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1 Introduction 

Workflow orchestration tools have gained 
deserved recognition for their contributing role to 
scientific discovery. For example, a Taverna 
workflow designed to identify biological pathways 
implicated in the resistance to Trypanosomiasis 
was repurposed to study another parasite, Trichuris 
muris, by a change of data sets only.   However, 
adoption of workflow systems is mixed for a tool 
that has been studied and applied since 2003.  Why 
is that?  We know now that the science discovery 
process is more nuanced and not as highly 
repeatable as we thought.    Even when two 
modelers are using the same weather forecast 
model, for instance, they use different physics 
(requiring recompilation).  It is difficult to 
establish a core set of workflows that a critical 
mass of scientists will use.  Too, workflow systems 
abstract a set of tasks into a graph that is most 
often viewed through a workflow composer 
graphical user interface (GUI) [11].  It can be 
difficult for a domain researcher viewing a 
workflow through a GUI, or in any form (such as 
XML), to discern what the workflow is actually 
doing even when the domain scientist is familiar 
with the subject of the workflow.1  Guo et al. [14] 
point out that workflows have high adoption costs; 
it requires a team of vested interests to bring about 
a success.  For simple tasks, the overhead of 
workflow creation, execution, and management is 
simply too high.  Finally, when one takes a 
previously manual sequence of actions and 
automates them, some control is lost to the 
scientist as not every parameter can be exposed 
through the workflow interface.   

But we remain optimistic about workflows.  A 
sizeable benefit of the workflow system is its 

                                                 
1 As observed when talking with a domain scientist about the 
poster “Model calibration in the hydrologists workbench” by 
JM Perraud et al. WIRADA Science Symposium, Aug 2011 

ability to capture relevant metadata and 
provenance about the complex task being 
orchestrated and do so concurrently with execution 
[17].  As the volume of data increases, and the 
scientific questions broaden to encompass more 
complex and interrelated physical systems, 
continuing to rely on manual markup of important 
metadata grows more futile. Further, as the sharing 
of data sets moves beyond an exchange between 
two peers to embrace sharing between generations 
of researchers, researchers will count on metadata 
and provenance to contain the information from 
which they establish both the usability of the data 
and their trust in it.  Good metadata and 
provenance are critical to scientific data 
preservation, accountability, and enable proper 
governance (legal challenges) [24]. 

Computational science reproducibility, a utopian 
goal today, advances one step closer to reality 
through workflows [15].  Reuse, however, is 
guaranteed for only as long as the system on which 
it runs is operational.  If workflow use proliferates, 
driven by reproducibility, users will expect to use 
workflow snippets from multiple workflow 
systems, and it’s not unreasonable for them to 
expect the snippets to compose into a single 
workflow.   

Workflows provide a clear return on investment 
for operational use by their ability to handle 
repeatable analysis.  Their potential for a sizeable 
role in the scientific data repository is expanded in 
Section 3.  
In this study we examine several aspects of 
workflow systems with the goal of capturing their 
current state and opportunities.   In Section 2 we 
give an overview of workflow anatomy and 
systems.  In Section 3 we give a use case that 
represents a different direction for workflow 
systems in e-Science. Its application at a broad 
scale to improve interworkability could have a 
significant impact on scientific data sharing.  In 
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Section 4 we discuss the pros and cons of 
subworkflow interoperability, which is, simply, 
higher level workflow systems handing off 
workflow snippets to other workflow systems for 
execution.  In Section 5 we discuss key features of 
workflow systems including a summary of 
workflow standards.  In Section 6 we give the 
results of two assessment studies we carried out on 
existing workflow systems.   Section 7 focuses on 
observations about the Trident Scientific 
Workflow Workbench in particular.  

2 The Workflow Dissected 

 The e-Science workflow is often modeled as an 
activity graph where an activity is a single process 
block that can be linked to another process block if 
a control or data dependency exists between them, 
see Fig. 1. Activities in an activity graph are 
loosely coupled; with minimal communication 
existing between them. The granularity of 
activities is most often coarse meaning the process 
block is generally larger than, say, a function.    An 
example of an activity is an instance of a 
hydrological forecast model.  If the model runs in 
parallel, the activity graph might show this 
parallelism as multiple activities, one per instance 
or it might be modeled as a single activity that is 
deployed to an HPC system and runs as a large, 
tightly coupled parallel job.  An activity might be 
as straightforward as a format conversion that 
converts a netCDF binary file to an HDF format.  
Or it could take complex model output from a 3-
day weather forecast, extract precipitation readings, 
and write the readings out to a comma separated 
value (CSV) file [24].   
Workflow systems often provide default activities 
that can be used as components of a workflow.  
These activities may be domain independent, such 
as third party data movement, or targeted towards a 
particular domain such as a BLAST gene sequence 
matching activity.   Workflow systems can be 
categorized by their interaction with and 
assumptions about back end compute resources.  A 
system might be targeted to work with a back end 
Linux or Windows cluster, to run workflows on the 
user's workstation, or to submit jobs to a Grid, 
TeraGrid (Catlett 2002), or a cloud platform.  As 
the size of the back end resource grows, the 
workflow system supporting it provides additional 
constructs for large-scale parallel execution of jobs. 

Most workflows can be described by a graph that 
specifies the interaction between the multiple 
services or activities. The devil, however, is in the 
details.  e-Science researchers who have workflow 
needs often have computational needs as well.  The 
additional complexity brought about by the 
computational needs surfaces a more nuanced 
version of node interaction shown in Figure 2.   

 

 
Fig. 1.  A workflow graph can include subgraphs, pipelines 

and loops 

 

The nodes and edges themselves of a workflow can 
have different meanings as shown in Figure 2.  A 
node could be a task, T, and this task has variation.  
Does the workflow orchestration engine expect 
that all tasks use a single programming language?  
Are there limits on the complexity of the 
computation or on where it runs?  A model found 
frequently in workflow systems that carry out 
execution on large-scale computational resources 
is the proxy model.  The proxy, P, is an entity that 
mediates for a task or set of tasks.  It enables 
legacy code to be used and provides a standard set 
of interfaces.  A proxy can have its own 
orchestration capability.  Control flow captures 
how a node is invoked.  Does P invoke T directly, 
as would be the case if P is a workflow engine?  Or 
control may flow through P as would be the case if 
P were an interface layer that made it easier to 
bring legacy code, T, into a workflow.  

The meaning of input and output edges can vary 
from system to system.  Is the trigger behavior, 
which defines the conditions under which a node 
initiates execution, well defined as it is for pure 
dataflow computations [16] or less well so?   
How well a workflow system can aid a user in 
assembling a workflow graph depends on the 

Pipeline

Loop
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semantics built into the system for understanding 
edge inputs and outputs.  Is the edge input defined 
as any string, or is it known to be a parameter input 
file?   Finally, often workflows in e-Science move 
serious volumes of data between nodes.  How is 
this movement achieved?  Is it an explicit part of 
the workflow, or carried out behind the scenes? 
The simplest choice is that each node reads from 
and writes to disk, allowing one to treat the 
execution of each node as an independent job 
invoked when all its needed input data are 
available on disk.  The cost of reading and writing 
is often quite acceptable and allows simpler fault 
tolerant implementations. One can use messaging 
systems to manage data transfer in a workflow and 
in extreme cases, simple models where all 
communication is handled by a single central 
“control node”. Obviously this latter could lead to 
poor performance that does not properly scale as 
workflow size increases.  
The interesting case is when a workflow has two 
proxy nodes, P1 and P2, where each represents a 
workflow orchestration engine.  P1 and P2 nodes 
are triggered by a top-level workflow system, P0.  
How is data movement handled when multiple 
workflow systems are involved?  The WS-VLAM 
system [30], for instance, uses a common event 
services bus. This proxy model can also be an 
agent framework [32]. We summarize the 
discussion of workflow system dimensions in 
Table 2.  

