
ARCHITECTURAL PRINCIPLES AND EXPERIMENTATION OF

DISTRIBUTED HIGH PERFORMANCE VIRTUAL CLUSTERS

by

Andrew J. Younge

Submitted to the faculty of

Indiana University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

Indiana University

October 2016



Copyright c© 2016 Andrew J. Younge

All Rights Reserved



INDIANA UNIVERSITY

GRADUATE COMMITTEE APPROVAL

of a dissertation submitted by

Andrew J. Younge

This dissertation has been read by each member of the following graduate
committee and by majority vote has been found to be satisfactory.

Date Geoffrey C. Fox, Ph.D, Chair

Date Judy Qiu, Ph.D

Date Thomas Sterling, Ph.D

Date D. Martin Swany, Ph.D



ABSTRACT

ARCHITECTURAL PRINCIPLES AND EXPERIMENTATION OF

DISTRIBUTED HIGH PERFORMANCE VIRTUAL CLUSTERS

Andrew J. Younge

Department of Computer Science

Doctor of Philosophy

With the advent of virtualization and Infrastructure-as-a-Service (IaaS),

the broader scientific computing community is considering the use of clouds

for their scientific computing needs. This is due to the relative scalability,

ease of use, advanced user environment customization abilities, and the many

novel computing paradigms available for data-intensive applications. However,

a notable performance gap exists between IaaS and typical high performance

computing (HPC) resources. This has limited the applicability of IaaS for

many potential users, not only for those who look to leverage the benefits of

virtualization with traditional scientific computing applications, but also for

the growing number of big data scientists whose platforms are unable to build

on HPCs advanced hardware resources.

Concurrently, we are at the forefront of a convergence in infrastructure

between Big Data and HPC, the implications of which suggest that a unified



distributed computing architecture could provide computing and storage ca-

pabilities for both differing distributed systems use cases. This dissertation

proposes such an endeavor by leveraging the performance and advanced hard-

ware from the HPC community and providing it in a virtualized infrastructure

using High Performance Virtual Clusters. This will not only enable a more

diverse user environment within supercomputing applications, but also bring

increased performance and capabilities to big data platform services.

The project begins with an evaluation of current hypervisors and their via-

bility to run HPC workloads within current infrastructure, which helps define

existing performance gaps. Next, mechanisms to enable the use of special-

ized hardware available in many HPC resources are uncovered, which include

advanced accelerators like the Nvidia GPUs and high-speed, low-latency In-

finiBand interconnects. The virtualized infrastructure that developed, which

leverages such specialized HPC hardware and utilizes best-practices in virtu-

alization using KVM, supports advanced scientific computations common in

today‘s HPC systems. Specifically, we find that example Molecular Dynamics

simulations can run at near-native performance, with only a 1-2% overhead

in our virtual cluster. These advances are incorporated into a framework for

constructing distributed virtual clusters using the OpenStack cloud infrastruc-

ture. With high performance virtual clusters, we look to support a broad range

of scientific computing challenges, from HPC simulations to big data analytics

with a single, unified infrastructure.
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Chapter 1

Introduction

1.1 Overview

For years, visionaries in computer science have predicted the advent of utility-based

computing. This concept dates back to John McCarthy’s vision stated at the MIT

centennial celebrations in 1961:

“If computers of the kind I have advocated become the computers of the

future, then computing may someday be organized as a public utility just

as the telephone system is a public utility... The computer utility could

become the basis of a new and important industry.“

Only recently has the hardware and software become available to support the concept

of utility computing on a large scale.

The concepts inspired by the notion of utility computing have combined with

the requirements and standards of Web 2.0 [1] to create Cloud computing [2–4].

Cloud computing is defined as “A large-scale distributed computing paradigm that is

driven by economies of scale, in which a pool of abstracted, virtualized, dynamically-

scalable, managed computing power, storage, platforms, and services are delivered on

1
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demand to external customers over the Internet.” This concept of cloud computing

is important to Distributed Systems because it represents a true paradigm shift [5]

within the entire IT infrastructure. Instead of adopting the in-house services, client-

server model, and mainframes, clouds push resources out into abstracted services

hosted en masse by larger organizations. This concept of distributing resources is

similar to many of the visions of the Internet itself, which is where the “clouds”

nomenclature originated, as many people depicted the internet as a big fluffy cloud

one connects to.

At the core of most cloud infrastructure lies virtualization, a computer architecture

technology by which 1 or more Virtual Machines (VMs) are run on the same physical

host. In doing this, a layer of abstraction is inserted between and around the hardware

and Operating System (OS). Specifically, hardware resources such as CPUs, memory,

and I/O devices, and software resources analagous to OS functionality and low level

libraries are abstracted and provided to VMs directly. Virtualization has existed for

many years, but its availability with Intel x86 commodity hardware in conjunction

with the rise of clouds has brought it to the forefront of distributed systems.

While cloud computing is changing IT infrastructure, it also has had a drastic

impact on distributed systems as a field, which has a different evolution. Gone are

the IBM Mainframes of the 1980s, which dominated the enterprise landscape. While

some mainframes still exist, today they are used only for batch related processing

tasks and not for scientific applications as they are inefficient at Floating Point Op-

erations. As such, Beowulf Clusters [6], Massively Parallel Processors (MPPs) and

Supercomputers of the 90s and 00s replaced the mainframes of before. A novelty of

these distributed memory systems is that instead of just one large machine, many

machines are connected together to achieve a common goal, thereby maximizing the

overall speed of computation. Clusters represent a more commodity-based super-
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computer with off-the-shelf CPUs instead of the highly customized and expensive

processors and interconnects found in Supercomputers. Supercomputers and Clus-

ters are best suited for large-scale applications, due to their innate ability to divide

the computational efforts into smaller concurrent tasks. These tasks often run in par-

allel on many CPUs, whereby each task communicates results to other tasks in some

way as per the application design. These HPC applications can even include “Grand

Challenge” applications [7] and can represent a sizable amount of the scientific calcu-

lations done on large-scale Supercomputing resources today. However, there exists a

gap of many orders of magnitude between leading-class high performance computing

and what is available on the common laboratory workshop. This gap, described here

as mid-tier scientific computation, is a fast growing field that struggles to harness dis-

tributed systems efficiently while hoping to minimize extensive development efforts.

These mid-tier scientific endeavors need to leverage distributed systems to complete

the calculations at hand effectively, however, they may not require the extreme scale

provided by the latest machines at the peak of the Top500 list [8]. Some small research

teams may not have the resources available or the desire to handle the development

complexity of high end supercomputing systems, and can look towards other options

instead. This can include some scientific disciplines such as high energy physics [9],

materials science [10], bioinformatics [11], and climate research [12], to name a few.

As more domain science turns to the aid of computational resources for conducting

novel scientific endeavours, there is a continuing and growing need for national cyber-

infrastructure initiatives to support an increasingly diverse set of scientific workloads.

Historically, there have been a number of national and international cyberinfrastruc-

ture efforts to support high end computing. These range from traditional supercom-

puters deployed at Department of Energy computing facilities [13], to efforts led by

the National Science Foundation such as the XSEDE environment [14] or domain spe-
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cific initiatives such as the NSF iPlant collaborative [15].Substantial growth can be

seen in the number of computational resource requests [14,16] from many of the larger

computational facilities. Concurrently, there has also been an increase in accelerators

and hybrid computing models capable of quickly providing additional resources [17]

beyond commodity clusters.

Historically, application diversity was separated into High Performance Comput-

ing (HPC) and High Throughput Computing (HTC). With HTC, computational

problems can be split into independent tasks that execute in a pleasingly parallel fash-

ion, happily gaining any available resources and rarely requiring significant commu-

nication or synchronization between tasks. Example of this can include independent

tasks or parameter sweeps of an application to find the optimal application settings, or

many similar tasks with only slightly different input datasets. HPC often represents

computational problems that require significant communication and coordination to

produce results effectively, usually with the use of a communication protocol such

as MPI [18]. These applications are often tightly coupled sequential tasks operat-

ing concurrently and communicating often to complete the collective computational

problem. While there are many examples of such HPC applications, common exam-

ples often involve significant matrix and/or vector multiplication mechanisms [19] for

completing simulations.

However, many big-data paradigms [20] in distributed systems have been intro-

duced that represent new computational models for distributed computing, such as

MapReduce [21] and the corresponding Apache Big Data stack [22, 23]. While the

term big data can mean a number of things, it generally refers to data sets large or

complex enough to require advanced, non-traditional data processing mechanisms in

order to extract feature knowledge. Some HTC and HPC applications could poten-

tially be considered big data tools, generally the nomenclature has grown out of new



1.1 Overview 5

industry and academic problem sets created by a data deluge [24]. This has lead to

a number of novel platform services for handling big data problems in parallel, and

supporting these different distributed computational paradigms requires a flexible in-

frastructure capable of providing computational resources for all possible models in

a fast and efficient manner.

Currently, we are at the forefront of a convergence within scientific computing

between HPC and big data computation [25]. This amalgamation of historically

differing viewpoints of Distributed Systems looks to combine the performance char-

acteristics of HPC and the pursuit towards Exascale with the data and programmer

oriented concurrency models found in Big Data and cloud services.

Much of the convergence effort has been focused on applications and platform

services. Specifically, significant work towards convergent applications has been out-

lined with the Big Data Ogres [26] and the corresponding HPC-ABDS model [27].

This convergence can also be seen with efforts in bringing interconnect advances to

classically big data platforms such as with InfiniBand and MapReduce [28]. However,

the underlying hardware and OS environments are still something to be reconciled,

which is something that virtualization can potentially help provide. It is expected

that new big data efforts will continue to move in this direction [29], especially if

virtualization can make HPC hardware that’s traditionally prohibitive in such areas,

such as accelerators and high-speed interconnects, readily available to cloud and big

data platforms. As the deployment of big data applications and platform services on

virtualized infrastructure is well defined and studied [30], this work instead focuses

on the difficulty of running HPC applications on similar virtualized infrastructure.

However, it is possible and hopeful that research regarding virtualization can also play

a part in bringing advanced hardware and performance-focused considerations to Big

Data applications, effectively cross-cutting the convergence with HPC. In Summary,
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success of the research in virtualization could be defined by the ability to support the

convergence between HPC and Big Data.

Figure 1.1 Data analytics and computing ecosystem compared (from [25]),
with virtualization included

To further illustrate where virtualization can play a part in HPC and Big Data

convergence, we look at Figure 1.1 from Reed & Dongarra [25]. While the two ecosys-

tems depicted are only representative and in no way exhaustive, they do show how

drastically different user environments are and how reliant they are on differing hard-

ware. If we insert a performance-oriented virtualization mechanism within the system

software capable of handling the advanced cluster hardware performing at near-native

speeds (at or under 5% overhead, as loosely defined in [31]), it could provide a single,

comprehensive convergent ecosystem that supports both HPC and Big Data efforts
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at a critical level.

This work proposes the use of virtual clusters [32] to provide distinct, separate

environments on similar resources using virtual machines. These virtual clusters,

similar in design to the Beowulf clusters and commodity HPC systems, provide a

distributed memory environment, usually with a local resource management system

[33]. However, past concerns with virtualization have limited the adoption of virtual

clusters in many large-scale cyberinfrastructure deployments. This has in part been

due to the overhead of virtualization, whereby many scientific computations have

experienced a significant and notable degradation in performance. In an ecosystem

familiar with HPC systems in which performance is paramount, this has been an

obstructive hurdle for deploying many tightly coupled applications.

1.2 Research Statement

With the rise of cloud computing within the greater realm of distributed systems,

there have been a number of scientific computing endeavors that map well to cloud in-

frastructure. This first includes the simple and most common practice of on-demand

computing whereby users can rent-a-workstation [34]. Perhaps these resources are

more powerful than a given researcher’s laptop and used to run their scientific appli-

cations or support greater laboratory collaborative efforts, such as a shared database

or Web services. We have also seen virtualized cloud infrastructure support high

throughput computing very well. Often times pleasingly parallel applications, be it

from high energy physics such as the LHC effort [9,35] or bioinformatics with BLAST

alignment jobs [11], have proven to run with high efficiency in public and private cloud

environments. Furthermore, the rise of public cloud infrastructure has also coincided

with increase in big data computation and analytics. Many of these big data plat-
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form services have evolved complimentary to cloud infrastructure, and as such have

a symbiotic relationship with virtualization technologies [36].

However, with tightly coupled, high performance distributed memory applications,

the same endeavors that support leading class scientific efforts, run very poorly on

virtualized cloud infrastructure [37]. This is due to a myriad of addressable reasons

ranging from scheduling, abstraction overhead, and a lack of advanced hardware

support necessary for tightly coupled communication. This postulates the question

regarding whether virtualization can in fact support such tightly coupled large-scale

applications without an imposed significant performance penalty. Simply put, the

goal of this dissertation is to investigate the viability of mid-tier scientific applications

supported in virtualized infrastructure.

Historically, mid-tier scientific applications are distributed memory HPC applica-

tions that require more complex process communication mechanisms. These systems

need far more performance than a single compute resource (such as a workstation)

can provide. This could include hundreds or thousands of processes calculating and

communicating concurrently on a cluster, perhaps using a messaging interface such as

MPI. These applications can be distinct (and sometimes simpler), either in applica-

tion composition or operating parameters, from extreme-scale HPC applications that

run at the highest end of the supercomputing resources today operating on petascale

machines and beyond.

Given the current outlook on virtualization for supporting HPC applications, this

dissertation proposes a framework for High Performance Virtual Clusters that enable

advanced computational workloads, including tightly coupled distributed memory ap-

plications, to run with a high degree of efficiency in virtualized environments. This

framework, outlined in Figure 1.2, illustrates the topics to be addressed to provide

a supportive virtual cluster environment for high performance mid-tier scientific ap-
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plications. Areas marked in darker green indicate topics this dissertation may touch

upon, whereas light green areas in Figure 1.2 identify outstanding considerations to

be investigated. Specifically, mid-tier distributed memory parallel computations is

identified as a focal point for the computational challenges at hand as a way to sep-

arate from some of the latest efforts towards Exascale computing [38–40]. While

virtualization may in fact be able to play a role towards usable Exascale computing,

such efforts fall outside the immediate scope of this dissertation.

Hypervisor

Virtual 
Infrastructure

Scheduling

Performance 
Tuning NUMA 

GPU 
Virtualization

SR-IOV 
Interconnect

Proximity 
Scheduling

Experiment 
Management

High 
Performance 

Virtual Clusters

Data-driven 
SchedulingDevice 

Passthrough
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Applications
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Applications
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Figure 1.2 High Performance Virtual Cluster Framework

In order to provide high performance virtual clusters, there is a need to first look at

a key area, the virtualized infrastructure itself. At the core, the hypervisor, or virtual

machine monitor, has to be considered and the overhead and performance characteris-

tics associated with it. This includes performance tuning considerations, non-uniform
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memory access (NUMA) effects, and advanced hardware device passthrough. Specifi-

cally, device passthrough in the context of this manuscript refers to two major device

types; GPUs and InfiniBand interconnects (the later using SR-IOV). The virtual in-

frastructure also must consider scheduling as a major factor in performing efficient

placement of workloads on the underlying host infrastructure, and in particular a

Proximity scheduler is of interest [41]. Storage solutions in a virtualized environment

is an increasingly important aspect of this framework, as some HPC and big data

solutions are prioritizing I/O performance more than computation. Storage is also

likely to be heavily dependent on interconnect considerations as well, which could

be potentially provided by device passthrough. However, such I/O considerations lie

beyond this dissertation’s immediate scope.

However, simply providing an enhanced virtualized infrastructure may not guar-

antee that all implementations of high performance virtual clusters are performant.

Specifically, proposed infrastructures need to be properly evaluated in a systematic

way through the use of a wide array of benchmarks, mini-applications, and full-scale

scientific applications. This effort can further be separated into three major problem

sets; base level benchmarking tools, HPC applications, and big data applications.

Evaluating the stringent performance requirements of all three sets, when compared

with bare metal (no virtualization) solutions, will illuminate not only successful de-

signs but also the focus areas that require more attention. As such, we look to

continually use these benchmarks and applications as a tool to measure the viability

of virtualization in this context.

Fundamentally, this framework is leveraging these real-world applications and

benchmarks predominantly for the evaluation of various solutions under strong scal-

ing conditions. Specifically, strong scaling is used to apply a fixed problem size (or

predefined set of fixed problem sizes) that look to match real-world running condi-
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tions, and vary the number of processors and execution units (including GPUs) across

multiple virtualized and non-virtualized architectures. Generally, a successful solu-

tion will demonstrate strong scaling characteristics as close to a native, bare-metal

runtime as possible, illustrating little overhead of the added methods. Furthermore,

variability between runtimes are also important to consider, as high variability and

noise within large scale distributed systems can lead to tail latencies and significant

efficiency losses. While weak scaling experiments that increase the problem size rel-

ative to the number of available processors could be used for future evaluation, such

efforts are outside of the immediate scope of this dissertation.
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Figure 1.3 Architectural diagram for High Performance Virtual Clusters
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Starting from the historical perspective of virtual clusters in Grid computing, we

see the new architectural model for high performance virtual clusters illustrated in

Figure 1.3 that is implied by the efforts described in this dissertation. Here, we

leverage commodity hardware, as well as some advanced HPC hardware withint he

same system. Providing advanced hardware in this scenario has a twofold effect. First,

we look to provide classic distributed memory HPC applications in an virtualized

environment that still utilize the same hardware that such applications have grown

accustomed to. Second, it allows for novel big data analytics and cloud platform

services to move towards hardware that may drastically speed up their computational

efforts. Specifically, we allow for such platform services to leverage the high-speed,

low-latency interconnects that HPC systems have relied upon. While such cloud

systems may not be able to take full advantage of the latency improvements, it is

estimated the the increased bandwidth may have a significant impact on the overall

runtime of these systems, reducing the overall time-to-solution. While this notion

could incorporate a wide array of differing technologies, we focus here on GPU-based

accelerators and InfiniBand interconnects in conjunction with x86 CPUs.

From this diverse yet highly optimized hardware, we leverage KVM and QEMU to

provide an advanced hypervisor for creating and hosting VMs with direct hardware

involvement from the lower level. Throughout this dissertation, the utilization of

this diverse hardware can be wrangled and virtualized through the use of KVM and

QEMU. This includes direct virtualization, para-virtualization with QEMU, and even

direct passthrough mechanisms. Moving up, the Libvirt API is leveraged due to

its hypervisor interoperability and popularity. Modifications are made throughout

this work to enable Libvirt to support passthrough mechanisms in both Xen and

KVM, changes which since have since made their way to libvirt upstream. Providing

Libvirt as a virtualization API also insulates from higher level changes, whereby other
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resource management solutions could be swapped in if such a design was warranted.

Building form Libvirt comes the OpenStack private cloud infrastructure. In Fig-

ure 1.3 we illustrate some (but not all) of OpenStack’s services including the Horizon

UI, Cinder and Glance storage mechanisms, and the Neutron (previously Quantum)

components. The Nova component of OpenStack is the point of focus for provid-

ing comprehensive VM management. 1 OpenStack provides a comprehensive cloud

infrastructure service for managing up to thousands of nodes in a cluster using virtu-

alization. Its integration with KVM through Libvirt is highly tuned for efficient VM

deployment and advanced plug-ins such as the ML2 Neutron service can managed an

advanced interconnect such as InfniBand and 40GbE provided by Mellanox.

Atop OpenStack, we can create a wide array of virtual clusters and machines to

support diverse scientific computing ecosystems necessary. This includes application

models ranging from tightly coupled MPI+CUDA HPC applications, to emerging

big data analytics toolkits such as Apache Storm [42]. Such virtual clusters can be

built manually through users requesting highly tuned images from a repository and

deploying them to scale. This also allows for the use of virtualized SMP systems such

as ScaleMP [43].

One of the higher-level aspects of providing high performance virtual clusters is

the orchestration of the virtual clusters themselves, which could be called experiment

management. While this largely remains tangential to this immediate research, it is

nonetheless a key aspect for a successful solution. Some effort has been put forth for

virtual cluster experiment management [44], and many ongoing open sources solutions

1While many of the features for nova’s additions in GPU Passthrough and SR-IOV

InfiniBand support have been put together at USC/ISI as an OpenStack Nova fork

(https://libraries.io/github/usc-isi/nova), the features have since been modified and matured by

the OpenStack community in later releases and made available in upstream Nova.
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also offer compelling options, such as OpenStack Heat [45]. An example of a project

delivering advanced orchestration mechanisms and a toolkit to aid in configurable

virtual clusters on heterogeneous IaaS deployments is the Cloudmesh effort [46].

1.3 Research Challenges

The framework, architecture, and efforts described in this dissertation represent a

movement forward in providing virtualized infrastructure to support a wide arrange

of scientific applications. However, there still exist some challenges that will need

to be addressed. This includes a stigma of virtualization being inherently slow and

unable to support tightly coupled computations, limitations associated with operating

at scale, and even that containers may provide a better alternative. While this work

hopes to move beyond these challenges, they none the less must be considered.

The notion that virtualization and Cloud infrastructure are not able to support

parallel distributed memory applications has been characterized many times. One

of the most prominent examples of this is the Department of Energy’s Magellan

Project [47], whereby the Magellan Final Report [48] states the following finding as

a Key Finding:

“Finding 2. Scientific applications with minimal communication

and I/O are best suited for clouds.

We have used a range of application benchmarks and micro-benchmarks

to understand the performance of scientific applications. Performance of

tightly coupled applications running on virtualized clouds using commod-

ity networks can be significantly lower than on clusters optimized for these

workloads. This can be true at even mid-range computing scales. For ex-

ample, we observed slowdowns of about 50x for PARATEC on the Amazon
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EC2 instances compared to Magellan bare-metal (non-virtualized) at 64

cores and about 7x slower at 1024 cores on Amazon Cluster Compute in-

stances, the specialized high performance computing offering. As a result,

current cloud systems are best suited for high-throughput, loosely coupled

applications with modest data requirements.“

These findings underscore how classical usage of virtualization in cloud infrastruc-

ture has serious performance issues when running tightly coupled distributed memory

applications. Many of these performance concerns are sound, given the limitation of a

number of virtualization overheads commonplace at the time, including shadow page

tables, emulated Ethernet drivers, experimental hypervisors, and a complete lack of

sophisticated hardware commonplace in supercomputers and clusters. As a result, the

advantages of virtualization, including on-demand resource allocation, live migration

and advanced hybrid migration, and user-defined environments, have not been able

to show effectively their value in the context of the HPC community.

Other and related efforts within the scientific community too found limitations

with HPC applications in public cloud environments. This includes the study by

Jackson et. al [49] which illustrates how the Amazon Elastic Compute Cloud (EC2)

creates a 6x performance impact compared to a local cluster, due in large part to the

limiting Gigabit Ethernet on which benchmarks relied heavily within the EC2 system.

Other studies also found similar results; Ostermann [37] for instance, concludes that

Amazon EC2 “is insufficient for scientific computing at large, though it still appeals

to the scientists that need resources immediately and temporarily.” However, these

studies are now outdated and do not take into account the hardware and advance-

ments in virtualization detailed in this dissertation. Specifically, it is estimated that

with the KVM hypervisor in a performance-tuned environment, using accelerators

and most certainly a high-speed, low latency interconnect as detailed in Chapter 6,
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the results would be drastically different.

One limitation in this research in high performance virtual clusters is the fact that

the degree to which applications can scale remains relatively unknown. While initial

results with SR-IOV InfiniBand are promising, scaling is naturally hard to predict. It

would be hypothetically possible that as the number of VM’s increases, interconnect

communication tail-latency could also increase, causing notable slowdowns during

distributed memory synchronization barriers. It is only when infrastructure able to

support high performance virtual clusters becomes available will scaling to thousands

of cores and beyond be investigated.

Another potential challenge, and perhaps also a strength, is the rising use of

containers within industry, such as we see in efforts like Docker [50]. Recently, we

have seen efforts at NERSC/LBNL adapt a container solution called Shifter with the

SLURM resource manager on CRAY XC based systems [51]. Shifter’s goal is to pro-

vide user defined images for NERSC’s bioinformatics users, and it adapts remarkably

well to the HPC environment. While further efforts are needed by Cray and NERSC

to fully provide a container-based solution on a large-scale Supercomputer for all ap-

plications, its efforts are in many ways related to virtualization. In Chapter 5, we

specifically compare virtualization efforts with LXC [52], a popular Linux container

solution, and find performance to be comparable and largely near-native.

While the major concern with virtualization in the HPC community is perfor-

mance issues, virtualization itself may not be fundamentally limited by the overhead

that causes issues in running high performance computing applications. Recent im-

provements in performance, along with increased usability of accelerators and high

speed, low latency interconnects in virtualized environments, as demonstrated in this

dissertation, have made virtual clusters a more viable solution for mid-tier scien-

tific applications. Furthermore, it is possible for virtualization technologies to bring
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enhanced usability and enable specialized runtime components to future HPC re-

sources, adding significant value over today’s supercomputing resources. This could

potentially include infrastructure advances for higher level cloud platform services for

supporting big data applications [27].

1.4 Outline

The rest of this dissertation is organized into chapters, each signifying the steps to

move forward the notion of a high performance virtual cluster solution.

Chapter 2 investigates the related research surrounding both cloud computing

and high performance computing. Within cloud computing, an introduction to cloud

infrastructure, virtualization, and containers will all be discussed. This also includes

details regarding virtual clusters as well as an overview of some national scale cloud

infrastructure efforts that exist. Furthermore, we investigate the state of high per-

formance computing and supercomputing, as well touch upon some of the current

Exascale efforts.

Chapter 3 takes a look at the potential for virtualization, in a base case, to sup-

port high performance computing. This includes a feature comparison for hardware

availability of a few common hypervisors, specifically Xen, KVM, VirtualBox, and

VMWare. Then, a few common HPC benchmarks are evaluated in a single node con-

figuration to determine what overhead exists and where. This identifies how in some

scenarios, virtualization adds only a minor overhead, whereas with other scenarios,

overheads can be up to 50% compared to native configurations.

Chapter 4 starts to overcome one of the main limitations of virtualization for use

in advanced scientific computing, specifically the lack of hardware availability. In this

chapter, The Xen hypervisor is used to demonstrate the effect of GPU passthrough,
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allowing for GPUs to be used in a guest VM. The efficiency of this method is briefly

evaluated using two different hardware setups, and finds hardware can play a notable

role in single node performance.

Chapter 5 continues where chapter 4 leaves off, by demonstrating that GPU

passthrough is possible on many other hypervisors, specifically also KVM and VMWare,

and compares with one of the main containerization solutions, LXC. Here, the GPUs

are evaluated using not only the SHOC GPU benchmark suite developed at Oak

Ridge National Laboratory, but also a diverse mix of real-world applications in order

to examine how and where overhead exists with GPUs in VMs for each virtualization

setup. Specifically, we find that with properly tuned hardware and NUMA-balanced

configurations, the KVM solution can perform at roughly near-native performance,

with on average 1.5% overhead compared to no virtualization. This illustrates that

with the correct hypervisor selection, careful tuning, and advanced hardware, scien-

tific computations can be supported using virtualized hardware.

Chapter 6 takes the findings from the previous chapter to the next level. Specifi-

cally, the lessons learned from successful KVM virtualization with GPUs are expanded

and combined with a missing key component of supporting advanced parallel com-

putations: a high speed, low latency interconnect, specifically InfiniBand. Using

SR-IOV and PCI passthrough of QDR InfiniBand interconnect across a small cluster,

it is demonstrated that two Molecular Dynamics simulations, both very commonly

used in the HPC community, can be run at near-native performance in the designed

virtual cluster.

Chapter 7 takes a look at the given situation of virtualization, and puts forth an

argument for enhancements forthcoming in high performance virtual cluster solutions.

Specifically, we look at the given state of the art, how virtual clusters can be used

to provide an infrastructure to support the convergence between HPC and big data.
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Specifically, this chapter outlines and investigates potential next steps for virtualiza-

tion, including the potential for advanced live migration techniques and VM cloning,

which can be made available with the inclusion of a high-performance RDMA-capable

interconnect.

Finally, this work concludes with an overall view of the current state of high

performance virtualization, as well as its potential to impact and support a wide

array of disciplines.



Chapter 2

Related Research

In order to depict the research presented in this article accurately, the topics within

Virtualization, Cloud computing, and High Performance Computing are reviewed in

detail.

2.1 Virtualization

Virtualization is a way to abstract the hardware and system resources from an op-

erating system. This is typically performed within a Cloud environment across a

large set of servers using a Hypervisor or Virtual Machine Monitor (VMM), which

lies in between the hardware and the Operating System (OS). From here, one or

more virtualized OSs can be started concurrently, as seen in Figure 2.1, leading to

one of the key advantages of virtualization. This, along with the advent of multi-core

processing capabilities, allows for a consolidation of resources within a data center.

It then becomes the cloud infrastructure’s job, as discussed in the next section, to

exploit this capability to its maximum potential while still maintaining a given QoS.

It should be noted that virtualization is not specific to Cloud computing. IBM orig-

20
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inally pioneered the concept in the 1960’s with the M44/44X systems. It has only

recently been reintroduced for general use on x86 platforms.
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Figure 2.1 Virtual Machine Abstraction

However, virtualization, in the most general sense, is just another form of abstrac-

tion. As such, there are in fact many levels to virtualization that exist [53].

