

WHITEPAPER

First International Workshop on Serverless
Computing (WoSC) 2017
Report from workshop and panel on the Status of
Serverless Computing and Function-as-a-Service
(FaaS) in Industry and Research

Geoffrey C. Fox (Indiana University)

Vatche Ishakian (Bentley University)

Vinod Muthusamy (IBM)

Aleksander Slominski (IBM)

This whitepaper summarizes issues raised during the First International Workshop on

Serverless Computing (WoSC) 2017 [1] held June 5th 2017 and especially in the panel [2–5]

and associated discussion that concluded the workshop. We also include comments from

the keynote [6] and submitted papers [7–10]. A glossary at the end (section 8) defines many

technical terms used in this report.

Panel participants: Geoffrey C. Fox (Indiana University), Rodric Rabbah (IBM), Garrett

McGrath (University of Notre Dame), Edward Oakes (University of Wisconsin-Madison),

Ryan Chard (Argonne National Laboratory), and Ali Kanso (IBM)

1 Introduction

Panel participants were asked to provide a short presentation for one of suggested topics

● Describe current state of field in terms of technology and adoption

https://paperpile.com/c/xlVfDA/CnqW+YFLA+rXOj+GSSB
https://paperpile.com/c/xlVfDA/BGTu
https://paperpile.com/c/xlVfDA/8d2r
https://paperpile.com/c/xlVfDA/lhXO+5GbY+oz9B+Gq2d

● Argue that serverless computing is nothing new and point out the relevant literature

and past achievements

● Take the position that serverless computing is fundamentally different and requires

revisiting common assumptions.

● Discuss challenging real-world problems that could be research issues.

● Outline the definition and scope of serverless computing platforms.

● Propose a benchmark to compare serverless platforms.

● Suggest a timeline for evolution of technology and adoption for area

The panel and workshop presentations are linked from the workshop website.

In this whitepaper we will only summarize and emphasize the themes that were raised

during panel and workshop - the detailed notes are available as a separate document.

We believe that serverless computing [11] is not only an exciting platform for researchers

to explore but also for academia to use. There are upcoming changes in leading cloud

analytics platforms to become more serverless (for example Spark [12]) and some

experiments to use serverless directly as runtime for analytics (for example [13]).

2 Basic Definition of Serverless and FaaS

Serverless evolved over time as shown in Fig.

1. The beginning of usage of the term

‘serverless’ can be traced to its original

meaning of not using servers and typically

was applied to peer-to-peer (P2P) software or

client side only solutions [14,15]. In the cloud

context, serverless started to mean that

developers do not need to worry about

servers and in particular just uses SaaS

platforms or services such as Google App

2

https://docs.google.com/document/d/1PYurplOsTqP1hnPCb4jmFYN-GU9UKM1HmHf-HuwYlHY/edit
https://paperpile.com/c/xlVfDA/dXeN+tPWR
https://paperpile.com/c/xlVfDA/3NOr
https://paperpile.com/c/xlVfDA/fTr4
https://paperpile.com/c/xlVfDA/2mJw
http://www.serverlesscomputing.org/wosc17/#panel

Engine [16–18]. The latest serverless

solutions are really server-hidden and

built to host functions and hide that the

functions runs on servers or how scaling

is done. The functions may be part of a

service (for example Azure Data Lake

Analytics or Google Cloud Datalab) or

offered as an independent service called

Function-as-a-Service or FaaS. Note that

unlike SaaS or PaaS that are always

running, but scale on-demand, serverless workloads run on-demand, and consequently,

scale on-demand. Summarizing this, we see that the same term serverless is being used to

describe related but different concepts.

From the IBM tutorial at workshop [19,20], we find their definition of FaaS and Serverless as

● A cloud-native platform

● For short-running, stateless computation

● And event-driven applications

● which scales up and down instantly and

automatically

● And charges for actual usage at a

millisecond granularity

Fig. 2 shows the evolution of

Infrastructure or IaaS from an

old data center model with

explicit servers to serverless

which was described by Barga

in his keynote [6] with the tag

line that “No server is easier to

manage than no server”. More

3

https://paperpile.com/c/xlVfDA/NtY4+Dxq2
https://paperpile.com/c/xlVfDA/8d2r
https://paperpile.com/c/xlVfDA/lxcZ+1p1A+NJeU

details of this evolution are given in Figs. 3 and 4. Hiding the server infrastructure as in

Serverless is coming to attention just as public clouds offer an increasingly rich variety of

instances with compute, memory, accelerator, and I/O choices that offer amazing

functionality but at increasing complexity.

Fig. 5 summarizes some of areas

where today serverless may excel

or have limitations. However

discussion at the meeting

suggested that this characterization

could change. For example today

FaaS, Event driven computing,

stateless, and short running are all

associated with serverless. However

we can expect these important

ideas to evolve independently and

not be tied closely together. For example, event driven FaaS could support long running

jobs and/or be offered on explicit IaaS. Contrastly serverless ideas (hiding the details of

server deployment) could be used on many different cloud computing scenarios. In the

keynote, Barga described Amazon Lambda which is their event driven computing model

underlying their serverless offering. The Lambda homepage [21] describes serverless FaaS

well:

“AWS Lambda lets you run code without provisioning or managing servers. You pay only for the

compute time you consume - there is no charge when your code is not running. With Lambda,

you can run code for virtually any type of application or backend service - all with zero

administration. Just upload your code and Lambda takes care of everything required to run and

scale your code with high availability. You can set up your code to automatically trigger from

other AWS services or call it directly from any web or mobile app.”

Examples of the breadth of serverless included the PyWren MapReduce based on FaaS [13]

and the importance of the event driven computing model to edge computing (see section

4

https://paperpile.com/c/xlVfDA/2mJw
https://paperpile.com/c/xlVfDA/QRtm

5) -- identified as joining serverless as two separate drivers of next generation cloud

computing.

