
eScience Workflows 9 years Out: Converging on a Vision

Beth Plale, Geoffrey Fox, Stacy Kowalczyk, Kavitha Chandrasekar
Indiana University

November 19, 2011

1 Introduction

Workflow orchestration tools have gained
deserved recognition for their contributing role to
scientific discovery. For example, a Taverna
workflow designed to identify biological pathways
implicated in the resistance to Trypanosomiasis
was repurposed to study another parasite, Trichuris
muris, by a change of data sets only. However,
adoption of workflow systems is mixed for a tool
that has been studied and applied since 2003. Why
is that? We know now that the science discovery
process is more nuanced and not as highly
repeatable as we thought. Even when two
modelers are using the same weather forecast
model, for instance, they use different physics
(requiring recompilation). It is difficult to
establish a core set of workflows that a critical
mass of scientists will use. Too, workflow systems
abstract a set of tasks into a graph that is most
often viewed through a workflow composer
graphical user interface (GUI) [11]. It can be
difficult for a domain researcher viewing a
workflow through a GUI, or in any form (such as
XML), to discern what the workflow is actually
doing even when the domain scientist is familiar
with the subject of the workflow.1 Guo et al. [14]
point out that workflows have high adoption costs;
it requires a team of vested interests to bring about
a success. For simple tasks, the overhead of
workflow creation, execution, and management is
simply too high. Finally, when one takes a
previously manual sequence of actions and
automates them, some control is lost to the
scientist as not every parameter can be exposed
through the workflow interface.

But we remain optimistic about workflows. A
sizeable benefit of the workflow system is its

1 As observed when talking with a domain scientist about the
poster “Model calibration in the hydrologists workbench” by
JM Perraud et al. WIRADA Science Symposium, Aug 2011

ability to capture relevant metadata and
provenance about the complex task being
orchestrated and do so concurrently with execution
[17]. As the volume of data increases, and the
scientific questions broaden to encompass more
complex and interrelated physical systems,
continuing to rely on manual markup of important
metadata grows more futile. Further, as the sharing
of data sets moves beyond an exchange between
two peers to embrace sharing between generations
of researchers, researchers will count on metadata
and provenance to contain the information from
which they establish both the usability of the data
and their trust in it. Good metadata and
provenance are critical to scientific data
preservation, accountability, and enable proper
governance (legal challenges) [24].

Computational science reproducibility, a utopian
goal today, advances one step closer to reality
through workflows [15]. Reuse, however, is
guaranteed for only as long as the system on which
it runs is operational. If workflow use proliferates,
driven by reproducibility, users will expect to use
workflow snippets from multiple workflow
systems, and it’s not unreasonable for them to
expect the snippets to compose into a single
workflow.

Workflows provide a clear return on investment
for operational use by their ability to handle
repeatable analysis. Their potential for a sizeable
role in the scientific data repository is expanded in
Section 3.
In this study we examine several aspects of
workflow systems with the goal of capturing their
current state and opportunities. In Section 2 we
give an overview of workflow anatomy and
systems. In Section 3 we give a use case that
represents a different direction for workflow
systems in e-Science. Its application at a broad
scale to improve interworkability could have a
significant impact on scientific data sharing. In

Copyright held by authors, 2011 2

Section 4 we discuss the pros and cons of
subworkflow interoperability, which is, simply,
higher level workflow systems handing off
workflow snippets to other workflow systems for
execution. In Section 5 we discuss key features of
workflow systems including a summary of
workflow standards. In Section 6 we give the
results of two assessment studies we carried out on
existing workflow systems. Section 7 focuses on
observations about the Trident Scientific
Workflow Workbench in particular.

2 The Workflow Dissected

 The e-Science workflow is often modeled as an
activity graph where an activity is a single process
block that can be linked to another process block if
a control or data dependency exists between them,
see Fig. 1. Activities in an activity graph are
loosely coupled; with minimal communication
existing between them. The granularity of
activities is most often coarse meaning the process
block is generally larger than, say, a function. An
example of an activity is an instance of a
hydrological forecast model. If the model runs in
parallel, the activity graph might show this
parallelism as multiple activities, one per instance
or it might be modeled as a single activity that is
deployed to an HPC system and runs as a large,
tightly coupled parallel job. An activity might be
as straightforward as a format conversion that
converts a netCDF binary file to an HDF format.
Or it could take complex model output from a 3-
day weather forecast, extract precipitation readings,
and write the readings out to a comma separated
value (CSV) file [24].
Workflow systems often provide default activities
that can be used as components of a workflow.
These activities may be domain independent, such
as third party data movement, or targeted towards a
particular domain such as a BLAST gene sequence
matching activity. Workflow systems can be
categorized by their interaction with and
assumptions about back end compute resources. A
system might be targeted to work with a back end
Linux or Windows cluster, to run workflows on the
user's workstation, or to submit jobs to a Grid,
TeraGrid (Catlett 2002), or a cloud platform. As
the size of the back end resource grows, the
workflow system supporting it provides additional
constructs for large-scale parallel execution of jobs.

Most workflows can be described by a graph that
specifies the interaction between the multiple
services or activities. The devil, however, is in the
details. e-Science researchers who have workflow
needs often have computational needs as well. The
additional complexity brought about by the
computational needs surfaces a more nuanced
version of node interaction shown in Figure 2.

Fig. 1. A workflow graph can include subgraphs, pipelines

and loops

The nodes and edges themselves of a workflow can
have different meanings as shown in Figure 2. A
node could be a task, T, and this task has variation.
Does the workflow orchestration engine expect
that all tasks use a single programming language?
Are there limits on the complexity of the
computation or on where it runs? A model found
frequently in workflow systems that carry out
execution on large-scale computational resources
is the proxy model. The proxy, P, is an entity that
mediates for a task or set of tasks. It enables
legacy code to be used and provides a standard set
of interfaces. A proxy can have its own
orchestration capability. Control flow captures
how a node is invoked. Does P invoke T directly,
as would be the case if P is a workflow engine? Or
control may flow through P as would be the case if
P were an interface layer that made it easier to
bring legacy code, T, into a workflow.

The meaning of input and output edges can vary
from system to system. Is the trigger behavior,
which defines the conditions under which a node
initiates execution, well defined as it is for pure
dataflow computations [16] or less well so?
How well a workflow system can aid a user in
assembling a workflow graph depends on the

Pipeline

Loop

Copyright held by authors, 2011 3

semantics built into the system for understanding
edge inputs and outputs. Is the edge input defined
as any string, or is it known to be a parameter input
file? Finally, often workflows in e-Science move
serious volumes of data between nodes. How is
this movement achieved? Is it an explicit part of
the workflow, or carried out behind the scenes?
The simplest choice is that each node reads from
and writes to disk, allowing one to treat the
execution of each node as an independent job
invoked when all its needed input data are
available on disk. The cost of reading and writing
is often quite acceptable and allows simpler fault
tolerant implementations. One can use messaging
systems to manage data transfer in a workflow and
in extreme cases, simple models where all
communication is handled by a single central
“control node”. Obviously this latter could lead to
poor performance that does not properly scale as
workflow size increases.
The interesting case is when a workflow has two
proxy nodes, P1 and P2, where each represents a
workflow orchestration engine. P1 and P2 nodes
are triggered by a top-level workflow system, P0.
How is data movement handled when multiple
workflow systems are involved? The WS-VLAM
system [30], for instance, uses a common event
services bus. This proxy model can also be an
agent framework [32]. We summarize the
discussion of workflow system dimensions in
Table 2.

Fig. 2. Dimensions of Variability in Workflow System

Architecture

Workflow systems have four major components:
workflow composition, workflow orchestration,
task scheduling, and one or more application task
interfaces. Workflow composition is the process by
which a user chooses functions, describes inputs

and outputs, and determines dependencies to create
the workflow. This process can be accomplished
by a graphical user interface, a command line
interface, a set of configuration files or any
combination of these. Workflow orchestration is
the process by which a workflow works– that is,
how the processes are initiated and executed. Task
scheduling is the process by which individual steps
in a workflow are managed: determining the start
time, marshaling the resources necessary, and
coordinating multiple threads. An application task
interface is the manner in which workflow systems
communicate with applications: web services,
plugins, and other domain specific executables.

