventing.pdf

7. The Object Management Group (OMG). OMG’s
CORBA Event Service. Available from
http://www.omg.org/

8. The Object Management Group (OMG). OMG’s
CORBA Notification Service. Available from
http://www.omg.org/

9. T.H. Harrison, D.L. Levine and D.C. Schmidt. The
design and performance of a real-time CORBA object
event service. Proceedings of the OOPSLA'97. Atlanta,
GA.

10. The IBM WebSphere MQ Family. http://www-
3.ibm.com/software/integration/mqfamily/

11. Microsoft Message Queuing.
http://www.microsoft.com/windows2000/technologies
/communications/msmq/default.asp

12. The NaradaBrokering Project.
http://www.naradabrokering.org

13. Shrideep Pallickara and Geoffrey Fox.
NaradaBrokering: A Middleware Framework and
Architecture for Enabling Durable Peer-to-Peer Grids.
Proceedings of ACM/IFIP/USENIX International
Middleware Conference Middleware-2003.

14. G. Banavar et al. An Efficient Multicast Protocol for
Content-Based Publish-Subscribe Systems. In
Proceedings of the IEEE International Conference on
Distributed Computing Systems, Austin, Texas, May
1999.

15. Bill Segall, David Arnold, Julian Boot, Michael
Henderson, and Ted Phelps. Content based routing
with elvin4. In Proceedings AUUG2K, Canberra,
Australia, June 2000.

 6/8

http://www-106.ibm.com/developerworks/library/specification/ws-notification/
http://www-106.ibm.com/developerworks/library/specification/ws-notification/
http://www-106.ibm.com/developerworks/library/specification/ws-notification/
http://www.globus.org/wsrf/
http://www.globus.org/research/papers/ogsa.pdf
http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf
http://ftpna2.bea.com/pub/downloads/WS-Eventing.pdf
http://www.omg.org/
http://www.omg.org/
http://www-3.ibm.com/software/integration/mqfamily/
http://www-3.ibm.com/software/integration/mqfamily/
http://www.microsoft.com/windows2000/technologies/communications/msmq/default.asp
http://www.microsoft.com/windows2000/technologies/communications/msmq/default.asp
http://www.naradabrokering.org/

16. Antonio Carzaniga, David S. Rosenblum, and
Alexander L. Wolf. Achieving scalability and
expressiveness in an internet-scale event notification
service. In Proceedings of the 19th ACM Symposium
on Principles of Distributed Computing, pages 219–
227, Portland OR, USA, 2000.

17. B. Scott Michel, Peter L. Reiher: Peer-through-Peer
Communication for Information Logistics. GI
Jahrestagung (1) 2001: 248-256.

18. Antony Rowstron and Peter Druschel. Pastry: Scalable,
decentralized object location and routing for large-
scale peer-to-peer systems. Proceedings of
Middleware 2001.

19. C. Schmidt and M. Parashar. Enabling Flexible
Queries with Guarantees in P2P Systems, IEEE
Network Computing, Special Issue on Information
Dissemination on the Web, IEEE Computer Society
Press, Vol. 8, No. 3, pp. 19- 26, May/June 2004.

20. Sun Microsystems. The JXTA Project and Peer-to-
Peer Technology http://www.jxta.org

21. Web Services Description Language (WSDL) 1.1
http://www.w3.org/TR/wsdl

22. M. Gudgin, et al, "SOAP Version 1.2 Part 1:
Messaging Framework," June 2003.
http://www.w3.org/TR/2003/REC-soap12-part1-
20030624/

23. Web Services Addressing (WSAddressing)
ftp://www6.software.ibm.
com/software/developer/library/ wsadd200403.pdf

24. Web Services Base Notification (WS-
BaseNotification). IBM, Globus, Akamai et al.

ftp://www6.software.ibm.com/software/developer/libr
ary/ws-notification/WS-BaseN.pdf

25. Web Services Brokered Notification Notification
(WS-BrokeredNotification). IBM, Globus, Akamai et
al.
ftp://www6.software.ibm.com/software/developer/libr
ary/ws-notification/WS-BrokeredN.pdf

26. Web Services Topics (WS-Topics). IBM, Globus,
Akamai et al.
ftp://www6.software.ibm.com/software/developer/libr
ary/ws-notification/WS-Topics.pdf

27. WS-Resource Properties. IBM, Globus, USC et al.
http://www-106.ibm.com/developerworks/library/ws-
resource/ws-resourceproperties.pdf

28. Web Services Resource Lifetime. IBM, Globus, USC
et al. http://www-
106.ibm.com/developerworks/library/ws-resource/ws-
resourcelifetime.pdf

29. I. Foster (ed), J. Frey (ed), S. Graham (ed), S. Tuecke
(ed), K. Czajkowski, D. Ferguson, F. Leymann, M.
Nally, I. Sedukhin, D. Snelling, T. Storey, W.
Vambenepe, S. Weerawarana, “Modeling Stateful
Resources with Web Services v. 1.1.” March 5,
2004. Available from http://www-
106.ibm.com/developerworks/library/ws-resource/ws-
modelingresources.pdf.