3 Comments on Serverless and FaaS Technologies: The

State of Serverless Computing

3.1 The definition compared to current practice in
serviceless and FaaS

One issue that was raised often was the definition of serverless and Function-as-a-Service

(FaaS) already brought up in section 2. The serverless manifesto poses this well [22]. During

his workshop keynote [6], Roger Barga

defined serverless as the next stage of

in an evolution of cloud computing

from Grid to IaaS Cloud to PaaS/SaaS

to serverless FaaS, where developers

can build services without worrying

about servers; both event driven and

stateless did not seem essential -- just

common features. He used the

graphic shown in Fig. 6. That definition

is much broader than small stateless

functions or FaaS. In contrast the IBM

tutorial [20], defines serverless as

Small Stateless Functions as a Service,

which fits the current state of Apache

OpenWhisk which was a centerpiece

of their contribution. Note small

functions naturally fit the growing use of microservices. Note the smallness of functions

with short running times (“Kill after 5 minutes” and “transient residency”) is important on

the provider-side as it allows low costing of FaaS which is used to fill the load between

5

https://paperpile.com/c/xlVfDA/8d2r
https://paperpile.com/c/xlVfDA/Gm1n
https://paperpile.com/c/xlVfDA/Dxq2

larger jobs on a cloud infrastructure. Still this feature including its important lower cost,

could evolve to just one of several serverless offerings. We can discuss the relation

between Apache Storm (Heron or Amazon Kinesis) compared to Apache OpenWhisk (or

Amazon Lambda). How does the dataflow model in Storm (or Spark and Flink) relate to

FaaS? Eventually FaaS could be an implementation. We can also compare SaaS with FaaS; is

the latter an advanced subset of former? And in general what are the intersections and

overlaps between traditional serverless (where servers literally are not used instead code is

running peer-to-peer to provide services such as storage, messaging, etc.) and event-driven

computing (see Fig. 7)? And is FaaS limited to event-driven computing ? Note Figs. 6 and 7

are inconsistent in detail with the nested classifications of Fig. 6 being relaxed in Fig. 7; this

just reflects the typical confusion in an emerging field.

This discussion leads to natural questions such as why serverless is a good name when you

need to explain what it is? And why not just call it function computing or FaaS, if it is all

about stateless functions? Is serverless just a specialized option or is it good for almost

everything?

6

The Cloud Native Computing Foundation CNCF Serverless Working Group is exploring the

intersection of cloud native and serverless technology and their web resource [23] has a

substantial accumulation of useful information on serverless and FaaS.

The increasing importance of Serverless computing is illustrated by the appearance of the

term “Serverless PaaS” which is "on the rise" in the 2017 Hype Technologies Report [24]

from Gartner.

3.2 What is new about Serverless?

Rodric Rabbah brought forward the recent example of the FCC website that collapsed when

it was unable to handle comments about net neutrality. That is good example where

serverless could be making an immediate real difference - if the FCC used a serverless

platform that would have a better chance to handle the scale of traffic generated. Trying to

decide how many servers to deploy and then maintain their scaling is hard job and unless

substantial expertise is available in-house it is easy to make mistakes. This example brings

up the support of elasticity and cloud-bursting to reach larger capacity sites; scheduling

technology needs to be improved to support this.

What is also making serverless attractive is a cloud offering of an ecosystem of supporting

middleware and artificial intelligence services that integrate seamlessly with the serverless

platform to enable natural language processing, image recognition, manage state, record

and monitor logs, send alerts, trigger events, or perform authentication and authorization.

The use of such services not only present another revenue stream for the cloud provider,

but also enables application dependency on the provider’s ecosystem and vendor lock-in.

Serverless builds upon technologies that have been subject of previous research in

different computing domains, what is particularly new about serverless? Is Serverless be all

and end all of new technologies? What is the real cost of Serverless?

7

https://paperpile.com/c/xlVfDA/8U64
https://paperpile.com/c/xlVfDA/xiy7

3.3 Is Serverless Necessarily Stateless?

The stateless or stateful aspect of serverless produced much discussion. Storing state

external to a “stateless” FaaS could enable many important applications and allow big

datasets to trigger multiple microservice-based FaaS invocations. Here we can look at AWS

Step Functions which can orchestrate a workflow of multiple microservices while RDD in

Spark can store state in an external entity that can easily be accessed by using an

in-memory database. Note the manifesto [22] SLE assertion that in serverless: “permanent

Storage Lives Elsewhere”.

3.4 Provider Side view of Serverless

This was discussed in McGrath’s panel presentation [5] with serverless computing allowing

providers to understand customer applications and to deliver value based on this

information. Applications declare behavior such as the triggering events and one can also

predict behavior -- perhaps with machine learning from logs. The serverless fine grained

programming model gives the provider more flexibility to schedule/optimize. There is

perhaps a relation to JIT compilers here.

There are mutual economic pressures as Cloud providers need to cost-compete by running

datacenters more efficiently (utilization, energy-efficiency) while Cloud customers seek to

reduce cost by minimizing resource waste. Both can be satisfied by better matching of

application needs to allocated services. Serverless computing is a large step forward but

we’re not there yet as we ask for “Never pay for idle, or for wait” [25] as time spent waiting

on network (function executions or otherwise) is wasted by both provider and customer.

Here the billing model of serverless is questioned. The simple view is that one only pays for

what one uses but network delay can lead to billing for unused time.

3.5 Can serverless work for longer running tasks?

8

https://paperpile.com/c/xlVfDA/Gm1n
https://paperpile.com/c/xlVfDA/Gq2d
https://paperpile.com/c/xlVfDA/UIPg

We discussed the compatibility of serverless with long running compute tasks with

different aspects of this being illuminated by the panelists. Long running jobs are of course

well known in High Performance Computing (HPC) with sophisticated scheduling based on

user time estimates: serverless workloads today are very short lived but maybe in the

future will be longer as in HPC. The provider will need to provide a service level agreement

(SLA) and long running tasks give the provider less flexibility in scheduling and more

difficulty in cost-effective SLA’s. Of course, serverless gives the illusion of unlimited

resources and one “just” needs to realize this. One possibility is to handoff long running

jobs to a different container service. Alternatively, AWS Step Functions let you manage long

running flows by combining multiple (small) FaaS invocations.