• ISA - Virtualization can start from the instruction set architecture (ISA) level,

whereby an entire processor instruction set is emulated. This may be useful for

running software or services developed for one instruction set (say MIPS), but

has to run on modern Intel x86 hardware. ISA level virtualization is usually

emulated through an interpreter which translates source instructions to target

instructions; however this can often be extremely inefficient. Dynamic binary

translation can help aid in efficiency by translating blocks of source instructions

to target instructions. This still can be limiting.
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• Hardware - One of the most important technologies in cloud computing is

hardware level virtualization [54,55]. Hardware virtualization, in its most pure

form, refers to the process of creating virtual abstraction to hardware platforms,

operating systems, or software resources. This enables the creation of 1 or

more virtual machines (VMs) that are run concurrently on the same operating

environment, be it hardware or some higher software. Here, a virtual hardware

environment is generated for a VM, providing virtual processors, memory, and

I/O devices that allow for VM multiplexing, as depicted in Figure 2.1. This

layer also manages the physical hardware on behalf of a host OS, as well as for

guests. While the most popular implementations of hardware virtualization is

the Xen Virtual Machine Monitor [54]; this method has further separated into

type 1 and type 2 hypervisors, as detailed further in Section 2.1.1.

• Operating System - Moving up the latter of implementation with virtu-

alization, we find OS level virtualization, where multiplexing happens at the

level of the OS, rather than the hardware. Usually, this refers to isolating a

filesystem and associated process and runtime effects in a single ”chroot” or

container environment at the user level, where all system level operations are

still handled by a single OS kernel. This containerization allows for multiple

user environments to exist concurrently without the complexity of hardware or

ISA level virtualization. Containers are also described in more detail in the

next section.

• Library (API) - Moving up a layer, we find library or Application Level

Interface (API) level virtualzation, where a programming interface is separated

and the communication between this API and the back-end library with the

computation is virtualized. This method removes the back end services from
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within the operating environment, which can give the effect that resources are

local, when they are in fact remote. This is how GPUs are ”virtualized” with

tools such as rCUDA [56] and vCUDA [57]. This method’s performance often

can be very dependent on the underlying communications mechanisms, as well

as complete virtualization of the whole API (which may be difficult). API

virtualization also exists for entire OS libraries to translate between differing

OS, without actual containerization.

• Process - Virtualization can also take form at the process or user level, which

can then be used to deliver a specialized or high level language that is the same

across several different OSs. This is how the Java Virtual Machine (JVM) and

Microsoft’s .NET platform operate. This type of application predominantly

falls outside of the scope of this dissertation.

2.1.1 Hypervisors and Containers

While there are many types of virtualization, this dissertation predominately focuses

on hardware and OS level virtualization. With hardware virtualization, a Virtual

Machine Monitor, or hypervisor, is used. Abstractly, a hypervisor is a piece of software

that creates virtual machines or guests, usually that model the underlying physical

machine’s host system.

Hardware virtualization can actually be dissected in more detail to two different

types of hypervisors. These hypervisor types are illustrated in Figure 2.2, and they

can be directly compared to containers. With a Type 1 virtualization system, the

hypervisor or VMM sits directly on the bare-metal hardware, below the OS. These na-

tive hypervisors provide direct control of the underlying hardware, and are controlled

and operated usually through the use of a privileged VM. One example of a type 1
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Figure 2.2 Hypervisors and Containers

hypervisor is the Xen Virtual Machine Monitor [54], which uses its VMM as well as a

privileged Linux OS, called Dom0, to create and manage other user DomU instances.

The VMM in this place provides the necessary hardware abstraction of CPU, mem-

ory, and some I/O aspects, leaving the control aspects of the other DomUs to Dom0.

With a Type 1 hypervisor, all virtualization functions are kept separate from control

and OS functionaity, effectively making a cleaner design. This design could lead to

end application performance implications, as illustrated with the Palacios VMM [31].

Type 2 hypervisors utilize a different - and sometimes more convoluted - design.

With a Type 2 hypervisor, there is a ”host” OS that, like with native OSs, sits

directly atop hardware. This OS is just like any normal native OS. However, the OS

itself can abstract its own hardware, and provide and manage a VM, effectively as

an OS process. In this case, the hypervisor providing the abstraction is effectively

built within, atop, or as a module within the kernel. There are many different Type 2

hypervisors, the most common of which is the Linux Kernel Virtual Machine (KVM)

[58]. KVM is often used in conjunction with QEMU, an ISA level emulator, to

provide some basic ISA level virtualization and emulation capabilities. KVM is simply
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provided as a Linux kernel module within a given host, and guest VMs are run as a

single process on the host OS.

Type 1 and Type 2 hypervisors are very distinct from OS level virtualization, also

known as containerization. With containers, there is a single OS; however, instead

of direct hardware abstraction, a single kernel is used to simultaneously run multiple

user-space instances in a jailed-root environment. These environments may look and

feel like a separate machine, but in fact are not. Oftentimes the kernel itself pro-

vides resource management tools to help control resource utilization and allocations.

Linux container (LXC) is a great example of this, with their use of namespaces for

filesystem control and cgroups for resource management. With the recent advent of

Docker, which looks to control versioning and easy deployment of traceable contain-

ers, this aspect of OS level virtualization has grown in popularity; however, security

and usability concerns still exist, as dedicated isolation mechanisms do not exist and

the kernel space is the only point of security separation.

2.2 Cloud Computing

Cloud computing [59] is one of the most explosively expanding technologies in the

computing industry today. However, it is important to understand where it came

from in order to figure out where it will be heading in the future. While there is no

clear cut evolutionary path to Clouds, many believe the concepts originate from two

specific areas: Grid Computing and Web 2.0.

Grid computing [60, 61], in its practical form, represents the concept of connect-

ing two or more spatially and administratively diverse clusters or supercomputers

together in a federating manner. The term “the Grid” was coined in the mid 1990s

to represent a large distributed systems infrastructure for advanced scientific and en-
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gineering computing problems. Grids aim to enable applications to harness the full

potential of resources through coordinated and controlled resource sharing by scalable

virtual organizations. While not all of these concepts carry over to the Cloud, the

control, federation, and dynamic sharing of resources is conceptually the same as in

the Grid. This is outlined by Foster et al [3], as Grids and clouds appear concep-

tually similar when compared abstractly. From a scientific perspective, the goals of

clouds and Grids are also similar. Both systems attempt to provide large amounts

of computing power by leveraging a multitude of sites running diverse applications

concurrently in symphony.

The other major component, Web 2.0, is also a relatively new concept in the

history of Computer Science. The term Web 2.0 was originally coined in 1999 in a

futuristic prediction by Dracy DiNucci [62]: “The Web we know now, which loads

into a browser window in essentially static screenfulls, is only an embryo of the Web

to come. The first glimmerings of Web 2.0 are beginning to appear, and we are just

starting to see how that embryo might develop. The Web will be understood not

as screenfulls of text and graphics but as a transport mechanism, the ether through

which interactivity happens. It will [...] appear on your computer screen, [...] on your

TV set [...] your car dashboard [...] your cell phone [...] hand-held game machines

[...] maybe even your microwave oven.” Her vision began to form, as illustrated in

2004 by the O’Riley Web 2.0 conference, and since then the term has been a pivotal

buzzword among the internet. While many definitions have been provided, Web 2.0

really represents the transition from static HTML to harnessing the Internet and the

Web as a platform in of itself.

Web 2.0 provides multiple levels of application services to users across the Inter-

net. In essence, the web becomes an application suite for users. Data is outsourced

to wherever it is wanted, and the users have total control over what they interact
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with and spread accordingly. This requires extensive, dynamic, and scalable host-

ing resources for these applications, the demand for which provides the user-base for

much of the commercial Cloud computing industry today. Web 2.0 software requires

abstracted resources to be allocated and relinquished on the fly, depending on the

Web’s traffic and service usage at each site. Furthermore, Web 2.0 brought into exis-

tence Web Services standards [63] and the Service Oriented Architecture (SOA) [64],

which outlined the interaction between users and cyber infrastructure. In summary,

Web 2.0 defined the interaction standards and user base, and Grid computing defined

the underlying infrastructure capabilities.

A Cloud computing implementation typically enables users to migrate their data

and computation to a remote location with some varying impact on system perfor-

mance [65]. This provides a number of benefits which could not otherwise be achieved:

• Scalable - Clouds are designed to deliver as much computing power as any

user needs. While in practice the underlying infrastructure is not infinite, the

cloud resources are projected to ease the developer’s dependence on any specific

hardware.

• Quality of Service (QoS) - Unlike standard data centers and advanced com-

puting resources, a well-designed Cloud can project a much higher QoS than

traditionally possible. This is due to the lack of dependence on specific hard-

ware, so any physical machine failures can be mitigated without the prerequisite

user awareness.

• Specialized Environment - Within a Cloud, the user can utilize customized tools

and services to meet their needs. This can be to utilize the latest library, toolkit,

or to support legacy code within new infrastructure.

• Cost Effective - Users leverage only the resources required for their given task,
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rather than putting forth a large capital investment in infrastructure. This re-

duces the risk for institutions potentially looking to build a scalable system,

thus providing greater flexibility, since the user is only paying for needed in-

frastructure while maintaining the option to increase services as needed in the

future.

• Simplified Interface - Whether using a specific application, a set of tools or

Web services, Clouds provide access to a potentially vast amount of computing

resources in an easy and user-centric way. We have investigated such an interface

within Grid systems through the use of the Cyberaide project [66, 67].

Figure 2.3 View of the Layers within a Cloud Infrastructure
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Many of the features noted above define what Cloud computing can be from a

user perspective. However, Cloud computing in its physical form has many different

meanings and forms. Since Clouds are defined by the services they provide and not

by applications, an integrated as-a-service paradigm has been defined to illustrate the

various levels within a typical Cloud, as in Figure 2.3.

• Clients - A client interacts with a Cloud through a predefined, thin layer of

abstraction. This layer is responsible for communicating the user requests and

displaying data returned in a way that is simple and intuitive for the user.

Examples include a Web Browser or a thin client application.

• Software-as-a-Service (SaaS) - A framework for providing applications or soft-

ware deployed on the Internet packaged as a unique service for users to consume.

By doing so, the burden of running a local application directly on the client’s

machine is removed. Instead, all the application logic and data is managed

centrally and displayed to the user through a browser or thin client. Examples

include Google Docs, Facebook, or Pandora.

• Platform-as-a-Service (PaaS) - A framework for providing a unique computing

platform or software stack on which applications and services can be developed.

The goal of PaaS is to alleviate many of the burdens of developing complex,

scalable software by proving a programming paradigm and tools that make ser-

vice development and integration a tractable task for many. Examples include

Microsoft Azure and Google App Engine.

• Infrastructure-as-a-Service (IaaS) - A framework for providing entire computing

resources through a service. This typically represents virtualized Operating

Systems, thereby masking the underlying complexity and details of the physical

infrastructure. Users are allowed to rent or buy computing resources on demand
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for their own use without needing to operate or manage physical infrastructure.

Examples include Amazon EC2, and OpenStack, and is the major cloud focal

point for this dissertation.

• Physical Hardware - The underlying set of physical machines and IT equipment

that host the various levels of service. These are typically managed at a large

scale using virtualization technologies which provide the QoS users expect. This

is the basis for all computing infrastructure.

When all of these layers are combined, a dynamic software stack is created to

focus on large scale deployment of services to users.

2.2.1 Infrastructure-as-a-Service

Today, there are a number of Clouds that offer solutions for Infrastructure-as-a-Service

(IaaS). There have been multiple comparison efforts between various IaaS service

[4, 68–70], which provide insight to the similarities and differences between the long

array of cloud infrastructure deployment solutions. However, at a high level, IaaS can

be split into 3 tiers based on their availability.

• Public - Public IaaS is where the services and virtualizaton of hardware re-

sources are provided over the internet. Usually this is in a centralized data center

whereby many users concurrently access these resources from across the globe,

often at a pre-negotiated price point and service level agreement (SLA) [71].

Public clouds, which sell hosting services en-masse at competitive costs, are

best suited to utilize the economies of scale. The Amazon Elastic Compute

Cloud (EC2) is a primary example of a public cloud.

• Private - Private IaaS is where the cloud infrastructure is limited to within

a distinct group, set of users, business, or virtual organization. Usually such
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private cloud infrastructure is also on a private, dedicated network that can

either be separate or connected to other services. Data within private clouds

are often more secure than those on a public cloud, and as such can be the choice

for many users who have sensitive data, or who large-scale users who find better

cost, performance, or QoS than what is provided within public clouds.

• Hybrid - Hybrid cloud IaaS combines the computational power of both private

and public IaaS, enabling users to keep data or costs within a private IaaS, but

then ”burst” usage to a public cloud on peak computational demands. Virtual

Private Networks (VPN) can be useful to try to handle such a hybrid cloud not

only for management and network addressing but also for security.

Amazon EC2

The Amazon Elastic Compute Cloud (EC2) [72], is probably the most popular of

cloud infrastructure offerings to date, and is used extensively in the IT industry.

EC2 is the central component of Amazon Web Services platform. EC2 allows users

to effectively rent virtual machines (called instances), hosted within Amazon’s data

centers, at a certain price point. Through their advanced UI or a RESTful API, users

can start, stop, pause, migrate, and destroy instances exactly as needed to match the

required computational tasks at hand.

Amazon EC2 predominantly relies on the Xen hypervisor to provide VMs on

demand to users, with an equivalent compute unit equal to a 1.7Ghz Intel Xeon

processor. However, recent advancements, instance types, and upgrades to EC2 have

increased this compute unit’s power. Instance reservations have 3 types: On-demand,

Reserved, and Spot. With On-demand instances, users pay by the hour for however

long the desired instance is running. Users can instead rent reserved instances, where

they pay a one-time (discounted) cost based on a pre-determined allocation time.
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There is also Spot pricing, where VMs are provisioned only when a given spot price is

met, which is determined simply based on supply and demand within the EC2 system

itself.

EC2 supports a wide array of user environments and setups. From an OS per-

spective, this includes running Linux, Unix, and even Windows VM instances. EC2

also provides instances with persistent storage through Elastic Block Storage (EBS)

and Simple Storage Service (S3) object storage mechanisms. These tools are nec-

essary for data persistence, as EC2 instances, as with most IaaS solutions, do not

implicitly persist data beyond the lifetime of the instance. EBS-rooted instances use

an EBS volume as a root disk device and, as such, keep data beyond the lifetime of a

given instance. EC2 also offers elastic IPs, whereby public IP addresses are assigned

to instances at boot (or in-situ); however, these elastic IPs do not require the DNS

updates to propagate or an administrator to adjust the network.

These advanced features, coupled with the first-to-market viability and continual

updates have made EC2 the largest cloud infrastructure today. While vendor lock-in

is a concern (EC2 is not available for download or replication), other alternatives

exist such as Google’s Compute Engine [73], the prevalence and support with EC will

likely mean its status quo as the public cloud of choice will continue for the foreseeable

future.

Nimbus

Nimbus [74, 75] is a set of open source tools that provide a private IaaS cloud com-

puting solution. Nimbus is based on the concept of virtual workspaces previously

introduced for Globus [75]. A virtual workspace is an abstraction of an execution

environment that can be made dynamically available to authorized clients by using

well-defined protocols. In this way, it can create customized environments by de-
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ploying virtual machines (VMs) among remote resources. To such an end, Nimbus

provides a web interface called Nimbus Web. Its aim is to provide administrative and

user functions in a friendly interface.

Within Nimbus, a storage cloud implementation called Cumulus [74] has been

tightly integrated with the other central services, although it can also be used stan-

dalone. Cumulus is compatible with the Amazon Web Services S3 REST API [76],

but extends its capabilities by including features such as quota management. The

Nimbus cloud client uses the Jets3t library [77] to interact with Cumulus. However,

since it is compatible with S3 REST API, other interfaces like boto [78] or s2cmd [79]

can also be used to interact with Nimbus.

Nimbus supports two resource management strategies. The first one is the default

“resource pool” mode. In this mode, the service has direct control of a pool of

virtual machine managers (VMM) nodes and it assumes it can start VMs. The other

supported mode is called “pilot”. Here, the service makes requests to a cluster’s

Local Resource Management System (LRMS), to get a VMM available to gather

where deploy VMs.

Nimbus also provides an implementation of EC2’s interface that allows clients

developed for the EC2 system to be used on Nimbus-based clouds.

Eucalyptus

Eucalyptus is a product from Eucalyptus Systems [80–82] that developed out of a

research project at the University of California, Santa Barbara. Eucalyptus was

initially aimed at bringing the cloud computing paradigm of computing to academic

super computers and clusters. Eucalyptus provides an Amazon Web Services (AWS)

complaint EC2 based web service interface for interacting with the Cloud service.

The architecture depicted in Figure 2.4 is based on a two level hierarchy of the
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Figure 2.4 Eucalyptus Architecture

Cloud controller and the Cluster controller [83]. The Cluster Controller usually man-

ages the nodes within a single cluster and multiple Cluster Controllers can be used

to connect to a single Cloud Controller. The Cloud Controller is responsible for the

resource management, scheduling and accounting aspects of the Cloud.

Being one of the first private cloud computing solutions, Eucalyptus has a focus

on the user interface. Much of Eucalyptus’s design is based on the functionality

of Amazon’s EC2 cloud solution, and the user interface is a prime example of that

model. While EC2 is a proprietary public cloud, it uses an open interface through

the use of well designed Web Services which are open to all. Eucalyptus, looking to

provide complete compatibility with EC2 to market the private cloud market, uses the

same interface for all communication to the Cloud Controller. Because Eucalyptus’s

interface is AWS complaint, it provides the same form of authentication that AWS

supports, namely the shared key and PKI models.

While Eucalyptus can be controlled using the EC2 AMI tools, it also provides its
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own specific tool set: euca2ools. Euca2ools provides support for creating and man-

aging keypairs, querying the cloud system, managing VMs, starting and terminating

instances, network configuration, and block storage usage. The Eucalyptus system

also provides a secure web front-end to allow new users to create and manage account

information, view available VMs, and download their security credentials.

As seen with the user interface, Eucalyptus takes many design queues from Ama-

zons EC2, and the image management system is no different. Eucalyptus stores

images in Walrus, the block storage system that is analogous to the Amazon S3 ser-

vice. As such, any user can bundle his/her own root filesystem, upload and then

register this image and link that image with a particular kernel and ramdisk im-

age. This image is uploaded into a user-defined bucket within Walrus, and can be

retrieved anytime from any availability zone. This allows users to create specialty

virtual appliances and deploy them within Eucalyptus with ease.

In 2014, Eucalyptus was acquired by Hewlett-Packard, which now maintains the

HPE Helion Eucalyptus Cloud to have full compatibility with Amazon EC2. The

most recent release of Helion eucalyptus is version 4.2.2 in early 2016.

OpenStack

OpenStack [84, 85], another private cloud infrastructure service, was introduced by

Rackspace and NASA in July 2010. The project aims to build an open source com-

munity spanning technologists, developers, researchers, and industry that allows for

the sharing of resources and technologies in order to create a massively scalable and

secure cloud infrastructure. In tradition with other open source projects, the entire

software is open source.

Historically, OpenStack focuses on the development of two aspects of cloud com-

puting to address compute and storage aspects with their OpenStack Compute and
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OpenStack Storage solutions. According to the documentation “OpenStack Com-

pute is the internal fabric of the cloud creating and managing large groups of virtual

private servers” and “OpenStack Object Storage is software for creating redundant,

scalable object storage using clusters of commodity servers to store Terabytes or even

petabytes of data.” However, OpenStack as a platform has evolved much more than

its original efforts, and has created a wide array of new sub-projects.

As part of the computing support effort, OpenStack utilizes a cloud fabric con-

troller known under the name Nova. The architecture for Nova is built on the concepts

of shared-nothing and messaging-based information exchange. Hence most commu-

nications in Nova are facilitated by message queues. To prevent blocking components

while waiting for a response from others, deferred objects are introduced. Nova

supports multiple scheduling paradigms and includes plugins for a wide array of hy-

pervisors, including Xen, KVM, and VMWare. The flexibility found within Nova

is useful for supporting a wide array of cloud IaaS computational efforts. Recently,

OpenStack has even looked to implement containers and bare-metal provisioning to

keep on pace with the latest technologies.

The OpenStack Swift storage solution is build around a number of interacting com-

ponents and concepts, including a Proxy Server, a Ring, Object Server, a Container

Server, an Account Server, Replication, Updaters, and Auditors. This distributed ar-

chitecture attempts to have no centralized components in order to enable scalability

and resiliency for data. Swift represents the long-term, object-based storage similar

to Amazon S3, and attempts to maintain rough API compatibility with S3. As Swift

looks to use simple data replication as a main form of resiliency and fast read/write

is rarely a priority, Swift is often built using commodity disk drives instead of more

costly flash solutions.

With OpenStack Nova’s increased prevalence, the number of auxiliary OpenStack
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projects has also increased to support Nova. While there are many other recent Open-

Stack projects, these listed OpenStack efforts, along with Nova and Swift, represent

the common core of a current OpenStack deployment.

• Cinder for persistent block-level storage mechanisms to support VM instances

and elastic block storage.

• Neutron provides advanced networking and SDN solutions, IP addressing, and

VLAN configuration.

• Glance delivers comprehensive image management, including image discovery,

registration, and delivery mechanisms.

• Keystone identity and authentication service for all OpenStack services.

• Horizon, a dashboard web-based UI framework, complimentary to the RESTful

client API.

Currently, OpenStack exists as one of the largest ongoing private IaaS efforts,

with over 500 companies contributing to the effort, and thousands of deployments.

While releases have pushed forth approximately every 6 months, the latest current

release at the time of writing is Mitaka, which now includes full support for GPUs

and SR-IOV interconnects, as detailed later in this dissertation. It is expected that

OpenStack’s prevalence in the cloud computing community will only increase in the

next few years.

OpenNebula

OpenNebula [86, 87] is an open-source toolkit which allows administrators to trans-

form existing infrastructure into an Infrastructure as a Service (IaaS) cloud with
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cloud-like interfaces. Figure 2.5 shows the OpenNebula architecture and their main

components.

Figure 2.5 OpenNebula Architecture

The architecture of OpenNebula has been designed to be flexible and modular to

allow its integration with different storage and network infrastructure configurations,

as well as hypervisor technologies. Here, the core is a centralized component that

manages the virtual machine’s (VM) full life cycle, including setting up networks dy-

namically for groups of VMs and managing their storage requirements, such as VM

disk image deployment or on-the-fly software environment creation. Another impor-

tant component is the capacity manager, which governs the functionality provided

by the core for scheduling. The default capacity scheduler is a requirement/rank

matchmaker. However, it is also possible to develop more complex scheduling poli-

cies through a lease model and advance reservations like Haizea [88]. The last main

components are the access drivers. They provide an abstraction of the underlying
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infrastructure to expose the basic functionality of the monitoring, storage and virtu-

alization services available in the cluster. Therefore, OpenNebula is not tied to any

specific environment and can provide a uniform management layer regardless of the

virtualization platform.

Additionally, OpenNebula offers management interfaces to integrate the core’s

functionality within other data center management tools, such as accounting or mon-

itoring frameworks. To this end, OpenNebula implements the libvirt API [89], an

open interface for VM management, as well as a command line interface (CLI). A

subset of this functionality is exposed to external users through a cloud interface.

Due to its architecture, OpenNebula is able to adapt to organizations with chang-

ing resource needs, including the addition or failure of physical resources [70]. Some

essential features to support changing environments are the live migration and the

snapshotting of VMs [86]. Furthermore, when the local resources are insufficient,

OpenNebula can support a hybrid cloud model by using cloud drivers to interface

with external clouds. This lets organizations supplement the local infrastructure

with computing capacity from a public cloud to meet peak demands, or implement

high availability strategies. OpenNebula includes an EC2 driver, which can submit

requests to Amazon EC2 and Eucalyptus [80], as well as an ElasticHosts driver [90].

Regarding the storage, an OpenNebula Image Repository allows users to easily

specify disk images from a catalog without worrying about low-level disk configuration

attributes or block device mapping. Also, image access control is applied to the

images registered in the repository, hence simplifying multi-user environments and

image sharing. Nevertheless, users can also set up their own images.
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Others

Other cloud specific projects exist, such as In-VIGO [91], Cluster-on-Demand [92],

and VMWare’s own proprietary vCloud Air [93]. Each effort provides its own in-

terpretation of private cloud services within a data center, often with the ability to

interplay with pubic cloud offerings such as Amazon’s EC2. Docker [50] also looks

to provide IaaS capabilities with specialized and easily configurable containers, based

on LXC and libcontainer solutions. While it is still to be determined how Docker

and containers will change the private IaaS landscape, they do provide similar func-

tionality for Linux users without some of the complexities of traditional virtualized

IaaS.

2.2.2 Virtual Clusters

While virtualization and cloud IaaS provide many key advancements, this technology

alone is not sufficient. Rather, a collective scheduling and management for virtual

machines is required to piece together a working virtual cluster.

Let us consider a typical usage for a Cloud data center that is used in part to

provide computational power for the Large Hadron Collider at CERN [94], a global

collaboration from more than 2000 scientists of 182 institutes in 38 nations. Such a

system would have a small number of experiments to run. Each experiment would

require a very large number of jobs to complete the computation needed for the

analysis. Examples of such experiments are the ATLAS [95] and CMS [96] projects,

that (combined) require Petaflops of computing power on a daily basis. Each job of an

experiment is unique, but the application runs are often the same. Therefore, virtual

machines are deployed to execute incoming jobs. There is a file server which provides

virtual machine templates. All typical jobs are preconfigured in virtual machine
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templates. When a job arrives at the head node of the cluster, a correspondent

virtual machine is dynamically started on a certain compute node within the cluster

to execute the job. While the LHC project and CERN’s cloud effort is a formidable

one, it only covers pleasingly parallel HTC workloads, and often times HPC and big

data workloads can be equally complex yet drastically different.
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Figure 2.6 Virtual Clusters on Cloud Infrastructure

Cluster computing has become one of the core tools in distributed systems for

use in parallel computation. Cluster computing revolves around the desire to get

more computing power and better reliability by utilizing many computers together

across a network to achieve larger computational tasks. Clusters have manifested

themselves in many different ways, ranging from Beowulf clusters [6], which run using

commodity PCs to some of the TOP500 [8] supercomputing systems today. Virtual

clusters represent the growing need of users to organize computational resources in an

environment specific to their tasks at hand effectively, instead of sharing a common
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architecture across many users. With the advent of modern virtualization, virtual

clusters are deployed across a set of VMs in order to gain relative isolation and

flexibility between disjoint virtual clusters. Virtual clusters, or a set of multiple cluster

computing deployments on a single, larger physical cluster infrastructure, often have

the following properties and attributes [53]:

• Resources allocation based on a VM unit

• Clusters built of many VMs together, or by provisioning physical nodes

• Leverage local infrastructure management tools to provide a middleware solu-

tion for virtual clusters

– Implementations could be a cloud IaaS such as OpenStack

– Some instances use a queueing system such as PBS

• User experience based on virtual cluster management, not single VM manage-

ment

• Consolidates functionality on a smaller resource platform using multiple VMs

• Can provide fault tolerance through VM migration and management

• Can utilize dynamic scaling through the addition or deletion of VMs from the

virtual cluster

• Connection to back-end storage solution to provide virtual persistent storage

Given the properties, virtual clusters can take on many forms; however, a very

simplified set of virtual clusters across cloud infrastructure is provided as a represen-

tation in Figure 2.6. This could lead to the simple provisioning of multiple disjoint
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OSs on a single physical resource. Virtual clusters generally have the ability to pro-

vide and manage their own user environment and tuned internal middleware. Virtual

clusters may enable the separation of multiple tasks into separate VMs, which still

in fact run on the same or similar underlying physical resources, effectively providing

task isolation. Virtual clusters can be deployed to be persistent, stored, shared, or

re-provisioned on demand. The size of a virtual cluster could potentially expand and

contrast relative to the necessary resource requirements, taking advantage of elastic-

ity found with virtualization. Furthermore, VM migration may enable fault tolerance

in the event of physical machine errors if properly managed.

With virtual clusters, the capability to deploy custom environments quickly be-

comes critical. As such, efforts have been put forth to configure and create VM

images on-demand. This includes custom efforts with configuration engines such as

CfEngine, Chef, Ansible, and others. Within FutureGrid, an image management sys-

tem was defined to provide preconfigured VM images for cloud infrastructure using

the BCFG2 engine [97].

Initially, virtual clusters were proposed for the use of Grid communities [32].

Specifically, Foster et al look to provide commodity clusters to various Virtual Or-

ganizations [98], whereby grid services can instantiate and deploy VMs. This design

and implementation was further refined through the use of metadata and contextu-

alization using appliances [99]. Some of these ideas have even come to take shape in

larger scale supercomputing deployments, such as with SDSC Comet’s virtual cluster

availability [100].