 

 
Fig. 2.  Dimensions of Variability in Workflow System 

Architecture 

 
Workflow systems have four major components: 
workflow composition, workflow orchestration, 
task scheduling, and one or more application task 
interfaces.  Workflow composition is the process by 
which a user chooses functions, describes inputs 

and outputs, and determines dependencies to create 
the workflow.  This process can be accomplished 
by a graphical user interface, a command line 
interface, a set of configuration files or any 
combination of these.  Workflow orchestration is 
the process by which a workflow works– that is, 
how the processes are initiated and executed.  Task 
scheduling is the process by which individual steps 
in a workflow are managed: determining the start 
time, marshaling the resources necessary, and 
coordinating multiple threads.  An application task 
interface is the manner in which workflow systems 
communicate with applications: web services, 
plugins, and other domain specific executables.   

 
Dimension Description Design space 
Task Core logic 

executed as 
workflow node 

Programming language 
or protocol 
restrictions?  Limits on  
computation?  

Edge 
semantics 

Level of 
required 
semantics of 
inputs and 
outputs to  task 

Limitations to types of 
edges?  Role of 
semantics in 
composing workflows. 

Trigger 
behavior 

Condition 
under which 
node is invoked  

Common behavior is 
trigger when data 
object available on all 
input edges 

Control Manner in 
which node is 
invoked.   
Involves entity 
that originates 
invocation. 

Is task invoked by 
proxy, by workflow 
orchestration engine, or 
by another task? 

Proxy Entity that 
mediates for  
task or set of 
tasks.   

Enables legacy code to 
be used; has own 
orchestration 
capability; agent. 

Data 
Movement 

Manner in 
which data 
becomes 
available at  
task that needs  
input 

Assumption of local 
file system?  Data 
movement service?  
Embedded in 
invocation?  Through 
message bus? 

Table 1.  Dimensions of variability in architecting a 
workflow system 
 

There are generally two communication systems in 
workflow environments corresponding to “control” 
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and “data” respectively. Obviously, the control 
communication would usually have small 
messages and very different requirements from the 
data network. In this regard, one should mention 
the “proxy model” which is often used in Grid 
architectures and workflow [12].  The information 
flowing between proxy nodes is all essentially 
control information.  

Some workflow systems are built around the 
dataflow concept, this being the original model [3, 
27, 29] the interaction scripted in languages like 
JavaScript or PHP. Other workflow approaches 
extend the “remote method invocation” model 
coming from the distributed object paradigm. This 
model underlies the Common Component 
Architecture2 (CCA) [13].  The Business Process 
Execution Language3 (BPEL), an OASIS4 standard 
executable language for specifying actions within 
business processes with web services, specifies the 
control and not data flow of a workflow. Of course, 
the control structure implies the dataflow structure 
for a given set of nodes; one simple but extremely 
important workflow structure is the pipeline.  A 
more general workflow structure is that of the 
directed acyclic graph (or DAG) which is a 
collection of vertices and directed edges, each edge 
connecting one vertex to another, such that there 
are no cycles. That is there is no way to start at 
some vertex V and follow a sequence of edges that 
eventually loops back to that vertex V again.   
Dagman [8] used in Condor5 is a sophisticated 
DAG processing engine. This leads to a class of 
workflow systems like Pegasus6 aimed at 
scheduling the nodes of DAG based workflows. 
Karajan7 and Ant8 can also easily represent DAG’s.   

Important workflow systems based on dataflow 
technologies are the Kepler9  [20, 21] and Triana10  
[5, 28] projects; Kepler is still actively being 
developed. Pegasus is an active system 
                                                 
2 http://www.cca-forum.org/ 
3 www.oasis-open.org/committees/wsbpel/ 
4 http://www.oasis-open.org/ 
5 http://www.cs.wisc.edu/condor/ 
6 http://pegasus.isi.edu/ 
7 http://wiki.cogkit.org/index.php/Karajan   
8http://www.gridworkflow.org/snips/gridworkflow/spac
e/GridAnt 
9 http://kepler-project.org   
10 http://www.trianacode.org/index.html 

implementing the scheduling style of workflow. 
Taverna11 [23] from the myGrid project12 is very 
popular in the bioinformatics community and 
substantial effort has been put by the UK OMII 
effort13 into making the system robust. An 
innovative extension of this project is the 
myExperiment scientific social networking site,14 
which enables sharing of workflows. The WS-
VLAM [30] system is a system of workflow 
systems, employing a common event service bus, 
the VL-e Workflow Bus that carries data and 
control flow to and from multiple remote workflow 
systems.  

In spite of sophisticated specialized workflow 
systems, many workflows are custom-built with 
scripting and traditional languages and toolkits.  
These can be considered “mash ups” – informal 
and ad hoc software built from tools at hand.  PHP 
must be the most popular environment building 
mash-ups but Python and JavaScript are also well 
used.   It is highly likely that these mash-ups are 
the dominant workflow “systems” in use in 
research environments. 

3 Case Study 

Many workflow case studies exist to testify to the 
benefit gained through reapplication of a workflow 
to a slightly different domain to reveal interesting 
new science.  We take a brief opportunity here to 
discuss one case that uses workflows in a less well 
explored application. One way to organize the 
scientific data output of a broad science discipline 
is as a federation of relatively independent 
repositories.  The topic of organizing scientific 
data is taking place, amongst other places, in the 
NSF EarthCube initiative.  Through a model of 
independent repositories, the cost of maintenance 
of the federation can be amortized over multiple 
entities.  A key player in the repository space is the 
institutional repository of the university.  
University libraries possessing stronger 
cyberinfrastructure are emerging with solutions to 
long-term data preservation.  A university may 
choose to capture, catalogue and serve the 

                                                 
11 http://www.taverna.org.uk/ 
12 http://www.mygrid.org.uk/ 
13 http://www.omii.ac.uk/index.jhtml. 
14 http://www.myexperiment.org/ 

http://pegasus.isi.edu/
http://wiki.cogkit.org/index.php/Karajan
http://www.gridworkflow.org/snips/gridworkflow/space/GridAnt
http://www.gridworkflow.org/snips/gridworkflow/space/GridAnt
http://kepler-project.org/
http://www.trianacode.org/index.html
http://www.taverna.org.uk/
http://www.mygrid.org.uk/
http://www.omii.ac.uk/index.jhtml
http://www.myexperiment.org/
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scientific data assets of their own researchers. Or it 
may emerge as stronghold for one or small number 
of domains nationwide.     