Dimension Description Design space
Task Core logic

executed as
workflow node

Programming language
or protocol
restrictions? Limits on
computation?

Edge
semantics

Level of
required
semantics of
inputs and
outputs to task

Limitations to types of
edges? Role of
semantics in
composing workflows.

Trigger
behavior

Condition
under which
node is invoked

Common behavior is
trigger when data
object available on all
input edges

Control Manner in
which node is
invoked.
Involves entity
that originates
invocation.

Is task invoked by
proxy, by workflow
orchestration engine, or
by another task?

Proxy Entity that
mediates for
task or set of
tasks.

Enables legacy code to
be used; has own
orchestration
capability; agent.

Data
Movement

Manner in
which data
becomes
available at
task that needs
input

Assumption of local
file system? Data
movement service?
Embedded in
invocation? Through
message bus?

Table 1. Dimensions of variability in architecting a
workflow system

There are generally two communication systems in
workflow environments corresponding to “control”

Copyright held by authors, 2011 4

and “data” respectively. Obviously, the control
communication would usually have small
messages and very different requirements from the
data network. In this regard, one should mention
the “proxy model” which is often used in Grid
architectures and workflow [12]. The information
flowing between proxy nodes is all essentially
control information.

Some workflow systems are built around the
dataflow concept, this being the original model [3,
27, 29] the interaction scripted in languages like
JavaScript or PHP. Other workflow approaches
extend the “remote method invocation” model
coming from the distributed object paradigm. This
model underlies the Common Component
Architecture2 (CCA) [13]. The Business Process
Execution Language3 (BPEL), an OASIS4 standard
executable language for specifying actions within
business processes with web services, specifies the
control and not data flow of a workflow. Of course,
the control structure implies the dataflow structure
for a given set of nodes; one simple but extremely
important workflow structure is the pipeline. A
more general workflow structure is that of the
directed acyclic graph (or DAG) which is a
collection of vertices and directed edges, each edge
connecting one vertex to another, such that there
are no cycles. That is there is no way to start at
some vertex V and follow a sequence of edges that
eventually loops back to that vertex V again.
Dagman [8] used in Condor5 is a sophisticated
DAG processing engine. This leads to a class of
workflow systems like Pegasus6 aimed at
scheduling the nodes of DAG based workflows.
Karajan7 and Ant8 can also easily represent DAG’s.

Important workflow systems based on dataflow
technologies are the Kepler9 [20, 21] and Triana10
[5, 28] projects; Kepler is still actively being
developed. Pegasus is an active system

2 http://www.cca-forum.org/
3 www.oasis-open.org/committees/wsbpel/
4 http://www.oasis-open.org/
5 http://www.cs.wisc.edu/condor/
6 http://pegasus.isi.edu/
7 http://wiki.cogkit.org/index.php/Karajan
8http://www.gridworkflow.org/snips/gridworkflow/spac
e/GridAnt
9 http://kepler-project.org
10 http://www.trianacode.org/index.html

implementing the scheduling style of workflow.
Taverna11 [23] from the myGrid project12 is very
popular in the bioinformatics community and
substantial effort has been put by the UK OMII
effort13 into making the system robust. An
innovative extension of this project is the
myExperiment scientific social networking site,14
which enables sharing of workflows. The WS-
VLAM [30] system is a system of workflow
systems, employing a common event service bus,
the VL-e Workflow Bus that carries data and
control flow to and from multiple remote workflow
systems.

In spite of sophisticated specialized workflow
systems, many workflows are custom-built with
scripting and traditional languages and toolkits.
These can be considered “mash ups” – informal
and ad hoc software built from tools at hand. PHP
must be the most popular environment building
mash-ups but Python and JavaScript are also well
used. It is highly likely that these mash-ups are
the dominant workflow “systems” in use in
research environments.

3 Case Study

Many workflow case studies exist to testify to the
benefit gained through reapplication of a workflow
to a slightly different domain to reveal interesting
new science. We take a brief opportunity here to
discuss one case that uses workflows in a less well
explored application. One way to organize the
scientific data output of a broad science discipline
is as a federation of relatively independent
repositories. The topic of organizing scientific
data is taking place, amongst other places, in the
NSF EarthCube initiative. Through a model of
independent repositories, the cost of maintenance
of the federation can be amortized over multiple
entities. A key player in the repository space is the
institutional repository of the university.
University libraries possessing stronger
cyberinfrastructure are emerging with solutions to
long-term data preservation. A university may
choose to capture, catalogue and serve the

11 http://www.taverna.org.uk/
12 http://www.mygrid.org.uk/
13 http://www.omii.ac.uk/index.jhtml.
14 http://www.myexperiment.org/

http://pegasus.isi.edu/
http://wiki.cogkit.org/index.php/Karajan
http://www.gridworkflow.org/snips/gridworkflow/space/GridAnt
http://www.gridworkflow.org/snips/gridworkflow/space/GridAnt
http://kepler-project.org/
http://www.trianacode.org/index.html
http://www.taverna.org.uk/
http://www.mygrid.org.uk/
http://www.omii.ac.uk/index.jhtml
http://www.myexperiment.org/

Copyright held by authors, 2011 5

scientific data assets of their own researchers. Or it
may emerge as stronghold for one or small number
of domains nationwide.

Integrating data from multiple sources for research
still remains a significant challenge. A discipline
as broad as geosciences, which spans from climate
to ocean, to earth surface, streams, environment
and atmosphere is highly diverse, with numerous
communities and subcommunities. A critical
variable in any solution is that communities have
their own vocabularies, whether encoded or simply
verbal. They may have one or more community
XML schemas, and some number of formats of
data. Some of their data products are fully
described (“curated”), however most are not. A
repository must work within this diversity while
still enabling various use modes on the data.

Data discovery has two partners: the repository
that works to make its contents easily discoverable,
and client side tools that are smart enough to know
how to look for content.

The repository can be made customer friendly.
Using an analogy of an ice cream shop in an ethnic
neighborhood, the ice cream shop makes sure it
speaks the multiple languages of the customer base,
and expands its toppings to give the customer the
options that they want. How does that translate?
The spoken language of the ice cream shop
translates to a community’s vocabularies, schemas,
and semantics in the repository. The data objects,
the ice cream, is stored in the repository in a
neutral object representation, and is then converted
(sprinkled with toppings) before being returned to
users. More formally, the OAIS model has a
notion of the Dissemination Information Package
(DIP) as the entity that is returned from the
repository. Two ideas inherent in OAIS are
relevant here. First, the DIP form is distinct from
the internal form in which the data object is stored
(i.e., the Archival Information Package (AIP)).
The second point about the OAIS model is that the
DIP will take many forms. For example, an image
might be made available as a thumbnail, as a jpg,
or as a png file.

Thus, a repository should offer a dissemination
suite of tools for each community that has a need
for its data. This suite is the set DIP for
community i as:

DIPi = {V/O, S, Wf}

where V/O is the vocabulary/ontology of the
community i, S are its XML schemas, and Wf is a
set of workflows embodying the transformations
needed to translate the data to a form familiar to
the community requesting the data. The benefit of
such a model is the ability to add support for a new
community, it becomes the simple act of including
a new instance DIPj to the set of dissemination
processes supported. This use of workflows, to
encode community transformation processes, has
the workflow be a portable, and encoded form of
community norms. The model is discussed in
more detail in Plale et al. [25], a whitepaper
written as a contribution to EarthCube.

The recently funded NSF DataNet Sustainable
Environments – Actionable Discovery15 (SEAD)
project is targeting use of the university and
academic research institutional repository as a
long-term solution for scientific data. As an aside,
it is working on reducing data curation costs by
pushing automated metadata capture closer to the
source of generation of the data. Plale is a co-PI
on SEAD.