Virtual clusters require orchestration services to be able to organize, deploy, man-

age, and re-play the desired user environment, and there have been a number of

efforts to bring this orchestration to utility. One efforts within FutureGrid is with

the experiment management design [44], which attempts to define how resources are
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connected to and monitored, as well as how VMs are stored in a repository and pro-

visioned across multiple heterogeneous resources. This effort moved forward with

Cloudmesh [46], which provides a simple client interface to access multiple cloud

resources with a command-line shell interface.

Another virtual cluster orchestration, named OpenStack Heat [45], has developed

within the OpenStack community. Heat provides a method by which an individ-

ual or group can deploy ”stacks”, which could essentially be virtual clusters, using

OpenStack infrastructure. Specifically, Heat provides a human readable and machine-

accessible template for specifying environments and requirements, as well as a REST-

ful API. In submitting a Heat orchestration template to the API, heat will interpret

and build the designed custom environment within a given OpenStack cloud deploy-

ment. Kubernetes [101], a related effort, is a infrastructure orchestration framework

for managing containerized applications within Docker.

2.2.3 The FutureGrid Project

FutureGrid was a NSF-funded national-scale Grid and Cloud test-bed facility that in-

cluded a number of computational resources across many distributed locations. This

FutureGrid test-bed allowed users to evaluate differing systems for applicability with

their given research task or application. These areas include computer science research

topics ranging from authentication, authorization, scheduling, virtualization, middle-

ware design, interface design and cybersecurity, to the optimization of grid-enabled

and cloud-enabled computational schemes for Astronomy, Chemistry, Biology, Engi-

neering, High Energy Physics, or Atmospheric Science. This project started at an

opportune time, when cloud infrastructure was still in its experimental stages and its

applicability to mid-tier scientific efforts were unknown.

The FutureGrid features a unique WAN network structure that lent itself to a
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multitude of experiments specifically designed for evaluating middleware technologies

and experiment management services. This network can be dedicated to conduct

experiments in isolation using a network impairment device for introducing a variety of

predetermined network conditions. Figure 2.7 depicts the geographically distributed

resources that are outlined in Table 2.1 in more detail. All network links within

FutureGrid are dedicated 10GbE links with the exception of a shared 10GbE link to

TACC over the TeraGrid [102, 103] network, enabling high-speed data management

and transfer between each partner site within FutureGrid.
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Figure 2.7 FutureGrid Participants, Network, and Resources

Although the total number of systems within FutureGrid is comparatively conser-

vative, they provide some heterogeneity to the architecture and are connected by the

high-bandwidth network links. One important feature to note is that most systems

can be dynamically provisioned; e.g., these systems can be reconfigured when needed

by special software that is part of FutureGrid with proper access control by users and

administrators. Therefore, it is believed that this hardware infrastructure can fully
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Table 2.1 FutureGrid hardware

System type Name CPUs Cores TFLOPS RAM(GB) Disk(TB) Site

IBM iDataPlex India 256 1024 11 3072 †335 IU

Dell PowerEdge Alamo 192 1152 12 1152 15 TACC

IBM iDataPlex Hotel 168 672 7 2016 120 UC

IBM iDataPlex Sierra 168 672 7 2688 72 UCSD

Cray XT5m Xray 168 672 6 1344 †335 IU

ScaleMP vSMP Echo 32 192 3 5872 192 IU

Dell PoweEdge Bravo 32 128 2 3072 192 IU

SuperMicro Delta 32 192 ‡20 3072 128 IU

IBM iDataPlex Foxtrot 64 256 2 768 5 UF

Total 1112 4960 70 23056 1394
†Indicates shared file system. ‡Best current estimate

accommodate the needs of an experiment management system.

As of Fall 2014, the FutureGrid project has ended. The computing resources

and facilities at Indiana University have continued on as FutureSystems, continuing

to provide a cloud, big data, and HPC testbed to approved researchers. Recently,

with new projects as part of the digital Science Center, the FutureSystems effort has

added two new machines, Romeo and Juliet, presenting clusters with Intel Haswell

CPU architectures to be used for big data research.
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2.3 High Performance Computing

2.3.1 Brief History of Supercomputing

Supercomputing can date back to some of the forefront of computing itself, especially

if we consider the ENIAC [104], the first Turing Complete general purpose digital

computer, also as the first supercomputer. ENIAC was first deployed to calculate

artillery firing tables, but was later used during the Second World War for helping the

Manhattan project’s thermonuclear calculations and later dedicated to the University

of Pennsylvania after the war.

The first properly termed supercomputer was the Control Data Corporation’s 6600

mainframe [105], first delivered to CERN in 1965. The CDC 6600 was notably faster

than the IBM counterparts, and the first deployments were able to perform on the

order of 1 MFLOP. Interestingly, the CPU design that came from Seymour Cray’s

CDC 6600 took advantage of a simplified yet fast CPU design with silicon-based

transistors, which founded the basis of the RISC processor architecture.

Cray’s efforts eventually lead him to start his own company, and in 1975 released

the Cray 1 system [106]. The Cray 1 took the powerful aspects of vector processing

and memory pipelining from the STAR architecture (developed later by CDC) and in-

troduced scalar performance through splitting vectors and instruction chaining. This

resulted in an overall performance of around 250 MFLOPS at peak, but realistically

closer to 100 MFLOPS for general applications. The Cray 1 system also helped push

forward the integrated circuit design, which was finally performant enough to be used.

Interestingly enough, the Cray 1 also required an entirely new Freon-based coolant

system.

The Cray 1 system gave way to the Cray X-MP and Y-MP in the mid 1980s.

These machines were shared-memory vector processors, with two processors in the
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X-MP and up to 8 processors for the later Y-MP systems. These first shared-memory

systems were aided by increased memory speeds. The X-MP machine was capable

of 200 MFLOPS sustained and 400 MFLOPS peak performance, whereas the Y-MP

variants were capable of over 2 GFLOPS.

Concurrently, during the 1980s, the advent of distributed memory architectures for

supercomputing were also starting to emerge. Specifically work on Caltech’s Cosmic

Cube, also known as a Hypercube, by Seitz and Fox [19,107], started the movement of

concurrent or parallel computing. The Cosmic Cube leveraged new VLSI techniques

and assembled Intel 8086/87 processors together with a novel hypercube interconnect

which required no switching, creating one of the first truly parallel computers. SIMD

programming and computation was done through a novel message passing architec-

ture, instead of shared variables. This design was first commercialized with Intel’s

iPSC, and later contributed directly to designs in the Intel Paragon, ASCI Red, and

Cray T3D/E systems.

While concurrent and parallel processor supercomputers continued into the 90s

with aforementioned hypercube designs and the IBM Thinking Machines [108], a new

commodity-based strategy emerged with Becker and Sterling’s Beowulf clusters [6].

Effectively, a Beowulf cluster is simply a cluster of commodity x86 machines linked

together with a simplified LAN network. Beowulf clusters often (but not always)

run Linux OS and leverage Ethernet solutions, and are programmed using a message

passing construct such as MPI [18]. This allows for the building of massively parallel

systems with relatively low cost and investment. Many specialized clusters today

still utilize commodity x86 hardware and Linux OSs similar to the original Beowulf

systems.

Concurrency and parallel computation on supercomputing resources has only

flourished since. This has been even more pronounced as CPU clock frequencies
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stabilized and multi-core architectures took hold, driving the need for concurrency

not only at an increased rate for supercomputing, but also even for commodity sys-

tems. While commodity single-CPU, multi-core systems often look towards exploiting

shared memory parallelism, distributed memory architectures have become a way of

life for high performance computing.

2.3.2 Distributed Memory Computation

Abstractly, distributed memory architectures consist of multiple instances of a pro-

cessor, memory, and an interconnect, which allows each instance to perform inde-

pendent computations and communicate over the interconnect. These interconnects

could be built using point-to-point, or through more complex and advanced switching

hardware, building a larger topology. While a simple example could involve several

commodity PCs connected through an Ethernet switch, this model scales to the latest

supercomputing resources of today with millions of cores [109].

Programming such distributed memory systems is a nontrivial task that the

greater HPC community has been wrangling for years. In the early days, this took

the form of either the Message Passing Interface (MPI) [18] or PVM [110]; however,

MPI has been far more successful and dominates the market for distributed memory

parallel computation. MPI is a standardized message passing system, which defines

the semantics and syntax for writing parallel programs in C, C++, or Fortran. MPI

has even been implemented in other languages such as Java [111]. As MPI is a stan-

dardization, there are may implementations that exist, including OpenMPI [112],

MPICH [113], and MVAPICH [114], to name a few. Many MPI-enabled applications

have been shown to be, with proper and careful design, the most efficient way to run

a parallel application across a large subset of tightly coupled distributed resources,

and can often represent the status-quo for HPC applications today.
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(a) Interconnect Family (b) Accelerator/Coprocessor Family

Figure 2.8 Top 500 Development over time from 2002 to 2016 [8]

More recently, the MPI programming model has been modified or joined with

other models. This change or deviation largely revolves around the hardware that

has changed within HPC resources themselves to meet the need for more computa-

tional power. This includes hybrid MPI + OpenMP models which become useful as

multi-core and many-core technologies becomes increasingly available [115], or the

MPI+CUDA model which interleaves message passing with GPU utilization [116].

As some of the latest supercomputing resources have been deployed specifically with

Nvidia GPUs for GPGPU programming, such as the ORNL’s Titan system [13], the

need for distributed memory computation with GPUs has increased.

To get an idea of some of the hardware advances over the past few years, it is

useful to examine the Top 500 [8], a comprehensive list of the top 500 supercom-
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puters known and their key characteristics. Looking at the past decade in HPC, we

can see some trends emerge within hardware. Specifically, looking at Interconnect

and Coprocessor architectures in Figure 2.8, we see a notable jump in the number

of deployed system that are using both InfiniBand and GPUs in the past decade.

In particular, InfiniBand usage has increased to roughly 40% of the total number of

deployed systems and remained somewhat stable as an interconnect family. Concur-

rently, the use of accelerators has increased form only 1 in 500 systems a decade ago,

to almost a 20% of the top 500 systems that are using coprocessors. Within that fac-

tor, the majority of such accelerator-equipped systems have been using GPUs, with

a concurrent increase in the Intel Xeon Phi coprocessor as well. While these do not

represent all of supercomputing nor exclusively the most high end of systems, they do

represent advanced hardware that has been increasingly common in the last decade,

yet relatively underutilized in comparison within cloud infrastructure. As such, much

of the effort in this dissertation focuses on, but is not limited to, these two technology

families.

2.3.3 Exascale

As the forefront of supercomputing moves beyond the latest petaflop machines of the

past few years [13], the HPC community is setting their sights on the next significant

milestone: Exascale. Exascale computing refers broadly to performing roughly one

exaFLOPS, or 1018 floating point operations per second. However, exascale itself is

far more than just a theoretical FLOPS goal; instead, it is a set of new comput-

ing advancements and challenges that requires reaching computational power at such

magnitude. While FLOPs are often used as the ubiquitous yard stick for supercom-

puting with the LINPACK benchmark [117], other efforts have taken hold to classify

systems under a different set of parameters [118, 119], with the loose understanding
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that these may incorporate a richer application set destined for exascale systems. This

could include, for instance, integer calculations at a similar scale to satisfy defence

and intelligence perspectives, or graph processing with billions of vertices.

With exascale, there are a number of barriers that exist with current technolo-

gies that must be overcome to reach exascale. The exascale Computing Study [39]

specifically lists 4 major focal areas:

1. Energy and Power Challenge

• Describes the physical difficulties in providing the amount of power needed

to drive a sufficiently large exascale system. The US DOE estimates the

maximum power envelope for a deployed first exascale system to be within

20-40MW. Extrapolating current technology power utilization shows an

order of magnitude more energy utilization than the specificity power en-

velop. As such, new architectures and conversation techniques will need

to be investigated.

2. Memory and Storage Challenge

• This challenge illustrates the problem that has grown in relation to the

memory wall, defined by the exponential difference between processor and

memory performance, as well as the storage capacity limits to support

calculations at the level of performance necessary. This challenge incorpo-

rates not only main memory limitations, but also tertiary storage issues as

well.

3. Concurrency and Storage Challenge

• This challenge is born from the recent limit in CPU clock rates as a way

to gain performance. Instead, performance must be gained through paral-
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lelism. The depth of this challenge is especially profound when we consider

parallelism on the order of millions, if not billions, of threads.

4. Resiliency Challenge

• The resiliency challenge defines the necessity of computation to recover

and continue in the event of a fault or fluctuation. As parallelism and

the number of individualized components substantially increases in a path

towards exascale, the mean time to failure of any given component also

increases.

Current exascale efforts are as wide as they are varying, not only with concepts,

architectures, and runtime systems, but also with deployment plans and expectations

between future deployments. Of particular interest in current exascale research is

in Operating System and runtime (OS/R) developments to support new extreme-

scale applications in an efficient manner. Two examples of novel OS approaches are

the Hobbes project [120] and the ARGO Exascale Operating System [121]. These OS

efforts, along with novel programming models for exascale such as ParalleX [122] look

to fundamentally change the relationship between HPC hardware architectures and

the libraries and applications to be leveraged on such future exascale deployments.

It is possible that virtualization itself may have an impact in OS and runtime ser-

vices in exascale [120]. While some of the work herein may tangentially be of utility

to such efforts, the immediate goal of this dissertation is not to investigate the appli-

cability of virtualization for exascale systems, but rather to enable the diversification

of HPC towards cloud infrastructure.



Chapter 3

Analysis of Virtualization

Technologies for High Performance

Computing Environments

3.1 Abstract

As Cloud computing emerges as a dominant paradigm in distributed systems, it is

important to fully understand the underlying technologies that make Clouds possible.

One technology, and perhaps the most important, is virtualization. Recently virtual-

ization, through the use of hypervisors, has become widely used and well understood

by many. However, there are a large spread of different hypervisors, each with their

own advantages and disadvantages. This chapter provides an in-depth analysis of

some of today’s commonly accepted virtualization technologies from feature com-

parison to performance analysis, focusing on the applicability to High Performance

Computing environments using FutureGrid resources. The results indicate virtualiza-

tion sometimes introduces slight performance impacts depending on the hypervisor

54
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type, however the benefits of such technologies are profound and not all virtualization

technologies are equal.

3.2 Introduction

Cloud computing [59] is one of the most explosively expanding technologies in the

computing industry today. A Cloud computing implementation typically enables

users to migrate their data and computation to a remote location with some varying

impact on system performance [65]. This provides a number of benefits which could

not otherwise be achieved.

Such benefits include:

• Scalability - Clouds are designed to deliver as much computing power as any

user needs. While in practice the underlying infrastructure is not infinite, the

cloud resources are projected to ease the developer’s dependence on any specific

hardware.

• Quality of Service (QoS) - Unlike standard data centers and advanced com-

puting resources, a well-designed Cloud can project a much higher QoS than

traditionally possible. This is due to the lack of dependence on specific hard-

ware, so any physical machine failures can be mitigated without the prerequisite

user awareness.

• Customization - Within a Cloud, the user can utilize customized tools and

services to meet their needs. This can be to utilize the latest library, toolkit, or

to support legacy code within new infrastructure.

• Cost Effectiveness - Users finds only the hardware required for each project.

This reduces the risk for institutions potentially want build a scalable system,



3.2 Introduction 56

thus providing greater flexibility, since the user is only paying for needed in-

frastructure while maintaining the option to increase services as needed in the

future.

• Simplified Access Interfaces - Whether using a specific application, a set of

tools or Web services, Clouds provide access to a potentially vast amount of

computing resources in an easy and user-centric way.

While Cloud computing has been driven from the start predominantly by the in-

dustry through Amazon [72], Google [123] and Microsoft [124], a shift is also occurring

within the academic setting as well. Due to the many benefits, Cloud computing is

becoming immersed in the area of High Performance Computing (HPC), specifically

with the deployment of scientific clouds [125] and virtualized clusters [32].

There are a number of underlying technologies, services, and infrastructure-level

configurations that make Cloud computing possible. One of the most important

technologies is virtualization. Virtualization, in its simplest form, is a mechanism to

abstract the hardware and system resources from a given Operating System. This is

typically performed within a Cloud environment across a large set of servers using a

Hypervisor or Virtual Machine Monitor (VMM), which lies in between the hardware

and the OS. From the hypervisor, one or more virtualized OSs can be started concur-

rently, leading to one of the key advantages of Cloud computing. This, along with the

advent of multi-core processors, allows for a consolidation of resources within any data

center. From the hypervisor level, Cloud computing middleware is deployed atop the

virtualization technologies to exploit this capability to its maximum potential while

still maintaining a given QoS and utility to users.

The rest of this chapter is as follows: First, we look at what virtualization is,

and what current technologies currently exist within the mainstream market. Next
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we discuss previous work related to virtualization and take an in-depth look at the

features provided by each hypervisor. We follow this by outlining an experimental

setup to evaluate a set of today’s hypervisors on a novel Cloud test-bed architecture.

Then, we look at performance benchmarks which help explain the utility of each

hypervisor and the feasibility within an HPC environment. We conclude with our

final thoughts and recommendations for using virtualization in Clouds for HPC.

3.3 Related Research

While the use of virtualization technologies has increased dramatically in the past few

years, virtualization is not specific to the recent advent of Cloud computing. IBM

originally pioneered the concept of virtualization in the 1960’s with the M44/44X

systems [126]. It has only recently been reintroduced for general use on x86 plat-

forms. Today there are a number of public Clouds that offer IaaS through the use

of virtualization technologies. The Amazon Elastic Compute Cloud (EC2) [127] is

probably the most popular Cloud and is used extensively in the IT industry to this

day. Nimbus [128] and Eucalyptus [80] are popular private IaaS platforms in both

the scientific and industrial communities. Nimbus, originating from the concept of

deploying virtual workspaces on top of existing Grid infrastructure using Globus, has

pioneered scientific Clouds since its inception. Eucalyptus has historically focused

on providing an exact EC2 environment as a private cloud to enable users to build

an EC2-like cloud using their own internal resources. Other scientific Cloud specific

projects exist such as OpenNebula [129], In-VIGO [130], and Cluster-on-Demand [92],

all of which leverage one or more hypervisors to provide computing infrastructure on

demand. In recent history, OpenStack [131] has also come to light from a joint col-

laboration between NASA and Rackspace which also provide compute and storage
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resources in the form of a Cloud.

While there are currently a number of virtualization technologies available today,

the virtualization technique of choice for most open platforms over the past 5 years has

typically been the Xen hypervisor [54]. However more recently VMWare ESX [132]

1, Oracle VirtualBox [133] and the Kernel-based Virtual Machine (KVM) [58] are

becoming more commonplace. As these look to be the most popular and feature-

rich of al virtualization technologies, we look to evaluate all four to the fullest extent

possible. There are however, numerious other virtualizaton technologies also available,

including Microsoft’s Hyper-V [134], Parallels Virtuozzo [135], QEMU [136], OpenVZ

[137], Oracle VM [138], and many others. However, these virtualization technologies

have yet to seen widespread deployment within the HPC community, at least in their

current form, so they have been placed outside the scope of this work.

In recent history there have actually been a number of comparisons related to

virtualization technologies and Clouds. The first performance analysis of various hy-

pervisors started with, unsurprisingly, the hypervisor vendors themselves. VMWare

has happy to put out its on take on performance in [139], as well as the original

Xen article [54] which compares Xen, XenoLinux, and VMWare across a number of

SPEC and normalized benchmarks, resulting in a conflict between both works. From

here, a number of more unbiased reports originated, concentrating on server consol-

idation and web application performance [132, 140, 141] with fruitful yet sometimes

incompatible results. A feature base survey on virtualization technologies [142] also

illustrates the wide variety of hypervisors that currently exist. Furthermore, there

has been some investigation into the performance within HPC, specifically with In-

finiBand performance of Xen [143] and rather recently with a detailed look at the

feasibility of the Amazon Elastic Compute cloud for HPC applications [49], however

1Due to the restrictions in VMWare’s licensing agreement, benchmark results are unavailable.
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both works concentrate only on a single deployment rather than a true comparison

of technologies.

As these underlying hypervisor and virtualization implementations have evolved

rapidly in recent years along with virtualization support directly on standard x86

hardware, it is necessary to carefully and accurately evaluate the performance impli-

cations of each system. Hence, we conducted an investigation of several virtualization

technologies, namely Xen, KVM, VirtualBox, and in part VMWare. Each hypervisor

is compared alongside one another with base-metal as a control and (with the exeption

of VMWare) run through a number of High Performance benchmarking tools.

3.4 Feature Comparison

With the wide array of potential choices of virtualization technologies available, its

often difficult for potential users to identify which platform is best suited for their

needs. In order to simplify this task, we provide a detailed comparison chart between

Xen 3.1, KVM from RHEL5, VirtualBox 3.2 and VMWWare ESX in Figure 2.
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Figure 3.1 A comparison chart between Xen, KVM, VirtualBox, and
VMWare ESX

The first point of investigation is the virtualization method of each VM. Each
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hypervisor supports full virtualization, which is now common practice within most

x86 virtualization deployments today. Xen, originating as a para-virtualized VMM,

still supports both types, however full virtualization is often preferred as it does

not require the manipulation of the guest kernel in any way. From the Host and

Guest CPU lists, we see that x86 and, more specifically, x86-64/amd64 guests are all

universally supported. Xen and KVM both suport Itanium-64 architectures for full

virtualization (due to both hypervisors dependency on QEMU), and KVM also claims

support for some recent PowerPC architectures. However, we concern ourselves only

with x86-64 features and performance, as other architectures are out of the scope of

this manuscript. Of the x86-64 platforms, KVM is the only hypervisor to require

either Intel VT-X or AMD-V instruction sets in order to operate. VirtualBox and

VMWare have internal mechanisms to provide full virtualization even without the

virtualization instruction sets, and Xen can default back to para-virtualized guests.

Next, we consider the host environments for each system. As Linux is the pri-

mary OS type of choice within HPC deployments, its key that all hypervisors sup-

port Linux as a guest OS, and also as a host OS. As VMWare ESX is meant to be

a virtualization-only platform, it is built upon a specially configured Linux/UNIX

proprietary OS specific to its needs. All other hypervisors support Linux as a host

OS, with VirtualBox also supporting Windows, as it was traditionally targeted for

desktop-based virtualization. However, as each hypervisor uses VT-X or AMD-V in-

structions, each can support any modern OS targeted for x86 platforms, including all

variants of Linux, Windows, and UNIX.

While most hypervisors have desirable host and guest OS support, hardware sup-

port within a guest environment varies drastically. Within the HPC environment,

virtual CPU (vCPU) and maximum VM memory are critical aspects to choosing the

right virtualization technology. In this case, Xen is the first choice as it supports up
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to 128 vCPUs and can address 4TB of main memory in 64-bit modes, more than

any other. VirtualBox, on the other hand, supports only 32 vCPUs and 16GB of

addressable RAM per guest OS, which may lead to problems when looking to deploy

it on large multicore systems. KVM also faces an issue with the number of vCPU

supported limited to 16, recent reports indicate it is only a soft limit [144], so deploy-

ing KVM in an SMP environment may not be a significant hurdle. Furthermore, all

hypervisors provide some 3D acceleration support (at least for OpenGL) and support

live migration across homogeneous nodes, each with varying levels of success.

Another vital juxtaposition of these virtualization technologies is the license agree-

ments for its applicability within HPC deployments. Xen, KVM, and VirtualBox are

provided for free under the GNU Public License (GPL) version 2, so they are open

to use and modification by anyone within the community, a key feature for many

potential users. While VirtualBox is under GPL, it has recently also offered with

additional features under a more proprietary license dictated by Oracle since its ac-

quirement from Sun last year. VMWare, on the other hand, is completely proprietary

with an extremely limited licensing scheme that even prevents the authors from will-

fully publishing any performance benchmark data without specific and prior approval.

As such, we have neglected VMWare form the remainder of this chapter. Whether

going with a proprietary or open source hypervisor, support can be acquired (usually

for an additional cost) with ease from each option.

3.4.1 Usability

While side by side feature comparison may provide crucial information about a poten-

tial user’s choice of hypervisor, that may also be interested in its ease of installation

and use. We will take a look at each hypervisor from two user perspectives, a systems

administrator and normal VM user.
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One of the first things on any system administrator’s mind on choosing a hypervi-

sor is the installation. For all of these hypervisors, installation is relatively painless.

For the FutureGrid support group, KVM and VirualBox are the easiest of the all

tested hypervisors to install, as there are a number of supported packages available

and installation only requires the addition of one or more kernel modules and the sup-

port software. Xen, while still supported in binary form by many Linux distributions,

is actually much more complicated. This is because Xen requires a full modification

to the kernel itself, not just a module. Loading a new kernel into the boot process

which may complicate patching and updating later in the system’s maintenance cycle.

VMWare ESX, on the other hand, is entirely separate from most other installations.

As previously noted, ESX is actually a hypervisor and custom UNIX host OS com-

bined, so installation of ESX is likewise to installing any other OS from scratch. This

may be either desirable or adverse, depending on the system administrator’s usage of

the systems and VMWare’s ability to provide a secure and patched environment.

While system administrators may be concerned with installation and maintenance,

VM users and Cloud developers are more concerned with daily usage. The first thing

to note about all of such virtualiation technologies is they are supported (to some

extent) by the libvirt API [145]. Libvirt is commonly used by many of today’s IaaS

Cloud offerings, including Nimbus, Eucalyptus, OpenNebula and OpenStack. As

such, the choice of hypervisor for Cloud developer’s is less of an issue, so long as

the hypervisor supports the features they desire. For individual command line usage

of each tool, it varies quite a bit more. Xen does provide their own set of tools for

controlling and monitoring guests, and seem to work relatively well but do incur a

slight learning curve. KVM also provides its own CLI interface, and while it is often

considered less cumbersome it provides less advanced features directly to users, such as

power management or quick memory adjustment (however this is subject to personal
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opinion). One advantage of KVM is each guest actually runs as a separate process

within the host OS, making it easy for a user to manage and control the VM inside the

host if KVM misbehaves. VirtualBox, on the other hand, provides the best command

line and graphical user interface. The CLI, is especially well featured when compared

to Xen and KVM as it provides clear, decisive and well documented commands,

something most HPC users and system administrators alike will appreciate. VMWare

provides a significantly enhanced GUI as well as a Web-based ActiveX client interface

that allows users to easily operate the VMWare host remotely. In summary, there

is a wide variance of interfaces provided by each hypervisor, however we recommend

Cloud developers to utilize the libvirt API whenever possible.

3.5 Experimental Design

In order to provide an unaltered and unbiased review of these virtualization tech-

nologies for Clouds, we need to outline a neutral testing environment. To make this

possible, we have chosen to use FutureGrid as our virtualization and cloud test-bed.

3.5.1 The FutureGrid Project

FutureGrid (FG) [146] provides computing capabilities that enable researchers to

tackle complex research challenges related to the use and security of Grids and Clouds.

These include topics ranging from authentication, authorization, scheduling, virtual-

ization, middleware design, interface design and cybersecurity, to the optimization of

Grid-enabled and cloud-enabled computational schemes for researchers in astronomy,

chemistry, biology, engineering, atmospheric science and epidemiology.

The test-bed includes a geographically distributed set of heterogeneous comput-

ing systems, a data management system that will hold both metadata and a growing
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library of software images necessary for Cloud computing, and a dedicated network

allowing isolated, secure experiments, as seen in Figure 3.2. The test-bed supports

virtual machine-based environments, as well as operating systems on native hard-

ware for experiments aimed at minimizing overhead and maximizing performance.

The project partners are integrating existing open-source software packages to create

an easy-to-use software environment that supports the instantiation, execution and

recording of grid and cloud computing experiments.
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Figure 3.2 FutureGrid Participants and Resources

One of the goals of the project is to understand the behavior and utility of Cloud

computing approaches. However, it is not clear at this time which of these toolkits will

become the users’ choice toolkit. FG provides the ability to compare these frameworks

with each other while considering real scientific applications [44]. Hence, researchers

are be able to measure the overhead of cloud technology by requesting linked exper-

iments on both virtual and bare-metal systems, providing valuable information that

help decide which infrastructure suits their needs and also helps users that want to
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transition from one environment to the other. These interests and research objectives

make the FutureGrid project the perfect match for this work. Furthermore, we expect

that the results gleaned from this chapter will have a direct impact on the FutureGrid

deployment itself.

3.5.2 Experimental Environment

Currently, one of FutureGrid’s latest resources is the India system, a 256 CPU IBM

iDataPlex machine consisting of 1024 cores, 2048 GB of ram, and 335 TB of storage

within the Indiana University Data Center. In specific, each compute node of India

has two Intel Xeon 5570 quad core CPUs running at 2.93Ghz, 24GBs of Ram, and a

QDR InfiniBand connection. A total of four nodes were allocated directly from India

for these experiments. All were loaded with a fresh installation of Red Hat Enterprise

Linux server 5.5 x86 64 with the 2.6.18-194.8.1.el5 kernel patched. Three of the four

nodes were installed with different hypervisors; Xen version 3.1, KVM (build 83), and

VirtualBox 3.2.10, and the forth node was left as-is to act as a control for bare-metal

native performance.

Each guest virtual machine was also built using Red Hat EL server 5.5 running

an unmodified kernel using full virtualization techniques. All tests were conducted

giving the guest VM 8 cores and 16GB of ram to properly span a compute node.

