
An XML Based System for Dynamic Message Content Creation,
Delivery, and Control

Galip Aydin, Ali Kaplan, Ahmet E. Topcu, Beytullah Yildiz, Marlon Pierce1, and Geoffrey Fox

Community Grids Lab
Indiana University

Bloomington, IN 47404-3730

Ozgur Balsoy
Computer Science Department

Florida State University
Tallahassee, FL

1Email: marpierc@indiana.edu

Abstract

We describe the design and implementation of an
XML messaging system for creating, delivering
and managing general purpose XML messages.
We describe message composition wizards, a
multipurpose delivery system implementation,
and message access role definitions. This system
may be used as the foundation for both human
readable messaging (such as newsgroupss and
registration systems) as well as event-driven
application-to-application systems.

1. Introduction

XML [1] messages can be used to provide a
computer platform-, programming language-,
and application endpoint-independent way for
both synchronous and asynchronous
communication to take place. Instead of
concentrating on endpoint implementations
(some of which may be produced by independent
developers), we can develop application message
formats and use common wire protocols (such as
HTTP [2] and SMTP [3]) to transport these
messages. These messages then become events
in a general purpose message-oriented
middleware system.

There are numerous potential applications for
such a system, including a) a newsgroup system
that allows users to post messages, which can
then be delivered by email, through a generated
web page, or both; b) a training registration
system that allows students to register for classes
and instructors to post classes and course

materials for students; c) human-to-application
communication, in which a human generated
message results (for example) in a web page
update; and d) application-to-application
messaging, in which (for example) an email
message from a queuing system announcing the
completion of a job results in a the execution of
another service, thus serving as an event system
to push through a workflow chain.

We identify the following key constituents of our
messaging system design: an XML message
composing tool for creating valid, well-formed
messages; an architecture and implementation
for delivering the messages to the appropriate
interested listeners (supporting both push and on-
demand pull delivery systems); and a user
role/access control system to define various
levels of users and their privileges. We describe
our implementations of each of these ideas in the
following sections.

2. Message Composition
with Wizards

The first step in our system is creating the XML
schemas [4] that define the particular types of
messages we wish to transfer for a particular
application. Particular XML messages are
instances of these general schemas.

The advantage of the XML messaging format is
that it only requires the client application to
create a valid, well-formed message, which can
then be handed off to the system using well
established wire protocols. Thus for example a
user can create a message posting by hand with

mailto:marpierc@indiana.edu

any kind of text editor. Obviously, though, a
composing system that reliably generates the
message is desirable.

A “wizard” composer can be used to reliably
create messages from a particular schema. After
defining the necessary schema for a particular
application, these schemas have a natural
mapping to both user interface components
(HTML form elements, Java Swing components,
etc.) and data objects (such as JavaBeans). We
must thus generate the code for the user interface
and the data model.

The process of mapping an XML schema to
classes in a particular object oriented
programming language is called data binding.
This language in our case is Java, and so we
wish to cast a particular XML instance into
JavaBeans. An XML schema and its instances
correspond directly with Java classes and
objects. The Java classes have member data
corresponding to the schema’s elements and
attributes and accessor methods (“getters” and
“setters”) for the data. Tools such as JAXB [5]
implementations and Castor [6] for making the
conversion, or marshaling, between XML and
JavaBeans are available.

The data object bindings may be automatically
generated as described above, but we must also
develop user interfaces based on the schema that
use these data objects. We have initially
implemented wizard user interfaces by hand
using JavaServer Pages (JSP) [7], mapping the
schema elements to corresponding HTML form
elements and including corresponding Java data
objects generated by Castor in the page. The
next step is to automate the user interface
creation. We are currently developing such a
general purpose Schema Wizard system. We
assume that the content to be generated is based
on one or more XML schemas. We provide a set
of constraints and directives to schema
developers by which they can take control over
interface generation. The wizard, then by using
built-in mappings from schema elements to
HTML form elements, is invoked with schemas
to generate user interfaces and necessary source
code for data handling and validation. The
resulting Web forms are used to interact with
users and help generate schema-based and
validated XML documents.