This question forces one to address the different facets of Serverless independently:

hidden (from user) IaaS, event-based, edge workflows, streaming data, dataflow, micro

(time, size) services. If long running jobs are allowed, you will presumably need

checkpointing.

3.6 Standards

The question of standards was discussed with the clear goal of supporting easy movement

of business logic between different serverless platforms and prevent vendor lock-in. There

are currently no directly applicable standards although it is early days to set standards for a

capability that is still being defined. Further we know that AWS is the market leader of the

field and may not have a clear motivation to develop standards other than the de facto

standard -- their technology. It was noted that a rationale for open sourcing OpenWhisk is

to build a community from which standards can be developed. Further CNCF has a very

relevant working group [15]. Again at this early stage, many smaller players can still upset

the market leader.

Messaging standards, including the machine to machine light-weight pub-sub system MQTT

[18], could relevant while the importance of the generally used Robot Operating System

[19] could lead to standards.

9

3.7 Programming models

We discussed possible programming models (reactive programming, logic programming,

functional, etc.) that could be appropriate to address FaaS including the problem of moving

compute around. Of course as with standards, we are right at the beginning and we can

expect a lot of opportunities for innovation in programming languages and runtime.

Although event-based programming is not totally new, the use in the datacenter is a new

context, while IoT devices need to worry about energy usage. The intersection of FaaS and

traditional Big Data programming environments such as Spark, Flink, Hadoop, Storm and

Heron is discussed in [26,27].

3.8 Are there any cons to Serverless and FaaS?

There was a lengthy discussion of the possible negatives and difficulties with FaaS and

serverless. At the highest level there was concern that users (industry) were chasing the

latest fad (in this case serverless) without consideration of the soundness of the approach.

For example, there are still significant challenges in using OpenStack and Docker at scale. In

latter case, OpenWhisk uses Docker at an unprecedented scale and has uncovered many

concurrency bugs.

Concerns were expressed about maintaining the (attractive) pricing model for Serverless.

This is important for keeping cost down for intermittent streaming applications. Note that

as one uses Serverless for more complex applications, the provider will get additional funds

from the incidental activities such as traditional storage (save state), a supporting

ecosystem of available provider functionality, and computing in the cloud at the expense of

vendor lock-in. Also current (lack of) SLA for serverless may make it unattractive for latency

sensitive applications in Government, Healthcare, and Banking. Serverless will not handle

911 in the near future or until SLA’s are addressed seriously. In this case, one might be

forced to doing FaaS oneself in a private cloud -- i.e. In fact worrying in detail about the IaaS

that you tried to avoid. A different view was expressed that this is not really a con;

10

https://paperpile.com/c/xlVfDA/NO9D+ZsR5

serverless promotes separation of concerns between the application logic and the runtime.

Today the runtime is typically in the cloud, but it could be in-house as well.

The panel discussed using Platform as a Service PaaS instead of FaaS. PaaS is compatible

with scaling up the servers as needed to meet demand. For PaaS, the scaling is reactive and

not deterministic as for FaaS. Further, you still need to manage the workflow and minimum

number of instances for PaaS.

A comparison was made with networking with an analogy drawn between FaaS and

network packet switching with both multiplexing demand. QoS is difficult in both FaaS and

network packet switching with latter compared to circuit switching.

3.9 Current Serverless Systems

The workshop was not aimed at a comprehensive survey of existing serverless

technologies but it certainly did cover the current technology to some extent. Notably the

IBM Tutorial [20] gave a thorough discussion of what is now Apache OpenWhisk. The

keynote from Amazon [6] naturally covered AWS technologies; important as they are the

current commercial leader. As well as AWS Lambda and Kinesis, Barga covered Greengrass

for IoT and X-Ray for debugging.

The Notre Dame paper [9] described their new serverless system built around Docker on

Azure with Windows. They also compared this with Google, AWS. OpenWhisk, and Azure

serverless systems. The performance results seemed quite erratic in this early stage of the

field. This paper defines a benchmark and here we certainly need community

development.

The Wisconsin paper [10] was mainly based on the Pipsqueak python packaging application

but the open source OpenLambda technology was the environment used.

The value of Google Firebase as a serverless IoT tool was emphasized.

11

https://paperpile.com/c/xlVfDA/Dxq2
https://paperpile.com/c/xlVfDA/GSSB
https://paperpile.com/c/xlVfDA/8d2r
https://paperpile.com/c/xlVfDA/rXOj

4 Use Cases for Serverless and FaaS
Of course the future of Serverless and FaaS will critically depend the application drivers and

the breadth of user cases is driving a lot of the current interest in the field [13]. Amazon

Alexa like chatbots are another example of that interest[28]. The event-based model is

familiar from previous work such as CORBA on distributed object technology with RMI

(Remote Method Invocation) or RPC (Remote Procedure Call) implementing FaaS. Rather

old examples of this include “optimization on demand” NEOS [29] and the DoD high level

architecture HLA implementation of distributed simulation [30]. NetSolve and GridSolve

[31] represent the Grid community approach to RPC.

One can also argue that the cloud provider can influence the use cases for Serverless. The

more self awareness (through monitoring) the cloud has (e.g. traffic patterns, resource

utilization, data transfer size/frequency, ...), the more triggers it can offer to its customers

and the more triggers the customer have, the more functions they can write to react to

those triggers. Serverless is a declarative policy-based approach such that the more

triggers we have, the richer the policies can be.

4.1 What are established use cases for serverless?

One major use case motivation as stressed by Barga is user convenience; they do not want

to worry about complex IaaS. A more specific feature is the automatic elastic scaling as is

needed in many e-commerce applications such as ticket sales with surges in popularity. A

broad use case is support of edge computing described in section 5 and in the following we

discuss use-cases covered in papers and presentations.