Each benchmark was run a total of 20 times, with the results averaged to produce

consistent results, unless indicated otherwise.

3.5.3 Benchmarking Setup

As this chapter aims to objectively evaluate each virtualization technology from a

side-by-side comparison as well as from a performance standpoint, the selection of
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benchmarking applications is critical.

The performance comparison of each virtual machine is based on two well known

industry standard performance benchmark suites; HPCC and SPEC. These two

benchmark environments are recognized for their standardized reproducible results in

the HPC communit, and the National Science Foundation (NSF), Department of En-

ergy (DOE), and DARPA are all sponsors of the HPCC benchmarks. The following

benchmarks provide a means to stress and compare processor, memory, inter-process

communication, network, and overall performance and throughput of a system. These

benchmarks were selected due to their importance to the HPC community sinse they

are often directly correlated with overall application performance [147].

HPCC Benchmarks

The HPCC Benchmarks [148, 149] are an industry standard for performing bench-

marks for HPC systems. The benchmarks are aimed at testing the system on multiple

levels to test their performance. It consists of 7 different tests:

• HPL - The Linpack TPP benchmark measures the floating point rate of exe-

cution for solving a linear system of equations. This benchmark is perhaps the

most important benchmark within HPC today, as it is the basis of evaluation

for the Top 500 list [8].

• DGEMM - Measures the floating point rate of execution of double precision real

matrix-matrix multiplication.

• STREAM - A simple synthetic benchmark program that measures sustainable

memory bandwidth (in GB/s) and the corresponding computation rate for sim-

ple vector kernel.
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• PTRANS - Parallel matrix transpose exercises the communications where pairs

of processors communicate with each other simultaneously. It is a useful test of

the total communications capacity of the network.

• RandomAccess - Measures the rate of integer random updates of memory (GUPS).

• FFT - Measures the floating point rate of execution of double precision complex

one-dimensional Discrete Fourier Transform (DFT).

• Communication bandwidth and latency - A set of tests to measure latency and

bandwidth of a number of simultaneous communication patterns; based on b eff

(effective bandwidth benchmark).

This benchmark suite uses each test to stress test the performance on multiple

aspects of the system. It also provides reproducible results which can be verified by

other vendors. This benchmark is used to create the Top 500 list [8] which is the list

of the current top supercomputers in the world. The results that are obtained from

these benchmarks provide an unbiased performance analysis of the hypervisors. Our

results provide insight on inter-node PingPong bandwidth, PingPong latency, and

FFT calculation performance.

SPEC Benchmarks

The Standard Performance Evaluation Corporation (SPEC) [150, 151] is the other

major standard for evaluation of benchmarking systems. SPEC has several different

testing components that can be utilized to benchmark a system. For our benchmark-

ing comparison we will use the SPEC OMP2001 because it appears to represent a

vast array of new and emerging parallel applications wile simultaniously providing

a comparison to other SPEC benchmarks. SPEC OMP continues the SPEC tradi-
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tion of giving HPC users the most objective and representative benchmark suite for

measuring the performance of SMP (shared memory multi-processor) systems.

• The benchmarks are adapted from SPEC CPU2000 and contributions to its

search program.

• The focus is to deliver systems performance to real scientific and engineering

applications.

• The size and runtime reflect the needs of engineers and researchers to model

large complex tasks.

• Two levels of workload characterize the performance of medium and large sized

systems.

• Tools based on the SPEC CPU2000 toolset make these the easiest ever HPC

tests to run.

• These benchmarks place heavy demands on systems and memory.

3.6 Performance Comparison

The goal of this chapter is to effectively compare and contrast the various virtual-

ization technologies, specifically for supporting HPC-based Clouds. The first set of

results represent the performance of HPCC benchmarks. Each benchmark was run

a total of 20 times, and the mean values taken with error bars represented using the

standard deviation over the 20 runs. The benchmarking suite was built using the Intel

11.1 compiler, uses the Intel MPI and MKL runtime libraries, all set with defaults

and no optimizations whatsoever.
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We open first with High Performance Linpack (HPL), the de-facto standard for

comparing resources. In Figure 3.3, we can see the comparison of Xen, KVM, and

Virtual Box compared to native bare-metal performance. First, we see that native

is capable of around 73.5 Gflops which, with no optimizations, achieves 75% of the

theoretical peak performance. Xen, KVM and VirtualBox perform at 49.1, 51.8 and

51.3 Gflops, respectively when averaged over 20 runs. However Xen, unlike KVM

and VirtualBox, has a high degree of variance between runs. This is an interesting

phenomenon for two reasons. First, this may impact performance metrics for other

HPC applications and cause errors and delays between even pleasingly-parallel appli-

cations and add to reducer function delays. Second, this wide variance breaks a key

component of Cloud computing providing a specific and predefined quality of service.

If performance can sway as widely as what occurred for Linpack, then this may have

a negative impact on users.

Next, we turn to another key benchmark within the HPC community, Fast Fourier

Transforms (FFT). Unlike the synthetic Linpack benchmark, FFT is a specific, pur-

poseful benchmark which provides results which are often regarded as more relative

to a user’s real-world application than HPL. From Figure 3.4, we can see rather dis-

tinct results from what was previously provided by HPL. Looking at Star and Single

FFT, its clear performance across all hypervisors is roughly equal to bare-metal per-

formance, a good indication that HPC applications may be well suited for use on

VMs. The results for MPI FFT also show similar results, with the exception of Xen,

which has a decreased performance and high variance as seen in the HPL benchmark.

Our current hypothesis is that there is an adverse affect of using Intel’s MPI runtime

on Xen, however the investigation is still ongoing.

Another useful benchmark illustrative of real-world performance between bare-

metal performance and various hypervisors are the ping-pong benchmarks. These
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Figure 3.3 Linpack performance

benchmarks measure the bandwidth and latency of passing packets between multiple

CPUs. With this experiment, all ping-pong latencies are kept within a given node,

rather than over the network. This is done to provide further insight into the CPU and

memory overhead withing each hypervisor. From Figure 3.5 the intranode bandwidth

performance is uncovered, with some interesting distinctions between each hypervi-

sor. First, Xen performs, on average, close to native speeds, which is promising for

the hypervisor. KVM, on the other hand, shows consistent overhead proportional

to native performance across minimum, average, and maximum bandwidth. Virtu-

alBox, on the other hand, performs well, in fact too well to the point that raises

alarm. While the minimum and average bandwidths are within native performance,

the maximum bandwidth reported by VirtualBox is significantly greater than native



3.6 Performance Comparison 71

Figure 3.4 Fast Fourier Transform performance

measurements, with a large variance. After careful examination, it appears this is

due to how VirtualBox assigns its virtual CPUs. Instead of locking a virtual CPU to

a real CPU, a switch may occur which could benefit on the off-chance the two CPU’s

in communication between a ping-pong test could in fact be the same physical CPU.

The result would mean the ping-pong packet would remain in cache and result in a

higher perceived bandwidth than normal. While this effect may be beneficial for this

benchmark, it may only be an illusion towards the real performance gleaned from the

VirtualBox hypervisor.

The Bandwidth may in fact be important within the ping-ping benchmark, but

the latency between each ping-pong is equally useful in understanding the perfor-

mance impact of each virtualization technology. From Figure 3.6, we see KVM and

VirtualBox have near-native performance; another promising result towards the util-

ity of hypervisors within HPC systems. Xen, on the other hand, has extremely high

latencies, especially at for maximum latencies, which in turn create a high variance
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Figure 3.5 Ping Pong bandwidth performance

within the average latency within the VM’s performance.

While the HPCC benchmarks provide a comprehensive view for many HPC appli-

cations including Linpack and FFT using MPI, performance of intra-node SMP appli-

cations using OpenMP is also investigated. Figure 3.7 illustrates SPEC OpenMP per-

formance across the VMs we concentrate on, as well as baseline native performance.

First, we see that the combined performance over all 11 applications executed 20

times yields the native testbed with the best performance at a SPEC score of 34465.

KVM performance comes close with a score of 34384, which is so similar to the native

performance that most users will never notice the difference. Xen and VirtualBox

both perform notably slower with scores of 31824 and 31695, respectively, however

this is only an 8% performance drop compared to native speeds. Further results can

be found on the SPEC website [152].
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Figure 3.6 Ping Pong latency performance (lower is better)

3.7 Discussion

The primary goal of this chapter is to evaluate the viability of virtualization within

HPC. After our analysis, the answer seems to be a resounding ”yes.” However, we

also hope to select the best virtualization technology for such an HPC environment.

In order to do this, we combine the feature comparison along with the performance

results, and evaluate the potential impact within the FutureGrid testbed.

From a feature standpoint, most of today’s virtualization technologies fit the bill

for at least small scale deployment, including VMWare. In short, each support Linux

x86 64 platforms, use VT-X technology for full virtualization, and support live mi-

gration. Due to VMWare’s limited and costly licensing, it is immediately out of

contention for most HPC deployments. From a CPU and memory standpoint, Xen

seems to provide the best expandability, supporting up to 128 cpus and 4TB of ad-

dressable RAM. So long as KVM’s vCPU limit can be extended, it too shows promise
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Figure 3.7 Spec OpenMP performance

as a feature-full virtualization technology. One of Virtualbox’s greatest limitations

was the 16GB maximum memory allotment for individual guest VMs, which actu-

ally limited us from giving VMs more memory for our performance benchmarks. If

this can be fixed and Oracle does not move the product into the proprietary market,

VirtualBox may also stand a chance for deployment in HPC environments.

From the benchmark results previously described, the use of hypervisors within

HPC-based Cloud deployments is mixed batch. Figure 3.8 summarizes the results

based on a 1-3 rating, 1 being best and 3 being worst. While Linpack performance

seems to take a significant performance impact across all hypervisors, the more prac-

tical FFT benchmarks seem to show little impact, a notably good sign for virtual-

ization as a whole. The ping-pong bandwidth and latency benchmarks also seem to

support this theory, with the exception of Xen, who’s performance continually has

wide fluctuations throughout the majority of the benchmarks. OpenMP performance
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Figure 3.8 Benchmark rating summary (lower is better)

through the SPEC OMP benchmarking suite also shows promising results for the use

of hypervisors in general, with KVM taking a clear lead by almost matching native

speeds.

While Xen is typically regarded as the most widely used hypervisor, especially

within academic clouds and grids, it’s performance has shown lack considerably when

compared to either KVM or VirtualBox. In particular, Xen’s wide and unexplained

fluctuations in performance throughout the series of benchmarks suggests that Xen

may not be the best choice for building a lasting quality of service infrastructure upon.

From Figure 3.8, KVM rates the best across all performance benchmarks, making it

the optimal choice for general deployment in an HPC environment. Furthermore,

this work’s illustration of the variance in performance among each benchmark and

the applicability of each benchmark towards new applications may make possible the

ability to preemptively classify applications for accurate prediction towards the ideal

virtualized Cloud environment. We hope to further investigate this concept through

the use of the FutureGrid experiment management framework at a later date.

In summary, it is the authors’ projection that KVM is the best overall choice for
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use within HPC Cloud environments. KVM’s feature-rich experience and near-native

performance makes it a natural fit for deployment in an environment where usability

and performance are paramount. Within the FutureGrid project specifically, we hope

to deploy the KVM hypervisor across our Cloud platforms in the near future, as it

offers clear benefits over the current Xen deployment. Furthermore, we expect these

findings to be of great importance to other public and private Cloud deployments, as

system utilization, Quality of Service, operating cost, and computational efficiency

could all be improved through the careful evaluation of underlying virtualization

technologies.



Chapter 4

Evaluating GPU Passthrough in

Xen for High Performance Cloud

Computing

4.1 Abstract

With the advent of virtualization and Infrastructure-as-a-Service (IaaS), the broader

scientific computing community is considering the use of clouds for their technical

computing needs. This is due to the relative scalability, ease of use, advanced user

environment customization abilities clouds provide, as well as many novel comput-

ing paradigms available for data-intensive applications. However, there is concern

about a performance gap that exists between the performance of IaaS when com-

pared to typical high performance computing (HPC) resources, which could limit the

applicability of IaaS for many potential scientific users.

Most recently, general-purpose graphics processing units (GPGPUs or GPUs) have

become commonplace within high performance computing. We look to bridge the

77
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gap between supercomputing and clouds by providing GPU-enabled virtual machines

(VMs) and investigating their feasibility for advanced scientific computation. Specif-

ically, the Xen hypervisor is utilized to leverage specialized hardware-assisted I/O

virtualization and PCI passthrough in order to provide advanced HPC-centric Nvidia

GPUs directly in guest VMs. This methodology is evaluated by measuring the per-

formance of two Nvidia Tesla GPUs within Xen VMs and comparing to bare-metal

hardware. Results show PCI passthrough of GPUs within virtual machines is a vi-

able use case for many scientific computing workflows, and could help support high

performance cloud infrastructure in the near future.

4.2 Introduction

Cloud computing [4] has established itself as a prominent paradigm within the realm

of Distributed Systems [153] in a very short period of time. Clouds are an internet-

based solution that provide computational and data models for utilizing resources,

which can be accessed directly by users on demand in a uniquely scalable way. Cloud

computing functions by providing a layer of abstraction on top of base hardware

to enable a new set of features that are otherwise intangible or intractable. These

benefits and features include Scalability, a guaranteed Quality of Service (QoS), cost

effectiveness, and direct user customization via a simplified user interface [65].

While the origin of cloud computing is based in industry through solutions such

as Amazon’s EC2 [154], Google’s MapReduce [155], and Microsoft’s Azure [156], the

paradigm has since become integrated in all areas of science and technology. Most

notably, there is an increasing effort within the High Performance Computing (HPC)

community to leverage the utility of clouds for advanced scientific computing to solve

a number of challenges still standing in the field. This can be clearly seen in large-
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scale efforts such as the FutureGrid project [157], the Magellan project [48], and

through various other Infrastructure-as-a-Service projects including OpenStack [158],

Nimbus [75], and Eucalyptus [159].

Within HPC, there has also been a notable movement toward dedicated accelerator

cards such as general purpose graphical processing units (GPGPUs, or GPUs) to

enhance scientific computation problems by upwards of two orders of magnitude.

This is accomplished through dedicated programming environments, compilers, and

libraries such as CUDA [160] from Nvidia as well as the OpenCL effort [161]. When

combining GPUs in an otherwise typical HPC environment or supercomputer, major

gains in performance and computational ability have been reported in numerous fields

[162, 163], ranging from Astrophysics to Bioinformatics. Furthermore, these gains

in computational power have also reportedly come at an increased performance-per-

watt [164], a metric that is increasingly important to the HPC community as we move

closer to exascale computing [165] where power consumption is quickly becoming the

primary constraint.

With the advent of both clouds and GPUs within the field of scientific computing,

there is an immediate and ever-growing need to provide heterogeneous resources, most

immediately GPUs, within a cloud environment in the same scalable, on-demand, and

user-centric way that many cloud users are already accustomed to [166]. While this

task alone is nontrivial, it is further complicated by the high demand for performance

within HPC. As such, it is performance that is paramount to the success of deploying

GPUs within cloud environments, and thus is the central focus of this work.

The rest of this chapter is organized as follows. First, in Section 2, we discuss

the related research and the options currently available for providing GPUs within a

virtualized cloud environment. In Section 3, we discuss the methodology for providing

GPUs directly within virtual machines. In Section 4 we outline the evaluation of the
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given methodology using two different Nvidia Tesla GPUs and compare to the best-

case native application in Section 5. Then, we discuss the implications of these results

in Section 6 and consider the applicability of each method within a production cloud

system. Finally, we conclude with our findings and suggest directions for future work.

4.3 Virtual GPU Directions

Recently, GPU programming has been a primary focus for numerous scientific com-

puting applications. Significant progress has been accomplished in many different

workloads, both in science and engineering, based on parallel abilities of GPUs for

floating point operations and very high on-GPU memory bandwidth. This hardware,

coupled with CUDA and OpenCL programming frameworks, has led to an explosion

of new GPU-specific applications. In some cases, GPUs outperform even the fastest

multicore counterparts by an order of magnitude [167]. In addition, further research

could leverage the per-node performance of GPU accelerators with the high speed,

low latency interconnects commonly utilized in supercomputers and clusters to create

a hybrid GPU + MPI class of applications. The number of distributed GPU appli-

cations is increasing substantially in supercomputing, usually scaling many GPUs

simultaneously [168].

Since the establishment of cloud computing in industry, research groups have

been evaluating its applicability to science [3]. Historically, HPC and Grids have

been on similar but distinct paths within distributed systems, and have concentrated

on performance, scalability, and solving complex, tightly coupled problems within

science. This has led to the development of supercomputers with many thousands

of cores, high speed, low latency interconnects, and sometimes also coprocessors and

FPGAs [169, 170]. Only recently have these systems been evaluated from a cloud
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perspective [48]. An overarching goal exists to provide HPC Infrastructure as its own

service (HPCaaS) [171], aiming to classify and limit the overhead of virtualization, and

reducing the bottlenecks classically found in CPU, memory, and I/O operations within

hypervisors [49, 172]. Furthermore, the transition from HPC to cloud computing

becomes more complicated when we consider adding GPUs to the equation.

GPU availability within a cloud is a new concept that has sparked a large amount

of interest within the community. The first successfully deployment of GPUs within

a cloud environment was the Amazon EC2 GPU offering. A collaboration between

Nvidia and Citrix also exists to provide cloud-based gaming solutions to users using

the new Kepler GPU architecture [173]. However, this is currently not targeted

towards HPC applications.

The task of providing a GPU accelerator for use in a virtualized cloud environment

is one that presents a myriad of challenges. This is due to the complicated nature of

virtualizing drivers, libraries, and the heterogeneous offerings of GPUs from multiple

vendors. Currently, two possible techniques exist to fill the gap in providing GPUs

in a cloud infrastructure: back-end I/O virtualization, which this chapter focuses on,

and Front-end remote API invocation.

4.3.1 Front-end Remote API invocation

One method for using GPUs within a virtualized cloud environment is through front-

end library abstractions, the most common of which is remote API invocation. Also

known as API remoting or API interception, it represents a technique where API

calls are intercepted and forwarded to a remote host where the actual computation

occurs. The results are then returned to the front-end process that spawned the

invocation, potentially within a virtual machine. The goal of this method is to provide

an emulated device library where the actual computation is offloaded to another
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resource on a local network.

Front-end remote APIs for GPUs have been implemented by a number of differ-

ent technologies for different uses. To solve the problem of graphics processing in

VMs, VMWare [174] has developed a device-emulation approach that emulates the

Direct3D and OpenGL calls to leverage the host OS graphics processing capabili-

ties to provide a 3D environment within a VM. API interception through the use of

wrapper binaries has also been implemented by technologies such as Chromium [175],

and Blink. However these graphics processing front-end solutions are not suitable for

general purpose scientific computing, as they do not expose interfaces that CUDA or

OpenCL can use.

Currently, efforts are being made to provide a front-end remote API invocation

solutions for the CUDA programming architecture. vCUDA [57] was the first of such

technologies to enable transparent access of GPUs within VMs by API call inter-

ception and redirection of the CUDA API. vCUDA substitutes the CUDA runtime

library and supports a transmission mode using XMLRPC, as well as a sharing mode

that is built on VMRPC, a dedicated remote procedure call architecture for VMM

platforms. This share model can leads to better performance, especially as the volume

of data increases, although there may be limitations in VMM interoperability.

Like vCUDA, gVirtuS uses API interception to enable transparent CUDA, OpenCL,

and OpenGL support for Xen, KVM, and VMWare virtual machines [176]. gVirtuS

uses a front-end/back-end model to provide a VMM-independent abstraction layer

to GPUs. Data transport from gVirtuS’ front-end to the back-end is accomplished

through a combination of shared memory, sockets, or other hypervisor-specific APIs.

gVirtuS’ primary disadvantage is in its decreased performance in host-to-device and

device-to-host data movement due to overhead of data copies to and from its shared

memory buffers. Recent work has also enabled the dynamic sharing of GPUs by
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leveraging the gVirtus back-end system with relatively good results [177], however

process-level GPU resource sharing is outside the scope of this manuscript.

rCUDA [56], a recent popular remote CUDA framework, also provides remote API

invocation to enable VMs to access remote GPU hardware by using a sockets based

implementation for high-speed near-native performance of CUDA based applications.

rCUDA recently added support for using InfiniBand’s high speed, low latency network

to increase performance for CUDA applications with large data volume requirements.

rCUDA version 4.1 also supports the CUDA runtime API version 5.0, which supports

peer device memory access and unified addressing. One drawback of this method

is that rCUDA cannot implement the undocumented and hidden functions within

the runtime framework, and therefore does not support all CUDA C extensions.

While rCUDA provides some support tools, native execution of CUDA programs

is not possible and programs need to be recompiled or rewritten to use rCUDA.

Furthermore, like gVirtuS and many other solutions, performance between host-to-

device data movement is only as fast as the underlying interconnect, and in the best

case with native RDMA InfiniBand, is roughly half as fast as native PCI Express

usage when using the standard QDR InfiniBand.

4.3.2 Back-end PCI passthrough

Another approach to using a GPU in a virtualized environment is to provide a VM

with direct access to the GPU itself, instead of relying on a remote API. This chapter

focuses on such an approach. Devices on a host’s PCI-express bus are virtualized

using directed I/O virtualization technologies recently implemented by chip manu-

facturers, and then direct access is relinquished upon request to a guest VM. This

can be accomplished using the VT-d and IOMMU instruction sets from Intel and

AMD, respectively. This mechanism, typically called PCI passthrough, uses a mem-
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ory management unit (MMU) to handle direct memory access (DMA) coordination

and interrupt remapping directly to the guest VM, thus bypassing the host entirely.

With host involvement being nearly non-existent, near-native performance of the PCI

device within the guest VM can be achieved, which is an important characteristic for

using a GPU within a cloud infrastructure.

PCI passthrough itself has recently become a standard technique for many other

I/O systems such as storage or network controllers. However, GPUs (even from

the same vendor) have additional legacy VGA compatibility issues and non-standard

low-level interface DMA interactions that make direct PCI passthrough nontrivial.

VMWare has started use of a vDGA system for hardware GPU utilization, however it

remains in tech preview and only documentation for Windows VMs is present [174]. In

our experimentation, we have found that the Xen hypervisor provides a good platform

for performing PCI passthrough of GPU devices to VMs due to its open nature,

extensive support, and high degree of reconfigurability. Work with Xen in [178] gives

hints at good performance for PCI passthrough in Xen, however further evaluation

with independent benchmarks is needed when looking at scientific computing with

GPUs.

Today’s GPUs can provide a variety of frameworks for application programmers to

use. Two common solutions are CUDA and OpenCL. CUDA, or the Compute Unified

Device Architecture, is a framework for creating and running parallel applications on

Nvidia GPUs. OpenCL provides a more generic and open framework for parallel

computation on CPUs and GPUs, and is available for a number of Nvidia, AMD, and

Intel GPUs and CPUs. While OpenCL provides a more robust and portable solution,

many HPC applications utilize the CUDA framework. As such, we focus only on

Nvidia based CUDA-capable GPUs as they offer the best support for a wide array of

programs, although this work is not strictly limited to Nvidia GPUs.



4.4 Implementation 85

4.4 Implementation

In this chapter we use a specific host environment to enable PCI passthrough. First,

we start with the Xen 4.2.2 hypervisor on Centos 6.4 and a custom 3.4.50-8 Linux

kernel with Dom0 Xen support. Within the Xen hypervisor, GPU devices are seized

upon boot and assigned to the xen-pciback kernel module. This process blocks the

host devices form loading the Nvidia or nouveau drivers, keeping the GPUs uninitial-

ized and therefore able to be assigned to DomU VMs.

Xen, like other hypervisors, provides a standard method of passing through PCI

devices to guest VMs upon creation. When assigning a GPU to a new VM, Xen loads

a specific VGA BIOS to properly initialize the device enabling DMA and interrupts

to be assigned to the guest VM. Xen also relinquishes control of the GPU via the

xen-pciback module. From there, the Linux Nvidia drivers are loaded and the device

is able to be used as expected within the guest. Upon VM termination, the xen-

pciback module re-seizes the GPU and the devices can be re-assigned to new VMs in

the future.

This mechanism of PCI passthrough for GPUs can be implemented using multiple

devices per host, as illustrated in Figure 6.1. Here, we see how the device’s connection

to the VM totally bypasses the Dom0 host as well as the Xen VMM, and is managed

by VT-d or IOMMU to access the PCI-Express bus which the GPUs utilize. This is in

contrast to other common virtual device uses, where hardware is emulated by the host

and shared across all guests. This is the common usage for Ethernet controllers and

input devices to enable users to interact with VMs as they would with native hosts,

unlike the bridged model shown in the figure. The potential downside of this method

is there can be a 1:1 or 1:N mapping of VMs to GPUs only. A M:1 mapping where

multiple VMs use a GPU is not possible. However, almost all scientific applications
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Figure 4.1 GPU PCI passthrough within the Xen Hypervisor

environments using GPUs generally do not share GPUs between processes or other

nodes, as doing so would cause unpredictable and serious performance degradation.

As such, this GPU isolation within a VM can be considered an advantage in many

contexts.

4.4.1 Feature Comparison

Using the GPU PCI passthrough technique described previously has a number of

advantages compared to front-end API implementations. First, it allows for an op-

erating environment that more closely relates to native bare-metal usage of GPUs.

Essentially, a VM provides a nearly identical infrastructure to clusters and supercom-

puters with integrated GPUs. This lowers the learning curve for many researchers,
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and even enables researchers to potentially use other tools within a VM that might

not be supported within a supercomputer or cluster. Unlike with remote API im-

plementations, users don’t need to recompile or modify their code, as the GPUs are

essentially local to the data. Further comparing to remote API implementations,

using PCI passthrough within a VM allows users to leverage any GPU framework

available, OpenCL or CUDA, and any higher level programming frameworks such as

within Matlab or Python.

Through the use of advanced scheduling techniques within cloud infrastructure, we

can also take advantage of PCI passthrough implementation for efficiency purposes.

Users could request VMs with GPUs which get scheduled for creation on machines

that provide such resources, but can also request normal VMs as well. The scheduler

can correctly map VM requirement requests to heterogeneous hardware. This enables

large scale resources to support a wide array of scientific computing applications

without the added cost of putting GPUs in all compute nodes.

4.5 Experimental Setup

In this chapter back-end GPU PCI passthrough to virtual machines using the Xen

hypervisor is detailed, however proper evaluation of the performance of such method

needs to be properly considered. As such, we ran an array of benchmarks that

evaluate the performance of this method compared to the same hardware running

native bare-metal GPU code without any virtualization. We focus our tests on single-

node performance to best understand low level overhead.

To evaluate the effectiveness of GPU-enabled VMs within Xen, two different ma-

chines were used to represent two generations of Nvidia GPUs. The first system at

Indiana University consists of dual-socket Intel Xeon X5660 6-core CPUs at 2.8Ghz
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with 192GB DDR3 RAM, 8TB RAID5 array, and two Nvidia Tesla ”Fermi” C2075

GPUs. The system at USC/ISI uses a dual-socket Intel Xeon E5-2670 8-core CPUs

at 2.6Ghz with 48GB DDR3 RAM, 3 600GB SAS disk drives, but with the latest

Nvidia Tesla ”Kepler” K20m GPU supplied by Nvidia. These machines represent

the present Fermi series GPUs along with the recently release Kepler series GPUs,

providing a well-rounded experimental environment. Native systems were installed

with standard Centos 6.4 with a stock 2.6.32-279 Linux kernel. Xen host systems

were still loaded with Centos 6.4 but with a custom 3.4.53-8 Linux kernel and Xen

4.2.22. Guest VMs were also Centos 6.4 with N-1 processors and 24GB of memory

and 1 GPU passed through in HVM full virtualization mode. Using both IU and

USC/ISI machine configurations in native and VM modes represent the 4 test cases

for our work.

In order to evaluate the performance, the SHOC Benchmark suite [179] was used

to extensively evaluate performance across each test platform. The SHOC bench-

marks were chosen because they provide a higher level of evaluation regarding GPU

performance than the sample applications provided in the Nvidia SDK, and can also

evaluate OpenCL performance in similar detail. The benchmarks were compiled us-

ing the NVCC compiler in CUDA5 driver and library, along with OpenMPI 1.4.2 and

GCC 4.4. Each benchmark was run a total of 20 times, with the results given as an

average of all runs.

4.6 Results

Results of all benchmarks are compressed into three subsections: floating point oper-

ations, device bandwidth and pci bus performance. Each represents a different level

of evaluation for GPU-enabled VMs compared to bare-metal native GPU usage.
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4.6.1 Floating Point Performance

Flops, or floating point operations per second, are a common measure of computa-

tional performance, especially within scientific computing. The Top 500 list [8] has

been the relative gold standard for evaluating supercomputing performance for more

than two decades. With the advent of GPUs in some of the fastest supercomputers

today, including GPUs identical to those used in our experimentation, understanding

the performance relative to this metric is imperative.