The Schema Wizard works by mapping each
schema primitive type to a JSP template
“nugget” (written in Velocity[8] for scripting)
that defines both the user interface and the
action. A string element, for example, may be
mapped to a text field, an enumeration to radio
buttons, and so on. These JSP nuggets can be
used to build up displays for more complicated
types. The final JSP page for a particular
schema is simply the aggregation of all the base
JSP nugget types that are needed.

Our Schema Wizard currently works for a subset
of the XML schema specification. We are
working on extending the subset as well as other
implementations of the wizard such as an
automated interface generation for Web services
defined by WSDL documents.

3. Message Posting

XML messages may be posted either through
any email client or through the web-based wizard
system. The former assumes the user correctly
created an XML message in agreement with the
schema for the particular application, while the
latter (as described in the previous section)
creates correct messages.

The posted message actually consists of more
than just the XML message created by the
wizard or user. The parts of the final posted
message are a) a message header, consisting of
the regular email header after being converted to
XML; b) the message body; and c) optionally
one or more attachments to the posting.
Attachments may be binary document files
attached to the text message during HTTP
upload or email postings. We wrap this entire
message (XML posting plus optional email
headers and MIME attachments) as a SOAP [10]
message with MIME attachments.

Each message is assigned a URI as a unique
identifier. This defines a hierarchical, searchable
structure for messages: a message can contain
child messages (for example, a thread in a news
group system). For instance, in a newsgroup
application of the messaging system, we can
create the reply messages as a child of the
message which is replied to. By the URI type
unique ID, the attachments can be stored to the
unique directory which is related to the unique
ID. In this structure, we can also store the

messages as an XML file in a directory structure
just as we stored attachments. We generate these
URIs in an automatic fashion. Top level
message names begin with an XML namespace,
followed by a number indicating their place in
the sequence of posted messages. A child
message starts with the name of its parent,
followed by a number indicating its place in the
sequence of postings to that particular parent.

The message must still be directed to the correct
message topic channel. We do this by including
a destination tag in the posted message with a
URI corresponding to the appropriate message
channel (newsgroup topic, for instance).

4. Message Delivery
Architecture

We need in general to support two sorts of
message delivery mechanisms: a “push” model
that immediately sends out the message to the
subscribing application and a “pull” model that
archives posting that can then be recovered on
demand. As we illustrate in Figure 1, we use
email message delivery as our push system and a
database querying system with a browser front
end for pull.

As shown in Figure 1, a user may post messages
through an email client. This message is
received by the Email Handler, which assigns it a
unique URI through the ID Generator service
and then publishes it to a message distribution
hub. Browser wizard postings work similarly.

We use the Java Message Service (JMS) [9] as
our message publishing and subscribing hub. A
messaging system will be typically divided into
several message channels, such as newsgroup
topics or classes in a training system. As shown
in Figure 1, we only have one publisher per
protocol (message posting wizard for HTTP, for
example) and one subscriber per protocol (Email
Distributor for SMTP, for example). These are
decoupled, so email postings can be later read
through a browser client to the archive. We thus
are funneling actual end user publishers and
subscribers through a small number of publishers
and subscriber proxies. The Email Handler, for
example, receives all email postings and is
responsible for delivering the posted message to
the correct JMS message channel. Thus access
control rights are enforced by the publisher and

subscriber proxies, which consult an access
control service (currently implemented in a
database, as shown in Figure 1). We describe
message access control right definitions in more
detail in a later section.

Once the message is posted, it will be both
immediately sent out and also archived.
Immediate notification (“push”) is handled by
the Email Distributor. The distributor acts as a
subscriber to the JMS publishing hub, and
contacts the database to get a list of end
subscribers that need immediate notification for
postings to a particular message channel.