Integrating data from multiple sources for research 
still remains a significant challenge.  A discipline 
as broad as geosciences, which spans from climate 
to ocean, to earth surface, streams, environment 
and atmosphere is highly diverse, with numerous 
communities and subcommunities.   A critical 
variable in any solution is that communities have 
their own vocabularies, whether encoded or simply 
verbal.  They may have one or more community 
XML schemas, and some number of formats of 
data.  Some of their data products are fully 
described (“curated”), however most are not. A 
repository must work within this diversity while 
still enabling various use modes on the data.  

Data discovery has two partners: the repository 
that works to make its contents easily discoverable, 
and client side tools that are smart enough to know 
how to look for content.  

The repository can be made customer friendly.  
Using an analogy of an ice cream shop in an ethnic 
neighborhood, the ice cream shop makes sure it 
speaks the multiple languages of the customer base, 
and expands its toppings to give the customer the 
options that they want.   How does that translate?  
The spoken language of the ice cream shop 
translates to a community’s vocabularies, schemas, 
and semantics in the repository.  The data objects, 
the ice cream, is stored in the repository in a 
neutral object representation, and is then converted 
(sprinkled with toppings) before being returned to 
users.  More formally, the OAIS model has a 
notion of the Dissemination Information Package 
(DIP) as the entity that is returned from the 
repository.  Two ideas inherent in OAIS are 
relevant here. First, the DIP form is distinct from 
the internal form in which the data object is stored 
(i.e., the Archival Information Package (AIP)).  
The second point about the OAIS model is that the 
DIP will take many forms.  For example, an image 
might be made available as a thumbnail, as a jpg, 
or as a png file.  

Thus, a repository should offer a dissemination 
suite of tools for each community that has a need 
for its data.  This suite is the set DIP for 
community i as: 

DIPi = {V/O, S, Wf}  

where V/O is the vocabulary/ontology of the 
community i, S are its XML schemas, and Wf is a 
set of workflows embodying the transformations 
needed to translate the data to a form familiar to 
the community requesting the data.   The benefit of 
such a model is the ability to add support for a new 
community, it becomes the simple act of including 
a new instance DIPj to the set of dissemination 
processes supported.  This use of workflows, to 
encode community transformation processes, has 
the workflow be a portable, and encoded form of 
community norms.  The model is discussed in 
more detail in Plale et al. [25], a whitepaper 
written as a contribution to EarthCube.     

The recently funded NSF DataNet Sustainable 
Environments – Actionable Discovery15 (SEAD) 
project is targeting use of the university and 
academic research institutional repository as a 
long-term solution for scientific data.  As an aside, 
it is working on reducing data curation costs by 
pushing automated metadata capture closer to the 
source of generation of the data.  Plale is a co-PI 
on SEAD. 

4 Sub-workflow Interoperability, Pros and 
Cons 

Why would users want to compose workflow 
snippets taken from different workflow systems to 
form a single workflow? First, workflow systems 
have become specialized.  A workflow system 
might be specialized to utilize a particular cloud 
platform, or provide special constructs for large-
scale parallel execution of jobs.  Second, since the 
likelihood of a workflow designed for one 
workflow system running on another is low, 
researchers will use the functionality when and 
where it exists.  In the end, as workflow adoption 
proliferates, users will seek to use each system for 
what it is best at, creating the scenario where a 
portion of a workflow is run on one system and 
another portion on another system.  As with social 
media sites, working within a single framework 
can be limiting.  

                                                 
15 http://sead-data.net/ 
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Interoperability between and across workflow 
systems, which is known as subworkflow 
interoperability, is possible. The WS-VLAM 
system is a case in point.  WS-VLAM has a 
common event service bus, the VL-e Workflow 
Bus that carries data and control flow to and from 
multiple remote workflow systems. Such an 
approach seems highly desirable, but at what cost? 
We explore that question fully in Plale et al. [26] 
and summarize results here.   

Subworkflow interoperability takes several forms 
as illustrated in Fig. 3.  System 1 is the top-level 
workflow system.  Four our study, it sits on a user 
desktop.  System 1 orchestrates activities A, B, E, 
and F.  Activity B is called from System 1 by 
instructing System 2 to execute the activities.  
While B is seen as a single activity by System 1, it 
is actually a workflow system that executes the 
workflow C->D.  Activity F is activated through an 
invocation of System 3 by System 1.  System 3 is a 
proxy for an activity that runs remotely such as on 
grid middleware.  Other forms of subworkflow 
interactivity exist, but this set of cases is rich 
enough to work with.   

 

 
Fig. 3. Subworkflow interoperability shares 
workflows between systems. 

A system that can utilize local machine resources 
for simple execution and remote resources for 
more complex tasks is simpler in the simple case.   
Workflow system to workflow system interaction 
is complex, and that programming complexity 
should not hurt the simple case, thus enforcing the 
adage that what a user doesn’t know should not 
hurt them. System 1 could be a user desktop 
workflow system like the Trident Scientific 
Workflow Workbench used in our study. Trident is 
easy to use in the sense that it is integrated 

with .NET and Workflow Foundation so writing a 
new activity is a straightforward coding effort.  

4.1  Testing Subworkflows 
Based on the model in Fig. 3, we construct a set of 
tests to assess the pros and cons of constructing a 
system that has a top-level workflow system 
calling out to lower level workflow systems and 
remote resources.  This system of systems we 
assemble for testing has similarities to WS-VLAM 
except we did not integrate the event service bus 
that would provide a unified communication model. 
In our test system the top-level workflow 
orchestration system is Trident.  The remote 
workflow systems used are the Kepler workflow 
system and Apache ODE.  Proxy execution 
(System 3) uses the GFac and Opal toolkits which 
proxy between a workflow environment and an 
arbitrary workflow graph node (such as legacy a 
Fortran code).  

 
Fig. 4. Sub-workflow interoperability: local 
execution within System 1 is shown by activity 
AP and AQ invoking a local workflow. Activity 
AR communicates with the Kepler remote 
engine to run a sub-workflow on Big Red 
(solid black lines). Activity AS contacts grid 
services directly to invoke nodes individually 
(dotted black lines). Activity AT invokes the 
ODE workflow engine to run a sub-workflow 
on Big Red (solid red lines). Activity AU 
contacts grid services directly to invoke nodes 
individually (dotted red lines). 

4.2  Architectural Organization 
Our study decomposes Fig. 3 into four high level 
components described as follows and illustrated in 
Fig. 4: 

• Baseline execution environment: The top-
level workflow engine and local execution 
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environment. Workflows are run locally.  This 
shown as activities AP and AQ executing as 
part of a local workflow executed through 
Workflow Foundation.  

• Remote workflow engine: AR and AT are the 
remote workflow engine case. AR invokes 
Kepler that contacts the Opal Toolkit to 
execute a sub-workflow on a supercomputer 
(called Big Red) through Globus GRAM. AT 
invokes the Apache ODE workflow engine 
that contacts GFac to execute a sub-workflow 
on Big Red using the Sigiri resource manager. 