Figure 4.2 shows the raw peak FLOPs available using each GPU in both native

and virtualized modes. First, we observe the advantage of using the Kepler series

GPUs over Fermi, with peak single precision speeds tripling in each case. Even for

double precision FLOPs, there is roughly a doubling of performance with the new

GPUs. However its most interesting that there is less than a 1% overhead when using

GPU VMs compared to native case for pure floating point operations. The K20m-

enabled VM was able to provide over 3 Teraflops, a notable computational feat for

any single node.

Figures 4.3 and 4.4 show Fast Fourier Transform (FFT) and the Matrix Multipli-

cation implementations across both test platforms. For all benchmarks that do not

take into account the PCI-Express (pcie) bus transfer time, we again see near-native

performance using the Kepler GPUs and Fermi GPUs when compared to bare metal

cases. Interestingly, overhead within Xen VMs is consistently less than 1%, confirm-

ing the synthetic MaxFlops benchmark above. However, we do see some performance

impact when calculating the total FLOPs with the pcie bus in the equation. This

performance decrease ranges significantly for the C2075-series GPU, roughly about

a 15% impact for FFT and a 5% impact for Matrix Multiplication. This overhead

in pcie runs is not as pronounced for the Kepler K20m test environment, with near-

native performance in all cases (less than 1%).
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Figure 4.2 GPU Floating Point Operations per Second

Other FLOP-based benchmarks are used to emulate higher level applications.

Stencil represents a 9-point stencil operation applied to a 2D data set, and the S3D

benchmark is a computationally-intensive kernel from the S3D turbulent combustion

simulation program [180]. In Figure 4.5, we see that both the Fermi C2075 and Kepler

K20m GPUs performing well compared to the native base case, showing the overhead

of virtualization is low. The C2075-enabled VMs experience slightly more overhead

when compared to native performance again for pcie runs, but overhead is at most

7% for the S3D benchmark.

4.6.2 Device Speed

While floating point operations allow for the proposed solution to relate to many tradi-

tional HPC applications, they are just one facet of GPU performance within scientific



4.6 Results 91

Figure 4.3 GPU Fast Fourier Transform

computing. Device speed, measured in both raw bandwidth and additional bench-

marks, provides a different perspective towards evaluating GPU PCI passthrough in

Xen. Figure 4.6 illustrates device level memory access of various GPU device mem-

ory structures. With both Nvidia GPUs, virtualization has little to no impact on the

performance of inter-device memory bandwidth. As expected the Kepler K20m out-

performed the C2075 VMs and there was a higher variance between runs with both

native and VM cases. Molecular Dynamics and Reduction benchmarks in Figure 4.7

perform again at near-native performance without the pcie bus taken into account.

However the overhead observed increases to 10-15% when the PCI-Express bus is

considered when looking at the Fermi C2075 VMs.
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Figure 4.4 GPU Matrix Multiplication

4.6.3 PCI Express Bus

Upon evaluating PCI passthrough of GPUs, it is apparent that the PCI express bus

is subject to the greatest potential for overhead, as was observed in the Fermi C2075

benchmarks. The VT-d and IOMMU chip instruction sets interface directly with the

PCI bus to provide operational and security related mechanisms for each PCI device,

thereby ensuring proper function in a multi-guest environment but potentially intro-

ducing some overhead. As such, it is imperative to investigate any and all overhead

at the PCI Express bus.

Figure 4.8 looks at maximum PCI bus speeds for each experimental implemen-

tation. First, we see a consistent overhead in the Fermi C2075 VMs, with a 14.6%

performance impact for download (to-device) and a 26.7% impact in readback (from-
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Figure 4.5 GPU Stencil and S3D

device). However, the Kepler K20 VMs do not experience the same overhead in the

PCI-Express bus, and instead perform at near-native performance. These results in-

dicate that the overhead is minimal in the actual VT-d mechanisms, and instead due

to other factors.

Upon further examination, we have identified the performance degradation within

the Fermi-based VM experimental setup is due to the testing environment’s NUMA

node configuration with the Westmere-based CPUs. With the Fermi nodes, the GPUs

are connected through the PCI-Express bus from CPU Socket #1, yet the experimen-

tal GPU VM was run using CPU Socket #0. This meant that the VM’s PCI-Express

communication involved more host involvement with Socket #1, leading to an notable

decrease in read and write speeds across the PCI-Express Bus. Such architectural

limitations seem to be relieved in the next generation with a Sandy-Bridge CPU ar-
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Figure 4.6 GPU Device Memory Bandwidth

chitecture and the Kepler K20m experimental setup. In summary, GPU PCI-Express

performance in a VM is sensitive to the host CPU’s NUMA architecture and care is

needed to mitigate the impact, either by leveraging new architectures or by proper us-

age of Xen’s VM core assignment features. Furthermore, the overhead in this system

diminishes significantly when using the new Kepler GPUs by Nvidia.

4.7 Discussion

This chapter evaluates the use of general purpose GPUs within cloud computing in-

frastructure, primarily targeted towards advanced scientific computing. The method

of PCI passthrough of GPUs directly to a guest virtual machine running on a tuned

Xen hypervisor shows initial promise for an ubiquitous solution in cloud infrastruc-
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Figure 4.7 GPU Molecular Dynamics and Reduction

ture. In evaluating the results in the previous section, a number of points become

clear.

First, we can see that there is a small overhead in using PCI passthrough of GPUs

within VMs, compared to native bare-metal usage, which represents the best possible

use case. As with all abstraction layers, some overhead is usually inevitable as a

necessary trade-off to added feature sets and improved usability. The same is true

for GPUs within Xen VMs. The Kepler K20m GPU-enabled VMs operated at near-

native performance for all runs, with a 1.2% reduction at worst in performance. The

Fermi based C2075 VMs experience more overhead due to the NUMA configuration

that impacted PCI-Express performance. However, when the overhead of the PCI-

Express bus is not considered, the C2075 VMs perform at near-native speeds.

GPU PCI passthrough also has the potential to perform better than other front-
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Figure 4.8 GPU PCI Express Bus Speed

end API solutions that are applicable within VMs, such as gVirtus or rCUDA. This is

because such solutions are designed to communicate via a network interconnect such

as 10Gb Ethernet or QDR InfiniBand [181], which introduces an inherent bottleneck.

Even with the theoretically optimal configuration of rCUDA using QDR InfiniBand,

the maximum theoretical bus speed is 40Gbs, which is comparably less than the

measured 54.4Gps real-world performance measured between host-to-device transfers

with GPU-enabled Kepler VMs.

Overall, it is our hypothesis that the overhead in using GPUs within Xen VMs

as described in this chapter will largely go unnoticed by most mid-level scientific

computing applications. This is especially true when using the latest Sandy-Bridge

CPUs with the Kepler series GPUs. We expect many mid-tier scientific computing

groups to benefit the most from the ability to use GPUs in a scientific cloud infras-
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tructure. Already this has been confirmed in [182], where similar a methodology has

been leveraged specifically for Bioinformatics applications in the cloud.

4.8 Chapter Summary and Future Work

The ability to use GPUs within virtual machines represents a leap forward for sup-

porting advanced scientific computing within cloud infrastructure. The method of

direct PCI passthrough of Nvidia GPUs using the Xen hypervisor offers a clean, re-

producible solution that can be implemented within many Infrastructure-as-a-Service

(IaaS) deployments. Performance measurements indicate that the overhead of pro-

viding a GPU within Xen is minimal compared to the best-case native use, however

NUMA inconsistencies can impact performance. The New Kepler-based GPUs oper-

ate with a much lower overhead, making those GPUs an ideal choice when designing

a new GPU IaaS system.

Next steps for this work could involve providing GPU-based PCI passthrough

within the OpenStack nova IaaS framework. This will enable research laboratories

and institutions to create new private or national-scale cloud infrastructure that have

the ability to support new scientific computing challenges. Other hypervisors could

also leverage GPU PCI passthrough techniques and warrant in-depth evaluation in

the future. Furthermore, we hope to integrate this work with advanced interconnects

and other heterogeneous hardware and provide a parallel high performance cloud

infrastructure to enable mid-tier scientific computing.



Chapter 5

GPU-Passthrough Performance: A

Comparison of KVM, Xen, and

LXC for CUDA and OpenCL

Applications

5.1 Abstract

As more scientific workloads are moved into the cloud, the need for high performance

accelerators increases. Accelerators such as GPUs offer improvements in both per-

formance and power efficiency over traditional multi-core processors; however, their

use in the cloud has been limited. Today, several common hypervisors support GPU-

passthrough, but their performance has not been systematically characterized.

In this chapter we show that low overhead PCI passthrough is achievable across

3 major hypervisors and two processor microarchitectures. We compare the perfor-

mance of two generations of NVIDIA GPUs within the Xen and KVM hypervisors,

98
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and we also compare the performance to that of Linux Containers (LXC). We show

that GPU passthrough to KVM achieves 98–100% of the base system’s performance

across two architectures, while Xen achieve 96% of the base systems performance. In

addition, we describe several valuable lessons learned through our analysis and share

the advantages and disadvantages of each hypervisor/PCI passthrough solution.

5.2 Introduction

As scientific workloads continue to demand increasing performance at greater power

efficiency, high performance architectures have been driven towards heterogeneity and

specialization. Intel’s Xeon Phi, and GPUs from both NVIDIA and AMD represent

some of the most common accelerators, with each capable of delivering improved

performance and power efficiency over commodity multi-core CPUs.

Infrastructure-as-a-Service (IaaS) clouds have the potential to democratize access

to the latest, fastest, and most powerful computational accelerators. This is true

of both public and private clouds. Yet today’s clouds are typically homogeneous

without access to even the most commonly used accelerators. Historically, enabling

virtual machine access to GPUs and other PCIe devices has proven complex and

error-prone, with only a small subset of GPUs being certified for use within a few

commercial hypervisors. This is especially true for NVIDIA GPUs, likely the most

popular for scientific computing, but whose drivers have always been closed source.

Given the complexity surrounding the choice of GPUs, host systems, and hypervi-

sors, it is perhaps no surprise that Amazon is the only major cloud provider offering

customers access to GPU-enabled instances. All of this is starting to change, however,

as open source and other freely available hypervisors now provide sufficiently robust

PCI passthrough functionality to enable GPU and other accelerator access whether
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in the public or private cloud.

Today, it is possible to access GPUs at high performance within all of the major

hypervisors, merging many of the advantages of cloud computing (e.g. custom images,

software defined networking, etc.) with the accessibility of on-demand accelerator

hardware. Yet, no study to date has systematically compared the performance of PCI

passthrough across all major cloud hypervisors. Instead, alternative solutions have

been proposed that attempt to virtualize the GPU [183] , but sacrifice performance.

In this chapter, we characterize the performance of both NVIDIA Fermi and

Kepler GPUs operating in PCI passthrough mode in Linux KVM, Xen, and Linux

Containers (LXC). Through a series of microbenchmarks as well as scientific and Big

Data applications, we make two contributions:

1. We demonstrate that PCI passthrough at high performance is possible for GPUs

across 3 major hypervisors.

2. We describe the lessons learned through our performance analysis, as well as

the relative advantages and disadvantages of each hypervisor for GPU support.

5.3 Related Work & Background

GPU virtualization and GPU-passthrough are used within a variety of contexts, from

high performance computing to virtual desktop infrastructure. Accessing one or more

GPUs within a virtual machine is typically accomplished by one of two strategies: 1)

via API remoting with device emulation; or 2) using PCI passthrough.
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5.3.1 GPU API Remoting

rCUDA, vCUDA, GViM, and gVirtuS are well-known API remoting solutionsFun-

damentally, these approaches operate similarly by splitting the driver into a front-

end/back-end model, where calls into the interposed CUDA library (front-end) are

sent via shared memory or a network interface to the back-end service that executes

the CUDA call on behalf of the virtual machine. Notably, this technique is not limited

to CUDA, but can be used to decouple OpenCL, OpenGL, and other APIs from their

local GPU or accelerator.

The performance of API-remoting depends largely on the application and the

remoting solution’s implentation. Bandwidth and latency-sensitive benchmarks and

applications will tend to expose performance bottlenecks more than compute-intensive

applications. Moreover, solutions that rely on high speed networks, such as Infini-

band, will compete with application-level networking for bandwidth.

5.3.2 PCI Passthrough

Input/Output Memory Management Units, or IOMMUs, play a fundamental roll in

the PCI-passthrough virtualization mechanism. Like traditional MMUs that provide

a virtual memory address space to CPUs [184], an IOMMU serves the fundamental

purpose of connecting a direct memory access (DMA) capable I/O bus to main mem-

ory. The IOMMU unit, typically within the chipset, maps device virtual addresses to

physical memory addresses. This process also has the added improvement of guaran-

teeing device isolation by blocking rogue DMA and interrupt requests [185], with a

slight overhead, especially in early implementations [186].

Currently two major IOMMU implementations exist, VT-d and AMD-Vi by In-

tel and AMD, respectively. Both specifications provide DMA remapping to enable
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PCI-passthrough as well as other features such as interrupt remapping, hypervisor

snooping, and security control mechanisms to ensure proper and efficient hardware

utilization. PCI passthrough has been studied within the context of networking [187],

storage [188], and other PCI-attached devices; however, GPUs have historically lagged

behind other devices in their support for virtual machine passthrough.

5.3.3 GPU Passthrough, a Special Case of PCI Passthrough

While generic PCI passthrough can be used with IOMMU technologies to pass through

many PCI-Express devices, GPUs represent a special case of PCI devices, and a spe-

cial case of PCI passthrough. In traditional usage, GPUs usually serve as VGA

devices primarily to render screen output, and while the GPUs used in this study do

not render screen out, the function still exists in legacy. In GPU-passthrough, another

VGA device (such as onboard graphics built into the motherboard, or a baseboard

management controller) is necessary to serve as the primary display for the host, as

well as providing emulated VGA devices for each guest VM. Most GPUs also have a

video BIOS that requires full initialization and reset functions, which is often difficult

due to the proprietary nature of the cards and their drivers.

Nevertheless, for applications that require native or near-native GPU performance

across the full spectrum of applications with immediate access to the latest GPU

drivers and compilers, GPU passthrough solutions are preferrable to API remoting.

Today, Citrix Xenserver, open source Xen [189], and VMWare ESXi [190], and most

recently KVM all support GPU passthrough. To our knowledge, no one has system-

atically characterized the performance of GPU passthrough across a range of hyper-

visors, across such a breadth of benchmarks, and across multiple GPU generations as

we do.
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Table 5.1 Host hardware configurations

Bespin Delta

CPU (cores) 2x E5-2670 (16) 2x X5660 (12)

Clock Speed 2.6 GHz 2.6 GHz

RAM 48 GB 192 GB

NUMA Nodes 2 2

GPU 1x K20m 2x C2075

5.4 Experimental Methodology

5.4.1 Host and Hypervisor Configuration

We used two hardware systems, named Bespin and Delta, to evaluate hypervisors.

The Bespin system at USC/ISI represents Intel’s Sandy Bridge microarchitecture with

a Kepler class K20 GPU. The Delta system, provided by the FutureGrid project [191],

represents the Westmere microarchitecture with a Fermi class C2075 GPU. Table 5.1

provides the major hardware characteristics of both systems. Note that in addition,

both systems include 10 gigabit Ethernet, gigabit Ethernet, and either FDR or QDR

Infiniband. Our experiments do not emphasize networking, and we use the gigabit

ethernet network for management only.

A major design goal of these experiments was to reduce or eliminate NUMA effects

(non-uniform memory access) on the PCI passthrough results in order to facilitate

fair comparisons across hypervisors and to reduce experimental noise. To this end,

we configured our virtual machines and containers to execute only on the NUMA

node containing the GPU under test. We acknowledge that the NUMA effects on

virtualization may be interesting in their own right, but they are not the subject of
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this set of experiments.

We use Bespin and Delta to evaluate three hypervisors and one container-based

approach to GPU passthrough. The hypervisors and container system, Xen, KVM,

and LXC, are summarized in Table 5.2. Note that each virtualization solution imposes

its own unique requirements on the base operating system. Hence, Xen’s Linux kernel

refers to the Domain-0 kernel, whereas KVM’s Linux kernel represents the actual

running kernel hosting the KVM hypervisor. Linux Containers share a single kernel

between the host and guests.

It is worth noting that these experiments were originally set up, configured and

tested with the VMWare ESXi hypervisor as well. However, we’ve found that fun-

damental limitations with the reliability and accuracy of the VMWare virtual Time

Stamp Counter (TSC) [192] can lead to significant deviations in performance report-

ing. Not feeling comfortable with VMWare’s ability to accurately report fair timing

measurements, we decided to omit the VMWare results from this manuscript. For

more information on time keeping in virtual machines, please refer to Section 7.3 for

more details.

Similarly, hypervisor requirements prevented us from standardizing on a single

host operating system. For Xen and KVM, we relied on the Arch Linux 2013.10.01

distribution because it provides easy access to the mainline Linux kernel. For our

LXC tests, we use CentOS 6.4 because its shared kernel was identical to the base

CentOS 6.4 kernel used in our testing. All of this makes comparison challenging, but

as we describe in Section 5.4.2, we are running a common virtual machine across all

experiments.
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Table 5.2 Host Hypervisor/Container Configuration

Hypervisor Linux Kernel Linux Version

KVM 3.12 Arch 2013.10.01

Xen 4.3.0-7 3.12 Arch 2013.10.01

LXC 2.6.32-358.23.2 CentOS 6.4

5.4.2 Guest Configuration

We treat each hypervisor as its own system, and compare virtual machine guests

to a base CentOS 6.4 system. The base system and the guests are all composed of

CentOS 6.4 installation with a 2.6.32-358.23.2 stock kernel and CUDA version 5.5.

Each guest is allocated 20 GB of RAM and a full CPU socket (either 6 or 8 CPU

cores). Bespin experiments received 8 cores and Delta experiments received 6 cores.

VMs were restricted to a single NUMA node. On the Bespin system, the K20m GPU

was attached to NUMA node 0. On the Delta system, the C2075 GPU was attached

to NUMA node 1. Hence VMs ran on NUMA node 0 for the Bespin experiments,

and node 1 for the Delta experiments.

5.4.3 Microbenchmarks

Our experiments are composed of a mix of microbenchmarks and application-level

benchmarks, as well as a combination of CUDA and OpenCL benchmarks. The

SHOC benchmark suite provides a series of microbenchmarks in both OpenCL and

CUDA [193]. For this analysis, we focus on the OpenCL benchmarks in order to

exercise multiple programming models. Benchmarks range from low-level peak Flops

and bandwidth measurements, to kernels and mini-applications.
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5.4.4 Application Benchmarks

For our application benchmarks, we have chosen the LAMMPS molecular dynam-

ics simulator [194], the GPU-LIBSVM [195], and the LULESH shock hydrodynamics

simulator [196]. These represent a range of computational characteristics, from com-

putational physics to big data analytics, and are representative of GPU-accelerated

applications in common use.

LAMMPS The Large-scale Atomic/Molecular Parallel Simulator (LAMMPS), is a

parallel molecular dynamics simulator [194, 197] used for production MD simulation

on both CPUs and GPUs [198]. LAMMPS has two packages for GPU support, the

USER-CUDA and GPU packages. With the USER-CUDA package, each GPU is used

by a single CPU, whereas the GPU package allows multiple CPUs to take advantage

of a single GPU. There are performance trade-offs with both approaches, but we chose

to use the GPU package in order to stress the virtual machine by exercising multiple

CPUs. Consistent with the existing GPU benchmarking approaches, our results are

based on the Rhodopsin protein.

GPU-LIBSVM LIBSVM is a popular implementation [199] of the machine learn-

ing classification algorithm support vector machine (SVM). GPU-accelerated LIB-

SVM [195] enhances LIBSVM by providing GPU-implementations of the kernel ma-

trix computation portion of the SVM algorithm for radial basis kernels. For bench-

marking purposes we use the NIPS 2003 feature extraction gisette data set. This data

set has a high dimensional feature space and large number of training instances, and

these qualities are known to be computational intensive to generate SVM models.

The GPU-accelerated SVM implementation shows dramatic improvement over the

CPU-only implementation.
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Table 5.3 SHOC overheads for Bespin (K20) expressed as geometric means
of scaled values within a level, while maximum overheads are expressed as a
percentage.

Bespin (K20)

KVM Xen LXC

Mean Max Mean Max Mean Max

L0 0.999 1.57 0.997 3.34 1.00 1.77

L1 0.998 1.23 0.998 1.39 1.00 1.47

L2 0.998 0.48 0.995 0.846 0.999 1.90

Bespin PCIe-only

KVM Xen LXC

Mean Max Mean Max Mean Max

L0 0.997 0.317 0.999 0.143 0.995 0.981

L1 0.998 0.683 0.997 1.39 1.00 0.928

L2 0.998 0.478 0.996 0.846 1.00 0.247

LULESH Hydrodynamics is widely used to model continuum properties and inter-

actions in materials when there is an applied force [200]. Hydrodynamics applications

consume approximately one third of the runtime of data center resource throughout

the U.S. DoD (Department of Defense). The Livermore Unstructured Lagrange Ex-

plicit Shock Hydro (LULESH) was developed by Lawrence Livermore National Lab

as one of five challenge problems in the DARPA UHPC program. LULESH is widely

used as a proxy application in the U.S. DOE (Department of Energy) co-design effort

for exascale applications [196].

5.5 Performance Results

We characterize GPGPU performance within virtual machines across two hardware

systems, 4 hypervisors, and 3 application sets. We begin with the SHOC benchmark
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Table 5.4 SHOC overheads for Delta (c2075) expressed as geometric means
of scaled values within a level, while maximum overheads are expressed as a
percentage.

Delta (C2075)

KVM Xen LXC

Mean Max Mean Max Mean Max

L0 1.01 0.031 0.969 12.7 1.00 0.073

L1 1.00 1.45 0.959 24.0 1.00 0.663

L2 1.00 0.101 0.982 4.60 1.00 0.016

Delta PCIe-only

KVM Xen LXC

Mean Max Mean Max Mean Max

L0 1.04 0.029 0.889 12.7 1.00 0.01

L1 1.00 1.45 0.914 20.5 0.999 0.380

L2 1.00 0.075 0.918 4.60 1.00 N/A

suite before describing the GPU-LIBSVM, LAMMPS, and LULESH results. All

benchmarks are run 20 times and averaged. Results are scaled with respect to a base

CentOS 6.4 system for both systems. That is, we compare virtualized Bespin per-

formance to non-virtualized Bespin performance, and virtualized Delta performance

to non-virtualized Delta performance. Values less than 1 indicate that the base sys-

tem outperformed the virtual machine, while values greater than 1 indicate that the

virtual machine outperformed the base system. In cases where we present geometric

means across multiple benchmarks, the means are taken over these scaled values, and

the semantics are the same: less than 1 indicates overhead in the hypervisor, greater

than 1 indicates a performance increase over the base system.
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5.5.1 SHOC Benchmark Performance

SHOC splits its benchmarks into 3 Levels, named Levels 0 through 2. Level 0 repre-

sents device-level characteristics, peak Flop/s, bandwidth, etc. Level 1 characterizes

computational kernels: FFT and matrix multiplication, among others. Finally, Level

2 includes “mini-applications,“ in this case an implementation of the S3D, a compu-

tational chemistry application.

Because the SHOC OpenCL benchmarks report more than 70 individual mi-

crobenchmarks, space does not allow us to show each benchmark individually. In-

stead, we start with a broad overview of SHOC’s performance across all benchmarks,

hypervisors, and systems. We then discuss in more detail those benchmarks that

either outperformed or underperformed the Bespin (K20) system by 0.50% or more.

We call these benchmarks outliers. As we will show, those outlier benchmarks iden-

tified on the Bespin system, also tend to exhibit comparable characteristics on the

Delta system as well, but the overhead is typically higher.

In Tables 5.3 and 5.4, we provide geometric means for each SHOC level across each

hypervisor and system. We also include the maximum overhead for each hypervisor

at each level to facilitate comparison across hypervisors and systems. Finally, we

provide a comparable breakdown of only the PCIe SHOC benchmarks, based on the

intuition that PCIe-specific benchmarks will likely result in higher overhead.

At a high level, we immediately notice that in the cases of KVM and LXC, both

perform very near native across both the Bespin and Delta platforms. On average,

these systems are almost indistinguishable from their non-virtualized base systems.

So much so, that experimental noise occasionally boosts performance slightly above

their base systems.

This is in sharp contrast to the Xen , which performs well on the Bespin system,

but poorly on the Delta system in some cases. This is particularly evident when
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looking at the maximum overheads for Xen across both systems. In this case, we see

that on the Bespin system, Xen’s maximum overhead of 3.34% is dwarfed by Delta’s

maximum Xen overhead of 24.0%. We provide a more in-depth discussion of these

overheads below.

Figure 5.1 SHOC Levels 0 and 1 relative performance on Bespin system. Re-
sults show benchmarks over or under-performing by 0.5% or greater. Higher
is better.

Of the Level 0 benchmarks, only four exhibited notable overhead in the case of the

Bespin system: bspeed download, lmem readbw, tex readbw, and ocl queue. These

are shown in Figure 5.1. These benchmarks represent device-level characteristics,

including host-to-device bandwidth, onboard memory reading, and OpenCL kernel

queue delay. Of the four, only bspeed download incurs a statistically significant

overhead. The remainder perform within one standard deviation of the base, despite

an overhead of greater than 0.5%.
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Figure 5.2 SHOC Levels 1 and 2 relative performance on Bespin system. Re-
sults show benchmarks over or under-performing by 0.5% or greater. Higher
is better.

bspeed download is representative of the most likely source of virtualization over-

head, data movement across the PCI-Express bus. The PCIe lies at the boundary

of the virtual machine and the physical GPU, and requires interrupt remapping,

IOMMU interaction, etc. in order to enable GPU passthrough into the virtual ma-

chine. Despite this, in Figure 5.1 we see a maximum of less than 0.5% overhead for

bspeed download for both KVM and Xen.

The remainder of Figure 5.1 includes a series of SHOC’s Level 1 benchmarks, rep-

resenting computational kernels. This includes BFS, FFT, molecular dynamics, and

reduction kernels. Notably, nearly all of the benchmarks exhibiting overhead are the

PCIe portion of SHOC’s benchmarks. This is unsurprising, since the Level 0 bench-

marks suggest PCIe bandwidth as the major source overhead. Still, results remain
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Figure 5.3 SHOC Levels 0 and 1 relative performance on Delta system.
Benchmarks shown are the same as Bespin’s. Higher is better.

consistent with the bspeed download overhead observed in the Level 0 benchmarks,

further suggesting that host/device data movement is the major source of overhead.

In Figure 5.2 we present the remaining SHOC Level 1 results as well as the SHOC

Level 2 results (S3D).

Turning to the Delta system, in Figures 5.3 and 5.4, we show the same bench-

marks for the Delta system as was shown in Figures 5.1 and 5.2. Again, we find that

the same benchmarks are responsible for most of the overhead on the Delta system.

This is unsurprising, since PCIe was shown to be the source of the bulk of the over-

head. A major difference in the case of the Delta system, however, is the amount

of overhead. While the Bespin system saw overheads of approximately 1%, Delta’s

overhead routinely jumps higher with Xen.
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Figure 5.4 SHOC Levels 1 and 2 relative performance. Benchmarks shown
are the same as Bespin’s. Higher is better.

On further examination, we determined that Xen was unable to activate IOMMU

large page tables on the Delta system. KVM successfully allocated 4k, 2M, and 1G

page table sizes, while Xen was limited to size 4k page tables. The Bespin system

was able to take advantage of 4k, 2M, and 1G page sizes on both KVM and Xen. It

appears that this issue is correctable and does not represent a fundamental limitation

to the Xen hypervisor on the Nehalem/Westmere microarchitecture.

In light of this, we broadly find that virtualization overhead across hypervisors

and architectures is minimal. Questions remain as to the source of the exceptionally

high overhead in the case of Xen on the Delta system, but because KVM shows no

evidence of this overhead, we believe the Westmere/Fermi architecture to be suitable

for VGA passthrough in a cloud environment. In the case of the Bespin system, it
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is clear that VGA passthrough can be achieved across hypervisors with virtually no

overhead.

A surprising finding is that LXC showed little performance advantage over KVM,

Xen, and VWMare. While we expected near-native performance from LXC we did

not expect the hardware-assisted hypervisors to achieve such high performance. Still,

LXC carries some advantages. In general, its maximum overheads are comparable to

or less than KVM or Xen, especially in the case of the Delta system.

5.5.2 GPU-LIBSVM Performance

Figure 5.5 GPU-LIBSVM relative performance on Bespin system. Higher
is better.

In Figures 5.5 and 5.6, we display our GPU-LIBSVM performance results for the

Bespin (K20m) and Delta (C2075) systems. Using the NIPS 2003 gisette data set,

we show the performance across 4 problems sizes, ranging from 1800 to 6000 training
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Figure 5.6 GPU-LIBSVM relative performance on Delta showing improved
performance within virtual environments. Higher is better.

instances. The NIPS 2003 gisette dataset is a standard dataset that was used as a

part of the NIPS 2003 feature selection challenge.