 The archival middleware of the messaging
system is responsible for recording the messages
and providing (feeding) them to the requesters.
These two parts of the system are designed to be
independent from the message creation part and
the message requester part. For that reason, the
server should provide us a functionality that the
receiver does not need to know anything about
the sender. However, the receiver and publisher
have to know the message format. The server
should also deliver a message to a client only
once. JMS provides this functionality for us.

The messages are received by the Java
Messaging Service in the middleware of
messaging system. The JMS server can be used
to communicate events between Java services
running on different hosts. These services, such
as Email Distributor, may act as bridges to
general purpose protocols. The other modules of
messaging systems which generate events
register as a publisher to the JMS server. The
recorder module of the middleware registers to
the JMS server as a subscriber to the publication
channels which we want to listen.

Each message is stored to a database to provide
persistency. The unique ID is used to search the
database. The Message Recorder module
completes its mission by storing the message to
the database and the attachment to the directory
system.

The Message Feeder is completely independent
from the recorder part. The requests are received
via HTTP GET/POST requests through JSP
pages. These requests invoke the feeder to
retrieve a message from the database. If the
requested information can be found in the

database, an XML file is created dynamically.
This file includes the information which the
requester asked.

The requester makes two kind of request. One is
a request which includes the information of the
all messages. The response is in RDF Site
Summary [11] format. This RSS file includes
information such as the link to the original
message, the sender name, and the date. The
other request is for a specific message, such as a
course or a newsgroup posting. To make this
request, the requester takes the RSS file and
derives the information to request the message
body to obtain the desired information.

The Message Displayer uses RSS URI to
construct the e-mail/message hierarchy and to
get the body of messages. The Message Feeder
constructs the RSS file at the request of the
message channel. XSL can be used to extract
data from XML based message in order to show
the required messages to the users. Message
Displayer checks the user’s access rights by
using the database. User access rights allow
users to read from and write into message
channel topics.

The confirmed message channel can be used to
post or read messages. The interface reads the
index structure of the message channel by using
an RSS Feeder to get all of the message IDs in
order to index the archived messages.

5. User Roles and Access
Control

As indicated in previous sections, our message
system requires access control rights for security.
This also governs the dynamic creation of
displays in which users see only the message
channels that they are entitled to see.

Users can have several different roles with
associated privileges. We present here some
specific role-based access levels. We do not
address login and authentication here. These are
currently assumed to be inherited from some
other system using the messaging system.
Access controls are based on this external proof
of identity.

As shown in Figure 1, our messaging system
uses one proxy subscriber per transport protocol

and also one proxy publisher per transport
protocol. For example, Email Handler is a proxy
publisher and Email Distributor is a proxy
subscriber. These proxies act as access control
points and enforce posting and delivery
restrictions using the following roles.

Users are allowed to post and receive messages.
Users have privileges to read and optionally
write to one or more message channels. They
also have additional options with regard to the
choice of message delivery mechanism. That is,
a user may request message notification by push
(email), by pull (through a web interface), or
both.

Message Channel Administrators have the
authority to assign users access to a specific
message channel. An individual may have
administration privilege over more than one
message channel, and a specific channel has one
or more administrators. A channel administrator
may also modify the access rights of a user,
denying a user the privilege of writing to a
particular channel, for example.

Top administrators administer the entire
messaging system. In addition to the
administrator authorities, this role has the
authority to create new messages channels and
assign administrators to them.

In the access control system, the top
administrator controls the channel
administrators, and channel administrators
control the channel users. Each channel user has
been assigned to a role, and message channels
define groups. Members of a channel
administrator group can modify, add, and
remove user rights from the message channel
group by having these control structure.
Individuals can have different roles in different
groups. For instance, an individual may have
only user privileges for one group and
administration privileges for another.