• Remote grid/cloud middleware: AS and AU 
illustrate activities which contact grid/cloud 
middleware directly. Activity AS contacts Opal. 
Since there is no orchestration at the remote 
system, the remote grid/cloud services are 
capable of executing only one task of a 
workflow. Shown in the black dotted lines is 
the Globus GRAM resource manager 
executing one of the three services of a sub-
workflow similarly activity AU contacts GFac 
for execution of one of the three tasks pointed 
to by the dotted red lines.  

• High performance computing resources: 
large scale supercomputers or cloud resources. 

The workflows used in the study cover four cases 
over two workflow patterns as follows: 

Data Intensive, Sequential Workflow: consists 
of 5 sequential MD5 tasks, each of which 
applies a data movement operation and a 
cryptographic hash function (i.e., MD5) on a 
1.5 GB file.  

Data Intensive, Parallel Workflow: consists of 
5 parallel executed MD5 tasks, each of which 
is the same as in Data Intensive, Sequential 
Workflow. 

Compute Intensive, Sequential Workflow: 
consists of 5 sequential Linpack tasks, each of 
which is configured to carry out execution on a 
5000 x 5000 matrix, using double precision 
floating point coefficients. The inputs and 
outputs are small, on the order of 5KB.  

Compute Intensive, Parallel Workflow: 
consists of 5 parallel Linpack tasks, each of 
which is configured the same as the Compute 
Intensive, Sequential Workflow.  

We identified several metrics for key overheads.  
First is the time penalty of using a second 
workflow engine.  This is measured as the time 
difference to invoke workflow instance i on local 
machine versus time to invoke workflow through a 
remote workflow engine.  Second, remote services 
and remote workflow engines are both remote, so 
what is the cost of using a remote workflow engine 
specifically?  Third, workflow systems show 
varying latencies for complex workflows. The 
third and final measure captures that variability. 

4.3  Summary of Results 
We experimentally evaluated two models of 
remote execution for a handful of scenarios to 
illuminate the latencies and variability inherent in 
different approaches.  We capture an overall 
measurement of sub-workflow overhead by 
running a workflow directly within the Trident 
workstation and comparing that against the same 
workflow executed by a secondary workflow 
engine. In order to have a fairer comparison, we 
ignore waiting time in the job queue in the remote 
case. For the compute-intensive workflows, the 
remote ODE workflow engine version had only 2.4% 
higher execution time than local execution. The 
remote grid service version using Gfac/Sigiri, on 
the other hand, had 15.5% higher execution time 
than local machine execution.  This difference is 
due to overhead in invoking GFac, the service 
factory, which uses a model of dynamic web 
service creation. Kepler sub-workflow and 
Opal/GRAM grid services showed only 5% higher 
execution time than local machine execution. 
Hence, the difference in overhead can be attributed 
to the difference in architectural decisions in 
support of dynamic capabilities.  

In the remote task approach, Trident has more 
activities to manage and track, whereas for the 
remote engine approach, the number of nodes in 
the Trident workflow is minimal. In sequential 
workflows, the remote workflow engine only adds 
10% overhead to the overhead introduced by 
Trident. In the case of running parallel remote 
services in Trident, there is no concurrent 
execution, so the performance in Trident is up to 5 
times worse than using sub-workflow engines which 
handle parallel execution.  

Under sequential compute intensive workflows, 
ODE and Kepler stacks take approximately the 
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same amount of time. Due largely to Sigiri, the 
ODE stack keeps the submission overhead within a 
small range. Kepler uses Globus GRAM as its job 
submission middleware and GRAM takes a 
varying amount of time to get the job scheduled 
and executed in the compute resource. The 
variability of Kelper/Opal Stack is 14 times worse 
than ODE/Sigiri stack. During this experiment we 
also experienced job failures caused by different 
GRAM failures and had to re-run our experiments 
on multiple occasions.  

There are softer aspects about which comparison 
can be made including locus of control, 
extensibility and architectural complexity. 

Locus of Control.  Remote grid/cloud services are 
capable of scheduling individual activities, since 
there is no orchestration at the remote system.  In 
the case where the subworkflow system is invoked, 
the black-box nature of the subworkflow model 
relieves Trident of complex control because it 
hands that off to sub-workflow. The more minimal 
the control of Trident, the less the user has to 
understand the workflow. 

Extensibility.  Workflow engines are often bound 
to certain services to carry out tasks used during 
workflow execution which limits the functionality 
of the workflow engine. The ODE workflow 
engine, particularly through its instantiation in the 
OGCE tool suite is limited by its ability to add new 
workflow activities. New must be exposed as a 
Web service. Kepler and Trident workflow engines 
on the other hand are targeted to desktop 
executions and thus allow new functionality to be 
more easily incorporated into the system. With the 
actor model in Kepler and activity model in 
Trident, a user can program any functionality into 
the workflow, enabling a wide variety of 
functionality to be supported in the workflow. In 
experience gained in the research lab and in the 
classroom, Trident is easy to use in the sense that it 
is integrated with .NET and Workflow Foundation 
so writing a new activity is a straightforward 
coding effort.  

Architectural complexity.  Architectural 
complexity captures the number of components, 
fragility of interfaces, etc. of a system.  
Architectural complexity is directly proportional to 
the availability and reliability of the system. The 
higher the complexity, the lower a system’s 

availability unless significant and costly measures 
are put in place for fault monitoring, replication, 
and recovery. The remote task approach (over 
remote engine approach) gives the user more 
control over the execution of the experiment. But 
with this control comes maintenance overhead and 
complexity, because the user has to manage all the 
components and their interactions. From our 
experience with the LEAD Science Gateway 
(2003-2010), grid middleware adds complexity to 
the architecture. When Trident is expected to 
interact directly with Sigiri and Opal, the workflow 
author will have to handle the complexities for 
each activity, including authentication mechanisms, 
fault tolerance and checkpointing. In the sub-
workflow workflow engine approach, the user 
must provide perfect configuration parameters for 
the next workflow engine to function properly.  

Grid middleware is responsible for a significant 
amount of overhead in a scientific workflow stack 
scheduling jobs into supercomputing resources. 
The job failures and the higher variation of 
overheads we experienced during our evaluation 
suggests that the instability and unpredictable 
behavior of grid middleware components have 
high impact on the scientific workflow systems 
that are using them. However efficient and 
optimized these workflow stacks are, the issues in 
middleware can make these workflow suites 
uncertain, if not unusable. 

Similar to other workflow systems, Trident 
facilitates workflow runs in Windows based 
environments. But we think more improvements 
are necessary to make this toolkit more useable 
among the scientific research community. For 
example, Trident lacks the support for parallel 
execution constructs within it. Even though 
activities are picked up and scheduled in parallel, 
for a parallel workflow, they are executed 
sequentially. 

The takeaway message of this study is that a user 
today can compose a workflow using a high level 
workflow engine whose subcomponents run on 
various lower level workflow systems or grid 
resources.  The execution overheads are reasonable.  
The subworkflow system can even augment the 
capability of the higher-level workflow system.  
But this comes at the cost of additional system 
complexity. This complexity can be overcome 
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through redundancy and resiliency measures, but 
often the latter are out of reach for open source 
research tools because of their substantially higher 
development and long term maintenance costs.   