4 Sub-workflow Interoperability, Pros and
Cons

Why would users want to compose workflow
snippets taken from different workflow systems to
form a single workflow? First, workflow systems
have become specialized. A workflow system
might be specialized to utilize a particular cloud
platform, or provide special constructs for large-
scale parallel execution of jobs. Second, since the
likelihood of a workflow designed for one
workflow system running on another is low,
researchers will use the functionality when and
where it exists. In the end, as workflow adoption
proliferates, users will seek to use each system for
what it is best at, creating the scenario where a
portion of a workflow is run on one system and
another portion on another system. As with social
media sites, working within a single framework
can be limiting.

15 http://sead-data.net/

Copyright held by authors, 2011 6

Interoperability between and across workflow
systems, which is known as subworkflow
interoperability, is possible. The WS-VLAM
system is a case in point. WS-VLAM has a
common event service bus, the VL-e Workflow
Bus that carries data and control flow to and from
multiple remote workflow systems. Such an
approach seems highly desirable, but at what cost?
We explore that question fully in Plale et al. [26]
and summarize results here.

Subworkflow interoperability takes several forms
as illustrated in Fig. 3. System 1 is the top-level
workflow system. Four our study, it sits on a user
desktop. System 1 orchestrates activities A, B, E,
and F. Activity B is called from System 1 by
instructing System 2 to execute the activities.
While B is seen as a single activity by System 1, it
is actually a workflow system that executes the
workflow C->D. Activity F is activated through an
invocation of System 3 by System 1. System 3 is a
proxy for an activity that runs remotely such as on
grid middleware. Other forms of subworkflow
interactivity exist, but this set of cases is rich
enough to work with.

Fig. 3. Subworkflow interoperability shares
workflows between systems.

A system that can utilize local machine resources
for simple execution and remote resources for
more complex tasks is simpler in the simple case.
Workflow system to workflow system interaction
is complex, and that programming complexity
should not hurt the simple case, thus enforcing the
adage that what a user doesn’t know should not
hurt them. System 1 could be a user desktop
workflow system like the Trident Scientific
Workflow Workbench used in our study. Trident is
easy to use in the sense that it is integrated

with .NET and Workflow Foundation so writing a
new activity is a straightforward coding effort.

4.1 Testing Subworkflows
Based on the model in Fig. 3, we construct a set of
tests to assess the pros and cons of constructing a
system that has a top-level workflow system
calling out to lower level workflow systems and
remote resources. This system of systems we
assemble for testing has similarities to WS-VLAM
except we did not integrate the event service bus
that would provide a unified communication model.
In our test system the top-level workflow
orchestration system is Trident. The remote
workflow systems used are the Kepler workflow
system and Apache ODE. Proxy execution
(System 3) uses the GFac and Opal toolkits which
proxy between a workflow environment and an
arbitrary workflow graph node (such as legacy a
Fortran code).

Fig. 4. Sub-workflow interoperability: local
execution within System 1 is shown by activity
AP and AQ invoking a local workflow. Activity
AR communicates with the Kepler remote
engine to run a sub-workflow on Big Red
(solid black lines). Activity AS contacts grid
services directly to invoke nodes individually
(dotted black lines). Activity AT invokes the
ODE workflow engine to run a sub-workflow
on Big Red (solid red lines). Activity AU
contacts grid services directly to invoke nodes
individually (dotted red lines).

4.2 Architectural Organization
Our study decomposes Fig. 3 into four high level
components described as follows and illustrated in
Fig. 4:

• Baseline execution environment: The top-
level workflow engine and local execution

Copyright held by authors, 2011 7

environment. Workflows are run locally. This
shown as activities AP and AQ executing as
part of a local workflow executed through
Workflow Foundation.

• Remote workflow engine: AR and AT are the
remote workflow engine case. AR invokes
Kepler that contacts the Opal Toolkit to
execute a sub-workflow on a supercomputer
(called Big Red) through Globus GRAM. AT
invokes the Apache ODE workflow engine
that contacts GFac to execute a sub-workflow
on Big Red using the Sigiri resource manager.

• Remote grid/cloud middleware: AS and AU
illustrate activities which contact grid/cloud
middleware directly. Activity AS contacts Opal.
Since there is no orchestration at the remote
system, the remote grid/cloud services are
capable of executing only one task of a
workflow. Shown in the black dotted lines is
the Globus GRAM resource manager
executing one of the three services of a sub-
workflow similarly activity AU contacts GFac
for execution of one of the three tasks pointed
to by the dotted red lines.

• High performance computing resources:
large scale supercomputers or cloud resources.

The workflows used in the study cover four cases
over two workflow patterns as follows:

Data Intensive, Sequential Workflow: consists
of 5 sequential MD5 tasks, each of which
applies a data movement operation and a
cryptographic hash function (i.e., MD5) on a
1.5 GB file.

Data Intensive, Parallel Workflow: consists of
5 parallel executed MD5 tasks, each of which
is the same as in Data Intensive, Sequential
Workflow.

Compute Intensive, Sequential Workflow:
consists of 5 sequential Linpack tasks, each of
which is configured to carry out execution on a
5000 x 5000 matrix, using double precision
floating point coefficients. The inputs and
outputs are small, on the order of 5KB.

Compute Intensive, Parallel Workflow:
consists of 5 parallel Linpack tasks, each of
which is configured the same as the Compute
Intensive, Sequential Workflow.

We identified several metrics for key overheads.
First is the time penalty of using a second
workflow engine. This is measured as the time
difference to invoke workflow instance i on local
machine versus time to invoke workflow through a
remote workflow engine. Second, remote services
and remote workflow engines are both remote, so
what is the cost of using a remote workflow engine
specifically? Third, workflow systems show
varying latencies for complex workflows. The
third and final measure captures that variability.

4.3 Summary of Results
We experimentally evaluated two models of
remote execution for a handful of scenarios to
illuminate the latencies and variability inherent in
different approaches. We capture an overall
measurement of sub-workflow overhead by
running a workflow directly within the Trident
workstation and comparing that against the same
workflow executed by a secondary workflow
engine. In order to have a fairer comparison, we
ignore waiting time in the job queue in the remote
case. For the compute-intensive workflows, the
remote ODE workflow engine version had only 2.4%
higher execution time than local execution. The
remote grid service version using Gfac/Sigiri, on
the other hand, had 15.5% higher execution time
than local machine execution. This difference is
due to overhead in invoking GFac, the service
factory, which uses a model of dynamic web
service creation. Kepler sub-workflow and
Opal/GRAM grid services showed only 5% higher
execution time than local machine execution.
Hence, the difference in overhead can be attributed
to the difference in architectural decisions in
support of dynamic capabilities.

In the remote task approach, Trident has more
activities to manage and track, whereas for the
remote engine approach, the number of nodes in
the Trident workflow is minimal. In sequential
workflows, the remote workflow engine only adds
10% overhead to the overhead introduced by
Trident. In the case of running parallel remote
services in Trident, there is no concurrent
execution, so the performance in Trident is up to 5
times worse than using sub-workflow engines which
handle parallel execution.

Under sequential compute intensive workflows,
ODE and Kepler stacks take approximately the

Copyright held by authors, 2011 8

same amount of time. Due largely to Sigiri, the
ODE stack keeps the submission overhead within a
small range. Kepler uses Globus GRAM as its job
submission middleware and GRAM takes a
varying amount of time to get the job scheduled
and executed in the compute resource. The
variability of Kelper/Opal Stack is 14 times worse
than ODE/Sigiri stack. During this experiment we
also experienced job failures caused by different
GRAM failures and had to re-run our experiments
on multiple occasions.

There are softer aspects about which comparison
can be made including locus of control,
extensibility and architectural complexity.