Barga’s keynote [6] discussed 6 classes of use-cases: web applications, backends including

IoT (section 5), Big Data, Chatbots, Amazon Alexa and IT Automation. Under Big Data, Barga

mentioned PyWren with 600 concurrent functions; he challenged the audience to explore

more sophisticated MapReduce applications. Image thumbnail production; streaming social

media data analysis in Kinesis; data warehouse ETL transformations; e-commerce

recommendations; financial monitoring were discussed. Barga noted that Thomson

12

https://paperpile.com/c/xlVfDA/8d2r
https://paperpile.com/c/xlVfDA/YIGT
https://paperpile.com/c/xlVfDA/2mJw
https://paperpile.com/c/xlVfDA/vJAU
https://paperpile.com/c/xlVfDA/kvmH
https://paperpile.com/c/xlVfDA/ckp4

Reuters processes 4,000 requests per second and Expedia 1.2 billion requests per month

on Lambda. The video hosting company Vevo handles spikes of a factor 80 using serverless

elasticity.

The Wisconsin Pipsqueak paper [10] describes an interesting application to have a large

number of Python library functions available for serverless FaaS. This was achieved with a

sleeping Python interpreter and the package stored in memory and SSD. The IBM paper [7]

goes through a use case where OpenWhisk is used to process results of Vulnerability scans

on Docker containers managed by Kubernetes. The results of the scan posted on a policy

endpoint to be processed by FaaS.

4.2 Can serverless help with scientific research?

The panel considered that serverless and FaaS although currently explored in business, do

have major importance for science and engineering research. For example there are many

scientific Instruments gathering data with custom Laboratory management systems that

could be unified to advantage with FaaS. This is related to applications discussed in section

5 and has been extensively in recent workshops [32,33] on streaming data for science. The

latter raised interesting questions about the functionality of systems like Apache Storm for

science experiments; these typically have events such as huge images that are larger than

those seen commercially. The issues of reproducibility, scalability, and cost need to be

explored for science use cases.

One of the presented papers [8] discussed a science data management use case of

monitoring a HPC storage workload (with over 3 million events/day). The Ripple system

implements a IFTTT (if this then that) model with “that” implemented on AWS Lambda and

using file system event detection for the “this” with Python Watchdog and the Globus

Transfer API. Applications to astronomy and light source data analysis are being

investigated.

13

https://paperpile.com/c/xlVfDA/YFLA
https://paperpile.com/c/xlVfDA/GSSB
https://paperpile.com/c/xlVfDA/CnqW
https://paperpile.com/c/xlVfDA/DUvO+5rWg

5 Edge Computing: A Key Driver for Serverless and FaaS
There is a natural relevance of FaaS and edge computing as latter is inevitably built around

events shared between device and fog; fog and cloud [26]. In fact this link between

serverless and edge computing was an important take-away from the workshop. This

edge-cloud integration can be implemented [34] with Apache Storm (AWS Kinesis) linked to

Apache OpenWhisk (AWS Lambda). It was stressed that we are not proposing to move

computing to the edge but rather to integrate the edge with the cloud. In fact data centers

are getting larger not smaller and we are not moving back to a very distributed core

computing model except for the case where we need to link datacenters to activities at the

edge. Content Delivery Networks, multiplayer games, smart homes [35] and autonomous

vehicles are current important examples, where the latter cases were obviously very hot

with the CES show in Las Vegas January 2017 full of such startups.

iRobot use of Lambda and AWS Step Functions for Image recognition was described by

Barga [6] as an example of inherently distributed serverless application. Barga further

discussed AWS Greengrass [36] extending Lambda to a common cloud-device environment

with interesting quote “Amazon expects that the majority of on-premises hardware will soon

be IoT devices as enterprises move their servers into the cloud. “ AWS Snowball edge storage

and compute runs this Lambda@Edge software. Google Firebase is a related product.

6 Future: What are low hanging fruits for serverless?

The panelists were asked to discuss a timeline and topics for the evolution of the

technology and a discussion of its adoption by users. The suggestions varied from wide

ranging dreams to detailed nuts and bolts.

Optimistically it was predicted that FaaS will be applied to general purpose computing and

it will grow in capability and limitations such as the “5 minute kill limit” will disappear. It will

be great for end developers as they will not need to know scaling and distributed

computing. A hot research topic will be its use for parallel programming which is Barga’s

challenge to extend the MapReduce use of FaaS. It will be applied to batch processing and

14

https://paperpile.com/c/xlVfDA/8d2r
https://paperpile.com/c/xlVfDA/r0oV
https://paperpile.com/c/xlVfDA/AhUF
https://paperpile.com/c/xlVfDA/yXga
https://paperpile.com/c/xlVfDA/NO9D

used to reach exascale on supercomputers. Scientific notebooks need to be integrated with

FaaS. FaaS could further help users by making libraries easier to use as one needn’t put

library routines in one’s code; just invoke them as FaaS.

At a more detailed level, debugging was identified as a near term critical problem where we

need to be able to test locally and then deploy on the edge and the cloud. The debugger

itself should be serverless and support live breakpoints and replay. We can adopt a

test-driven development with unit tests.

Performance is an important issue although not the only one -- usability is for example a

key feature of serverless. More generally, we need to define evaluation metrics [9].

Unikernels are an attractive technology for serverless. There are also security concerns to

be addressed; does one need more than a container for the function and how should

events be made secure?

The billing issues brought up in section 3.4, need to be studied and understood how much

of the delays and overheads are inevitable. It was noted that in AWS Step Functions, one

decouples the billing of the functions from the coordination of the composition.

There was substantial discussion about the programming model and runtime. For runtime,

load balancing (handling communication and computing) and scheduling were identified.

Note the runtime is a provider point of view (allowing magic behind the scenes) and the

programming model the concern of users. Data-locality needs to built into the runtime. The

programming model and runtime need to support key features of serverless: event driven,

hidden servers for users, fine grained billing, implicit distribution, low latency. Analogously

to the Java Virtual Machine JVM, serverless could become a common runtime for multiple

programming models. The fine grain nature of FaaS allows more optimizations than those

conventionally allowed; this needs research. The runtime research needs to understand

what SLA’s are needed and what can be supported.