5 Workflow System Features 

Most sophisticated workflow systems support 
hierarchical specifications; that is the nodes of a 
workflow can be either services or collections of 
services facilitating interoperability as well as 
reusability of sub-workflows [12]. Other key 
aspects of workflow are security [4] and fault-
tolerance [7]. In the previous discussion, the four 
major components of workflow systems were 
described: workflow composition, workflow 
orchestration, task scheduling, and one or more 
application task interfaces (see Figure 2).  Within 
each of these major functions, we further 
demarcate the different workflow system 
functionalities: 

 Integral domain independent workflow 
tasks, nodes, or activities.  What functions 
are built in to facilitate workflow creation?  
How can these functions be compounded 
to build complex activities?  

 Data movement/access between workflow 
nodes.  Can the workflow tasks access files 
easily?  What in memory functions are 
available? (For example in-memory 
streaming through distributed brokers, 
centralized allocation server, or other 
technologies.) 

 Provenance and metadata collection.  
What data is automatically collected to 
provide information on the execution, the 
purpose, and the results of the workflow?   

 Fault tolerance.  How well do these 
systems recover from error?  Within a 
workflow?  Within a task or activity?   
From system errors?  From application 
errors? 

 Parallel execution of workflows.  To what 
extent can workflows be run in parallel?   

 Sharing workflows.  How can researchers 
share components of workflows, complete 
workflows, and the output data from 
workflows? 

5.1  Current Workflow Systems 
 
We identified the top workflow systems most used 
in research and business environments based on a 
literature review.  These workflow systems focus 
on different segments of the market which in turn 
drives the functionalities implemented and the 
technologies used.  Below is a brief overview of 
the 10 major workflow systems.  
 

Kepler is a data-flow oriented workflow system 
with an actor/director model that is used in 
ecology and geology domains. 

Taverna is primarily focused on supporting the 
Life Sciences community (biology, chemistry 
and medical imaging) and uses a data-flow 
oriented model.  

Swift is data-flow oriented workflow that uses a 
scripting language called Swiftscript, to run the 
processes in the workflow. 

Ode is not a full system, but a workflow engine 
that needs to be supported by other tools and 
components to design and execute workflows.  
It can be used with front end tools such as 
XBaya described below. 

VisTrails is a scientific workflow and 
provenance management system that provides 
support for data exploration and visualization. 

Trident is a workflow workbench developed by 
Microsoft Research and relatively newer among 
the other workflow systems. It is based on the 
Windows Workflow Foundation (WF). 

IBM smash makes use of enhanced BPEL Web 
2.0 workflow environment for building and 
running dynamic Web 2.0-based applications 
using SOA principle. 

Lims has elements of a workflow system, but is 
primarily designed as a laboratory information 
system to analyze experimental data using “G”, 
a data-flow oriented language. 

Inforsence is a BI solution that enables 
organizations to use a drag and drop visual 
environment to build predictive and statistical 
models and other analytical applications on 
dynamically combined data from a variety of 
sources such as data warehouses, spreadsheets 
and documents as well as web services. 
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Pipeline pilot has an integrated set of 
applications which model and simulate 
informatics and scientific businesses 
intelligence needs of research and development 
organizations. 

Triana is a graphical workflow and data 
analysis tools for domains including signal, text, 
and image processing. It includes a library of 
tools and users can integrate their own tools, 
Web, and Grid Services. Triana is a Java 
application and will run on almost any 
computer.  It hides the complexity of 
programming languages, compilers, debuggers, 
and error codes. 

XBaya  is a graphic workflow front end for 
backend engines such as ODE and 
ActiveBPEL.  It can be used as a standalone 
application or as a Java Web Start application. 

5.2  Workflow Standards 
The period 2000-2005 produced a number of 
workflow standards that were viewed as essential 
to enable the Web Service dream of 
interoperability by complete specification of 
service features. Recently there has been a 
realization that this goal produced heavyweight 
architectures where the tooling could not keep up 
with support of the many standards. Today we see 
greater emphasis on light weight systems where 
interoperability is achieved by ad hoc 
transformations where necessary. A significant 
problem of the standardization work was that it 
largely preceded the deployment of systems; the 
premature standardization often missed key points. 
This background explains the many unfinished 
standards activities in Table 1. The successful 
activities have a Business process flavor; for 
scientific workflows, the most relevant standard is 
BPEL,16 [6, 19] which was based on earlier 
proposals WSFL and XLANG.  

XML is not well suited to specifying programming 
constructs.  Although XML can express data 

                                                 
16 OASIS Web Services Business Process Execution 
Language Version 2.0 BPEL available from: 
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-
OS.html  and ActiveBPEL Open Source workflow 
engine available from: http://www.activebpel.org/ 
 

structures well, it is possible, but not natural, to 
express loops and conditionals that are essential to 
any language and the control of a workflow.  It 
may turn out that expressing workflow in a modern 
scripting language is preferable to XML based 
standards.  However, exporting data or workflows 
as part of ad hoc transformations for 
interoperability might be an appropriate use of 
XML in workflow systems [12]. 

Table 2.  Workflow Related Standards [12] 

Standard Link Status 
BPEL Business 
Process Execution 
Language for Web 
Services (OASIS)  
V2.0 

http://docs.oasis-
open.org/wsbpel/2.0
/wsbpel-v2.0.html; 
http://en.wikipedia.o
rg/wiki/BPEL 

April 
2007 

WS-CDL Web 
Service 
Choreography 
Description Language 
(W3C)  
 

http://www.w3.org/
TR/ws-cdl-10/  

Nov 
2005 Not 
final 

WSCI Web Service 
Choreography 
Interface V1.0 (W3C) 
 

http://www.w3.org/
TR/wsci/ 

Aug 
2002 
Note 
only 

WSCL Web Services 
Conversation 
Language (W3C) 
 

http://www.w3.org/
TR/wscl10/ 

Mar 
2002 
Note 
only 

WSFL Web Services 
Flow Language 

http://www.ibm.co
m/developerworks/
webservices/library/
ws-wsfl2/ 

Replaced 
by BPEL 

XLANG Web 
Services for Business 
Process Design 
(Microsoft) 

http://xml.coverpag
es.org/XLANG-C-
200106.html 

Jun 2001 
Replaced 
by BPEL 

WS-CAF Web 
Services Composite 
Application 
Framework including 
WS-CTX, WS-CF 
and WS-TXM  
  

http://en.wikipedia.o
rg/wiki/WS-CAF   

Unfinish
ed 

WS-CTX Web 
Services Context 
(OASIS Web 
Services Composite 
Application 
Framework TC)  
 