Locus of Control. Remote grid/cloud services are
capable of scheduling individual activities, since
there is no orchestration at the remote system. In
the case where the subworkflow system is invoked,
the black-box nature of the subworkflow model
relieves Trident of complex control because it
hands that off to sub-workflow. The more minimal
the control of Trident, the less the user has to
understand the workflow.

Extensibility. Workflow engines are often bound
to certain services to carry out tasks used during
workflow execution which limits the functionality
of the workflow engine. The ODE workflow
engine, particularly through its instantiation in the
OGCE tool suite is limited by its ability to add new
workflow activities. New must be exposed as a
Web service. Kepler and Trident workflow engines
on the other hand are targeted to desktop
executions and thus allow new functionality to be
more easily incorporated into the system. With the
actor model in Kepler and activity model in
Trident, a user can program any functionality into
the workflow, enabling a wide variety of
functionality to be supported in the workflow. In
experience gained in the research lab and in the
classroom, Trident is easy to use in the sense that it
is integrated with .NET and Workflow Foundation
so writing a new activity is a straightforward
coding effort.

Architectural complexity. Architectural
complexity captures the number of components,
fragility of interfaces, etc. of a system.
Architectural complexity is directly proportional to
the availability and reliability of the system. The
higher the complexity, the lower a system’s

availability unless significant and costly measures
are put in place for fault monitoring, replication,
and recovery. The remote task approach (over
remote engine approach) gives the user more
control over the execution of the experiment. But
with this control comes maintenance overhead and
complexity, because the user has to manage all the
components and their interactions. From our
experience with the LEAD Science Gateway
(2003-2010), grid middleware adds complexity to
the architecture. When Trident is expected to
interact directly with Sigiri and Opal, the workflow
author will have to handle the complexities for
each activity, including authentication mechanisms,
fault tolerance and checkpointing. In the sub-
workflow workflow engine approach, the user
must provide perfect configuration parameters for
the next workflow engine to function properly.

Grid middleware is responsible for a significant
amount of overhead in a scientific workflow stack
scheduling jobs into supercomputing resources.
The job failures and the higher variation of
overheads we experienced during our evaluation
suggests that the instability and unpredictable
behavior of grid middleware components have
high impact on the scientific workflow systems
that are using them. However efficient and
optimized these workflow stacks are, the issues in
middleware can make these workflow suites
uncertain, if not unusable.

Similar to other workflow systems, Trident
facilitates workflow runs in Windows based
environments. But we think more improvements
are necessary to make this toolkit more useable
among the scientific research community. For
example, Trident lacks the support for parallel
execution constructs within it. Even though
activities are picked up and scheduled in parallel,
for a parallel workflow, they are executed
sequentially.

The takeaway message of this study is that a user
today can compose a workflow using a high level
workflow engine whose subcomponents run on
various lower level workflow systems or grid
resources. The execution overheads are reasonable.
The subworkflow system can even augment the
capability of the higher-level workflow system.
But this comes at the cost of additional system
complexity. This complexity can be overcome

Copyright held by authors, 2011 9

through redundancy and resiliency measures, but
often the latter are out of reach for open source
research tools because of their substantially higher
development and long term maintenance costs.

5 Workflow System Features

Most sophisticated workflow systems support
hierarchical specifications; that is the nodes of a
workflow can be either services or collections of
services facilitating interoperability as well as
reusability of sub-workflows [12]. Other key
aspects of workflow are security [4] and fault-
tolerance [7]. In the previous discussion, the four
major components of workflow systems were
described: workflow composition, workflow
orchestration, task scheduling, and one or more
application task interfaces (see Figure 2). Within
each of these major functions, we further
demarcate the different workflow system
functionalities:

 Integral domain independent workflow
tasks, nodes, or activities. What functions
are built in to facilitate workflow creation?
How can these functions be compounded
to build complex activities?

 Data movement/access between workflow
nodes. Can the workflow tasks access files
easily? What in memory functions are
available? (For example in-memory
streaming through distributed brokers,
centralized allocation server, or other
technologies.)

 Provenance and metadata collection.
What data is automatically collected to
provide information on the execution, the
purpose, and the results of the workflow?

 Fault tolerance. How well do these
systems recover from error? Within a
workflow? Within a task or activity?
From system errors? From application
errors?

 Parallel execution of workflows. To what
extent can workflows be run in parallel?

 Sharing workflows. How can researchers
share components of workflows, complete
workflows, and the output data from
workflows?

5.1 Current Workflow Systems

We identified the top workflow systems most used
in research and business environments based on a
literature review. These workflow systems focus
on different segments of the market which in turn
drives the functionalities implemented and the
technologies used. Below is a brief overview of
the 10 major workflow systems.

Kepler is a data-flow oriented workflow system
with an actor/director model that is used in
ecology and geology domains.

Taverna is primarily focused on supporting the
Life Sciences community (biology, chemistry
and medical imaging) and uses a data-flow
oriented model.

Swift is data-flow oriented workflow that uses a
scripting language called Swiftscript, to run the
processes in the workflow.

Ode is not a full system, but a workflow engine
that needs to be supported by other tools and
components to design and execute workflows.
It can be used with front end tools such as
XBaya described below.

VisTrails is a scientific workflow and
provenance management system that provides
support for data exploration and visualization.

Trident is a workflow workbench developed by
Microsoft Research and relatively newer among
the other workflow systems. It is based on the
Windows Workflow Foundation (WF).

IBM smash makes use of enhanced BPEL Web
2.0 workflow environment for building and
running dynamic Web 2.0-based applications
using SOA principle.

Lims has elements of a workflow system, but is
primarily designed as a laboratory information
system to analyze experimental data using “G”,
a data-flow oriented language.

Inforsence is a BI solution that enables
organizations to use a drag and drop visual
environment to build predictive and statistical
models and other analytical applications on
dynamically combined data from a variety of
sources such as data warehouses, spreadsheets
and documents as well as web services.

Copyright held by authors, 2011 10

Pipeline pilot has an integrated set of
applications which model and simulate
informatics and scientific businesses
intelligence needs of research and development
organizations.

Triana is a graphical workflow and data
analysis tools for domains including signal, text,
and image processing. It includes a library of
tools and users can integrate their own tools,
Web, and Grid Services. Triana is a Java
application and will run on almost any
computer. It hides the complexity of
programming languages, compilers, debuggers,
and error codes.

XBaya is a graphic workflow front end for
backend engines such as ODE and
ActiveBPEL. It can be used as a standalone
application or as a Java Web Start application.

5.2 Workflow Standards
The period 2000-2005 produced a number of
workflow standards that were viewed as essential
to enable the Web Service dream of
interoperability by complete specification of
service features. Recently there has been a
realization that this goal produced heavyweight
architectures where the tooling could not keep up
with support of the many standards. Today we see
greater emphasis on light weight systems where
interoperability is achieved by ad hoc
transformations where necessary. A significant
problem of the standardization work was that it
largely preceded the deployment of systems; the
premature standardization often missed key points.
This background explains the many unfinished
standards activities in Table 1. The successful
activities have a Business process flavor; for
scientific workflows, the most relevant standard is
BPEL,16 [6, 19] which was based on earlier
proposals WSFL and XLANG.

XML is not well suited to specifying programming
constructs. Although XML can express data

16 OASIS Web Services Business Process Execution
Language Version 2.0 BPEL available from:
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-
OS.html and ActiveBPEL Open Source workflow
engine available from: http://www.activebpel.org/

structures well, it is possible, but not natural, to
express loops and conditionals that are essential to
any language and the control of a workflow. It
may turn out that expressing workflow in a modern
scripting language is preferable to XML based
standards. However, exporting data or workflows
as part of ad hoc transformations for
interoperability might be an appropriate use of
XML in workflow systems [12].