The identification of common patterns for FaaS is important. This would be coupled to

study of function compositions. Related to composition, we can ask where the “main

program” is located -- does it run (as in some workflow systems) outside the FaaS

15

https://paperpile.com/c/xlVfDA/rXOj

environment. Serverless is right at its start; just as Spark improved on the original

MapReduce, we need the next generation FaaS (which is in fact compatible with Spark, Flink

and Heron!)

Both serverless technologies and their evaluation are immature. We need to develop

benchmarks covering both edge computing and other use cases. This workshop attempts

to address another need; the development of a serverless developer community.

7 Conclusion
To some, serverless and FaaS are the next generation of computing supporting centralized

and edge computing with a common event-driven programming model. Conversely the

drivers of cloud computing are Edge Computing and Serverless. One often discusses

distributed / edge computing versus centralized approaches and wonders how we move

back and forth; the answer is clear -- we have both intrinsically intertwined. Serverless will

build the long dreamed infinite limitless computing fabric.

This white paper aims to capture the current state of serverless and FaaS and hopefully

inspire a broader community to become involved.

8 Glossary
Apache/IBM OpenWhisk: Apache OpenWhisk (Incubating) is a serverless, open source
cloud platform that executes functions in response to events at any scale
http://openwhisk.incubator.apache.org/. It builds on IBM Bluemix project
https://developer.ibm.com/openwhisk/.

Apache Storm and Heron: Open source programming and execution on the cloud for data
streaming. Systems originally developed by Twitter with Heron improving Storm with same
API. http://storm.apache.org/ https://twitter.github.io/heron/

AWS Kinesis: collect, process, and analyze real-time, streaming data in a similar fashion to
Apache Storm https://aws.amazon.com/kinesis

AWS Greengrass: Amazon Lambda supporting local compute, messaging, data caching,
and sync capabilities on a device at the edge [36] https://aws.amazon.com/greengrass/

AWS Lambda: Event-based computing FaaS from Amazon [21]

AWS Step Functions: lightweight orchestration of Amazon Lambda Functions as
distributed applications using visual workflows.https://aws.amazon.com/step-functions/

16

http://openwhisk.incubator.apache.org/
https://developer.ibm.com/openwhisk/
https://aws.amazon.com/greengrass/
https://paperpile.com/c/xlVfDA/QRtm
https://paperpile.com/c/xlVfDA/AhUF
http://storm.apache.org/
https://aws.amazon.com/step-functions/
https://twitter.github.io/heron/
https://aws.amazon.com/kinesis

AWS X-Ray: analyzes and debugs distributed applications, such as those using
microservices and Amazon Lambda https://aws.amazon.com/xray/.

Azure Functions: Implementation of serverless FaaS on Azure.
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview

Cloud Native: applications are designed to run on clouds as preferred host, exploiting
concepts such as containers, microservices, elasticity and serverless https://www.cncf.io/
[37]

Content Delivery Network CDN: is a geographically distributed network of proxy servers
that distribute information from data centers to spatially distributed users with high
availability and high performance. CDNs serve a large fraction of the Internet content toda
https://en.wikipedia.org/wiki/Content_delivery_network

Dataflow: describes a range of computing ideas but here refers to an execution graph
defined by data flowing between nodes as seen in Apache Storm Spark and Flink.

Docker: Open Source container technology for Linux and Windows supporting
operating-system-level virtualization https://en.wikipedia.org/wiki/Docker_(software)

Edge Computing: The processing associated with the Internet of Things IoT and including
local computing resources, often termed Fog computing, devoted to give local low-latency
support to IoT devices. https://en.wikipedia.org/wiki/Fog_computing

Function as a Service FaaS: Event based functions typically executed on serverless
infrastructure and described in section 2 of report

Funktion: Open source event driven lambda style programming model on top of
Kubernetes. https://github.com/funktionio/funktion

Globus Transfer: cloud-controlled secure high-performance data transfers based on
advanced FTP https://www.globus.org/data-transfer

Google Firebase: A mobile development platform linking to the cloud and exploiting
serverless computing Google Functions to process events. https://firebase.google.com/

Google Functions: FaaS provided on Google clouds https://cloud.google.com/functions/

GridSolve: implemented as Netsolve, is an RPC based client/agent/server system that
allows one to remotely access computing functions as a service [31].

High Performance Computing HPC: a community and an approach built to support the
largest scale computational science, especially numerical simulations. Typically uses
supercomputers and achieves very efficient batch scheduled execution. A prominent use of
HPC in Big Data is the training of deep learning networks.

17

https://en.wikipedia.org/wiki/Docker_(software)
https://en.wikipedia.org/wiki/Content_delivery_network
https://aws.amazon.com/xray/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://cloud.google.com/functions/
https://github.com/funktionio/funktion
https://en.wikipedia.org/wiki/Fog_computing
https://firebase.google.com/
https://paperpile.com/c/xlVfDA/ALdg
https://www.cncf.io/
https://paperpile.com/c/xlVfDA/ckp4
https://www.globus.org/data-transfer

Infrastructure as a Service IaaS: makes servers explicit for users of cloud computing but
abstracts away the details of infrastructure like physical computing resources, location,
data partitioning, scaling, security, backup etc.

Kubeless: Kubernetes-native serverless framework https://github.com/kubeless/kubeless

Kubernetes: Open-source platform for automating deployment, scaling, and operations of
application containers such as Docker across clusters of hosts
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/.

Kubernetes Fission: Serverless Functions as a Service for Kubernetes developed by
Platform9
http://blog.kubernetes.io/2017/01/fission-serverless-functions-as-service-for-kubernetes.html

Microsoft Logic Apps: provides a visual interface to specify workflows of connected
applications and triggers in the cloud. https://docs.microsoft.com/en-us/azure/logic-apps/

Microservice: service-oriented architecture (SOA) style that structures an application as a
collection of loosely coupled fine-grained services communicating by lightweight protocols.
https://en.wikipedia.org/wiki/Microservices

OpenLambda: Open-source serverless computing platform. https://open-lambda.org

Platform as a Service PaaS: provides a cloud development environment (middleware)
with details of underlying resources often hidden.
https://en.wikipedia.org/wiki/Cloud_computing

Pipsqueak: Serverless package support from the University of Wisconsin - Madison [10]

PyWren: Python MapReduce with stateless maps running under Amazon Lambda [13]

Ripple: Science event based FaaS application for data management [8]

Serverless: discussed in this whitepaper as a server hidden cloud computing execution
model where provider dynamically manages the allocation of machine resources, and bills
on use rather than on pre-purchased units of capacity.
https://en.wikipedia.org/wiki/Serverless_computing

Software as a Service SaaS: is a cloud computing usage model where providers install and
operate application software in the cloud, which is accessed by cloud users.

