
High Performance Hybrid Information Service Architecture

Mehmet S. Aktas1, 2, Geoffrey C. Fox
1, 2, 3

, Marlon Pierce1

1 Community Grids Laboratory, Indiana University

501 N. Morton Suite 224, Bloomington, IN 47404
{maktas, gcf, mpierce}@cs.indiana.edu

http://www.communitygrids.iu.edu/index.html
2 Computer Science Department, School of Informatics, Indiana University

3 Physics Department, College of Arts and Sciences, Indiana University

Abstract. We introduce a distributed high performance hybrid Information Service Ar-

chitecture, which forms a metadata replica hosting system to manage both highly-

dynamic, small-scale and relatively-large, static metadata associated to Grid/Web Servic-

es. We present an empirical evaluation of the proposed architecture and investigate its

practical usefulness. The results demonstrate that the proposed system achieves high-

performance and fault-tolerance with negligible processing overheads. The results also

indicate that efficient decentralized Information Service Architectures can be built by uti-

lizing publish-subscribe based messaging schemes.

1 Introduction

Information Services address the challenging problems of announcing and discovering re-

sources in Grids. Existing implementations of Grid Information Services present several chal-

lenges. Firstly, most of the existing work have centralized components and do not address

high performance and fault-tolerance issues [1, 2]. Secondly, previous work do not address

distributed information management requirements of dynamic Grid/Web Service collections

such as efficient request distribution and replica-content placement strategies [2]. Thirdly,

none of the existing work adopts changes in client demands for performance optimization [1,

2]. Fourthly, previous work do not provide uniform interface for publishing and discovery of

both dynamically generated and static information [1, 2]. We therefore see this as an important

area of investigation.

To present the applicability of this investigation, we identify metadata management require-

ments of two application use domains: Global Multimedia Collaboration System (Glo-

balMMCS [3]) and Pattern Informatics Geographical Information System Grid (PI GIS-Grid

[4]). GlobalMMCS is a peer to peer collaboration environment, where videoconferencing

sessions, with any number of widely distributed services, can take place. GlobalMMCS re-

quires persistent archival of session metadata to provide replay/playback and session failure

recovery capabilities. The PI GIS-Grid is a workflow-style Grid application which requires

storage of transitory metadata needed to correlate activities of participant entities. Both appli-

cation domains require a decentralized, fault-tolerant metadata hosting environment which can

support scalability of large-scale, read-mostly, quasi-static information and performance re-

quirements of small-scale, highly-updated, dynamic information. Although much work has

been done on information management in Grid Information Services, to our best knowledge,

none of the previous work addresses the metadata management requirements of both of types

of application use domains.

In this paper, we propose a Grid Information Service that addresses aforementioned chal-

lenges of previous work and metadata management requirements of target application use

domains. The main novelty of this paper is to describe the architecture, implementation and

evaluation of Hybrid Grid Information Service (Hybrid Service) supporting both distributed

and centralized paradigms and managing both dynamic, small-scale and quasi-static, large-

scale metadata. The implications of this research are four-fold. First is to describe a Grid

Information Service architecture, which responds to client demand changes. To our best

knowledge, the proposed work is a pioneer approach that utilized multi-publisher, multicast

communication to dynamic replication methodology in Grid Information Services without

relying on information available on the Internet routers. Second is to describe the architecture

of a fault tolerant and high performance Grid Information Service linking publish-subscribe

based messaging schemes with associative shared memory platform for metadata manage-

ment. Third is to describe the architecture of a Hybrid Service that integrates different Grid

Information Services by using unification and federation concepts. Fourth is to identify and

analyze the key factors that affect the performance of a metadata-system with multi-publisher,

multicast communication strategies.

The organization of the rest of the paper is as follows. Section 2 reviews the background work.

Section 3 discusses the Hybrid Grid Service Architecture. Sections 4-7 explain the design

decision in fundamental issues of Hybrid Service Replica Hosting System: service discovery

model, replica-content placement, consistency enforcement, access-request distribution. Sec-

tion 8 analyzes the performance evolution of the prototype implementation. Section 9 con-

cludes the paper with summary and future research directions.