Table 2. Workflow Related Standards [12]

Standard Link Status
BPEL Business
Process Execution
Language for Web
Services (OASIS)
V2.0

http://docs.oasis-
open.org/wsbpel/2.0
/wsbpel-v2.0.html;
http://en.wikipedia.o
rg/wiki/BPEL

April
2007

WS-CDL Web
Service
Choreography
Description Language
(W3C)

http://www.w3.org/
TR/ws-cdl-10/

Nov
2005 Not
final

WSCI Web Service
Choreography
Interface V1.0 (W3C)

http://www.w3.org/
TR/wsci/

Aug
2002
Note
only

WSCL Web Services
Conversation
Language (W3C)

http://www.w3.org/
TR/wscl10/

Mar
2002
Note
only

WSFL Web Services
Flow Language

http://www.ibm.co
m/developerworks/
webservices/library/
ws-wsfl2/

Replaced
by BPEL

XLANG Web
Services for Business
Process Design
(Microsoft)

http://xml.coverpag
es.org/XLANG-C-
200106.html

Jun 2001
Replaced
by BPEL

WS-CAF Web
Services Composite
Application
Framework including
WS-CTX, WS-CF
and WS-TXM

http://en.wikipedia.o
rg/wiki/WS-CAF

Unfinish
ed

WS-CTX Web
Services Context
(OASIS Web
Services Composite
Application
Framework TC)

http://docs.oasis-
open.org/ws-caf/ws-
context/v1.0/OS/ws
ctx.html

Apr 2007

WS-Coordination http://docs.oasis- Feb 2009

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://en.wikipedia.org/wiki/BPEL
http://en.wikipedia.org/wiki/BPEL
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/wsci/
http://www.w3.org/TR/wsci/
http://www.w3.org/TR/wscl10/
http://www.w3.org/TR/wscl10/
http://www.ibm.com/developerworks/webservices/library/ws-wsfl2/
http://www.ibm.com/developerworks/webservices/library/ws-wsfl2/
http://www.ibm.com/developerworks/webservices/library/ws-wsfl2/
http://www.ibm.com/developerworks/webservices/library/ws-wsfl2/
http://xml.coverpages.org/XLANG-C-200106.html
http://xml.coverpages.org/XLANG-C-200106.html
http://xml.coverpages.org/XLANG-C-200106.html
http://en.wikipedia.org/wiki/WS-CAF
http://en.wikipedia.org/wiki/WS-CAF
http://docs.oasis-open.org/ws-caf/ws-context/v1.0/OS/wsctx.html
http://docs.oasis-open.org/ws-caf/ws-context/v1.0/OS/wsctx.html
http://docs.oasis-open.org/ws-caf/ws-context/v1.0/OS/wsctx.html
http://docs.oasis-open.org/ws-caf/ws-context/v1.0/OS/wsctx.html
http://docs.oasis-open.org/ws-tx/wscoor/2006/06

Copyright held by authors, 2011 11

Web Services
Coordination (BEA,
IBM, Microsoft at
OASIS)

open.org/ws-
tx/wscoor/2006/06

WS-
AtomicTransaction
Web Services Atomic
Transaction (BEA,
IBM, Microsoft at
OASIS)

http://docs.oasis-
open.org/ws-
tx/wsat/2006/06

Feb 2009

WS-
BusinessActivity
Web Services
Business Activity
Framework (BEA,
IBM, Microsoft at
OASIS)

http://docs.oasis-
open.org/ws-
tx/wsba/2006/06

Feb 2009

BPMN Business
Process Modeling
Notation (Object
Management Group
OMG)

http://en.wikipedia.o
rg/wiki/BPMN;
http://www.bpmn.or
g/

Active

BPSS Business
Process Specification
Schema (OASIS)

http://www.ebxml.o
rg/;
http://www.ebxml.o
rg/specs/ebBPSS.pd
f

May
2001

BTP Business
Transaction Protocol
(OASIS)

http://www.oasis-
open.org/committee
s/download.php/124
49/business_transact
ion-btp-1.1-spec-cd-
01.doc

Unfinish
ed

6 Studies
To evaluate the existing field of workflow systems,
we undertook two studies. In the fall of 2010, we
carried out a heuristic evaluation of six workflow
systems; and in spring 2011, we completed a
hands-on usability study of four workflow systems.
Both are summarized below.

6.1 Heuristic Evaluation
In the heuristic evaluation, six workflow systems
were reviewed to determine the functional and
technical capabilities. The systems reviewed were
Trident, Swift, VisTrails, Kepler, Taverna, and
Ode. This study evaluated each system based on
the functions described above: specialized
activities, the underlying back end engine, data

movement functions, the ability to interface to
application code, the ability to share workflows,
fault tolerance, and provenance and metadata
collection. A summary of the evaluation follows.

Specialized Activities. Trident and Taverna
provided many standards based interfaces. Trident
allows for a standard scientific semantic and
syntactic data format (NetCDF). Kepler is
specifically tuned tows scientific workflows with
internal functions for grid access, mathematical
and statistical interfaces (such as R and Matlab),
and support for multiple programming languages.

Underlying Back-end Engine. Each of the
workflow systems in this study has their own
engine. Trident uses Workflow Foundation.
VisTrails has a cache manager model. Kepler uses
the Ptolemy engine. Ode has a JDBC data store
with a data access layer and the BPEL engine.

Data Movement. Trident has limited set of
libraries for data movement out of the box.
However it is flexible with the .Net framework to
use memory, files, or databases for data
movements. Swift has a set of libraries for data
movement including functions that map data and
provide a number of grid functions including
gridFTP. Kepler provides access to data within
scientific domain specific repositories and has
component libraries to read, write, and manipulate
domain specific standard data formats.

Application Code Interface. Trident uses web
services to interface to application code and can
execute any function using the .Net framework.
Swift has a propriety scripting language as well as
a Java API to interact with grid services. VisTrails
supports web services and python scripts. Kepler
and ODE have APIs. Taverna has remote
execution services that allow it to be invoked from
other applications.

Workflow Sharing. Ode and Swift did not
provide functions that allow for easy workflow
sharing, while Trident, Taverna, VisTrails, and
Kepler did. Kepler provided a robust tagging and
retrieval function for its sharing environment.
VisTrails allows for versioning of workflows. In
addition, Trident, Kepler, and Taverna can share
workflows via the myExperiement website.

Fault Tolerance. Error recovery in the current
Trident (v 1.2.1) is to restart the entire workflow.

http://docs.oasis-open.org/ws-tx/wscoor/2006/06
http://docs.oasis-open.org/ws-tx/wscoor/2006/06
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://docs.oasis-open.org/ws-tx/wsba/2006/06
http://docs.oasis-open.org/ws-tx/wsba/2006/06
http://docs.oasis-open.org/ws-tx/wsba/2006/06
http://en.wikipedia.org/wiki/BPMN
http://en.wikipedia.org/wiki/BPMN
http://www.bpmn.org/
http://www.bpmn.org/
http://www.ebxml.org/
http://www.ebxml.org/
http://www.ebxml.org/specs/ebBPSS.pdf
http://www.ebxml.org/specs/ebBPSS.pdf
http://www.ebxml.org/specs/ebBPSS.pdf
http://www.oasis-open.org/committees/download.php/12449/business_transaction-btp-1.1-spec-cd-01.doc
http://www.oasis-open.org/committees/download.php/12449/business_transaction-btp-1.1-spec-cd-01.doc
http://www.oasis-open.org/committees/download.php/12449/business_transaction-btp-1.1-spec-cd-01.doc
http://www.oasis-open.org/committees/download.php/12449/business_transaction-btp-1.1-spec-cd-01.doc
http://www.oasis-open.org/committees/download.php/12449/business_transaction-btp-1.1-spec-cd-01.doc
http://www.oasis-open.org/committees/download.php/12449/business_transaction-btp-1.1-spec-cd-01.doc

Copyright held by authors, 2011 12

Swift supports internal exception handling and
resubmission of jobs. Kepler supports dynamic
substitution at the task level, rescue at the
workflow level and restart of the failed component.
Taverna supports task level restart with dynamic
substitution. Ode has a “failure policy” that can
support activity retry, fault or cancel.