KVM again performs well across both the Delta and Bespin systems. In the case

of the Delta system, in fact, KVM, significantly outperforms the base system. We

determined this to be caused by KVM’s support for transparent hugepages. When

sufficient memory is available, transparent hugepages may be used to back the en-

tirety of the guest VM’s memory. Hugepages have previously been shown to improve

TLB performance for KVM guests, and have been shown to occasionally boost the

performance of a KVM guests beyond its host [201]. After disabling hugepages on the

KVM host for the Delta system, performance dropped to 80–87% of the base system,

suggesting that memory optimizations such as transparent hugepages can substan-

tially improve the performance of virtualized guests under some circumstances. LXC
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performs close to the base system, while Xen achieves between 72–90% of the base

system’s performance. We speculate that this may be related to Xen’s inability to

enabled page sizes larger than 4k.

5.5.3 LAMMPS Performance

Figure 5.7 LAMMPS Rhodopsin benchmark relative performance for Bespin
system. Higher is better.

In Figures 5.7 and 5.8, we show the LAMMPS Rhodopsin protein simulation

results. LAMMPS is unique among our benchmarks, in that it exercises both the GPU

and multiple CPU cores. In keeping with the LAMMPS benchmarking methodology,

we execute the benchmark using 1 GPU and 1–8 CPU cores on the Bespin system,

selecting the highest performing configuration. In the case of the Delta system, we

execute the benchmark on 1–6 cores and 1 GPU, selecting the highest performing

configuration.
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Figure 5.8 LAMMPS Rhodopsin benchmark relative performance for Delta
system. Higher is better.

Overall, LAMMPS performs well across both hypervisors and systems. Surpris-

ingly, LAMMPS showed better efficiency on the Delta system than the Bespin system,

achieving greater than 98% efficiency across the board, while Xen on the Bespin sys-

tem occasionally drops as low as 96.5% efficiency.

This performance is encouraging because it suggests that even heterogeneous CPU

+ GPU code is capable of performing well in a virtualized environment. Unlike SHOC,

GPU-LIBSVM, and LULESH, LAMMPS fully exercises multiple host CPUs, splitting

work between one or more GPUs and one or more CPU cores. This has the potential

to introduce additional performance overhead, but the results do not bear this out in

the case of LAMMPS.
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5.5.4 LULESH Performance

In Figure 5.9 we present our LULESH results for problem sizes ranging from mesh

resolutions of N = 30 to N = 150. LULESH is a highly compute-intensive simulation,

with limited data movement between the host/virtual machine and the GPU, making

it ideal for GPU acceleration. Consequently, we would expect little overhead due

to virtualization. We show LULESH results only on the Bespin system, because

differences in the code bases between the Kepler and Fermi implementations led to

unsound comparisons.

While, overall, we see very little overhead, there is a slight scaling effect that

is most apparent in the case of the Xen hypervisor. As the mesh resolution (N3)

increases from N = 30 to N = 150, we see that the Xen overhead decreases until Xen

performs on-par with KVM and LXC.

Figure 5.9 LULESH relative performance on Bespin. Higher is better.
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5.6 Lessons Learned

Virtualizing performance-critical workloads has always proven controversial, whether

the workload is CPU-only [172] or CPU with GPU. From our Westmere results, we

can see that this criticism is in part legitimate, at times resulting in a performance

penalty of greater than 10%, especially in the case of the Xen hypervisor. We believe

much of this to be fixable with further software refinement.

At the same time, however, we have shown that the Sandy Bridge processor gener-

ation has nearly erased those performance overheads, suggesting that old arguments

against virtualization for performance-critical tasks should be reconsidered. In light of

this, the primary lesson from this study is that VGA-passthrough to virtual machines

is achievable at low overhead, and across a variety of hypervisors and virtualization

platforms. Virtualization performance remains inconsistent across hypervisors for the

Westmere generation of processors, but starting with the Sandy Bridge architecture,

performance and consistency increase dramatically. In the case of the Sandy Bridge

architecture, even the lowest performing hypervisor, open source Xen, typically per-

forms within 95% of the base case.

This study has also yielded valuable insight into the merits of each hypervisor.

KVM consistently yielded near-native performance across the full range of bench-

marks. Its support for transparent hugepages resulted in slight performance boosts

over-and-above even the base CentOS system in the case of the Delta system.

The Xen hypervisor was consistently average across both architectures, performing

neither poorly nor extraordinarily well in any individual benchmark. Xen is the only

hypervisor from this study that officially support VGA passthrough. As a result,

PCI passthrough support in both Xen is more robust than KVM. We expect that

this advantage will not last long, as commercial solutions targeting PCI passthrough
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in KVM are becoming common, particularly with regard to SR-IOV and networking

adapters.

Linux Containers (LXC), consistently performed closest to the native case. This,

of course, is not surprising given that LXC guests share a single kernel with their

hosts. This performance comes at the cost of both flexibility and security, however.

LXC is less flexible than its full virtualization counterparts, offering support for only

Linux guests. More importantly, LXC device passthrough has security implications

for multi-GPU systems. In the case of a multi-GPU-enabled host with NVIDIA

hardware, both GPUs must be passed to the LXC guest in order to initialize the

driver. This limitation may be addressable in future revisions to the NVIDIA driver.

5.7 Directions for Future Work

In this chapter we have characterized the performance of common hypervisors across

two generations of GPUs and two host microarchitectures, and across 3 sets of bench-

marks. We showed the dramatic improvement in virtualization performance between

the Fermi/Westmere and the Kepler/Sandy Bridge system, with the Sandy Bridge

system typically performing within 1% of the base system. Finally, this study sought

to characterize the GPU and CPU+GPU performance with carefully tuned hypervi-

sor and guest configurations, especially with respect to NUMA. Improvements must

be made to today’s hypervisors in order to improve virtual NUMA support. Finally,

cloud infrastructure, such as OpenStack, must be capable of automatically allocating

virtual machines in a NUMA-friendly manner in order to achieve acceptable results

at cloud-scale.

The next step in this work is to move beyond the single node to show that clus-

ters of accelerators can be efficiently used with minimal overhead. This will require
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studies in high speed networking, particularly SR-IOV-enabled ethernet and Infini-

band. Special attention is needed to ensure that latencies remain tolerable within

virtual environments. Some studies have begun to examine these issues [202], but

open questions remain.



Chapter 6

Supporting High Performance

Molecular Dynamics in Virtualized

Clusters using IOMMU, SR-IOV,

and GPUDirect

6.1 Abstract

Cloud infrastructure-as-a-Service paradigms have recently shown their utility for a

vast array of computational problems, ranging from advanced web service archi-

tectures to high throughput computing. However, many scientific computing ap-

plications have been slow to adapt to virtualized cloud frameworks. This is due

to performance impacts of virtualization technologies, coupled with the lack of ad-

vanced hardware support necessary for running many high performance scientific

a:tabnpplications at scale.

By using KVM virtual machines that leverage both Nvidia GPUs and InfiniBand,

122
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we show that molecular dynamics simulations with LAMMPS and HOOMD run at

near-native speeds. This experiment also illustrates how virtualized environments

can support the latest parallel computing paradigms, including both MPI+CUDA

and new GPUDirect RDMA functionality. Specific findings show initial promise in

scaling of such applications to larger production deployments targeting large scale

computational workloads.

6.2 Introduction

At present we stand at the inevitable intersection between High Performance Com-

puting (HPC) and clouds. Various platform tools such as Hadoop and MapReduce,

among others, have already percolated into data intensive computing within HPC [26].

In addition, there are efforts to support traditional HPC-centric scientific computing

applications in virtualized cloud infrastructure. There are a multitude of reasons for

supporting parallel computation in the cloud [59], including features such as dynamic

scalability, specialized operating environments, simple management interfaces, fault

tolerance, and enhanced quality of service, to name a few. The growing importance

of supporting advanced scientific computing using virtualized infrastructure can be

seen by a variety of new efforts, including the NSF-funded Comet resource part of

XSEDE at San Diego Supercomputer Center [203].

Nevertheless, there exists a past notion that virtualization used in today’s cloud

infrastructure is inherently inefficient. Historically, cloud infrastructure has also done

little to provide the necessary advanced hardware capabilities that have become al-

most mandatory in supercomputers today, most notably advanced GPUs and high-

speed, low-latency interconnects. The result of these notions has hindered the use

of virtualized environments for parallel computation, where performance must be
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paramount.

A growing effort is currently underway that looks to systematically identify and

reduce any overhead in virtualization technologies. This effort has, thus far, proven

to be a qualified success [172, 204], though further research is needed to address

issues of scalability and I/O. Thus, we see a constantly diminishing overhead with

virtualization, not only with traditional cloud workloads [205] but also with HPC

workloads. While virtualization will almost always include some additional overhead

in relation to its dynamic features, the eventual goal for supporting HPC in virtualized

environments is to minimize what overhead exists whenever possible. To advance

the placement of HPC applications on virtual machines, new efforts are emerging

which focus specifically on key hardware now commonplace in supercomputers. By

leveraging new virtualization tools such as IOMMU device passthrough and SR-IOV,

we can now support the such advanced hardware as the latest Nvidia Tesla GPUs [206]

as well as InfiniBand fabrics for high performance networking and I/O [207,208].

With the advances in hypervisor performance coupled with the newfound avail-

ability of HPC hardware in virtual machines analogous to the most powerful super-

computers used today, we see can see the possibility of a high performance cloud in-

frastructure using virtualization. While our previous efforts in this area have focused

on single-node advancements, it is now imperative to ensure real-world applications

can also operate in distributed environments as found in today’s cluster and cloud

infrastructures.

Efforts to improve power efficiency and performance in data centers has led to

more heterogeneous architectures. That move toward heterogeneity has, in turn, led

to support for heterogeneity in the cloud. For example, Amazon EC2 supports GPU

accelerators in EC2 [209], and OpenStack supports heterogeneity using flavors [210].

These advancements in cloud-level support for heterogeneity combined with better
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support for high-performance virtualization makes the use of cloud for HPC much

more feasible for a wider range of applications and platforms.

In this paper we describe background a related work. Then, we describe a hetero-

geneous cloud platform, based on OpenStack. This effort has been under development

at USC/ISI since 2011 [166]. We describe our work towards integrating GPU and

InfiniBand support into OpenStack, and we describe the heterogeneous scheduling

additions that are necessary to support not only attached accelerators, but any cloud

composed of heterogeneous elements.

We then demonstrate running two molecular dynamics simulations, LAMMPS

and HOOMD, in a virtual infrastructure complete with both Kepler GPUs and QDR

InfiniBand. Both HOOMD and LAMMPS are used extensively in some of the world’s

fastest supercomputers and represent example simulations that HPC supports today.

We show that these applications are able to run at near-native speeds within a com-

pletely virtualized environment, demonstrating just small performance impacts that

are usually acceptable by many users. Furthermore, we demonstrate the ability of

such a virtualized environment to support cutting edge software tools such as RDMA

GPUDirect, illustrating how cutting-edge HPC technologies are also possible in a

virtualized environment.

Following these efforts, we hope to ensure upstream infrastructure projects such

as OpenStack [131, 211] are able to make effective and quick use of these features,

allowing users to build private cloud infrastructure to support high performance dis-

tributed computational workloads.
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6.3 Background and Related Work

Virtualization technologies and hypervisors have been seen widespread deployment

in support of a vast array of applications. This ranges from public commercial Cloud

deployments such as Amazon EC2 [212, 213], Microsoft Azure [214], and Google’s

Cloud Platform [215] to private deployments within colocation facilities, corporate

data centers, and even national scale cyber infrastructure initiatives. All these sup-

port look to support various use cases and applications such as web servers, ACID

and BASE databases, online object storage, and even distributed systems, to name a

few.

The use of virtualization and hypervisors specifically support various HPC so-

lutions has been studied with mixed results. In [172], it is found that there is a

great deal of variance between hypervisors when running various distributed memory

and MPI applications, finding that KVM overall performed well across an array of

HPC benchmarks. Furthermore, some applications may not may fit well into default

virtualized environments, such as High Performance Linpack [204]. Other studies

have specifically looked at interconnect performance in virtualization and found the

best-case scenario to be lacking [216] with up to 60% performance penalties with

conventional techniques.

Recently, various CPU architectures have added support for I/O virtualization

mechanisms in the CPU ISA through the use of an I/O memory management unit

(IOMMU). Often, this is referred to as PCI Passthrough, as it enabled devices on the

PCI-Express bus to be passed directly to a specific virtual machine (VM). Specific

hardware implementations include Intel’s VT-d [217], AMD’s IOMMU [218] from

x86 64 architectures, and even more recently ARM System MMU [219]. All of these

implementations effectively look to aid in the usage of DMA-capable hardware to be
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used within a specific virtual machine. Using these features, a wide array of hardware

can be utilized directly within VMs and enable fast and efficient computation and

I/O capabilities.

With PCI Passthrough, a PCI device is handed directly to a running (or booting)

VM, thereby relinquishing control of the device within the host entirely. This is

different from typical VM usage where hardware is emulated in the host and used

in a guest VM, such as with bridged ethernet adapters or emulated VGA devices.

Performing PCI Passthrough requires the host to seize the device upon boot using a

specialized driver to effectively block normal driver initialization. In the instance of

the KVM hypervisor, this is done using the vfio and pci stub drivers. Then, this driver

relinquishes control to the VM, whereby normal device drivers initiate the hardware

and enable the device for use by the guest OS.

6.3.1 GPU Passthrough

Nvidia GPUs comprise the single most common accelerator in the Nov 2014 Top 500

List [8] and represent an increasing shift towards accelerators for HPC applications.

Historically, GPU usage in a virtualized environment has been difficult, especially

for scientific computation. Various front-end remote API implementations have been

developed to provide CUDA and OpenCL libraries in VMs, which translate library

calls to a back-end or remote GPU. One common use case of this is rCUDA [56], which

provides a front-end CUDA API within a VM or any compute node, and then sends

the calls via Ethernet or InfiniBand to a separate node with 1 or more GPUs. While

this method is valid, it has the drawback of relying on the interconnect itself and the

bandwidth available, which can be especially problematic on Ethernet. Furthermore,

as this method consumes bandwidth, it can leave little remaining for MPI or RDMA

routines, thereby constructing a bottleneck for some MPI+CUDA applications that
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depend on inter-process communication.

Recently efforts have been seen to support such GPU accelerators within VMs

using IOMMU technologies, with implementations now available with KVM [206],

Xen [220] and VMWare [221]. These efforts have shown that GPUs can achieve up

to 99% of their bare metal performance when passed to a virtual machine using PCI

Passthrough. VMWare specifically shows how the such PCI Passthrough solutions

perform well and are likely to outperform front-end Remote API solutions such as

rCUDA within a VM [221]. While these works demonstrate PCI Passthrough perfor-

mance across a range of hypervisors and GPUs, they have been limited to investigating

single node performance until now.

6.3.2 SR-IOV and InfiniBand

With almost all parallel HPC applications, the interconnect fabric which enables fast

and efficient communication between processors becomes a central requirement to

achieving good performance. Specifically, a high bandwidth link is needed for dis-

tributed processors to share large amounts of data across the system. Furthermore,

low latency becomes equally important for ensuring quick delivery of small mes-

sage communications and resolving large collective barriers within many parallelized

codes. One such interconnect, InfiniBand, has become the most common implemen-

tation used within the Top500 list. However previously InfiniBand was inaccessible

to virtualized environments.

Supporting I/O interconnects in VMs has been aided by Single Root I/O Virtu-

alization (SR-IOV), whereby multiple virtual PCI functions are created in hardware

to represent a single PCI device. These virtual functions (VFs) can then be passed

to a VM and used as by the guest as if it had direct access to that PCI device. SR-

IOV allows for the virtualization and multiplexing to be done within the hardware,
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effectively providing higher performance and greater control than software solutions.

SR-IOV has been used in conjunction with Ethernet devices to provide high perfor-

mance 10Gb TCP/IP connectivity within VMs [222], offering near-native bandwidth

and advanced QoS features not easily obtained through emulated Ethernet offerings.

Currently Amazon EC2 offers a high performance VM solution utilizing SR-IOV en-

abled 10Gb Ethernet adapters. While SR-IOV enabled 10Gb Ethernet solutions offers

a big forward in performance, Ethernet still does not offer the high bandwidth or low

latency typically found with InfiniBand solutions.

Recently SR-IOV support for InfiniBand has been added by Mellanox in the Con-

nectX series adapters. Initial evaluation of SR-IOV InfiniBand within KVM VMs

has proven has found point-to-point bandwidth to be near-native, but up to 30%

latency overhead for very small messages [207, 223]. However, even with the noted

overhead, this still signifies up to an order of magnitude difference in latency between

InfiniBand and Ethernet with VMs. Furthermore, advanced configuration of SR-IOV

enabled InfiniBand fabric is taking shape, with recent research showing up to a 30%

reduction in the latency overhead [208]. However, real application performance has

not yet been well understood until now.

6.3.3 GPUDirect

NVIDIA’s GPUDirect technology was introduced to reduce the overhead of data

movement across GPUs [224, 225]. GPUDirect supports both networking as well as

peer-to-peer interfaces for single node multi-GPU systems. The most recent imple-

mentation of GPUDirect, version 3, adds support for RDMA over InfiniBand for

Kepler-class GPUs.

The networking component of GPUDirect relies on three key technologies: CUDA

5 (and up), a CUDA-enabled MPI implementation, and a Kepler-class GPU (RDMA
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only). Both MVAPICH and OpenMPI support GPUDirect. Support for RDMA over

GPUDirect is enabled by the MPI library, given supported hardware, and does not

depend on application-level changes to a user’s code.

In this paper, our GPUDirect work focuses on GPUDirect v3 for multi-node

RDMA support. We demonstrate scaling for up to 4 nodes connected via QDR

InfiniBand and show that GPUDirect RDMA improves both scalability and overall

performance by approximately 9% at no cost to the end user.

6.4 A Cloud for High Performance Computing

With support for GPU Passthrough, SR-IOV, and GPUDirect, we have the building

blocks for a high performance, heterogeneous cloud. In addition, other common

accelerators (e.g. Xeon Phi [226]) have similarly been demonstrated in virtualized

environments. Our vision is of a heterogeneous cloud, supporting both high speed

networking and accelerators for tightly coupled applications.

To this end we have developed a heterogeneous cloud based on OpenStack [131].

In our previous work, we have demonstrated the ability to rapidly provision GPU,

bare metal, and other heterogeneous resources within a single cloud [166]. Building

on this effort we have added support for GPU passthrough to OpenStack as well as

SR-IOV support for both ConnectX-2 and ConnectX-3 Infiniband devices. Mellanox

separately supports an OpenStack InfiniBand networking plugin for OpenStack’s Neu-

tron service [227], however the Mellanox plugin depends on the ConnectX-3 adapter.

Our institutional requirements depend on ConnecteX-2 SR-IOV support, requiring

an independent implementation.

OpenStack supports services for networking (Neutron), compute (Nova), identity

(Keystone), storage (Cinder, Swift), and others. Our work focuses entirely on the
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compute service.

Scheduling is implemented at two levels: the cloud-level and the node-level. In our

earlier work, we have developed a cloud-level heterogeneous scheduler for OpenStack,

allowing scheduling based on architectures and resources [166]. In this model, the

cloud-level scheduler dispatches jobs to nodes based on resource requirements (e.g.

Kepler GPU) and node-level resource availability.

At the node, a second level of scheduling occurs to ensure that resources are

tracked and not over-committed. Unlike traditional cloud paradigms, devices passed

into VMs cannot be over-committed. We treat devices, whether GPUs or InfiniBand

virtual functions, as schedulable resources. Thus, it is the responsibility of the indi-

vidual node to track resources committed and report availability to the cloud-level

scheduler. For reporting, we piggyback on top of OpenStack’s existing reporting

mechanism to provide a low overhead solution.

6.5 Benchmarks

We selected two molecular dynamics (MD) applications for evaluation in this study:

LAMMPS and HOOMD [228, 229]. These MD simulations are chosen to represent a

subset of advance parallel computation for a number of fundamental reasons:

• MD simulations provide a practical representation of N-Body simulations, which

is one of the major computational Dwarfs [230] in parallel and distributed com-

puting.

• MD simulations are one of the most widely deployed applications on large scale

supercomputers today.

• Many MD simulations have a hybrid MPI+CUDA programming model, which



6.5 Benchmarks 132

has often become commonplace in HPC as the use of accelerators increases.

As such, we look to LAMMPS and HOOMD to provide a real-world example for

running cutting-edge parallel programs on virtualized infrastructure. While these

applications by no means represent all parallel scientific computing efforts (as justi-

fied by the 13 Dwarfs defined in [230]), we hope these MD simulators offer a more

pragmatic viewpoint than traditional synthetic HPC benchmarks such as High Per-

formance Linpack.

LAMMPS The Large-scale Atomic/Molecular Parallel Simulator is a well-understood

highly parallel molecular dynamics simulator. It supports both CPU and GPU-

based workloads. Unlike many simulators, both MD and otherwise, LAMMPS is

heterogeneous. It will use both GPUs and multicore CPUs concurrently. For this

study, this heterogeneous functionality introduces additional load on the host, allow-

ing LAMMPS to utilize all available cores on a given system. Networking in LAMMPS

is accomplished using a typical MPI model. That is, data is copied from the GPU

back to the host and sent over the InfiniBand fabric. No RDMA is used for these

experiments.

HOOMD-blue The Highly Optimized Object-oriented Many-particle Dynamics

– Blue Edition is a particle dynamics simulator capable of scaling into the thou-

sands of GPUs. HOOMD supports executing on both CPUs and GPUs. Unlike

LAMMPS, HOOMD is homogeneous and does not support mixing of GPUs and

CPUs. HOOMD supports GPUDirect using a CUDA-enabled MPI. In this paper

we focus on HOOMD’s support for GPUDirect and show its benefits for increasing

cluster sizes.
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6.6 Experimental Setup

Using two molecular dynamics tools, LAMMPS [228] and HOOMD [229], we demon-

strate a high performance system. That is, we combine PCI passthrough for Nvidia

Kepler-class GPUs with QDR Infiniband SR-IOV and show that high performance

molecular dynamics simulations are achievable within a virtualized environment.

For the first time, we also demonstrate Nvidia GPUDirect technology within such

a virtual environment. Thus, we look to not only illustrate that virtual machines

provide a flexible high performance infrastructure for scaling scientific workloads in-

cluding MD simulations, but also that the latest HPC features and programming

environments are also available in this same model.

6.6.1 Node configuration

To support the use of Nvidia GPUs and InfiniBand within a VM, specific and exact

host configuration is needed. This node configuration is illustrated in Figure 6.1.

While our implementation is specific to the KVM hypervisor, this setup represents a

design that can be hypervisor agnostic.

Each node in the testbed uses CentOS 6.4 with a 3.13 upstream Linux kernel for

the host OS, along with the latest KVM hypervisor, QEMU 2.1, and the vfio driver.

Each Guest VM runs CentOS 6.4 with a stock 2.6.32-358.23.2 kernel. A Kepler GPU

is passed through using PCI Passthrough and directly initiated within the VM via

the Nvidia 331.20 driver and CUDA release 5.5. While this specific implementation

used only a single GPU, it is also possible to include as many GPUs as one can fit

within the PCI Express bus if desired. As the GPU is used by the VM, an on-board

VGA device was used by the host and a standard Cirrus VGA was emulated in the

guest OS.
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Figure 6.1 Node PCI Passthrough of GPUs and InfiniBand

With using SR-IOV, the OFED drivers version 2.1-1.0.0 are used with Mellanox

ConnectX-3 VPI adapter with firmware 2.31.5050. The host driver initiates 4 VFs,

one of which is passed through to the VM where the default OFED mlnx ib drivers

are loaded.

6.6.2 Cluster Configuration

Our test environment is composed of 4 servers each with a single Nvidia Kepler-

class GPU. Two servers are equipped with K20 GPUs, while the other two servers

are equipped with K40 GPUs, demonstrating the potential for a more heterogeneous

deployment. Each server is composed of 2 Intel Xeon E5-2670 CPUs, 48GB of DDR3

memory, and Mellanox ConnectX-3 QDR InfiniBand. CPU sockets and memory are
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split evenly between the two NUMA nodes on each system. All InfiniBand adapters

use a single Voltaire 4036 QDR switch with a software subnet manager for IPoIB

functionality.

For these experiments, both the GPUs and InfiniBand adapters are attached to

NUMA node 1 and both the guest VMs and the base system utilized identical software

stacks. Each guest was allocated 20 GB of RAM and a full socket of 8 cores, and

pinned to NUMA node 1 to ensure optimal hardware usage. While all VMs are

capable of login via the InfiniBand IPoIB setup, a 1Gb Ethernet network was used

for all management and login tasks.

For a fair and effective comparison, we also use a native environment without any

virtualization. This native environment employs the same hardware configuration,

and like the Guest OS runs CentOS 6.4 with the stock 2.6.32-358.23.2 kernel.

6.7 Results

In this section, we discuss the performance of both the LAMMPS and HOOMD

molecular dynamics simulation tools when running within a virtualized environment.

Specifically, we scale each application to 32 cores and 4 GPUs, both in a native bare-

metal and virtualized environments. Each application set was run 10 times, with the

results averaged accordingly.

6.7.1 LAMMPS

Figure 6.2 shows one of the most common LAMMPS algorithms used; the Lennard-

Jones potential (LJ). This algorithm is deployed in two main configurations - a 1:1

core to GPU mapping, and a 8:1 core to GPU mapping. With the LAMMPS GPU

implementation, a delicate balance between GPUs and CPUs is required to find the
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Figure 6.2 LAMMPS LJ Performance

optimal ratio for fastest computation, however here we just look at the two most

obvious choices. With small problem sizes, the 1:1 mapping outperforms the more

complex core deployment, as the problem does not require the additional complexity

provided with multi-core solution. As expected the multi-core configuration quickly

offers better performance for larger problem sizes, achieving roughly twice the perfor-

mance with all 8 available cores. This is largely due to the availability of all 8 cores

to keep the GPU running 100% with continual computation.

The important factor for this manuscript is the relative performance of the virtu-

alized environment. From the results, it is clear the VM solution performs very well

compared to the best-case native deployment. For the multi-core configuration across

all problem sizes, the virtualized deployment averaged 98.5% efficiency compared to
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native. The single core per GPU deployment reported better-than native perfor-

mance at 100% native. This is likely due to caching effects, but further investigation

is needed to fully identify this occurrence.

Another common LAMMPS algorithm, the Rhodopsin protein in solvated lipid

bilayer benchmark (Rhodo), was also run with results given in Figure 6.3. As with

the LJ runs, we see the multi-core to GPU configuration resulting in higher computa-

tional performance for the larger problem sizes compared to the single core per GPU

configuration, as expected.

Figure 6.3 LAMMPS RHODO Performance

Again, the overhead of the virtualized configuration remains low across all con-

figurations and problem sizes, with an average 96.4% efficiency compared to native.

Interestingly enough, we also see the performance gap decrease as the problem size
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increases, with the 512k problem size in yielding 99.3% of native performance. This

finding leads us to extrapolate that a virtualized MPI+CUDA implementation would

scale to a larger computational resource with similar success.

6.7.2 HOOMD

In Figure 6.4 we show the performance of a Lennard-Jones liquid simulation with 256K

particles running under HOOMD. HOOMD includes support for CUDA-aware MPI

implementations via GPUDirect. The MVAPICH 2.0 GDR implementation enables

a further optimization by supporting RDMA for GPUDirect. From Figure 6.4 we

can see that HOOMD simulations, both with and without GPUDirect, perform very

near-native. The GPUDirect results at 4 nodes achieve 98.5% of the base system’s

performance. The non-GPUDirect results achieve 98.4% efficiency at 4 nodes. These

results indicate the virtualized HPC environment is able to support such complex

workloads. While the effective testbed size is relatively small, it indicates that such

workloads may scale equally well to hundreds or thousands of nodes.

6.8 Discussion

From the results, we see the potential for running HPC applications in a virtualized

environment using GPUs and InfiniBand interconnect fabric. Across all LAMMPS

runs with ranging core configurations, we found only a 1.9% overhead between the

KVM virtualized environment and native. For HOOMD, we found a similar 1.5%

overhead, both with and without GPU Direct. These results go against conventional

wisdom that HPC workloads do not work in VMs. In fact ,we show two N-Body

type simulations programmed in an MPI+CUDA implementation perform at roughly

near-native performance in tuned KVM virtual machines.
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Figure 6.4 HOOMD LJ Performance with 256k Simulation

With HOOMD, we see how GPUDirect RDMA shows a clear advantage over

the non-GPUDirect implementation, achieving a 9% performance boost in both the

native a virtualized experiments. While GPUDirect’s performance impact has been

well evaluated previously [224], it is the author’s belief that this manuscript represents

the first time GPUDirect has has been utilized in a virtualized environment.

Another interesting finding of running LAMMPS and HOOMD in a virtualized

environment is as workload scales from a single node to 32 cores, the overhead does

not increase. These results lend credence to the notion that this solution would also

work for a much larger deployment. Specifically, it would be possible to expand

such computational problems to a larger deployment in FutureGrid [231], Chameleon

Cloud [232], or even the planned NSF Comet machine at SDSC, scheduled to provide
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up to 2 Petaflops of computational power. Effectively, these results help support

the theory that a majority of HPC computations can be supported in virtualized

environment with minimal overhead.