http://docs.oasis-
open.org/ws-caf/ws-
context/v1.0/OS/ws
ctx.html 

Apr 2007 

WS-Coordination http://docs.oasis- Feb 2009 

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://en.wikipedia.org/wiki/BPEL
http://en.wikipedia.org/wiki/BPEL
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/ws-cdl-10/
http://www.w3.org/TR/wsci/
http://www.w3.org/TR/wsci/
http://www.w3.org/TR/wscl10/
http://www.w3.org/TR/wscl10/
http://www.ibm.com/developerworks/webservices/library/ws-wsfl2/
http://www.ibm.com/developerworks/webservices/library/ws-wsfl2/
http://www.ibm.com/developerworks/webservices/library/ws-wsfl2/
http://www.ibm.com/developerworks/webservices/library/ws-wsfl2/
http://xml.coverpages.org/XLANG-C-200106.html
http://xml.coverpages.org/XLANG-C-200106.html
http://xml.coverpages.org/XLANG-C-200106.html
http://en.wikipedia.org/wiki/WS-CAF
http://en.wikipedia.org/wiki/WS-CAF
http://docs.oasis-open.org/ws-caf/ws-context/v1.0/OS/wsctx.html
http://docs.oasis-open.org/ws-caf/ws-context/v1.0/OS/wsctx.html
http://docs.oasis-open.org/ws-caf/ws-context/v1.0/OS/wsctx.html
http://docs.oasis-open.org/ws-caf/ws-context/v1.0/OS/wsctx.html
http://docs.oasis-open.org/ws-tx/wscoor/2006/06
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Web Services 
Coordination (BEA, 
IBM, Microsoft at 
OASIS)  
 

open.org/ws-
tx/wscoor/2006/06   

WS-
AtomicTransaction 
Web Services Atomic 
Transaction (BEA, 
IBM, Microsoft at 
OASIS)  
 

http://docs.oasis-
open.org/ws-
tx/wsat/2006/06  

Feb 2009 

WS-
BusinessActivity 
Web Services 
Business Activity 
Framework (BEA, 
IBM, Microsoft at 
OASIS) 
 

http://docs.oasis-
open.org/ws-
tx/wsba/2006/06   

Feb 2009 

BPMN Business 
Process Modeling 
Notation (Object 
Management Group 
OMG) 
 

http://en.wikipedia.o
rg/wiki/BPMN; 
http://www.bpmn.or
g/ 

Active 

BPSS Business 
Process Specification 
Schema (OASIS) 

http://www.ebxml.o
rg/; 
http://www.ebxml.o
rg/specs/ebBPSS.pd
f 

May 
2001  

BTP Business 
Transaction Protocol 
(OASIS)  

http://www.oasis-
open.org/committee
s/download.php/124
49/business_transact
ion-btp-1.1-spec-cd-
01.doc  

Unfinish
ed 

6 Studies 
To evaluate the existing field of workflow systems, 
we undertook two studies.  In the fall of 2010, we 
carried out a heuristic evaluation of six workflow 
systems; and in spring 2011, we completed a 
hands-on usability study of four workflow systems.  
Both are summarized below. 

6.1  Heuristic Evaluation  
In the heuristic evaluation, six workflow systems 
were reviewed to determine the functional and 
technical capabilities.  The systems reviewed were 
Trident, Swift, VisTrails, Kepler, Taverna, and 
Ode.  This study evaluated each system based on 
the functions described above: specialized 
activities, the underlying back end engine, data 

movement functions, the ability to interface to 
application code, the ability to share workflows, 
fault tolerance, and provenance and metadata 
collection.  A summary of the evaluation follows.  

Specialized Activities.  Trident and Taverna 
provided many standards based interfaces.  Trident 
allows for a standard scientific semantic and 
syntactic data format (NetCDF).  Kepler is 
specifically tuned tows scientific workflows with 
internal functions for grid access, mathematical 
and statistical interfaces (such as R and Matlab), 
and support for multiple programming languages.    

Underlying Back-end Engine.  Each of the 
workflow systems in this study has their own 
engine.  Trident uses Workflow Foundation.  
VisTrails has a cache manager model.  Kepler uses 
the Ptolemy engine.   Ode has a JDBC data store 
with a data access layer and the BPEL engine. 

Data Movement.  Trident has limited set of 
libraries for data movement out of the box. 
However it is flexible with the .Net framework to 
use memory, files, or databases for data 
movements.  Swift has a set of libraries for data 
movement including functions that map data and 
provide a number of grid functions including 
gridFTP.  Kepler provides access to data within 
scientific domain specific repositories and has 
component libraries to read, write, and manipulate 
domain specific standard data formats.  

Application Code Interface.  Trident uses web 
services to interface to application code and can 
execute any function using the .Net framework.  
Swift has a propriety scripting language as well as 
a Java API to interact with grid services.  VisTrails 
supports web services and python scripts.  Kepler 
and ODE have APIs.  Taverna has remote 
execution services that allow it to be invoked from 
other applications. 

Workflow Sharing.  Ode and Swift did not 
provide functions that allow for easy workflow 
sharing, while Trident, Taverna, VisTrails, and 
Kepler did.  Kepler provided a robust tagging and 
retrieval function for its sharing environment.  
VisTrails allows for versioning of workflows.  In 
addition, Trident, Kepler, and Taverna can share 
workflows via the myExperiement website. 

Fault Tolerance.  Error recovery in the current 
Trident (v 1.2.1) is to restart the entire workflow.   

http://docs.oasis-open.org/ws-tx/wscoor/2006/06
http://docs.oasis-open.org/ws-tx/wscoor/2006/06
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://docs.oasis-open.org/ws-tx/wsat/2006/06
http://docs.oasis-open.org/ws-tx/wsba/2006/06
http://docs.oasis-open.org/ws-tx/wsba/2006/06
http://docs.oasis-open.org/ws-tx/wsba/2006/06
http://en.wikipedia.org/wiki/BPMN
http://en.wikipedia.org/wiki/BPMN
http://www.bpmn.org/
http://www.bpmn.org/
http://www.ebxml.org/
http://www.ebxml.org/
http://www.ebxml.org/specs/ebBPSS.pdf
http://www.ebxml.org/specs/ebBPSS.pdf
http://www.ebxml.org/specs/ebBPSS.pdf
http://www.oasis-open.org/committees/download.php/12449/business_transaction-btp-1.1-spec-cd-01.doc
http://www.oasis-open.org/committees/download.php/12449/business_transaction-btp-1.1-spec-cd-01.doc
http://www.oasis-open.org/committees/download.php/12449/business_transaction-btp-1.1-spec-cd-01.doc
http://www.oasis-open.org/committees/download.php/12449/business_transaction-btp-1.1-spec-cd-01.doc
http://www.oasis-open.org/committees/download.php/12449/business_transaction-btp-1.1-spec-cd-01.doc
http://www.oasis-open.org/committees/download.php/12449/business_transaction-btp-1.1-spec-cd-01.doc
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Swift supports internal exception handling and 
resubmission of jobs.   Kepler supports dynamic 
substitution at the task level, rescue at the 
workflow level and restart of the failed component.  
Taverna supports task level restart with dynamic 
substitution.  Ode has a “failure policy” that can 
support activity retry, fault or cancel.  

Provenance and Metadata Collection.  Trident 
uses semantic tagging for provenance data.  Swift, 
VisTrails, and Kepler have separate components 
for tracking provenance data.  Taverna supports a 
sophisticated multi-level provenance data 
collection, storage, and tracking mechanism.  Ode 
stores provenance data within its internal data 
storage scheme of Data Access Objects. 