Provenance and Metadata Collection. Trident
uses semantic tagging for provenance data. Swift,
VisTrails, and Kepler have separate components
for tracking provenance data. Taverna supports a
sophisticated multi-level provenance data
collection, storage, and tracking mechanism. Ode
stores provenance data within its internal data
storage scheme of Data Access Objects.

6.1.1 Discussion
All of these workflow systems have infrastructures
that provide libraries and functions for data
transfer management, job submission, and
execution management. Several of the systems
repurpose engines such as the Workflow
Foundation or Ptolemy. While each may be tuned
to a specific function set or market segment, all
could be implemented and used by a wide range of
users.
The major differentiators in the workflow systems
studied are provenance collection and fault
tolerance. Although provenance capture is
supported by most of the systems, the level of data
collected, the data format and manner of storage,
and the retrieval and display of the data varies
widely. It is the post-process use of provenance
that is both intriguing and underutilized. How can
this provenance data be used to recreate
experiments or workflows? How could this data
be used to determine which data should be
contributed to national reference databases (such as
Protein Data Bank or the DataConservancy). Fault
tolerance is a second differentiator. Providing a
robust set of tools, functions, and options for
recovering from failure, at the task or workflow
level, is a significant user function that needs to be
incorporated into all workflow systems. This set
of services needs to be visible to the user and
simple to configure and execute as well as be able
to provide clear, consistent and usable feedback for
correction of user contributed code, configuration
errors, workflow errors, data errors, and operating
system issues.

6.2 Usability study
The second study we carried out is a hands-on
usability study. Three Computer Science Masters
students in the Data to Insight Center of Indiana
University installed, configured, and used four
workflow systems and evaluated their experiences
using Trident, IBM Smash, Taverna, and Triana.
This graduate class project of Spring 2011 was
carried on to completion through summer 2011 by
a Master’s student. The primary evaluation criteria
for this study were the ease of installation, the ease
of creating and running a simple workflow, the
ability to integrate a well-known external
application into a workflow, and overall usability
including support options. A summary of the
results of their evaluation follows.

Ease of setup - is defined as the total time to
download all of the required software, install all of
the components, run the setup and configuration
process.

Trident. The Trident application itself was
easy to download. But additional Microsoft
packages were required. The other packages
were in numerous locations and took
significant time to find. Installing the Trident
application was simple and took less than 2
min; but the other packages required more
effort to install and configure. We discovered
that the Trident documentation was out of date
and the version of SQL Server that was
downloaded was incorrect. We had to
download the new version of SQL Server,
reinstall SQL Server, reconfigure SQL Server,
and reinstall Trident. The total process took
over 4 hours.
IBM Smash. The download and installation
took less than 1 min to download and less than
2 min to install. However, since it only
operates in a 32-bit environment, we had to
install a Virtual-PC with a 32-bit OS.
Taverna. Taverna was simple to download
and install. The entire operation took less than
4 min.
Triana. The base software was simple to
download; however, many files were missing.
The installation environment was difficult to
use and not well documented.

Copyright held by authors, 2011 13

Get simple workflow working. For this study, we
designed a simple conditional workflow to add two
integers. After implementing this workflow in
each system, we evaluated the amount of effort to
develop the code, the ability to collect provenance
and metadata, and built-in fault tolerance

Trident. The sample workflow process
required 40 lines of code in C#.NET and took
approximately 30 min to write. To create and
execute the workflow activity took less than 30
sec. The internal built-in functions were
geared towards oceanographic work. Trident
has an extensive and structured provenance
data for the workflows and the data and
manages versions to allow for tracking data
changes. Trident has significant internal fault
tolerance supporting failure tracking, new
resource allocation, and workflow restart.
IBM Smash. The sample workflow took
approximately 6 lines of code to implement in
Smash. The workflow required additional 10
lines of code. The documentation describing
the input processing was incomplete and made
this task more difficult. Smash had a number
of built-in functions but most of them are
orientated towards business applications rather
than scientific functions. Smash does not
support provenance data although it does have
an extensive error logging process. It does
have support workflow restarts and has low
fault tolerance.
Taverna. To create the workflow required 20
lines of code and took approximately 15 min.
Taverna has a wide selection of built-in
functions as well as user-authored functions.
Provenance management provides information
on all data transforms as well as on the entire
workflow process. Taverna has extensive fault
tolerance and workflow restart.
Triana. To build a sample workflow required
using the internal functions that are combined
in a drag and drop environment. Triana has a
wide range of built-in functions and provides
users with the ability to input new toolboxes of
functions. Provenance is collected at the
organizational level and has no capability to
collect provenance at the data level. Triana

has no support for workflow restart and has no
fault tolerance.

Write workflow that calls out to web service. A
simple workflow is written that calls out to BLAST
– The Basic Local Alignment Search Tool – a
biological sequence application supported by the
National Institutes of Health and the National
Center for Biotechnology Information (NCBI).17

Trident. To plug in another executable into
Trident an argument written in C#.NET must
be developed. This requires programming
expertise.
IBM Smash. To integrate an external
application in Smash requires a PHP or
Groovy script or it can be executed from the
command line.
Taverna. In Taverna, a beanshell script must
be created to invoke an external application.
Triana. Triana is designed to support plugin
applications.

User experience - includes documentation, user
support, and interface usability.

Trident. Trident has excellent documentation
with many examples and code samples. The
user support for Trident is a less active user
forum. Trident has a very easy to use GUI,
which is intuitive. But the .NET pre-requisite is
a barrier.
IBM Smash. Smash has poor documentation
and no viable web presence. Smash has both
phone and email support as well as a moderated
forum. Smash has an easy to use GUI as well
as a command line interface.
Taverna. Taverna has excellent documentation
with good examples and is integrated with the
myExperiments portal. The user support via
phone and email is prompt and accurate. The
GUI for Taverna is complex and requires some
effort to learn.
Triana. Triana has minimal documentation that
hampers its usefulness. There is no discernable
user support for Triana. Triana has a very easy
to use interface that allows users to drag and

17 http://blast.ncbi.nlm.nih.gov/Blast.cgi

http://blast.ncbi.nlm.nih.gov/Blast.cgi

Copyright held by authors, 2011 14

drop objects from the toolbox to create
workflows.

Discussion. Scientific workflow systems are often
used as a tool for domain scientists to “plug
together” components for data acquisition,
transformation, analysis and visualization to build
complex data-analysis frameworks from existing
building blocks, including algorithms available as
locally installed software packages or globally
accessible web services. Installing and configuring
the systems behind the workflow nodes is not a
trivial activity, however, and requires an
understanding of software components, database
administration, scripting, and in some cases,
programming with sophisticated languages. This
is a significant barrier to adoption by many
researchers, particularly those who not in
computationally based sciences. Accessing the
robust functionality of the systems often requires
scripting or programming which poses barriers to
researchers. As many domains embrace in silico
research, the technical skills of researchers will
increase and perhaps the barriers will not be as
high. But in this transition phase, these tools may
cost too much in terms of time and staff to
implement.

7 Trident Scientific Workflow Workbench

In this final section our analysis focuses on the
Trident Scientific Workflow Workbench.