6.9 Chapter Summary

With the advent of cloud infrastructure, the ability to run large-scale parallel sci-

entific applications has become possible but limited due to both performance and

hardware availability concerns. In this work we show that advanced HPC-oriented

hardware such as the latest Nvidia GPUs and InfiniBand fabric are now available

within a virtualized infrastructure. Our results find MPI + CUDA applications such

as molecular dynamics simulations run at near-native performance compared to tra-

ditional non-virtualized HPC infrastructure, with just an averaged 1.9% and 1.5%

overhead for LAMMPS and HOOMD, respectively. Moving forward, we show the

utility of GPUDirect RDMA for the first time in a cloud environment with HOOMD.

Effectively, we look to pave the way for large-scale virtualized cloud Infrastructure

to support a wide array of advanced scientific computation commonly found running

on many supercomputers today. Our efforts leverage these technologies and provide

them in an open source Infrastructure-as-a-Service framework using OpenStack.



Chapter 7

Virtualization advancements to

support HPC applications

Throughout this dissertation, the question of whether cloud infrastructure, using vir-

tualization, can support mid-tier scientific computation has been investigated. These

scientific problems are tightly coupled, distributed memory computations, and in the

past have failed to perform well on traditional public and private cloud systems. It is

our estimate that this is due to a number of reasons, including hypervisor design and

implementation, lack of hardware advances, VM placement inefficiencies, and the lack

of hardware availability in virtualization. In Chapter 3, we discussed the base case

with off-the-shelf single node configurations. This showed that hypervisor selection

matters a great deal in performance and reliability, and that some applications can

perform well on a single node. This study expressly avoided multi-node configurations

due to the previously documented issues with Ethernet interconnects in virtualized

environments [48].

With the rise of GPUs in HPC, Chapter 4 offers a first solution in Xen to GPU

passthrough as an alternative to either no GPU availability or providing GPUs ac-

141
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cess across a network by virtualizing the front end API libraries. It was found that

our method of GPU passthrough incurred some overhead with Xen on older x86

hardware when transferring data across the PCI-Express bus, but provided the best

option at the time. As methods were derived for other hypervisors such as KVM

and VMWare, we looked to evaluate all options for a multitude of computational

problems, including both CUDA and OpenCL codes in Chapter 5. This research

found that newer hardware without the QPI interconnect between the socket and the

PCI-Express bus (Sandy-Bridge and up CPUs) can yield near-native performance for

a range of applications. Specifically, it was found that the KVM hypervisor was the

most performant and stable hypervisor, and LXC, a container option, also performed

very well (although with security limitations).

Chapter 6 combines the lessons learned from KVM tuning, GPU passthrough, and

intersects our other related efforts in inserting a high performance interconnect, in this

particular case InfiniBand [208], into a virtualized cluster environment. Specifically,

a test-bed was created across 4 nodes, each with Kepler GPUs and FDR InfiniBand

passed through to VMs spanning the entire CPU set. InfiniBand was specifically set

up to utilize SR-IOV, which allows for the multiplexing of the ConnectX-3 VPI card

to the guest instances. From here, two Molecular Dynamics simulations were run

both in this tuned KVM configuration and on bare-metal. The results indicate that

overhead in virtualization is on the order of 1-2% for these HPC applications given a

few different configurations and problem sizes.

From this work, a number of observations start to emerge. First, that virtual-

ization may indeed be able to support HPC workloads given the advances. While

the scale of the experiments of the virtual cluster is small at only a few dozen cores,

the performance trends from scaling up HOOMD-blue in Figure 6.4 look to be very

closely correlated between the virtualized and bare metal experiments. While this ap-
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plication, as well as other HPC applications using similar distributed memory models,

all need to be replicated at a much higher scale, we have shown there are currently

no limitations in doing so, aside from the availability of the infrastructure itself. It

is our hope that with this knowledge, future test-beds can be assembled at a larger

scale to further move this effort further forward.

Another observation is that the KVM hypervisor continually proves to be the

most performance-oriented hypervisor studied in this dissertation. While this is a

bit of surprise given it is a Type 2 hypervisor, which introduces additional potential

for host noise and overhead, it nonetheless showed the smallest degree of variation

between results, both in Chapter 3 experiments and again in Chapter 5. KVM also

offers the best performance of hypervisors overall, and with many workloads, such

as seen in Figure 5.2, where KVM often performs within 0.5% of native in SHOC

benchmarks. Furthermore, KVM has support for CPU pinning, NUMA socket bind-

ing, PCI passthrough and SR-IOV, as well as transparent huge pages and advanced

migration mechanisms (described in more detail later in this Chapter). While it is

possible that other specialized hypervisors, such as Palacios [31] (not studied), could

also perform similarly, the KVM hypervisor has a large community support, industry

backing, and production-level integration into the latest private infrastructure, such

as OpenStack.

A 3rd observation regarding high performance virtual clusters is that the SR-IOV

InfiniBand integration described in Chapter 6 provides a drastic shift in the outlook

for distributed memory applications. While SR-IOV InfiniBand does have a 15-30%

overhead in latency compared to native implementations for small messages [208],

this is still an order of magnitude better than current Ethernet options available from

cloud providers such as Amazon. Furthermore, bandwidth of InfiniBand solutions

in virtual clusters looks to be near-native, also surpassing current Ethernet deploy-



144

ments. It is also possible for other interconnects, such as Intel’s emerging Omni-Path

interconnect, to demonstrate similar or better results in a virtualized ecosystem, and

future experimentation should try to leverage other interconnection options if the

hardware supports it.

While these now smaller and better defined performance differences may not be

satisfactory for extreme-scale distributed memory applications, we expect a large

amount of users with mid-tier scientific computational problems to be accepting of

these small overheads when considering the value added by working in a virtualized

environment. Armed with this knowledge, we find that the outlook for high perfor-

mance virtual clusters to be promising.

However, next steps are needed to demonstrate the value of virtulaization, provid-

ing a more rich user experience while simultaneously further enhancing performance

for many users. These value-added techniques, such as efficient tuning, scheduling,

VM cloning, and compute-migration may in fact help enable new classes of scientific

computations, not only within HPC applications, but also with big data platform ser-

vices. We specifically focus on leveraging the KVM hypervisor in conjunction with a

high speed, low latency interconnect to provide new features that otherwise have yet

to be made possible. While much of this work is under construction, this nonetheless

gives a glimpse at some future directions in high performance virtualization.

In the rest of this chapter, we look to review the methods utilized in this disser-

tation regarding virtualization, then identify research, design, and future implemen-

tation of advanced virtualization techniques to enable a new class of infrastructure

with added performance and features that have yet to be realized. We focus on guest

memory optimizations, live migration deployments, and integration with an RDMA-

enabled interconnect for novel VM migration and cloning. It may be possible for

these advancements, once implemented, to have an impact not only on cloud infras-
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tructure, but also on dedicated environments, which support big data applications or

other distributed memory applications that focus on both usability and performance.

7.1 PCI Passthrough

As cloud computing’s reach into distributed systems increases, so does the require-

ment of virtualization to perform at near-native speeds and to take full advantage

of the underlying hardware. While this does equate to fast and efficient hypervisors,

it also alludes to the effective utilization of devices beyond CPU and memory. Such

devices can vary widely and include hardware such as graphics processing units, net-

working adapters, I/O hubs, web cameras, secondary and tertiary storage, to name a

few. Within virtualization, oftentimes it is necessary to emulate these devices, where

doing so provides a virtual hardware set that the guest VM can interact with us-

ing a specialized driver whereby the hypervisor translates requests to the underlying

physical hardware.

Emulated devices are often the most common method for device interaction with

VMs, and can be a critical component in virtualization. Emulated drivers create

a feature set in software, where all I/O requests are intercepted by the hypervisor

and emulated on the real underlying hardware. Often times, the emulated hardware

provided to the guest OS within a VM is older or more generalized than the given

architecture set. This is due to the fact that the effort for constructing emulated

devices is large, and the emulation of older hardware often helps with overall com-

patibility. However, this emulation process can often be slow and lead to significant

overhead when utilizing the underlying hardware, not to mention the lack of newer

features provided by more recent hardware.

Para-virtualized devices are specially tuned device software implementations of
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hardware where para-virtualized device drivers are installed in a guest VM that op-

erate on a particular I/O API. While this leads to improvements in performance over

emulation methods, it requires the guest to be modified in order to communicate ef-

fectively with the hypervisor. With Xen, the entire guest OS can be para-virtualized,

whereas in other solutions such as KVM using virtio, device drivers can be para-

virtualized. The performance enhancement of para-virtualization is derived from the

removal of the hardware compatibility that must be in place for emulated drivers.

At the cost of compatibility, it para-virtualization uses a tuned and customized API

specific to the hardware at hand as an alternative.

A recent method for guest device interaction arrives out of the use of direct I/O

device passthrough, whereby the hypervisor (and controlling host OS) relinquish the

entire control of a given device to the guest VM. This allows for the guest to have

direct interaction with the physical hardware, removing the need for complicated

para-virtualized methods or slow emulated hardware. As the Peripheral Component

Interconnect (PCI) bus and the updated PCI-Express bus are the most common

hardware interfaces for devices on modern CPU architectures, this method often

viewed as PCI passthrough.

An I/O Memory Management Unit is responsible for managing the connection

of direct memory access (DMA) capable hardware along an I/O bus to main mem-

ory. Just like a CPU MMU, the I/O MMU maps device-visible memory addresses

to physical memory addresses. However, utilizing DMA-capable drivers within a

guest directly without I/O MMU virtualization technology would result in the guest

attempting to perform DMA operations on incorrect guest physical addresses that

would not map to proper machine addresses. In order to safely and securely en-

able PCI passthrough in virtualized settings, such CPU architecture mechanisms are

needed.
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As the popularity of virtualization increased, CPU architectures have met this de-

mand with I/O MMU virtualization extensions. Intel and AMD have introduced VT-

d and AMD-Vi (also named IOMMU) processor support for such operations. These

extensions provide the necessary mechanisms to isolate and restrict I/O devices spe-

cific to their owned partition space [233] through the use of I/O device assignment,

DMA remapping, interrupt remapping, interrupt posting, and error reporting. DMA

remapping ensures device DMAs not only find correct virtual memory addresses, but

also act on only those memory addresses that are allowed, which provides the neces-

sary VM isolation. Thus, hardware DMA remapping enables direct device assignment

to VMs without device-specific knowledge in the hypervisor.

Using these IOMMU virtualization techniques for direct I/O passthrough with

various hypervisors depends greatly on the hypervisor at hand. First, the BIOS must

have IOMMU virtualization enabled and the OS kernel must initialize such hardware

extensions at boot. This initialization can be done with the intel_iommu=on Linux

kernel parameter for all Intel VT-d enabled architectures. With Xen, a specialized

device driver called xen-pciback is used to ”grab” the PCIE device on boot to

keep the device state uninitialized and ready to be passed through to a VM. This

is described in more detail in Section 4. With KVM, a similar method is utilized,

whereby either pci-stub or vfio-pci (the former for pre-3.9 Linux kernels, the latter

for current Linux systems) is utilized to bind to the PCI device on boot before the

kernel or other add-on modules attempt to initiate the device. Either method is built

into the kernel and any device drivers must be blacklisted so as to ensure proper

ordering. vfio-pci, similar to xen-pciback, takes the PCI device ID as a parameter

to determine which device to bind to ( this can be found from the output of lspci),

and holds all device initiation until the device is handed to a booting guest.

Generally, PCI passthrough can be utilized for most PCI devices, however GPUs
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devices can require some added configuration and considerations. This is largely due

to the fact that GPUs are VGA devices, which represent a special case. Specifically,

VGA devices to be used for PCI passthrough must not be the primary VGA displays.

Second, the VGA BIOS has to be loaded by the guest VM before actual BIOS boot.

This can be done using a specific emulated BIOS, which with KVM can be either

a modified SeaBIOS or a EUFI-enabled Open Virtual Machine Firmware (OVMF)

configuration. For Nvidia devices, only approved devices (often Tesla and QUADRO

adapters) can be used for GPU passthrough due to proprietary VGA BIOS config-

urations. Of further note, some GPU devices come with attached PCI Bridges due

to packaging and compatability reasons. This includes add-on GPU servers, such as

the Nvidia S2050, or dual-GPU units, such as the Nvidia Tesla K80 GPU. Other de-

vices may be packaged with such PCI Bridges for including onboard sound controllers

too. However, these PCI Bridges handle PCIE connections to the devices and yet

are often in separate IOMMU domains, which causes GPU passthrough to fail due

to Access Controller Services (ACS) errors in the IOMMU hardware. While there

are new kernel patches coming available to override the ACS mechanisms with KVM,

this obviously provides a significant security vulnerability that may be problematic

for deployments outside of the academic realm.

In Chapters 5 and 6, KVM’s PCI passthrough is detailed for use with Nvidia

GPUs, where we find that this method can, with NUMA placement of VMs and

newer hardware on Sandy Bridge architectures, perform at near-native speeds. With-

out GPU passthrough, GPU usage within a virtualized domain was either not possible,

or required the use of front-end API solutions. As discussed in Section 4.3 of this

dissertation, such remote API methods are suboptimal due to performance consid-

erations and the lack of full-feature support. Some of the best methods developed

thus far for utilizing remote GPUs in a virtualized architecture come from the rCUDA
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Figure 7.1 Comparison of GPU Passthrough in Xen to rCUDA across var-
ious interconnects

project [56], which sends CUDA commands across an interconnect to a remote device.

However, this approach is fundamentally limited by the interconnect itself. Using data

from the rCUDA [234] project, we compare GPU passthrough performance of both

C2075 and K20 cards in Xen to various interconnects reliant on rCUDA. In Figure

7.1, it is illustrated that even in the best case with high speed InfiniBand, rCUDA

is still limited by the interconnect fabric, which can only operate as fast as the same

PCIE bus to which the GPU is attached. In reality, even the top-end IB adapters are

not capable of saturating full 16x PCIE lanes. Furthermore, all GPU data transfers

saturate the interconnect, leaving no available bandwidth for communication opera-

tions as found with many distributed memory HPC applications. Sockets and shared

memory approaches found in API-remoting methods, such as gVirtus [176], suffer

even worse performance impacts due to the necessity to buffer memory, as seen in
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related research [235]. In summary, these front-end API methods are suboptimal

in comparison to GPU passthrough, as the transfer time between CPU and GPU

memory often can have a drastic impact on overall application performance.

While PCI passthrough works well for providing dedicated accelerator resources

such as GPUs, a sharing model of PCI passthrough does not hold. This is because

PCI passthrough is a simple 1-to-1 relationship between a guest and PCI device.

While it is possible to have a 1-to-many relationship (e.g. a single VM with multiple

GPUs connected), there is no way to share a single device across multiple guests or

the guest and the host. While this is not an issue and in fact a desirable effect with

GPUs (GPUs are not designed for multi-application sharing and such a solution would

largely lead to significant inefficiencies), high speed networking adapters attached on

a PCIE bus do have a necessity to be shared in virtualized environments.

Figure 7.2 Efficient VM networking comparison [208]
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With this requirement for sharing PCI networking adapters, a few options exist

and are illustrated in Figure 7.2. The first option is to use software multiplexing that

sorts inbound and outbound traffic and forwards packets to queues set up for each

VM as necessary, as implemented with Virtual Machine Device Queues (VMDq) [236].

While this solution of software queues has a workable Ethernet solution and allows

VMs to share a PCI based NIC, there are performance limitations. This is due to the

large amount of hypervisor involvement necessary in sorting the queues, as well as the

fact that all data is buffered between the hypervisor and guest memory. The next and

simplest option is simply to add more PCI adapters to a given server. While multiple

PCI passthrough does work, there is a fundamental limitation to this method, as the

number of cores and NUMA sockets is expanding faster than the number of PCI lanes

available per socket.

With these limitations in mind, Single Root I/O Virtualization (SR-IOV) has

been developed. This standardization effectively enables multiplexing of a PCI based

communications adapter (typically Ethernet but also InfiniBand adapters) within the

hardware. With SR-IOV, multiple Virtual Functions (VFs) are created and configured

in hardware. Each VF has a dedicated resource pool with specific Tx and Rx queues,

along with other lightweight PCI resources such as device registers, base address

registers, and hardware descriptors. Adapters also maintain a Physical Function (PF),

which is a fully-implemented PCI device that acts not only as a standard controller

card, but also as a control mechanism for the VFs (given firmware adjustments).

These mechanisms are illustrated in Figure 7.3 provided by Intel [237].

To use SR-IOV within a virtualized setting, a VF is given to a guest VM on

boot. This happens using the PCI passthrough mechanisms, except the specific VF

PCI identifier is used instead of the actual adapter card. Within the guest, the VM

loads a specific driver (usually supplied by the hardware vendor) that is able to probe
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Figure 7.3 SR-IOV Architecture with Virtual Functions, PCI SIG [237]

and detect VF functionality. This driver fills in the descriptors and sets up memory

allocations for DMA directly within the guest OS, effectively creating dedicated data

queues within the VM.

When a datum (could be a packet or a message, depending on the adapter type)

arrives at the physical card, it is sent through a hardware switch, which places the

data into a pool specific to the target VF. The data is then immediately DMAed to

the guest based on the preallocated memory buffers. This is possible through the use

of VT-d mechanisms which enable the translation between device addresses and the

guest virtual addresses, bypassing the need for hypervisor memory translation. This

entire process happens without any CPU interaction, other than occasional interrupts

to provide notification of completed data work queues. This is essentially enabling

direct hardware DMA transfer to a guest without any hypervisor involvement.

Using modern 10GbE and InfiniBand adapters, SR-IOV can easily configurable to



7.2 Memory Page Table Optimizations 153

have up to 64 VFs, enabling a great deal of scalability within a given host. Without

any hypervisor interaction or context switching, bandwidth and latency can start to

approach near-native levels, which was previously not possible with other methods.

Looking at InfiniBand, research has found that Mellanox adapters with SR-IOV in

KVM can achieve near-native bandwidth while incurring only a slight 15-30% over-

head on small (1 byte) messages [207,208]. This latency overhead is due to the extra

hardware switching that has to happen between the VFs in the adapter itself, as well

as the IOMMU involvement.

7.2 Memory Page Table Optimizations

As we have seen both in Chapter 3, as well as in other supported literature [48],

virtualization of memory structures is a point of contention and potential overhead.

This is often due to the extensive effort a hypervisor has to perform in order to

translate memory addresses from guest-virtual addresses to host-virtual addresses,

and then again to machine-physical addresses. Whle this is a necessary function of

virtualization and a hypervisor, there are various methods developed both in hardware

and software to provide such address translation functionality, each with their own

advantages and disadvantages.

Modern computing systems provide a mapping of virtual memory address space to

physical machine memory. This memory management technique allows processes to

have independent virual address spaces, which provides security and process isolation.

Today’s x86 CPUs, as well as many other CPU architectures, have a hardware memory

management unit (MMU) that provides translation abilities within hardware that

often have page table entries (PTE) for storing virtual to machine memory mappings,

and a translation lookaside buffer (TLB) that provides an effective cache for the most
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commonly used virtual addresses. Specifically, x86 page tables are walked iteratively

in hardware with their layout specified by the x86 hardware specification where the

CR3 register holds the page table base and a 4-level radix tree structure represents

the page table hierarchy for 4KB pages.

With virtual machines, a 2-level address translation is needed where guest virtual

memory is translated to guest physical memory and then again to physical machine

memory. This direct two-level memory mapping is classically handled by the hyper-

visor, as the guest cannot access machine memory directly. The hypervisor functions

in software without hardware support, so it can be expensive for it to update and

maintain guest memory translation. With x86 virtualization, memory virtualization

is handled using shadow page tables [238]. Shadow page tables eliminate the need

for emulation of physical memory inside the VM by creating a page table mapping

from guest virtual to machine memory. However, these page tables are not walkable

by hardware like a TLB and, as such, guest OS page tables require updating of the

shadow page table by the hypervisor. This can be costly not only in the additional

management, but also by the cost of VMexit and VMentry calls, which are known to

add thousands of CPU cycles of overhead for each call. If there is a memory bound

application, continual shadow page table management by the hyperivsor can add a

notable overhead, impacting overall application performance.

Recently, Intel and AMD have implemented Extended Page Tables (EPT) and

nested paging (NPT), respectively, to cope with the issues of shadow page tables.

With nested paging, a guest page table converts guest virtual addresses to get phys-

ical addresses, and another second level table converts guest physical addresses to

machine addresses. Each address translation in guest mode requires a 2D page walk

where the guest page table is traversed and each guest physical address requires a

second level page table walk to obtain the machine address. This support means the
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TLB hardware is able to keep track of both guest pages and hypervisor pages concur-

rently, effectively removing the need for shadow page tables and resulting hypervisor

intervention entirely. Nested paging provides a simple design with no necessary hy-

pervisor traps leading to less overal overhead and swapping, less TLB flushes, and a

reduced memory footprint.

The downside of nested paging for virtual machines occurs when there is a TLB

miss. A TLB miss is when a requested page is not in the TLB, and in such cases

the cost of a TLB miss is substantially higher in a guest VM. Natively, a TLB miss

requires a walk of 4 address entries for 4KB pages. However, in a guest, each of those

4 address entires require another second level walk to find the system physical address

for each guest page entry, plus a final nested page walk to translate the final guest

physical address to a usable machine address.

The TLB miss can be illustrated in the efforts in Figure 7.4 from Bhargava et.

al [239], whereby we can see the steps for handling a TLB miss on an AMD CPU

in both native (left) and virtualized (right) modes. With 2D nested or extended

page tabling given in Figure 7.4, each gLn entry cannot be directly read using a guest

physical address, and, as such, the nested page table walk is necessary to translate the

guest physical address before the entry can be read. This has to happen recursively

for each level, and in this example with 4KB pages, that includes 4 levels. Lastly, a

final nested page walk is required to translate the guest physical address of the data

to a physical machine address.

The cost of a 2D page table can be evaluated in the number of references, and

is easily calculated. If a guest page walk has n levels and a nested page walk has m

levels, the virtualized 2D walk has a cost calculated by:

nm + n + m
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Figure 7.4 Native TLB miss walk compared with 2D virtualized TLB miss
walk from [239]. On the left illustrates a native page table walk. On the
right illustrates the lengthy 2D nested page table walk for a VM.

For 4KB pages, this requires 24 references in a virtual TLB miss (4 page waks

and 4 nested page walks), compared to a cost of just 4 references for a single TLB

walk natively, as indicated in Figure 7.4. While many applications illustrate this TLB

miss cost is much less than that of managing shadow page tables, it can still lead to

a significant gap in performance between non-virtualized applications, especially as

VM count or an application’s memory footprint increases.

One potential way to decrease the chance of a TLB miss (and therefore the cost

of a miss) is to use a larger page size. By default, x86 hardware uses 4KB pages sizes,

but newer hardware can support 2M and 1G page sizes as well, effectively named

transparent huge pages or THP. Using the KVM hypervisor with transparent huge

pages enabled, we can create guest VMs backed entirely by 2M huge pages [201]. We

can also enable transparent huge page support within the guest, as well, to have the

entire guest OS (including kernel and modules) backed by 2M pages.

The result of THP-enabled guest VMs, along with associated THP in the host to
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back the guest huge pages can be significant. With huge pages on Intel x86 CPUs

with EPT, there exists an entirely separate TLB for huge pages. This will naturally

alleviate TLB pressure and therefore reduce TLB contention between guest and host

operating systems (whereby the host is still utilizing 4KB paging for kernel space).

Most importantly, the TLB reach is increased, because 2MB pages cover a larger

addressable memory space. The size of the page tables themselves also decreases

with the use of huge pages.

If huge pages are used in the host, there are then 3 levels of a page table walk,

and if huge pages are used in the guest, there is also only a nested page walk of 3

levels. Using the formula, if THP is enabled in the host, there is a TLB miss cost

of 19 references. If huge page support is enabled in both the guest and the host,

this drops to only 15 references. While this is still more than the native miss cost

of 4 or 3 references (for 4KB and 2MB pages, respectively), huge pages provide a

37.5% reduction in the TLB miss cost compared to 4KB pages, still significantly

better than the VMexit/entry costs associated with shadow page tables. While it

would be possible to only enable huge pages within the guest, this would represent a

suboptimal configuration. Here, 2MB pages will be splintered into 4KB pages, thus

negating most performance benefits [240]. Most importantly, the overall reduction of

the number of TLB misses due to the increased TLB reach with huge pages can have

a major impact on application performance.

To evaluate the effect of 2M transparent huge pages on guest performance, we

leverage the same KVM setup in Chapter 5 on the Bespin hardware. Specifically,

THP is enabled both in the host as well as the guest OS kernels, and the same

LibSVM application using GPUs is re-run. The libSVM GPU application can have

significant memory requirements, as large chunks of the SVM datasets are stored in

CPU memory and transferred in a sudo-random order to and from GPU memory,



7.2 Memory Page Table Optimizations 158

making it an ideal application to use for evaluating THP.
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Figure 7.5 Transparent Huge Pages with KVM

The results of running libSVM in a THP-enabled VM, a VM with no THP, and

natively without virtualization are all outlined in Figure 7.5. Comparing first just

the KVM results without THP to the native solution, we can see the impact of THP

on the overall application runtime, especially at larger problem sizes (6000 training

sets). However, when TLB is enabled in the guest and host, we actually see the

KVM VM solution outperform the native solution. This is because guest privileged

OS memory used to buffer to/from GPU memory is backed by 2MB pages in kernel

space, instead of the normal 4k pages, as in the native solution (which has to use 4KB

pages). This means data transfers can take advantage of a larger TLB reach, resulting
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in improved performance. While this is likely a special case for THP usage with the

libSVM application due to large linear memory access patterns, the fact that a VM

can even occasionally outperform a native runtime is a noteworthy accomplishment.

This also underscores the need for careful tuning and best-practices for hypervisors

when supporting advanced scientific tasks where huge page support in both the guest

and host environments as a key aspect, especially as the use of big data scientific

applications increases.

7.3 Time in Virtual Machines

The measurement of time has been a longstanding consideration within Distributed

Systems for many years. Time synchronization has often been at the forefront of that

effort, with Lamport clocks [241] often used to illustrate a classic example of how

critically important time is within such large scale systems. However, even simply

keeping track of time and receiving fine grained resolution can often be difficult.

Within modern CPUs, time is measured a few different ways, each with their

own advantages and disadvantages. Classically, time was measured in clock cycles for

small operations typically within a OS kernel using a real-time clock (RTC) where an

operation’s time is measured by simply reading the number of clock cycles before and

after an operation. This worked well for timing tasks where actual wall clock time

was not needed, but simply a metric to compare operation length between imple-

mentations. However, with CPU improvements came dynamic voltage and frequency

scaling as well as CPU sleep states, which could and often would confound clock cycle

measurements. If a CPU entered a sleep state, it was not guaranteed that the cycle

counter would continue to be updated.

Recent x86 CPUs now use a Time Stamp Counter (TSC), first introduced with
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the Pentium processor. The TSC is incremented at a fixed clock rate, independent

of actual frequency and is not halted. The TSC essentially provides time sensitive

information within hardware, rather than software, leading to fine granularity. Within

Linux, if constant_tsc and nonstop_tsc are specified, the TSC can generally be

relied upon for accurate measurements independent of frequency or sleep states. In

such a case, the TSC can be essentially utilized as a clock source. Reading of the TSC

is done through the rdtsc instruction, itself generally taking about 24 clock cycles

to complete, meaning it is a relatively fine-grained operation for time measurement.

There is also a High Precision Event Timer (HPET) that is used in some x86

systems for the past decade. This provides nanosecond granularity and utilizes mul-

tiple hardware sources to provide an accurate time measurement. As such, HPET

was a desirable tool for time measurement before an invariant TSC was implemented.

Furthermore, HPET is synchronous across multiple cores, whereas a TSC was not

until very recently. Disappointingly, recent many-core architectures such as the Intel

Knights Landing standalone CPUs still do not provide a core synchronized TSC, and

as such the HPET may be more desirable to use for multi-core measurements. How-

ever, the overhead for HPET can be much larger than TSC, and implementations

vary significantly on the performance, leading to some problems for very fine-grained

measurements.

While clock timing and measurements on bare-metal OS and services is now rel-

atively straightforward, virtualized time is not always as straightforward. This is

because as the hypervisor virtualizes a given CPU, it also has to provide some virtu-

alized notion of such time counters and clocks to the virtual machines as well. Until

recently, many hypervisors virtualized such timing systems in many different ways.

For instance, VMWare provides a virtual TSC by default. This virtual TSC

was particularly useful when multi-core TSC were not reliable and there was a need
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for timing within VMWare VMs. However, there are a number of problems with

VMWare’s virtual TSC. The VMWare hypervisor has to perform work to virtualize

the TSC for each read. For fine-grained measurements that are in close proximity,

this can cause a backlog in the hypervisor, and the TSC can fall behind real time.