6.1.1 Discussion 
All of these workflow systems have infrastructures 
that provide libraries and functions for data 
transfer management, job submission, and 
execution management.  Several of the systems 
repurpose engines such as the Workflow 
Foundation or Ptolemy.   While each may be tuned 
to a specific function set or market segment, all 
could be implemented and used by a wide range of 
users.   
The major differentiators in the workflow systems 
studied are provenance collection and fault 
tolerance.  Although provenance capture is 
supported by most of the systems, the level of data 
collected, the data format and manner of storage, 
and the retrieval and display of the data varies 
widely.   It is the post-process use of provenance 
that is both intriguing and underutilized.  How can 
this provenance data be used to recreate 
experiments or workflows?  How could this data 
be used to determine which data should be 
contributed to national reference databases (such as 
Protein Data Bank or the DataConservancy).  Fault 
tolerance is a second differentiator.  Providing a 
robust set of tools, functions, and options for 
recovering from failure, at the task or workflow 
level, is a significant user function that needs to be 
incorporated into all workflow systems.  This set 
of services needs to be visible to the user and 
simple to configure and execute as well as be able 
to provide clear, consistent and usable feedback for 
correction of user contributed code, configuration 
errors, workflow errors, data errors, and operating 
system issues. 

6.2  Usability study 
The second study we carried out is a hands-on 
usability study.  Three Computer Science Masters 
students in the Data to Insight Center of Indiana 
University installed, configured, and used four 
workflow systems and evaluated their experiences 
using  Trident, IBM Smash, Taverna, and Triana. 
This graduate class project of Spring 2011 was 
carried on to completion through summer 2011 by 
a Master’s student. The primary evaluation criteria 
for this study were the ease of installation, the ease 
of creating and running a simple workflow, the 
ability to integrate a well-known external 
application into a workflow, and overall usability 
including support options.  A summary of the 
results of their evaluation follows.   
 
Ease of setup - is defined as the total time to 
download all of the required software, install all of 
the components, run the setup and configuration 
process. 

 
Trident.  The Trident application itself was 
easy to download.  But additional Microsoft 
packages were required.  The other packages 
were in numerous locations and took 
significant time to find. Installing the Trident 
application was simple and took less than 2 
min; but the other packages required more 
effort to install and configure.  We discovered 
that the Trident documentation was out of date 
and the version of SQL Server that was 
downloaded was incorrect.  We had to 
download the new version of SQL Server, 
reinstall SQL Server, reconfigure SQL Server, 
and reinstall Trident. The total process took 
over 4 hours.   
IBM Smash.  The download and installation 
took less than 1 min to download and less than 
2 min to install.  However, since it only 
operates in a 32-bit environment, we had to 
install a Virtual-PC with a 32-bit OS.  
Taverna.  Taverna was simple to download 
and install.  The entire operation took less than 
4 min. 
Triana.  The base software was simple to 
download; however, many files were missing.  
The installation environment was difficult to 
use and not well documented.    
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Get simple workflow working.  For this study, we 
designed a simple conditional workflow to add two 
integers.  After implementing this workflow in 
each system, we evaluated the amount of effort to 
develop the code, the ability to collect provenance 
and metadata, and built-in fault tolerance 

 
Trident.  The sample workflow process 
required 40 lines of code in C#.NET and took 
approximately 30 min to write.  To create and 
execute the workflow activity took less than 30 
sec.  The internal built-in functions were 
geared towards oceanographic work.  Trident 
has an extensive and structured provenance 
data for the workflows and the data and 
manages versions to allow for tracking data 
changes.  Trident has significant internal fault 
tolerance supporting failure tracking, new 
resource allocation, and workflow restart. 
IBM Smash.  The sample workflow took 
approximately 6 lines of code to implement in 
Smash.  The workflow required additional 10 
lines of code.   The documentation describing 
the input processing was incomplete and made 
this task more difficult.  Smash had a number 
of built-in functions but most of them are 
orientated towards business applications rather 
than scientific functions.  Smash does not 
support provenance data although it does have 
an extensive error logging process.  It does 
have support workflow restarts and has low 
fault tolerance. 
Taverna.  To create the workflow required 20 
lines of code and took approximately 15 min.  
Taverna has a wide selection of built-in 
functions as well as user-authored functions.  
Provenance management provides information 
on all data transforms as well as on the entire 
workflow process.  Taverna has extensive fault 
tolerance and workflow restart. 
Triana.  To build a sample workflow required 
using the internal functions that are combined 
in a drag and drop environment.  Triana has a 
wide range of built-in functions and provides 
users with the ability to input new toolboxes of 
functions. Provenance is collected at the 
organizational level and has no capability to 
collect provenance at the data level.  Triana 

has no support for workflow restart and has no 
fault tolerance. 

 
Write workflow that calls out to web service. A 
simple workflow is written that calls out to BLAST 
– The Basic Local Alignment Search Tool – a 
biological sequence application supported by the 
National Institutes of Health and the National 
Center for Biotechnology Information (NCBI).17 
 

Trident.  To plug in another executable into 
Trident an argument written in C#.NET must 
be developed.  This requires programming 
expertise.   
IBM Smash.  To integrate an external 
application in Smash requires a PHP or 
Groovy script or it can be executed from the 
command line.   
Taverna.  In Taverna, a beanshell script must 
be created to invoke an external application.   
Triana.  Triana is designed to support plugin 
applications. 

 
User experience - includes documentation, user 
support, and interface usability. 

 
Trident.  Trident has excellent documentation 
with many examples and code samples. The 
user support for Trident is a less active user 
forum.  Trident has a very easy to use GUI, 
which is intuitive.  But the .NET pre-requisite is 
a barrier. 
IBM Smash.  Smash has poor documentation 
and no viable web presence.   Smash has both 
phone and email support as well as a moderated 
forum.  Smash has an easy to use GUI as well 
as a command line interface. 
Taverna.  Taverna has excellent documentation 
with good examples and is integrated with the 
myExperiments portal.  The user support via 
phone and email is prompt and accurate.  The 
GUI for Taverna is complex and requires some 
effort to learn. 
Triana.  Triana has minimal documentation that 
hampers its usefulness.  There is no discernable 
user support for Triana.  Triana has a very easy 
to use interface that allows users to drag and 

                                                 
17 http://blast.ncbi.nlm.nih.gov/Blast.cgi  

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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drop objects from the toolbox to create 
workflows. 

 
Discussion. Scientific workflow systems are often 
used as a tool for domain scientists to “plug 
together” components for data acquisition, 
transformation, analysis and visualization to build 
complex data-analysis frameworks from existing 
building blocks, including algorithms available as 
locally installed software packages or globally 
accessible web services.  Installing and configuring 
the systems behind the workflow nodes is not a 
trivial activity, however, and requires an 
understanding of software components, database 
administration, scripting, and in some cases, 
programming with sophisticated languages.  This 
is a significant barrier to adoption by many 
researchers, particularly those who not in 
computationally based sciences.  Accessing the 
robust functionality of the systems often requires 
scripting or programming which poses barriers to 
researchers.  As many domains embrace in silico 
research, the technical skills of researchers will 
increase and perhaps the barriers will not be as 
high.  But in this transition phase, these tools may 
cost too much in terms of time and staff to 
implement. 