We now consider an example use case that
illustrates the request and confirmation data flow
for the access control structure. For example,
Administrator 1 confirms the user request for
both User A and User B for the Message
Channel l. However, for Message Channel 2,
Administrator 2 may only confirm User A’s
request, while User B’s request for Group 2 is
rejected. Having all these controls, it is easy to

configure user rights for a message channel, and
we have a fine grained access control structure
for message channels.

6. Conclusions
We have presented several aspects of an XML
messaging system: message composition
assistance through schema wizards, a system
architecture that supports both “push” and “pull”
mechanisms, and access controls on posting and
delivery.

Some fundamental development work can be
added. As mentioned in the main text, the
Schema Wizard is still in development, and we
foresee the need to provide additional bindings
for user interface widgets in programming
languages such as Java.

Authentication and single sign-on is another area
that needs to be addressed. We can do this both
at the socket/transport level in a mechanism-
specific way and at the message level in a more
mechanism independent way. Thus we can add
(for example) Kerberos support in the JMS
communication channels, but we can also verify
authentication in the posted messages themselves
with message signing.

This work was supported by the US Department
of Defense High Performance Computing
Modernization Program through the
Programming Environment and Training

initiative as part of the Online Knowledge
Center.

7. References
[1] Extensible Markup Language (XML):
http://www.w3c.org/XML.
[2] Hypertext Transport Protocol (HTTP):
http://www.w3.org/Protocols/rfc2616/rfc2616.ht
ml.
[3] Simple Mail Transfer Protocol (SMTP):
http://www.ietf.org/rfc/rfc0821.txt.
[4] XML Schema:
http://www.w3.org/XML/Schema
[5] Java Architecture for XML Bindings
(JAXB): http://java.sun.com/xml/jaxb/
[6] The Castor Project: http://castor.exolab.org/
[7] JavaServer Pages:
http://java.sun.com/products/jsp/
[8] Velocity Project Page:
http://jakarta.apache.org/velocity/
[9] Java Message Service:
http://java.sun.com/products/jms/
[10] Simple Object Access Protocol (SOAP):
http://www.w3.org/TR/SOAP/
[11] RDF Site Summary (RSS):
http://groups.yahoo.com/group/rss-
dev/files/namespace.html
[12] Balsoy, O. et al. “The Online Knowledge
Center: Building a Component Based Portal.”
Accepted for publication in proceedings of the
2002 International Conference on Information
and Knowledge Engineering.

http://www.w3c.org/XML
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://www.ietf.org/rfc/rfc0821.txt
http://www.w3.org/XML/Schema
http://java.sun.com/xml/jaxb/
http://castor.exolab.org/
http://java.sun.com/products/jsp/
http://jakarta.apache.org/velocity/
http://java.sun.com/products/jms/
http://www.w3.org/TR/SOAP/
http://groups.yahoo.com/group/rss-dev/files/namespace.html
http://groups.yahoo.com/group/rss-dev/files/namespace.html

USER ACCESS RIGHT
MANAGAMENT PART

MIDDLEWARE
PART

MESSAGE DELIVERY PART

JMS
SERVER

MESSAGE
RECORDER

DATABASE

EMAIL
DISTRIBUTOR

MESSAGE
FEEDER

JDBC

JDBC

HTTP

JMS
Publish

JMS
Publish

JMS
Subscribe

JMS
Subscribe

JDBC
JDBC

JDBC

JDBC

RSS
or

XML

SMTPSMTP

HTTP
HTTP

MESSAGE POSTING PART

EMAIL
HANDLER

USER

ID
GENERATOR

Socket

Socket

MESSAGE GROUPS
ACCESS RIGHTS
MANAGEMENT

MESSAGE
POSTING
WIZARD

MESSAGE
DISPLAYER

 Figure 1 Our XML messaging system architecture supports both immediate delivery and archiving
of messages.

	An XML Based System for Dynamic Message Content Creation, Delivery, and Control
	Abstract
	Introduction
	Message Composition with Wizards
	Message Posting
	Message Delivery Architecture
	User Roles and Access Control
	Conclusions
	References