7.1 Trident in the Classroom
Integrating research into the classroom is an
important component in disseminating new
knowledge and engaging students. Spring 2011,
Professor Plale offered a graduate level class in the
School of Informatics and Computing at Indiana
University titled CSCI B669, Scientific Data
Management and Preservation. Readings were
taken from “Scientific Data Management:
Challenges, Technology, and Deployment” by A.
Shoshani and D. Rotem Eds. CRC Press. 2010 and
The Fourth Paradigm18. Trident was one of the

18 http://research.microsoft.com/en-
us/collaboration/fourthparadigm/

platforms upon which students could base their
final project.
Astrophysics PhD student taking the class, chose to
develop a Trident workflow to simplify the process
of calculating the magnitudes of telescopic
observations, specifically nightly extinction
coefficients. The workflow applies the
transformation to the raw data to determine if the
nightly data set is good. This process can be used
in discovery process of new black holes and
refining the understanding of the energy jets they
radiate. The PhD student commented on the ease
of use of Trident, despite his self-proclaimed weak
computer science background. Despite the fact
that the student had to learn basics of C#, he
nonetheless had a workflow running in a short
period of time (a couple weeks at the end of a
semester). Trident will only produce one plot per
workflow whereas the student needed to make
several plots per workflow, each pot corresponding
to a given star field. Our software engineer gave
him code that allowed concurrent execution of
threads from Trident, but he replied

 “ I learned a lot as I worked on it,
and I feel that the astronomy
community can benefit from using
workflows. […] However, I haven't
decided if I want to release my project
to the general astronomy
community. Most astronomers use a
Linux system or a Mac since IRAF,
which is the bread & butter astronomy
program, won't run on Windows and
many astronomers are unaware of the
likes of Cygwin. I get the feeling that
my workflow would therefore be
underutilized.”

7.2 Trident Usability and Community

In the spring of 2011, we carefully examined with
public face of Trident – the CodePlex site. We
reviewed the interaction with the research
community and determined that while the Trident
Workflow System is an excellent product,
developing a robust community of researchers will
take effort. There are three major barriers to
overcome: communication, code contributions, and
the creating new custom code.

http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://en.wikipedia.org/wiki/IRAF

Copyright held by authors, 2011 15

To facilitate communication, Trident should follow
the lead of all of the other scientific workflow
systems with which we are familiar and develop a
community listserv. Email via listserv is the
normal communication medium for academic
scientific communities. While the
Trident/CodePlex systems allows for the
discussion to be read via email, it is not possible to
contribute to the conversation without going to the
Trident CodePlex site, signing in, going to the right
tab, and then contributing. For most researchers,
the number of steps and the time required will
inhibit their contributions. Note that a LISTSERV
list, trident-wf-l, was created Oct 2011. The
email address for the list is trident-wf-
l@indiana.edu. It is moderated by Kavitha
Chandrasekar.

Currently, it is difficult for knowledgeable people
like our own developers to navigate the complex
Microsoft/CodePlex organization, to get authorized
ids, communicate the nature of the update (base
code, not a sample). Compared to other open
source sites, CodePlex is completely opaque. We
acknowledge that controls need to be in place to
monitor code contributions, but the current
restrictions are too much. The barrier for non-
Microsoft affiliated researchers to contribute code
has been reduced with CodePlex, but it is still too
high. Unlike contributing to the base source code,
contributing samples should be simple and without
overt approval. The community can police
samples by commenting, wiki text updates, and
discussion. Currently, contributing samples has
the same issues as contributing source code.

As described in the previous section, Trident
requires that all executable code be in the .NET
framework. While a powerful and highly useful
technology, it can prove to be a barrier to use by
non-programmers. It would be very useful to have
a simpler way for researchers to develop code.

7.3 Short to Mid-Term Recommendations

Currently, there are many approaches to workflow
systems that are largely successful in prototype
one-off situations. However experience has found
that most are not really robust enough for
production use outside the development team. This
observation motivated Microsoft to put their
Trident workflow environment [2, 22] into open
source for science. Trident is built on the

commercial quality Windows Workflow
Foundation. Through the two studies already
completed and our analysis of the wider scientific
community, we have developed a list of
recommendation for Trident. While an excellent
workflow system, we believe that with minimal
effort, Trident can be improved to be useful to
more researchers.

Better installation package that includes all
required software components and the
compatible versions of everything (such as
versions of .Net between Visual Studio and
Trident). The installation process should
install and configure all software
components (SQL Server as an example)
(see section 5.1.2 Summary item 1).

Several of the workflow systems have
integrated scientific functions, most notably
Kepler (see section 2.2.1 Specialized
Activities). Trident could benefit by having
more built-in functions for scientific data.
Integrating the MBF would be an excellent
first step.

The ability to use scripting languages as well
as .NET would make Trident more
accessible to non-programming researchers.
As described in section 5.1.2 Summary item
2, Trident required significantly more code
to implement a simple function within a
workflow than did other systems that
supported scripting languages.

Improve the CodePlex site to better facilitate
communication with the research community
and to allow for easier code sharing as
discussed in section 3.3.

Trident is an easy to use workflow system that has
potential to significantly improve both the
productivity of researchers and the quality of
research for research in social sciences,
environmental sciences, social-ecological research,
operations hurricane prediction centers and other
areas where Windows are part of the compute
platform upon which research/operations is
conducted.

mailto:trident-wf-l@indiana.edu
mailto:trident-wf-l@indiana.edu

Copyright held by authors, 2011 16

8. Conclusion

Jim Gray's vision of the Laboratory Information
Management System is one that seamlessly
integrates scientific data management, data
analysis, data visualization, new algorithms, and
tools into an easy to use and useful “briefcase” for
science. He saw the workflow as "a Beowulf-like
package and some templates that would allow
people who are doing wet-lab experiments to be
able to just collect their data, put it into a database,
and publish it.” This multistep pipeline differs in
minor but important ways from the current
scientific discovery workflow which we know to
be an inherently difficult fit particularly for science
domains that do not acknowledge a workflow in
their discovery processes. LIMS is envisioned as a
repeatable and reproducible multistep task with
applicability to a broad audience. The vision Dr.
Gray expresses is growing in relevance to
scientists however as funding agencies are pressing
for archival and reuse of science and scholarly data.
Funding agencies provide to scientists stronger
motivation to adopt tools that help with metadata
and provenance capture.
Finally, Jim Gray’s description of a LIMS bears
similarity to another “briefcase”, the DIPi = {V/O,
S, Wf} where the workflow is a key component of
data transformation and preservation. In both of
these senses, the workflow is on a path to
convergence with the Gray vision in ways even Dr.
Gray may not have envisioned.

Acknowledgements

We thank Bina Bhaskar for her committed effort
and attention to a high quality workflow usability
study. We thank Dr. Tony Hey for advancing the
topic of studying the state of workflow systems,
paying particular attention to the late Dr. Gray’s
far reaching vision of the LIMS.

References

1. Altintas, I., C. Berkley, E. Jaeger, M. Jones, B.

Ludascher, and S. Mock (2004). Kepler: An
extensible system for design and execution of
scientific workflows. Proceedings of 16th IEEE

Int’l Conference Scientific and Statistical Database
Management, pp. 423-424.

2. Barga, R., J. Jackson, N. Araujo, D. Guo, N. Gautam,
and Y. Simmhan (2008). The Trident scientific
workflow workbench. IEEE Int’l Conference on
eScience, 0:317-318.

3. Bhatia, D., V. Burzevski, M. Camuseva, G. Fox, W.
Furmanski, and G. Premchandra (1997). WebFlow:
A Visual Programming Paradigm for Web/Java
Based Coarse Grain Distributed Computing.
Concurrency - Practice and Experience, 9(6): 555-
577.

4. Chivers, H. and J. McDermid (2006). Refactoring
service-based systems: how to avoid trusting a
workflow service. Concurr. Comput. Pract. Exper.,
18(10): 1255-127 .
http://dx.doi.org/10.1002/cpe.v18:10

5. Churches, D., G. Gombas, A. Harrison, J. Maassen, C.
Robinson, M. Shields, I. Taylor, and I. Wang
(2006). Programming scientific and distributed
workflow with Triana services. Concurr. Comput.
Pract. Exper. , 2006. 18(10): p. 1021-1037.
DOI:http://dx.doi.org/10.1002/cpe.v18:10

6. Curbera, F., R. Khalaf, W.A. Nagy, and S.
Weerawarana (2006). Implementing BPEL4WS:
the architecture of a BPEL4WS implementation.
Concurr. Comput. : Pract. Exper., 18(10): 1219-
1228.http://dx.doi.org/10.1002/cpe.v18:10

7. Deelman, E., D. Gannon, M. Shields, and I. Taylor
(2009). Workflows and e-Science: An overview of
workflow system features and capabilities. Future
Generation Computer Systems, 25(5): 528-540.
DOI:http://dx.doi.org/10.1016/j.future.2008.06.012

8. Deelman, E., T. Kosar, C. Kesselman, and M. Livny
(2006). What makes workflows work in an
opportunistic environment. Concurr. Comput. :
Pract. Exper., 18(10).
DOI:http://dx.doi.org/10.1002/cpe.v18:10

9. De Rourea, D., C. Gobleb, R. Stevens (2009). The
Design and Realisation of the View the MathML
Source Virtual Research Environment for Social
Sharing of Workflows. Future Generation
Computer Systems, 25(5): 561-567.