In effect, for sufficiently small measurements VMWare can report better than native

performance when benchmarking. However, this is actually an artifact of VMWare’s

virtual TSC, not something that is consistent with real time and as such VMWare

cannot be relied upon for fine-grained timing experiments. This problem has lead

to the removal for VMWare results throughout this manuscript as VMWare. Very

recently, the use of x86 invariant TSC by other hypervisors has lead VMWare to try

to address the issues with its virtual TSC by providing a mechanism within ESXi to

forcibly disable the virtual TSC. However, the results reported within this dissertation

have not looked to reevaluate to confirm this method in fact is now reliable.

While VMWare’s virtual TSC is problematic, other hypervisors such as KVM have

to also wrangle the same situation that lead to VMWare’s design of the virtual TSC.

However KVM takes a much more simple approach of providing the TSC directly to

the guest VM. Intel’s VMX instruction set provides conditional trapping of RDTSC,

RDMSR, WRMSR and RDTSCP instructions, which is enough for full virtualization

of TSC in any manner. VMX also allows for a offset field, to allow for the guest

to synchronize TSC of multiple vCPUs. These mechanisms allow KVM to create a

simple mapping between guest and host TSC, even if the TSC can be written by either.

However as noted earlier with real-time clocks and TSCs on bare metal, the TSCs can

get out of sync when power-saving modes are applied, such as with frequency states.

As such, KVM best practices include the disabling of all power-saving features to

ensure the TSC remains constant and reliable. With constant_tsc utilized, this

situation is no longer a problem in newer CPU architectures. For all experiments in
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this dissertation, power saving modes were disabled in the host and guest to ensure

no invalid results.

7.4 Live Migration Mechanisms

Migration of VMs represents one of the fundamental advantages to virtualization, and

also one of the greatest challenges to efficiency. With VM migration, the complete

VM state is copied from a source to an unallocated destination host, where disk,

memory, and network connections are kept intact. For disk continuity, a distributed

and/or shared filesystem is utilized, most commonly but not exclusively NFS, where

both the source and destination hosts have access to the VM disk. Network continuity

is preserved as long as the destination guest is within the same LAN and generates

an unsolicited ARP reply to maintain the original IP after migration. VM vCPU

states and machine states are recorded from the source and are quickly sent to the

destination host when the VM is paused. For live migration, the source VM is paused

only after all state and memory contents are copied to the destination. The last of the

dirtied memory pages are copied over, and the newly formed destination VM is then

un-paused. This pause and transfer time represents the entirety of a VM downtime

during live migration, and is often at or under 100 milliseconds across commodity

Ethernet networks (given a VM with low memory utilization).

The memory transfer stages are often the main performance consideration for

overhead during live migration. This is not only due to the potentially large amount

of memory to be sent across the network, but also the veracity at which the memory is

changed. This is defined directly by the amount of main memory allocated (or in use)

by the source VM. However, as a VM’s memory is sent, the VM is still running and

therefor memory pages can be dirtied, creating the need for any written page to be
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retransmitted. Given a small network and memory bound processes running within

a VM, this can be an infinitely long process of page dirtying. Many live migration

strategies provide an iterative timeout mechanism to avoid this infinite state, but this

will lead to increased downtime during migration.

The copying of memory pages for live migration can take multiple implementa-

tions. Three common options are summarized below:

• Pre-copy Migration - All memory pages are transmitted to the destination

before the VM is paused. The hypervisor will note and track all dirtied memory

pages, and retransmit those pages in iterative rounds. The rounds end when

either no dirtied pages exist or a max iteration count has been reached. The

VM state is then transmitted and resumed on the destination. This method

was the first live migration technique used in Clark et al [242] and is by far the

most common.

• Post-copy Migration - The VM state is paused and sent to the destination

hypervisor, and immediately resumed. If the new destination VM generates

a page fault, the VM is paused, and faulted pages are transmitted across the

network on demand from the source and the VM resumed. This methodology

is proposed for use in the Xen hypervisor by Hines et al [243].

• Hybrid-copy Migration - Provides a compromise solution to memory paging.

First, a single copy of the VM memory pages, or a subset of known-necessary

memory pages, are sent to the destination. Then the source VM is paused,

its VM state sent to the destination, and resumed on the destination. Known

dirtied source pages, or missing pages, are then copied to the destination upon

a triggered page fault utilizing the same mechanism as post-copy migration. An

example of hybrid migration can be found via Lu et al [244].
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While pre-copy migration is the traditional and most used live migration tech-

nique, there will soon be opportunities to implement other migration techniques to

advance the mobility of distributed computing in high performance virtual clusters

with virtualization.

7.4.1 RDMA-enabled VM Migration

Currently, most live migration in production environments occurs over TCP/IP con-

nections due to the prevalence of commodity Ethernet connections within cloud in-

frastructure. However, even if RDMA-capable interconnects are available in such

infrastructure as described with InfiniBand in Chapter 6, live migration still usu-

ally occurs over TCP/IP. For the case of InfiniBand, this is via IP over InfiniBand

(IPoIB) [245], which can be an inefficient use of the interconnect bandwidth and add

extra latency [246].

The time it takes to migrate the memory contents from a source to destination

VM can be significantly decreased by using an RDMA based mechanisms. Huang et

al first provided a proposed pre-copy method for RDMA-based migration using the

Xen hypervisor [247]. Specifically, they found an 80% decrease in migration time with

RDMAwrite operations. This speedup is largely due to the removal of overhead nec-

essary for processing TCP/IP communications, largely in CPU utilization for copying

buffers, packet processing, and the included context switch overhead when competing

for resources in a CPU-bound application (which are common in HPC environments).

The live migration algorithm proposed in [247] uses the standard pre-copy mecha-

nism that sends the entire memory contents across the network as RDMA operations,

then iteratively copies dirtied pages before switching the running states. As discussed

in the previous section, a post-copy migration strategy may have benefits for quick

VM migration in high performance virtual clusters, or even for VM cloning as de-
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scribed later in Section 7.5. Furthermore, efforts in Chapter 3 have found that the

Xen hypervisor is not best suited for HPC workloads. As such, there is a need to

redefine the use of RDMA for VM migration using a hybrid post-copy mechanism

in a high performance hypervisor. This post-copy migration mechanism is provided

defined:

• Transfer initial CPU state, registers

• Start the page table pages translation process: MFN to PFN and use copy-base

approach

• Concurrently, allocate remote memory on destination VM.

• Set up other machine state settings in destination

• Start destination VM, pause source VM.

• Initiate RDMAwrite of entire memory contents from source to destination.

• As page faults occur in destination VM, catch faults and perform RDMAread

requesting pages.

Currently efforts are underway to provide post-copy live migration in KVM/QEMU,

using the migrate_set_capability x-postcopy-ram on mode within KVM [248].

This method uses the Linux userfaultfd kernel mechanisms from a kernel 4.3 or newer.

At the start, all memory blocks are registered as userfaultfd, so all faults cause the

running thread to pause. In kernel space, the missing page is requested from the

sender, which is prioritized over other pages being sent and is returned and mapped

to the destination guest memory space and the thread or process is un-paused. This

mechanism operates asynchronously, so that multiple outstanding page faults will not
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stop other executables within the VM. The xpostcopy-ram extension has been iden-

tified as an opportune place to implement an RDMA based implementation within

KVM.

To provide RDMA functionality, the InfiniBand interconnect could first be used

as a proof-of-concept. This choice is due to InfiniBand’s rise in popularity, increased

prevalence in virtualized systems with SR-IOV, as noted in Chapter 6, and RMDA

functionality. However, other interconnect options exist that may be better suited for

enhanced functionality and performance, such as Intel’s new Omnipath [249], or an

Ethernet solution such as RoCE [250], to name a few. While RDMA can be managed

through the kernel level, it is best used in user-level APIs, such as MPI, or in the

case of InfiniBand, ibVerbs. However, it may be ideal to select a interconnect-agnostic

middleware for RDMA implementations to add future support for other interconnects,

such as Photon [251].

RDMA semantics can be used to either read or write contents of remote memory,

in this case VM guest memory pages. However before such operations can take

place, the target side of the operation must register the remote memory buffers and

send the remote key to the initiator, effectively providing the DMA addressing to

be used. Beyond the increased bandwidth and decreased latency benefits provided

by an advanced interconnect with InfiniBand, RDMA also allows VM memory to be

sent without involving the OS. This is due to InfiniBand’s zero-copy, kernel bypass

mechanisms, and asynchronous operations. This keeps the CPU load down, allowing

for the CPU to spend time on the computation at hand rather than the I/O transfer,

as it often has to when utilizing a TCP/IP stack.

Selecting the proper RMDA based communication operations to use can make a

notable difference in the overall performance of the migration. Some RDMA oper-

ations are largely a one-sided involvement, which can have performance impact and
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should be carefully considered for use in post-copy live migration. The RDMAread

operation requires more effort at the destination host, while RDMAwrite operation

puts burden on the source host. One way to determine which method is best is by

evaluating both source and sink CPU loads. However, this method likely will not

be as obvious when we consider VMs will be not be running in an over-subscribed

virtualized environment, but rather a highly optimized one.

When the destination VM page faults, it is necessary to retrieve the page with as

little latency as possible, as the running thread is paused. This is one of the advantages

of using RDMA, but implementation details can also effect performance. Using the

method developed in [248], the userfaultfd will trigger an RDMAread to retrieve the

missing page. RDMAread requires no interaction from the source VM, as RDMAread

is one sided and the memory buffers have been passed in the setup phase. To further

enable quick return time for the missing page, enabling polling on the source host

may further reduce latency, however verification of this will be necessary. When the

RDMAread operation is finished, the running thread will resume and execution will

continue.

7.4.2 Moving the Compute to the Data

While pre-copy migration is dominant in the live migration techniques of nearly every

mainstream hypervisor today, the proposed post-copy migration could provide some

key new advances for HPC and big data applications. One particular use case would

be to send a lightweight VM to act directly on a large or set of large datasets and

return a slimmed down result set. This would reduce the requirement of transmitting

the data across a network entirely, and could potentially speed up data access latency

drastically, as the returning information is transmitted in the form of memory pages

and VM state. Essentially, the proposal is to send the compute to the data, instead
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of visa versa.

With post-copy migration, one could move the computation at hand close to a

data source in significantly less time than full pre-copy live migration. This data

source, and lightweight VM sink, could potentially be something similar to a Burst

Buffer system [252,253] or a classic HPC I/O node with a distribute filesystem such as

Lustre or GPFS [254]. This data source could even potentially be a remote scientific

instrument completely separate from the HPC infrastructure itself, especially if the

network at hand is capable of RoCE [250] or iWARP [255]. A VM would initiate

post-copy live migration, transmitting only the necessary CPU state, registers, and

non-paged memory, rather than the full VM memory state. Once migrated, the

VM could connect to a (now local) I/O or storage device, accessing data fast and

performing the necessary calculations. The VM could potentially even forgo the copy

of the majority of its memory. During this time, only the necessary memory pages

required to complete the immediate calculation would generate a fault and trigger

their transmission from the source. The VM could even return the result (rather

than a very large dataset) to the original source VM.

This post-copy live migration technique for remote data computation avoids the

cost of spawning a whole new job and/or process with associated running parameters,

as well as the extremely high cost of a full VM live migration using the pre-copy

method. However, one potential downside of post-copy live migration would be the

non-deterministic runtime, as it would be unknown how much remote memory paging

would be required. This could lead to more time spent with the destination VM in

a paused state awaiting remote memory pages, rather than if the entire VM memory

contents were transmitted completely. Careful analysis of memory usage, or a hybrid

copy method based on predetermined memory sections, could help overcome this

issue, but may require a more advanced migration architecture.
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7.5 Fast VM Cloning

In many distributed system environments, concurrency is achieved through the use

of homogeneous compute nodes that handle the bulk of the computational load in

parallel. This can take many forms, including master/slave configurations, or even

a traditional HPC cluster with identical compute nodes, as are often used to sup-

port Single Process Multiple Data (SPMD) computational models [256]. With high

performance virtual clusters, there is a need to efficiently deploy and manage near

identical virtual machines for distributed computation.

In Snowflock [257,258], the notion of VM cloning is given. Specifically, Lagar et al.

define the notion of VM Fork, where VMs are treated similarly to a fork system call for

processes. This process is conceptually similar to VM migration, with the exception

being that the source VM is not destroyed after the migration. Starting with a master

VM, an impromptu cluster can be created across a network using the Xen hypervisor.

Snowflock specifically uses Multicast to linearly scale out VM creation to many hosts,

only coping a minimal state and then remotely coping memory pages when requested.

This fetched memory on-demand is similar in principal to the post-copy live migration

technique described in the previous section. This is further augmented with blocktap-

based virtual disks with Copy-on-Write (CoW) functionally, delivering CoW slices for

each child VM.

While Snowflock provides an excellent framework for VM cloning, it is not suit-

able for the current implementation. First, it uses Xen, which in previous research

described in Chapter 3 has been found to have limited performance for HPC work-

loads [172]. Second, SnowFlock is designed for Ethernet and IP based networks,

which have significantly higher latency and lower bandwidth when compared to In-

finiBand solutions. Developing analogous mechanisms, like what is listed below, with
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a high performance hypvervisor such as KVM or Palacios [31] to use RDMA for VM

memory paging could have an effect on the way in which virtual cluster environments

are deployed.

• Prepare parent VM state, including registers and info.

• Prepare CoW disk images.

• Create large buffer for all VM memory on child hosts.

• Send vmstate via RDMAwrite or IB Send to N child nodes, where N is the clone

size.

• Resume/start child VMs in tandem.

• Parent VM set up RDMA multicast (unreliable connection) and initiiate sending

of memory pages to all child VMs

• Child clone VM joins RDMA multicast.

• If child page faults, perform RDMAread operation for specific page.

This method allows for efficient cloning of VMs based on a running parent VM.

First, the VM state and images are copied to all child nodes to receive the VM,

and blank memory is allocated. Then, each child VM is started, and page faults

are handled via RDMA read. This will result in an initial slowdown, but as pages

are received the child VMs will start to run. The rest of the memory is eventually

sent via multicast to all VMs simultaneously. As multicast is unreliable, a delivery

failure will just trigger a page fault and subsequent page retransmission via RDMA.

It allows for direct page fault handling, while still allowing child VMs to start and

run immediately. As RDMA multicast mechanisms are relatively questionable, more

investigation is needed to evaluate the feasibility of this situation.
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It is expected that post-copy VM cloning will work most efficiently if used in

conjunction with guest VMs backed with huge pages. Transferring memory in 2M

chunks will more effectively utilize network bandwidth by eliminating send/receive

overhead. This also will hide the latency found in SR-IOV enabled interconnects

for small messages. Furthermore, it will reduce the overhead of page fault handling

mechanisms, as less overall pages will fault and be transferred. While huge pages are

expected to improve VM cloning efficiency, empirical testing will still be necessary to

properly evaluate their viability.

While a VM fork mechanism leveraging post-copy live migration in KVM will

quickly spool up cloned VMs, the eventual memory transfer will eventually fail to

scale past the network’s capacity. This could happen if hundreds or thousands of child

clone VMs are started simultaneously, as is likely in large scale deployments. As such,

a hierarchical distribution may be necessary. One possible method for this would be

a two-stage cloning mechanism, where child VMs are cloned one to each cabinet, and

the entire memory contents copied using the pre-copy migration mechanism. From

there, further cloning occurs to deploy many cloned VMs to individual nodes within

the cabinet. Organization of mid-tier cloned VMs would likely be determined based

on RDMA fabric configurations within cabinets, as this is a network-bound process.

7.6 Virtual Cluster Scheduling

Historically, cloud infrastructure has taken a simplistic approach when it comes to VM

and workload scheduling. Often, round-robin or greedy [259] scheduling algorithms

are naively applied. With round robin scheduling, a simple list of host machines are

used and iterated over as VM requests are made. This essentially scatters the VMs

without regard to their locality, and over-subscription becomes commonplace regard-
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less of the number of requested VMs or their interconnection. A greedy algorithm can

help keep spacial locality, but focuses specifically on over-subscription as well to help

consolidate VM allocations. While this over-subscription aspect is advantageous for

public cloud providers such as Amazon EC2, it becomes counterproductive for high

performance virtual clusters.

With high performance virtual clusters, VM instances that can gain near-native

performance are needed. Furthermore, these VMs will be running tightly coupled

applications, and, as such, must be allocated in a way in which communication latency

is minimized and bandwidth is maximized for all VMs. This will help insure the

entire virtual clusters can perform optimally. However, given off-the-shelf private

cloud providers or, worse still, public cloud infrastructure, these requirements are at

best opaque to the user, and at worst extremely suboptimal.

One way in which high performance virtual clusters can operate efficiently is

by defining specific instance types, or flavors within OpenStack, that define what

resources a VM has allocated. Given previous research on the NUMA effects of

VMs [260], these specialized flavors should be defined to fit within a NUMA socket.

Furthermore, CPU pinning should be used to specifically keep the VM within the

NUMA socket itself. Using Libvirt, a common API utilized in many cloud infrastruc-

ture deployments (including OpenStack), we can specify CPU pinning directly in the

XML configuration.

<cputune>

<vcpupin vcpu="0" cpuset="0"/>

<vcpupin vcpu="1" cpuset="1"/>

<vcpupin vcpu="2" cpuset="4"/>

<vcpupin vcpu="3" cpuset="5"/>

<vcpupin vcpu="4" cpuset="6"/>
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<emulatorpin cpuset="2"/>

</cputune>

Figure 7.6 Adding extra specs to a VM flavor in OpenStack

With OpenStack, this NUMA configuration can be executed through the KVM

Nova plugin and a scheduling filter, which defines how to place VMs effectively. Fur-

thermore, the instance flavor can also specify the addition of instance_type_extra_specs

within Nova, whereby specialized hardware such as GPUs and InfiniBand intercon-

nects (as described in Chapters 5 and 6) can be passed through to the VMs directly.

Once defined, the same specialized high performance flavors in OpenStack simply have

to add the labels (such as ’gpu’ or ’infiniband’) to the flavor to gain the requested

hardware, as illustrated in Figure 7.6 with OpenStack Horizon’s UI interface. The

implementation put forth in the OpenStack Havana build has since been upgraded by

Intel with SR-IOV support and additional scheduling filter additions, and is available

in the latest OpenStack releases [261].

pci_passthrough_devices=[{"label":"gpu","address":"0000:08:00.0"},

{"label":"infiniband","address":"0000:21:00.0"}]

instance_type_extra_specs={’pci_passthrough:labels’:’["gpu"]’}

instance_type_extra_specs={’pci_passthrough:labels’:’["infiniband"]’}

To provide a space for high performance virtual clusters, we need a scheduling

mechanism within a cloud infrastructure to support the effective and proper place-
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ment beyond controlling for NUMA characteristics. While there are many effective

scheduling algorithms for workload placement within an environment, a Proximity

Scheduler [41], as defined in OpenStack, may work well. Specifically, one could either

define or compute the underlying cloud infrastructure network topology. This could

be as simple as a YAML file that defines an underlying InfiniBand interconnect 2-1

Fat Tree topology, or a more complex solution that utilizes network performance met-

rics to measure bandwidth and latency between disjoint nodes to build a weighted

proximity graph. As it is possible that such network parameters could change due

to other usage or to reconfiguration, a method of periodically monitoring and up-

dating this proximity network using measurement tools such as PerfSonar [262] may

also help keep an effective proximity metric between hosts. With a metric, one can

then apply a proximity scheduler to handle high performance virtual cluster alloca-

tion requests effectively and in a way that will be far more optimal than a simple

round robin scheduling mechanism. The OpenStack private cloud IaaS framework

is proposed for this effort, however, further development is needed to bring such a

scheduling mechanism to fruition.

The use of service level agreements (SLAs) within cloud infrastructure allocation

is a well studied aspect [263]. It is also possible that certain SLAs could be in-

corporated into a private cloud infrastructure such as OpenStack to simultaneously

guarantee performance for virtual clusters with the above defined methods while con-

currently offering ”classical” VM workload scheduling for HTC, big data, or other

cloud usage models. This would provide the same user experience yet support diverse

workloads and performance expectations as defined by a given SLA. As it is likely

such performance-tuned cloud infrastructure deployments as proposed in this disser-

tation will likely still be used for traditional cloud workloads, it is advantageous to

leverage SLAs in this way.
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7.7 Chapter Summary

In summary, we expect the combination of transparent huge pages, an RDMA-capable

interconnect multiplexed in hardware for use by both guest and hosts, a high per-

formant hypervisor, and post-copy migration and cloning mechanisms, to enable a

novel architecture for high performance virtual clusters. These mechanisms, if im-

plemented and properly managed within a performance oriented scheduling system,

could help change how cloud infrastructure supports HPC and big data applications,

where performance, usability, and reconfigurability all are available. These migration

and specialized environment support capabilities may also help enable new runtime

systems for large scale scientific applications.



Chapter 8

Conclusion

With the advent of virtualization and the availability of virtual machines through

the use of cloud infrastructure, a paradigm shift in distributed systems has occurred.

Many services and applications once deployed on workstations, private servers, per-

sonal computers, and even some supercomputers have migrated to a cloud infrastruc-

ture. The reasons for this trend toward cloud infrastructure are vast, with advantages

including increased application flexibility and scalability, the ability for providers to

leverages economies of scale, and customized, on-demand user environments. How-

ever, these reasons may not be enough to support all computational challenges within

such a virtualized infrastructure.

One example where cloud infrastructure has historically been insufficient is with

the support for distributed memory applications. The use of tightly coupled, parallel

tasks common in High Performance Computing communities has seen a number of

problems and complications when deployed in virtualized infrastructure. While the

reasons for lack of integration can be numerous, many challenges stem from two

aspects, the performance impact and overhead associated with virtualization, and

the lack of hardware necessary to support tightly coupled concurrent tasks. While

176
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virtualized cloud infrastructure may not be able to aid in all HPC related activities,

it is possible that if these limitations are either overcome or mitigated, virtualization

can offer benefits to many in the HPC community. These benefits could include

dynamic resource allocation, enhanced migration and data management capabilities,

or even bursting capabilities for rare event simulations, to name a few.

This dissertation looks to evaluate virtualization’s ability to support mid-tier sci-

entific HPC applications. From the beginning, this dissertation proposes the advent

of high performance virtual clusters to support advanced scientific computation, in-

cluding tightly coupled HPC applications. This dissertation’s framework for building

such an environment aims to identify virtualization overhead and to find solutions

and best practices with performant hypervisors. This effort also includes defining the

methodology needed for supporting advanced accelerators and interconnects common

in HPC environments in order to enable a new class of applications in virtualized

infrastructure. The framework has built into it cases for evaluating potential de-

ployments as discussed throughout using benchmarks and real-world applications.

Furthermore, it is proposed to use the OpenStack IaaS project to encompass these

components together in a unified private cloud architecture.

Chapter 2 studied the related research necessary for defining not only the con-

text for virtualization and cloud computing, but also virtual clusters and the history

of supercomputing. Chapter 3 looked to study the applicability of various hypervi-

sors for supporting common HPC workloads through the use of benchmarks from a

single-node aspect. This found challenges and some solutions to these workloads, and

identified missing gaps that exist.

Chapter 4 started the investigation of the utility of GPUs to support mid-tier

scientific applications using the Xen hypervisor. This chapter provided a proof-of-

concept that, with proper configuration by utilizing the latest in hardware support,
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GPU passthrough is a viable model for supporting CUDA-enabled applications, a

fast-growing application set. Chapter 5 provides an in-depth comparison of multiple

hypervisors using the SHOC GPU benchmark suite, as well as a few GPU-enabled

HPC applications. Here we discover our KVM implementation performs at near-

native speeds and allows for effective GPU utilization, even outperforming our previ-

ous work with the Xen hypervisor.

Chapter 6 takes the lessons learned with KVM in GPU passthrough and adds

in SR-IOV InfiniBand support. This high speed, low latency interconnect repre-

sents a critical tool for supporting tightly coupled distributed memory applications.

With this, a high performance virtual cluster is created. This environment supports

two class-leading Molecular Dynamics simulations, LAMMPs and HOOMD-blue, and

shows how both applications can not only perform at near-native speeds, but also

leverage the latest HPC technologies, such as GPUDirect, for efficient GPU-to-GPU

communication across distributed memory resources.

Chapter 7 is an introspective look at other advancements that can be made in

virtualization to support high performance virtual clusters. This chaper details the

mechanisms whereby virtual clusters leverage PCI passthrough for added hardware

and I/O support, along with the reduction of overhead through the use of huge

pages. With this, methods are outlined for advanced virtualization techniques, such

as live migration leveraging high speed RDMA-capable interconnects, possibilities for

moving VMs closer to data sources, VM cloning for fast deployment of virtual clusters

themselves, and scheduling considerations for integration of high performance virtual

clusters. These tools are details with the consideration of integration within the

OpenStack IaaS cloud for private cyberinfrastructure deployments.

Given the efforts of this dissertation, we must evaluate the original hypothesis;

can virtualized infrastructure, leveraging the practices of high performance virtual
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clusters as defined herein, support mid-tier scientific computing endeavors? In the

beginning of Chapter 3, looking at the base case when this research started, the answer

was a murky no. When considering the advances made in hypervisors, the ability to

leverage accelerators such as Nvidia GPUs in Chapter 4 and 5, the addition of a

high performance, low-latency interconnect in Chapter 6, and the advanced tuning

and configuration with KVM, answer to the hypothesis changes to an optimistic

but skeptical yes. This conjecture is made by evaluating the support for a common

and convoluted HPC application set of various molecular dynamics applications and

observing virtualization performance overhead under 2% when compared to native,

bare metal configurations.

While more work is needed to evaluate the potential for high performance virtual

clusters to scale out, the current body of research does not illuminate any architec-

tural barriers at this time. As such, we expect this work with KVM high performance

virtualization to extend significantly beyond the current efforts described herein, per-

haps up to supporting high end HPC applications at Petascale. If Petaflop computing

is possible within an on-demand cloud infrastructure, this may in fact had a drastic

change on the way the community views and utilizes mid-range scientific computing.

Perhaps more importantly, the availability of such high-end resources to current and

future big data analytics software toolkits and services may also have a drastic impact

on overall time-to-solution for big data problems. This convergence between HPC and

big data analytics could have significant cost savings for large-scale supercomputing

facilities, as it makes it possible to support such diverse workloads with a single,

massively parallel, advanced capability hardware platform. Furthermore, allowing

simulation an analytics codes to run on the same advanced hardware platform can

enable new research in in-situ workflow composition and orchestration, potentialy

decreasing the overall experiment wall clock time, leading to scientific discoveries
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quicker and in greater frequency.

8.1 Impact

This dissertation has illustrated how virtualization can be used to support HPC ap-

plications using virtual clusters. While the example applications used herein are in

relation to molecular dynamics simulations, it is anticipated that this work is also

equally applicable to other fields including astronomy, high energy physics, bioinfor-

matics, and computational chemistry, to name a few. In this, it is also desirous to

have these high performance virtual clusters provide a feature-rich yet performance

infrastructure to new and emerging big data science applications and platform ser-

vices. While further work will likely be necessary in storage and I/O efforts related

to virtualization, the potential exists today to meet the demands of a convergent

infrastructure with virtualization.

It is also possible and likely that such applications can scale with future infras-

tructure deployments. Next steps in this direction to scale out could see virtual

cluster sizes increase to thousands of nodes. Virtualization efforts using the Pala-

cios VMM were able to scale a Cray XT4 system to 4096 nodes, reporting only a

5% overhead [264]. While so far we have seen slightly better results with KVM at

smaller scales, it is hopeful that the same scaling may be possible with KVM on newer

hardware supporting a more diverse set of user environments.

The model for PCI passthrough illustrated throughout the dissertation may also

be able to impact other hardware. First, this could include the Intel Xeon Phi (co-

processor models, not the Knights Landing CPU), or some emerging FPGA imple-

mentations like the Stillwater Knowledge Processing Unit (KPU), a distributed data

flow processor. The PCI-Express SIG specification has been upgraded in version 4.0
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to support larger I/O devices and accelerators with on-bus power delivery, leading to

the assumptions that, for at least commodity x86 systems, there could be an increase

in PCIE device utilization. The caveat to this will be if the PCIE bus is abandoned

or superseded by other methods, such as System-on-Chip designs or Nvidia’s NVLink

effort [265], where such new designs do not take into account IOMMU virtualization.

While HPC accelerator usage could very well wane in the wake of novel many-core

architectures, such as Knights Landing CPUs [266], these movements have still yet

to take hold within the HPC community.

As some of the advances described in the dissertation have already made their way

to the OpenStack cloud platform. It is expected that OpenStack’s usage will only

grow in both academic research and industry over time. Considering this, it may be

possible to build such a cloud infrastructure to run high performance virtual clusters

at a larger scale. Applying this infrastructure, along with high level experiment man-

agement and support services, could lead to a new national scale cyberinfrastructure

deployment. In time and with further development, this could be deployed within

the NSF-funded XSEDE project, for example. Perhaps, instead of having separated

hardware for HPC systems like the XSEDE Stampede resource at UT Austin and a

separate cloud infrastructure deployment for HTC computing and science gateways

like IU’s Jetstream, a single, unified high performance cloud infrastructure could be

utilized to provide all such needs concurrently. Finally, because the advantages pro-

vided by vitualizaton are only now integrating with HPC, new distributed computing

paradigms and runtime systems may not yet have been realized.
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