2 Background

Existing service metadata discovery architectures can be broadly categorized as centralized

and decentralized by the way they handle service information storage. In centralized approach,

there is a central look-up mechanism where all services are dependent on one node. Main-

stream service discovery architectures (such as JINI [5]), which have been developed to pro-

vide discovery of remote services residing in distributed nodes in a wired network, are based

on a central registry for service registration and discovery. Most central service discovery

solutions (such as UDDI [6] and its extensions [7]) are database-based solutions and require

disk accesses to query/publish metadata. In decentralized approach, the research trend mainly

focuses on decentralized search, where all the peers of the system actively participate the

discovery process with no central database. Some of previous solutions (such as Chord [8])

with pure decentralized storage models focused on the concept of distributed hash tables

(DHT), which assumes the possession of an identifier that identifies the service to be discov-

ered. Some other decentralized approaches, such as Amazon Simple Storage Service (Amazon

S3 [9]), focused on a peer-to-peer file distribution protocol called Bittorent, which is designed

to distribute large amounts of widely distributed data onto peers, where each peer is capable of

requesting and transferring data. Despite of their important features, previous metadata dis-

covery solutions do not address the application requirements of aforementioned target applica-

tion use domains. The centralized registry approach has good performance but presents limita-

tions such as single point of failure problem. Likewise, the decentralized registry approach

also presents some limitations, as the resource placement at nodes is strictly enforced in struc-

tured peer-to-peer networks, which in turn cause a heavy overhead on the bootstrap of the

network. The DHT approach is good on routing messages but limited to primitive query ca-

pabilities (key-based queries) [10]. The Bittorent approach has also challenges as its perfor-

mance depends on the capacity of a centralized node (called tracker), which keeps track of

peers in the network.

The proposed system differs from previous metadata discovery architectures as described

below. Firstly, it supports both distributed and centralized paradigms in one hybrid architec-

ture by linking publish-subscribe based messaging schemes with associative shared memory

platform for metadata management. Secondly, apart from DHT based systems, it introduces a

multi-publisher, multicast messaging infrastructure and communication protocol, which in

turn enable advanced query capabilities to be routed between the network nodes. Thirdly, it

explores a caching mechanism that would provide persistency and performance capabilities

together. Existing work on Service Registries relies only on database solutions, which is good

for persistency reasons; but requires I/O accesses every time when metadata access happens.

Fourthly, it provides mutual exclusive access to the shared data, while none of the previous

work on Service Registries support data-sharing. The proposed system design is discussed in

Section 3 in details.

Another way of analyzing service discovery architectures could be based on the formation of

the network and the way of handling discovery request distribution. In traditional wired net-

works, network formation is systematic since each node joining the system is assigned an

identity by another device in the system [11]. Example wired network discovery architectures

such as JINI [5] and Service Location Protocol [12] focus on discovering local area network

services provided by devices like printer. In ad-hoc networks (unstructured peer-to-peer sys-

tems), there is no controlling entity and no constraint on the resource dissemination in the

network. Existing solutions for service discovery for ad-hoc networks (e.g. pervasive compu-

ting environments) can be broadly categorized as broadcast-driven and advertisement-driven

approaches [13]. In broadcast-driven approach, a service discovery request is broadcasted

throughout the discovery network and each node satisfying the request sends a unicast re-

sponse message. In advertisement-driven approach, each service advertises itself to all availa-

ble peers with a “hello” message and all peers cache the advertisement of the broadcasting

service. The WS-Discovery Specification [14] supports both broadcast-driven and advertise-

ment-based approaches by using a hardware multicast mechanism. To minimize the consump-

tion of network bandwidth, this specification supports the existence of registries and defines a

multicast suppression behavior if a registry is available on the network. Existing solutions to

service discovery architectures do not address the requirements of our target application do-

mains. The traditional wired-network based architectures are limited, as they depend on a

controlling entity, which assigns identifiers to participating entities. The ad-hoc networks have

also some limitations. If the size of the network is too big, the broadcast-driven approach has a

disadvantage, since it utilizes significant network bandwidth, which in turn creates a large

load on the network. The advertisement-driven approach does not scale, as the network nodes

may have limited storage and memory capability. The WS-Discovery approach is promising

to handle metadata in peer-to-peer computing environment; however, it has the disadvantage

of being dependent on hardware multicast for message dissemination.

The service discovery model of the proposed system differs from previous work as it does not

have to rely on wired network discovery architecture or have any constraints on resource dis-

semination in the network. There are similarities between the proposed approach and the WS-

Discovery approach, as they both support broadcast and advertisement-based approaches in

their service discovery model. Different from WS-Discovery approach, the Hybrid Service

utilizes a software-multicast model by utilizing its own multi-publisher, multicast publishes-

subscribe based messaging scheme. The Hybrid Service discovery model and communication

mechanism are discussed in Section 4 in details.