30. Web Services Management. Microsoft, Intel et al.
http://msdn.microsoft.com/library/en-
us/dnglobspec/html/ws-management.pdf

 7/8

http://www.jxta.org/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
ftp://www6.software.ibm. com/software/developer/library/ wsadd200403.pdf
ftp://www6.software.ibm. com/software/developer/library/ wsadd200403.pdf
http://www-106.ibm.com/developerworks/library/ws-resource/ws-resourceproperties.pdf
http://www-106.ibm.com/developerworks/library/ws-resource/ws-resourceproperties.pdf
http://www-106.ibm.com/developerworks/library/ws-resource/ws-resourcelifetime.pdf
http://www-106.ibm.com/developerworks/library/ws-resource/ws-resourcelifetime.pdf
http://www-106.ibm.com/developerworks/library/ws-resource/ws-resourcelifetime.pdf
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-management.pdf
http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-management.pdf

Table 1: Comparison of WS-Notification and WS-Eventing
 WS-Notification WS-Eventing
Related Specifications SOAP, WS-Addressing, WS-BaseNotification,

WS-Brokered Notification, WS-Topics, WS-
Resource Properties and WS-ResourceLifetime

SOAP, WS-Addressing

Support for loosely
coupled notifications.
(Producers need not
know consumers)

Yes. The intermediary called Notification
Broker and the exchanges that need to be
supported are defined in the WS-Brokered
Notification specification.

No.

Delivery modes
supported

Push Push
Batched, Pull, & Trap (udp) defined in
WS-Management

Delegated
Management of
subscriptions

Yes. Through the subscription manager
interface.

Yes. Through the subscription
manager interface.

Support for replay like
features

One can get last message to a topic. A sink can
also retrieve message issued between the
pausing and resumption of a subscription.

No. However WS-Management
introduces notion of resume/pause
subscriptions.

Subscription
operations

Subscribe, Pause and Resume. (There is NO
exchange to unsubscribe).

Subscribe, Renew, Unsubscribe and
Subscription End.

Subscription
termination
notification

NO Yes. There is a SubscriptionEnd
notification that is sent out by the
source to the sink anytime the
subscription ends (either an
unsubscribe or termination)

Support for filters on
to narrow notifications

YES YES

Subscription lifetimes Defined using the WS-Resource Lifetime
specification.

Contained within the Subscribe and
Renew exchanges.

Notification filters and
topic expressions
supported

Topic Expressions supported: QName, “/”
separated Strings, and XPath path expressions.

Filter supported is XPath.

Hierarchical topics and
Wildcards support

Yes. Supports * and // wildcards for selection of
topic descendants in a topic tree.

No.

Topic space
management

Defined using WS-Topics. The topic space will
also support exchanges as defined by the WS-
ResourceProperties specification.

No formal recommendation regarding
topic management.

Advertisement of
supported topics

Yes. The NotificationProducer interface allows
inspection of available topics.

No.

On demand publishing YES. This is supported through the WS-
Brokered Notification specification. This allows
a publisher to publish ONLY if there is a
consumer interested in receipt of notifications.

NA. A source always keeps
information regarding the sinks, so on-
demand publishing is the default
mode.

Notification messages Provides support for both a Notify message as
well as “raw” application specific message,

Does not define any special
Notification message type.

Retrieve information
about Topics from
producer

Yes. Also indicates if the set of topics is going
to be dynamic.

NO.

Retrieve info about
topic expression
dialects

Yes. NO

Suggested Security WS-Security and assorted specifications. WS-Security & assorted
specifications.

 8/8

	Introduction
	A background on notifications
	Related Work
	Distributed objects
	Message queuing systems
	Publish subscribe systems
	Peer to Peer systems

	WSDL and Message Exchange Patterns
	An Overview of WS-Notification and WS-Eventing
	WS-Notification
	WS-Eventing

	Comparisons & differences in approaches
	Complexity of specifications
	Notification of messages
	Delivery modes
	Subscription operations
	Topic Space Management
	Publishing

	Issues in the specifications
	Federation between the specifications
	Deployment of the federation module

	Conclusions
	References