Unikernels: are specialised, small specialized high performance single address space
machine images constructed by using operating systems such as MirageOS [38] built as a
library of system capabilities. https://en.wikipedia.org/wiki/Unikernel

18

https://paperpile.com/c/xlVfDA/YFLA
https://open-lambda.org/
https://en.wikipedia.org/wiki/Microservices
http://blog.kubernetes.io/2017/01/fission-serverless-functions-as-service-for-kubernetes.html
https://paperpile.com/c/xlVfDA/2mJw
https://en.wikipedia.org/wiki/Cloud_computing
https://github.com/kubeless/kubeless
https://en.wikipedia.org/wiki/Unikernel
https://en.wikipedia.org/wiki/Serverless_computing
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://docs.microsoft.com/en-us/azure/logic-apps/
https://paperpile.com/c/xlVfDA/GSSB
https://paperpile.com/c/xlVfDA/1G3x

9 Acknowledgements
Geoffrey Fox acknowledges support from the Indiana University Precision Health Initiative

and NSF CIF21 DIBBS 1443054. We also acknowledge the contributions of both the panel

members and participants in the workshop which were essential to the ideas described

here.

10 References
1. WoSC. First International Workshop on Serverless Computing (WoSC) [Internet]. 2017

[cited 16 Jul 2017]. Available: http://www.serverlesscomputing.org/wosc17/

2. Oakes E. On the State of Serverless Computing [Internet]. First International Workshop
on Serverless Computing (WoSC) 2017; 2017 Jun 5; Atlanta. Available:
http://www.serverlesscomputing.org/wosc17/presentations/oakes-workshop-panel.pdf

3. Chard R. FaaS: The future of computing [Internet]. First International Workshop on
Serverless Computing (WoSC) 2017; 2017 Jun 5; Atlanta. Available:
http://www.serverlesscomputing.org/wosc17/presentations/chard-workshop-panel.pdf

4. Kanso A. Serverless? are there any Cons? [Internet]. First International Workshop on
Serverless Computing (WoSC) 2017; 2017 Jun 5; Atlanta. Available:
http://www.serverlesscomputing.org/wosc17/presentations/kanso-panel-public.pdf

5. McGrath G. Provider-Side Serverless Opportunities [Internet]. First International
Workshop on Serverless Computing (WoSC) 2017; 2017 Jun 5; Atlanta. Available:
http://www.serverlesscomputing.org/wosc17/presentations/garrett-workshop-panel.p
df

6. Barga RS. Serverless Computing: Redefining the Cloud [Internet]. First International
Workshop on Serverless Computing (WoSC) 2017; 2017 Jun 5; Atlanta. Available:
http://www.serverlesscomputing.org/wosc17/#keynote

7. La NB, Dettori P, Kanso A, Watanabe Y, Youssef A. Leveraging the Serverless
Architecture for Securing Linux Containers. IBM; 2017. Available:
http://www.serverlesscomputing.org/wosc17/#p3

8. Chard R, Chard K, Alt J, Parkinson DY, Tuecke S, Foster I. RIPPLE: Home Automation for
Research Data Management. Argonne National Laboratory, University of Chicago,
National Center for Supercomputing Applications, Lawrence Berkeley National
Laboratory; 2017. Available: http://www.serverlesscomputing.org/wosc17/#p2

9. McGrath G, Brenner PR. Serverless Computing: Design, Implementation, and
Performance. University of Notre Dame; 2017. Available:

19

http://paperpile.com/b/xlVfDA/lhXO
http://paperpile.com/b/xlVfDA/oz9B
http://paperpile.com/b/xlVfDA/oz9B
http://paperpile.com/b/xlVfDA/rXOj
http://www.serverlesscomputing.org/wosc17/presentations/chard-workshop-panel.pdf
http://paperpile.com/b/xlVfDA/CnqW
http://www.serverlesscomputing.org/wosc17/
http://paperpile.com/b/xlVfDA/BGTu
http://paperpile.com/b/xlVfDA/8d2r
http://paperpile.com/b/xlVfDA/YFLA
http://paperpile.com/b/xlVfDA/Gq2d
http://paperpile.com/b/xlVfDA/Gq2d
http://paperpile.com/b/xlVfDA/CnqW
http://www.serverlesscomputing.org/wosc17/presentations/garrett-workshop-panel.pdf
http://paperpile.com/b/xlVfDA/BGTu
http://www.serverlesscomputing.org/wosc17/#p2
http://www.serverlesscomputing.org/wosc17/#keynote
http://www.serverlesscomputing.org/wosc17/#p3
http://paperpile.com/b/xlVfDA/YFLA
http://paperpile.com/b/xlVfDA/rXOj
http://paperpile.com/b/xlVfDA/5GbY
http://www.serverlesscomputing.org/wosc17/presentations/oakes-workshop-panel.pdf
http://paperpile.com/b/xlVfDA/YFLA
http://paperpile.com/b/xlVfDA/5GbY
http://paperpile.com/b/xlVfDA/YFLA
http://paperpile.com/b/xlVfDA/lhXO
http://paperpile.com/b/xlVfDA/8d2r
http://www.serverlesscomputing.org/wosc17/presentations/garrett-workshop-panel.pdf
http://www.serverlesscomputing.org/wosc17/presentations/kanso-panel-public.pdf

http://www.serverlesscomputing.org/wosc17/#p4

10. Oakes E, Yang L, Houck K, Harter T, Arpaci-Dusseau AC, Arpaci-Dusseau RH. Pipsqueak:
Lean Lambdas with Large Libraries. University of Wisconsin-Madison, Microsoft Gray
Systems Lab; 2017. Available: http://www.serverlesscomputing.org/wosc17/#p2

11. Baldini I, Castro P, Chang K, Cheng P, Fink S, Ishakian V, et al. Serverless Computing:
Current Trends and Open Problems [Internet]. arXiv [cs.DC]. 2017. Available:
http://arxiv.org/abs/1706.03178

12. Greg Owen, Eric Liang, Prakash Chockalingam and Srinath Shankar. Databricks
Serverless: Next Generation Resource Management for Apache Spark. In:
https://databricks.com/blog/2017/06/07/databricks-serverless-next-generation-resourc
e-management-for-apache-spark.html. 7 Jun 2017.