7 Trident Scientific Workflow Workbench 

In this final section our analysis focuses on the 
Trident Scientific Workflow Workbench. 

7.1 Trident in the Classroom 
Integrating research into the classroom is an 
important component in disseminating new 
knowledge and engaging students.   Spring 2011, 
Professor Plale offered a graduate level class in the 
School of Informatics and Computing at Indiana 
University titled CSCI B669, Scientific Data 
Management and Preservation. Readings were 
taken from “Scientific Data Management: 
Challenges, Technology, and Deployment” by A. 
Shoshani and D. Rotem Eds. CRC Press. 2010 and  
The Fourth Paradigm18.  Trident was one of the 

                                                 
18 http://research.microsoft.com/en-
us/collaboration/fourthparadigm/   

platforms upon which students could base their 
final project.  
Astrophysics PhD student taking the class, chose to 
develop a Trident workflow to simplify the process 
of calculating the magnitudes of telescopic 
observations, specifically nightly extinction 
coefficients.  The workflow applies the 
transformation to the raw data to determine if the 
nightly data set is good.  This process can be used 
in discovery process of new black holes and 
refining the understanding of the energy jets they 
radiate.  The PhD student commented on the ease 
of use of Trident, despite his self-proclaimed weak 
computer science background.  Despite the fact 
that the student had to learn basics of C#, he 
nonetheless had a workflow running in a short 
period of time (a couple weeks at the end of a 
semester). Trident will only produce one plot per 
workflow whereas the student needed to make 
several plots per workflow, each pot corresponding 
to a given star field.  Our software engineer gave 
him code that allowed concurrent execution of 
threads from Trident, but he replied 

 “ I learned a lot as I worked on it, 
and I feel that the astronomy 
community can benefit from using 
workflows.  […] However, I haven't 
decided if I want to release my project 
to the general astronomy 
community.  Most astronomers use a 
Linux system or a Mac since IRAF, 
which is the bread & butter astronomy 
program, won't run on Windows and 
many astronomers are unaware of the 
likes of Cygwin.  I get the feeling that 
my workflow would therefore be 
underutilized.” 

 

7.2 Trident Usability and Community 

In the spring of 2011, we carefully examined with 
public face of Trident – the CodePlex site.  We 
reviewed the interaction with the research 
community and determined that while the Trident 
Workflow System is an excellent product, 
developing a robust community of researchers will 
take effort.  There are three major barriers to 
overcome: communication, code contributions, and 
the creating new custom code.   

http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://en.wikipedia.org/wiki/IRAF
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To facilitate communication, Trident should follow 
the lead of all of the other scientific workflow 
systems with which we are familiar and develop a 
community listserv.  Email via listserv is the 
normal communication medium for academic 
scientific communities.  While the 
Trident/CodePlex systems allows for the 
discussion to be read via email, it is not possible to 
contribute to the conversation without going to the 
Trident CodePlex site, signing in, going to the right 
tab, and then contributing.  For most researchers, 
the number of steps and the time required will 
inhibit their contributions.  Note that a LISTSERV 
list, trident-wf-l, was created Oct 2011.  The 
email address for the list is trident-wf-
l@indiana.edu. It is moderated by Kavitha 
Chandrasekar.  

Currently, it is difficult for knowledgeable people 
like our own developers to navigate the complex 
Microsoft/CodePlex organization, to get authorized 
ids, communicate the nature of the update (base 
code, not a sample).  Compared to other open 
source sites, CodePlex is completely opaque.  We 
acknowledge that controls need to be in place to 
monitor code contributions, but the current 
restrictions are too much.  The barrier for non-
Microsoft affiliated researchers to contribute code 
has been reduced with CodePlex, but it is still too 
high.  Unlike contributing to the base source code, 
contributing samples should be simple and without 
overt approval.  The community can police 
samples by commenting, wiki text updates, and 
discussion.  Currently, contributing samples has 
the same issues as contributing source code. 

As described in the previous section, Trident 
requires that all executable code be in the .NET 
framework.  While a powerful and highly useful 
technology, it can prove to be a barrier to use by 
non-programmers.  It would be very useful to have 
a simpler way for researchers to develop code.     

7.3 Short to Mid-Term Recommendations 

Currently, there are many approaches to workflow 
systems that are largely successful in prototype 
one-off situations. However experience has found 
that most are not really robust enough for 
production use outside the development team. This 
observation motivated Microsoft to put their 
Trident workflow environment [2, 22] into open 
source for science. Trident is built on the 

commercial quality Windows Workflow 
Foundation.  Through the two studies already 
completed and our analysis of the wider scientific 
community, we have developed a list of 
recommendation for Trident.  While an excellent 
workflow system, we believe that with minimal 
effort, Trident can be improved to be useful to 
more researchers.   

Better installation package that includes all 
required software components and the 
compatible versions of everything (such as 
versions of .Net between Visual Studio and 
Trident).  The installation process should 
install and configure all software 
components (SQL Server as an example) 
(see section 5.1.2 Summary item 1). 
 
Several of the workflow systems have 
integrated scientific functions, most notably 
Kepler (see section 2.2.1 Specialized 
Activities).  Trident could benefit by having 
more built-in functions for scientific data.  
Integrating the MBF would be an excellent 
first step.  
 
The ability to use scripting languages as well 
as .NET would make Trident more 
accessible to non-programming researchers.  
As described in section 5.1.2 Summary item 
2, Trident required significantly more code 
to implement a simple function within a 
workflow than did other systems that 
supported scripting languages.   
 
Improve the CodePlex site to better facilitate 
communication with the research community 
and to allow for easier code sharing as 
discussed in section 3.3.   

Trident is an easy to use workflow system that has 
potential to significantly improve both the 
productivity of researchers and the quality of 
research for research in social sciences, 
environmental sciences, social-ecological research, 
operations hurricane prediction centers and other 
areas where Windows are part of the compute 
platform upon which research/operations is 
conducted.   
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8.  Conclusion 
 
Jim Gray's vision of the Laboratory Information 
Management System is one that seamlessly 
integrates scientific data management, data 
analysis, data visualization, new algorithms, and 
tools into an easy to use and useful “briefcase” for 
science.  He saw the workflow as "a Beowulf-like 
package and some templates that would allow 
people who are doing wet-lab experiments to be 
able to just collect their data, put it into a database, 
and publish it.” This multistep pipeline differs in 
minor but important ways from the current 
scientific discovery workflow which we know to 
be an inherently difficult fit particularly for science 
domains that do not acknowledge a workflow in 
their discovery processes.  LIMS is envisioned as a 
repeatable and reproducible multistep task with 
applicability to a broad audience. The vision Dr. 
Gray expresses is growing in relevance to 
scientists however as funding agencies are pressing 
for archival and reuse of science and scholarly data.  
Funding agencies provide to scientists stronger 
motivation to adopt tools that help with metadata 
and provenance capture.  
Finally, Jim Gray’s description of a LIMS bears 
similarity to another “briefcase”, the  DIPi = {V/O, 
S, Wf} where the workflow is a key component of 
data transformation and preservation.  In both of 
these senses, the workflow is on a path to 
convergence with the Gray vision in ways even Dr. 
Gray may not have envisioned.  
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