10. Elmroth, E., F. Hernandez, and J. Tordsson (2010).
Three fundamental dimensions of scientific
workflow interoperability: Model of computation,
language, and execution environment. Future
Generation Computer Systems, 26(2):245-256.

11. Fox, G.C. and D. Gannon (2006). Workflow in Grid
Systems. Concurrency and Computation: Practice
and Experience, 18(10): 1009–1019.

http://dx.doi.org/10.1002/cpe.v18:10

Copyright held by authors, 2011 17

12. Fox, G.C. (2011). Service Oriented Architectures
and Their Tools. In Distributed and Cloud
Computing: Clusters, Grids, Clouds, and the
Future Internet, Kai Hwang, Jack Dongarra
& Geoffrey C. Fox (Editors). Morgan Kaufmann:
Boston.

13. Gannon, D., S. Krishnan, L. Fang, G. Kandaswamy,
Y. Simmhan, and A. Slominski (2005). On
Building Parallel & Grid Applications: Component
Technology and Distributed Services. Cluster
Computing, 8(4): 271-277.
DOI:http://dx.doi.org/10.1007/s10586-005-4094-2

14. Guo, D., L. Welicki, B. Plale, and E. Chinthaka
(2011). Workflow Automation Challenges,
WIRADA Science Symposium, Melbourne, AU
Aug 2011.

15. Gil, Y., E. Deelman, M. Ellisman, T. Fahringer, G.
C. Fox, D. Gannon, C. Goble, M. Livny, L. Moreau,
and J. Myers (2007). Examining the Challenges of
Scientific Workflows. Computer, 40(12): 24-32,
December, 2007.
http://doi.ieeecomputersociety.org/10.1109/MC.200
7.421

16. Herath, C. and B. Plale, (2010). Streamflow - A
programming model for data streaming in
scientific workflows. In IEEE/ACM International
Symposium on Cluster, Cloud, and Grid
Computing, Melbourne Australia.

17. Jensen, S. and B. Plale (2010). Trading Consistency
for Scalability in Scientific Metadata,
In Proceedings of the 2010 IEEE International
Conference on e-Science, Brisbane,
Australia, December 2010.

18. Kandaswamy, G. and D. Gannon (2006). A
Mechanism for Creating Scientific Application
Services on Demand from Workflows. In Int’l
Conference on Parallel Processing Workshops,
pages 25-32.

19. Leyman, F. (2006). Choreography for the Grid:
towards fitting BPEL to the resource framework.
Concurr. Comput. : Pract. Exper., 18(10): 1201-
1217.http://dx.doi.org/10.1002/cpe.v18:10

20. Ludäscher, B., I. Altintas, C. Berkley, D. Higgins, E.
Jaeger, M. Jones, E.A. Lee, J. Tao, and Y. Zhao
(2006). Scientific workflow management and the
Kepler system. Concurr. Comput. Pract. Exper.,
18(10): 1039-1065.
http://dx.doi.org/10.1002/cpe.v18:10

21. McPhillips, T., S. Bowers, D. Zinn, and B.
Ludäscher (2009). Scientific workflow design for
mere mortals. Future Gener. Comput. Syst., 25(5):
541-551.
http://dx.doi.org/10.1016/j.future.2008.06.013

22. Microsoft. Project Trident: A Scientific Workflow
Workbench. Available from:
http://tridentworkflow.codeplex.com/ and
http://research.microsoft.com/en-
us/collaboration/tools/trident.aspx.

23. Oinn, T., M. Greenwood, M. Addis, J. Ferris, K.
Glover, C. Goble, D. Hull, D. Marvin, P. Li, P.
Lord, M.R. Pocock, M. Senger, A. Wipat, and C.
Wroe (2006). Taverna: lessons in creating a
workflow environment for the life sciences.
Concurr. Comput. Pract. Exper.,18(10): 1067-1100.
DOI:http://dx.doi.org/10.1002/cpe.v18:10

24. Plale, B. (2011). Challenges and Opportunities of
Workflow Systems in Environmental Research,
invited, Water Information Research and
Development Alliance (WIRADA) Science
Symposium, Melbourne, AU, Aug 2011

25. Plale, B. et al. (2011). Atmospheric Sciences and
Informatics EarthCube Whitepaper: Technical
Infrastructure,
http://www.cs.indiana.edu/~plale/papers/AtmosEart
hCube-TechnicalOct2011.pdf

26. Plale, B. et al. (2011). Strengths and Weaknesses of
Sub-Workflow Interoperability. Tech. Rep. TR700,
School of Informatics and Computing, Indiana
University, Bloomington, Indiana

27. Rasure, J. and S. Kubica (1992). The Khoros
Application Development Environment. In Khoral
Research Inc.: Albuquerque, New Mexico.

28. Taylor, I., M. Shields, I. Wang, and A. Harrison
(2007). Workflows for e-Science, I. Taylor, et al.,
Editors. Springer: New York: 320-339.

29. Upson, C., T.F. Jr., D.H. Laidlaw, D. Schlegel, J.
Vroom, R. Gurwitz, and A.v. Dam (1989). The
Application Visualization System: A
Computational Environment for Scientific
Visualization. IEEE Comput. Graph. Appl.: 30-42.

30. Wibisono. A. et al. (2007). WS-VLAM: Towards a
scalable workflow system on the Grid, 16th IEEE
Int’l Symposium on High Performance Distributed
Computing

31. van Der Aalst, W., A. Ter Hofstede, B.
Kiepuszewski, and A. Barros (2003). Workflow
patterns. Distributed and parallel databases,
14(1):5-51.

32. Yu and R. Buyya (2005). A taxonomy of scientific
workflow systems for grid computing. ACM
SIGMOD Record, 34(3): 44-49.

33. Zhao, Z., A. Belloum, C.D. Laat, P. Adriaans, and B.
Hertzberger (2007). Distributed execution of
aggregated multi domain workflows using an agent
framework. IEEE Congress on Services, 2007.

http://doi.ieeecomputersociety.org/10.1109/MC.2007.421
http://doi.ieeecomputersociety.org/10.1109/MC.2007.421
http://dx.doi.org/10.1016/j.future.2008.06.013

Copyright held by authors, 2011 18

34. Zhao, Y., M. Hategan, B. Clifford, I. Foster, G. Von
Laszewski, V. Nefedova, I. Raicu, T. Stef-Praun,
and M. Wilde (2007). Swift: Fast, reliable, loosely
coupled parallel computation. 2007 IEEE Congress
on Services, pages 199-206.

35. Zur Muehlen, M. (2000). A Framework for XML-
based Workflow Interoperability: The AFRICA
Project. Americas Conference on Information
Systems.

	1 Introduction
	2 The Workflow Dissected
	3 Case Study
	4 Sub-workflow Interoperability, Pros and Cons
	4.1 Testing Subworkflows
	4.2 Architectural Organization
	4.3 Summary of Results

	5 Workflow System Features
	5.1 Current Workflow Systems
	5.2 Workflow Standards

	6 Studies
	6.1 Heuristic Evaluation
	6.1.1 Discussion
	6.2 Usability study

	7 Trident Scientific Workflow Workbench
	In this final section our analysis focuses on the Trident Scientific Workflow Workbench.
	7.1 Trident in the Classroom

	Acknowledgements
	References