13. Jonas E, Pu Q, Venkataraman S, Stoica I, Recht B. Occupy the Cloud: Distributed
Computing for the 99% [Internet]. arXiv [cs.DC]. University of California, Berkeley; 2017.
Available: http://arxiv.org/abs/1702.04024

14. Ye W, Khan AI, Kendall EA. Distributed network file storage for a serverless (P2P)
network. The 11th IEEE International Conference on Networks, 2003 ICON2003. 2003.
pp. 343–347. doi:10.1109/ICON.2003.1266214

15. Bryan DA, Lowekamp BB, Jennings C. SOSIMPLE: A Serverless, Standards-based, P2P
SIP Communication System. First International Workshop on Advanced Architectures
and Algorithms for Internet Delivery and Applications (AAA-IDEA’05). 2005. pp. 42–49.
doi:10.1109/AAA-IDEA.2005.15

16. SERVERLESS, JUST CODE Focus on what’s most important. In: Google Cloud Platform
[Internet]. [cited 20 Aug 2017]. Available:
https://cloud.google.com/why-google/serverless/

17. Discussion of Serverless Architectures [Internet]. 2016 [cited 20 Aug 2017]. Available:
https://news.ycombinator.com/item?id=11921208

18. Roberts M. Serverless Architectures [Internet]. 4 Aug 2016 [cited 20 Aug 2017].
Available: https://martinfowler.com/articles/serverless.html

19. Castro P, Ishakian V, Muthusamy V, Slominski A. Serverless Programming (Function as a
Service). 2017 IEEE 37th International Conference on Distributed Computing Systems
(ICDCS). 2017. pp. 2658–2659. doi:10.1109/ICDCS.2017.305

20. Castro P, Ishakian V, Muthusamy V, Slominski A. Tutorial 1: Serverless Programming
(Function as a Service) [Internet]. First International Workshop on Serverless
Computing (WoSC) 2017; 2017 Jun 5; Atlanta . Available:
https://icdcs2017.gatech.edu/tutorials/#tutorial1

21. Amazon. AWS Lambda Homepage [Internet]. [cited 16 Jul 2017]. Available:

20

http://dx.doi.org/10.1109/AAA-IDEA.2005.15
http://paperpile.com/b/xlVfDA/GSSB
https://news.ycombinator.com/item?id=11921208
http://paperpile.com/b/xlVfDA/3NOr
http://paperpile.com/b/xlVfDA/NtY4
http://paperpile.com/b/xlVfDA/dXeN
http://paperpile.com/b/xlVfDA/1p1A
http://paperpile.com/b/xlVfDA/3NOr
http://dx.doi.org/10.1109/ICON.2003.1266214
http://paperpile.com/b/xlVfDA/dXeN
http://paperpile.com/b/xlVfDA/GSSB
https://martinfowler.com/articles/serverless.html
http://paperpile.com/b/xlVfDA/2mJw
http://paperpile.com/b/xlVfDA/fTr4
http://paperpile.com/b/xlVfDA/QRtm
http://paperpile.com/b/xlVfDA/NJeU
http://paperpile.com/b/xlVfDA/2mJw
https://cloud.google.com/why-google/serverless/
http://paperpile.com/b/xlVfDA/fTr4
http://arxiv.org/abs/1706.03178
http://paperpile.com/b/xlVfDA/NJeU
http://paperpile.com/b/xlVfDA/Dxq2
http://www.serverlesscomputing.org/wosc17/#p2
https://icdcs2017.gatech.edu/tutorials/#tutorial1
http://paperpile.com/b/xlVfDA/GSSB
http://arxiv.org/abs/1702.04024
http://paperpile.com/b/xlVfDA/tPWR
http://paperpile.com/b/xlVfDA/lxcZ
http://www.serverlesscomputing.org/wosc17/#p4
http://paperpile.com/b/xlVfDA/lxcZ
http://dx.doi.org/10.1109/ICDCS.2017.305
http://paperpile.com/b/xlVfDA/Dxq2
http://paperpile.com/b/xlVfDA/tPWR
http://paperpile.com/b/xlVfDA/Dxq2
http://paperpile.com/b/xlVfDA/3NOr
http://paperpile.com/b/xlVfDA/dXeN
http://paperpile.com/b/xlVfDA/3NOr
http://paperpile.com/b/xlVfDA/2mJw
http://paperpile.com/b/xlVfDA/tPWR
http://paperpile.com/b/xlVfDA/tPWR
http://paperpile.com/b/xlVfDA/NtY4
http://paperpile.com/b/xlVfDA/NtY4

https://aws.amazon.com/lambda/

22. Holbreich A. The Serverless Compute Manifesto [Internet]. 10 Feb 2017 [cited 16 Jul
2017]. Available: http://alexander.holbreich.org/serverless-manifesto/

23. Cloud Native Computing Foundation - CNCF Serverless Working Group [Internet]. [cited
16 Jul 2017]. Available: https://github.com/cncf/wg-serverless

24. Walker MJ. Hype Cycle for Emerging Technologies, 2017. In: Gartner [Internet]. 21 Jul
2017 [cited 20 Aug 2017]. Available:
https://www.gartner.com/doc/3768572/hype-cycle-emerging-technologies-

25. Kehoe B. What’s Missing From Serverless Providers [Internet]. ServerlessConf; 2017 Apr
28; Austin. Available: https://austin.serverlessconf.io/agenda.html

26. Fox G, Kamburugamuve S, Qiu J, Jha S. Next Generation Grid: Integrating Parallel and
Distributed Computing Runtimes for an HPC Enhanced Cloud and Fog Spanning IoT Big
Data and Big Simulations [Internet]. IEEE Cloud 2017 Conference; 2017 Jun 28;
Honolulu, Hawaii. Available:
http://dsc.soic.indiana.edu/presentations/ShortNextGenerationGridHawaiiJune29-17.p
ptx

27. Kamburugamuve S, Fox G. Designing Twister2: Efficient Programming Environment
Toolkit for Big Data [Internet]. Digital Science Center; 2017 Aug. Available:
http://dsc.soic.indiana.edu/publications/Twister2.pdf

28. Yan M, Castro P, Cheng P, Ishakian V. Building a Chatbot with Serverless Computing.
Proceedings of the 1st International Workshop on Mashups of Things and APIs. ACM;
2016. p. 5. doi:10.1145/3007203.3007217

29. Wisconsin Institute for Discovery at the University of Wisconsin in Madison. NEOS
Server: State-of-the-Art Solvers for Numerical Optimization [Internet]. [cited 17 July,
2017]. Available: https://neos-server.org/neos/

30. High-level architecture HLA [Internet]. [cited 17 Jul 2017]. Available:
https://en.wikipedia.org/wiki/High-level_architecture

31. NetSolve/GridSolve RPC based client/agent/server system [Internet]. [cited 17 Jul 2017].
Available: http://icl.cs.utk.edu/netsolve/

32. Geoffrey Fox, Shantenu Jha, Lavanya Ramakrishnan. Streaming and Steering
Applications: Requirements and Infrastructure STREAM2015 [Internet]. 2015. Available:
http://streamingsystems.org/stream2015.html

33. Fox G, Jha S, Ramakrishnan L. STREAM2016: Streaming Requirements, Experience,
Applications and Middleware Workshop Workshop Final Report [Internet]. 2016.
doi:10.2172/1344785

21

https://www.gartner.com/doc/3768572/hype-cycle-emerging-technologies-
http://paperpile.com/b/xlVfDA/xiy7
http://paperpile.com/b/xlVfDA/NO9D
http://paperpile.com/b/xlVfDA/5rWg
http://paperpile.com/b/xlVfDA/5rWg
http://paperpile.com/b/xlVfDA/ZsR5
https://github.com/cncf/wg-serverless
http://paperpile.com/b/xlVfDA/ckp4
http://paperpile.com/b/xlVfDA/NO9D
http://paperpile.com/b/xlVfDA/vJAU
http://dsc.soic.indiana.edu/presentations/ShortNextGenerationGridHawaiiJune29-17.pptx
http://paperpile.com/b/xlVfDA/5rWg
http://paperpile.com/b/xlVfDA/vJAU
http://paperpile.com/b/xlVfDA/kvmH
http://paperpile.com/b/xlVfDA/NO9D
https://neos-server.org/neos/
http://paperpile.com/b/xlVfDA/DUvO
http://paperpile.com/b/xlVfDA/UIPg
http://paperpile.com/b/xlVfDA/kvmH
http://paperpile.com/b/xlVfDA/DUvO
http://dx.doi.org/10.1145/3007203.3007217
http://paperpile.com/b/xlVfDA/vJAU
https://aws.amazon.com/lambda/
http://dx.doi.org/10.2172/1344785
http://paperpile.com/b/xlVfDA/8U64
https://austin.serverlessconf.io/agenda.html
https://en.wikipedia.org/wiki/High-level_architecture
http://paperpile.com/b/xlVfDA/8U64
http://paperpile.com/b/xlVfDA/ZsR5
http://streamingsystems.org/stream2015.html
http://dsc.soic.indiana.edu/presentations/ShortNextGenerationGridHawaiiJune29-17.pptx
http://paperpile.com/b/xlVfDA/kvmH
http://alexander.holbreich.org/serverless-manifesto/
http://paperpile.com/b/xlVfDA/UIPg
http://dsc.soic.indiana.edu/publications/Twister2.pdf
http://paperpile.com/b/xlVfDA/Gm1n
http://paperpile.com/b/xlVfDA/NO9D
http://paperpile.com/b/xlVfDA/xiy7
http://paperpile.com/b/xlVfDA/Gm1n
http://paperpile.com/b/xlVfDA/YIGT
http://icl.cs.utk.edu/netsolve/
http://paperpile.com/b/xlVfDA/ckp4

34. Digital Science Center. IoTCloud Github repository of High Performance Streaming
Software [Internet]. [cited 17 Jul 2017]. Available: https://github.com/iotcloud

35. C2RO: Collaborative Cloud Robotics [Internet]. [cited 17 Jul 2017]. Available:
http://c2ro.com/

36. AWS. AWS Greengrass brings Lambda to IoT devices [Internet]. [cited 17 Jul 2017].
Available:
https://techcrunch.com/2016/11/30/aws-greengrass-brings-lambda-to-iot-devices/

37. Gannon D, Barga R, Sundaresan N. Cloud Native Applications. IEEE Cloud Computing
Magazine special issue on cloud native computing.

38. MirageOS: A programming framework for building type-safe, modular systems
[Internet]. [cited 17 Jul 2017]. Available: https://mirage.io/

22

http://paperpile.com/b/xlVfDA/ALdg
https://mirage.io/
http://c2ro.com/
http://paperpile.com/b/xlVfDA/r0oV
http://paperpile.com/b/xlVfDA/1G3x
http://paperpile.com/b/xlVfDA/yXga
http://paperpile.com/b/xlVfDA/yXga
http://paperpile.com/b/xlVfDA/AhUF
http://paperpile.com/b/xlVfDA/ALdg
http://paperpile.com/b/xlVfDA/1G3x
https://techcrunch.com/2016/11/30/aws-greengrass-brings-lambda-to-iot-devices/
http://paperpile.com/b/xlVfDA/AhUF
https://github.com/iotcloud