Replication is a well-known and commonly used technique to improve the quality of metadata

hosting environments. Replication can be categorized as permanent-replication and server-

initiated replication. Permanent-replication keeps the copies of a data permanently for fault-

tolerance reasons, while the server-initiated replication creates the copies of a data temporarily

to improve the responsiveness of the system. Sivasubramanian et al [15] give an extensive

survey on designing and developing replica hosting environments, as does Robinovich in [16],

paying particular attention to dynamic replication. These systems may be discussed under

following design issues: a) distribution of client requests, b) selection of replica servers for

replica placement, and c) consistency enforcement. Distribution of client requests is the prob-

lem of redirecting the request to the most appropriate replica server. Some of the existing

solutions to this problem rely on the existence of a DNS-Server [16, 17]. These solutions

utilize a redirector/proxy server that obtains physical location of a collection of data-systems

hosting a replica of the requested data, and choose one to redirect client’s request. Replica

placement is another issue that deals with selecting data hosting environments for replica

placement and deciding how many replicas to have in the system. Most of the solutions [16,

17], which apply to dynamic replication, assume all data-hosting servers to be ready and

available for replica placement and ignore “dynamism” both in the network topology and in

the data. In reality, data-systems can fail anytime and may present volatile behavior, while the

data is being updated. The consistency enforcement issue is about ensuring all replicas of the

same data to be the same. In [18] Tanenbaum gives a survey of different consistency enforce-

ment approaches, implementations, and update protocols.

The fault-tolerance aspects of the proposed system’s architecture differ from previous work on

permanent replica-content placement, as some of its application use domains are highly dy-

namic. To this end, the Hybrid Service supports both permanent and dynamic replication.

There are similarities between the Robinovich’s dynamic replication methodology and our

approach, since the proposed system adopts slightly modified versions of the replica selection

and dynamic replication algorithms introduced by Rabinovich. Different from the Rabino-

vich’s work, the Hybrid Service utilizes its own communication protocol, which does not rely

on the information available on the Internet Routers to locate network nodes. There are also

differences in target application use domains of the two systems: Rabinovich’s approach is

designed for web replica hosting systems, while the Hybrid Service is designed for distributed,

service oriented architecture based Grid applications. The Hybrid Service system’s design

rationale in deciding the strategies for replica-content placement, consistency enforcement and

request distribution are discussed in Sections 5-7 in the same order in details.

3 The Hybrid Grid Information Service

We designed and built a Hybrid Grid Information Service (Hybrid Service) to support han-

dling and discovery of metadata associated with Grid/Web Services in Grid applications. The

Hybrid Service is an add-on architecture that interacts with the local information systems and

unifies them in a higher-level hybrid system. It provides a unifying architecture where one can

assemble metadata instances of different information services. [19] describes the semantics of

the Hybrid Service in details. In this paper, our main focus is to highlight the replica hosting

environment aspects of the Hybrid Service and investigate various research issues related

discovery, distribution and consistency.

Figure 1 illustrates general view of the Hybrid Service (See the picture on the left in Figure 1).

The proposed hybrid system introduces uniform access and information resource management

abstraction layers: First layer supports one-to-many communication protocols, while the latter

manages one-to-many information service implementations. The prototype of the system un-

ifies the two local information service implementations: WS-Context and Extended UDDI. It

supports their communication protocols and utilizes publish-subscribe based messaging sys-

tems to enable communication in the information service network.

TUPLE SPACE API

TUPLE POOL (JAVA SPACES)

UNIFORM ACCESS INTERFACE

Request processor

Access Control Notification

A HYBRID GRID INFORMATION SERVICE

IN-MEMORY STORAGE

INFORMATION

RESOURCE MANAGER

PUB-SUB NETWORK

MANAGER

HYBRID SERVICE NETWORK

CONNECTED WITH PUB-SUB

SYSTEM

Resource
Handler

DB1

Resource
Handler

DB2

……

…

Extended

UDDI
WS-Context

Figure 1 The picture on the left illustrates the general view of the Hybrid Service. The picture on the right illustrates

the abstraction layers of the Hybrid Service from top-to-bottom. The dashed box indicates the Hybrid Service.

Figure 1 also illustrates a detailed view of the Hybrid Service (See the picture on the right in

Figure 1). (1) Uniform Access Interface layer, which consists of multiple XML APIs, provides

unified access to the system. (2) The Request-processing layer extracts incoming requests,

notifies clients of the state changes in metadata and enforces controlled access to the in-

memory storage. (3) TupleSpaces Access API provides access to a Tuple Pool (that is a gene-

ralized in-memory storage mechanism, implemented based on JavaSpaces Specification [20])

and supports all query/publish operations that can take place on the Tuple Pool. (4) The Tuple

Processor layer processes metadata stored in the Tuple Pool and provides lifetime manage-

ment, persistency management, fault-tolerant management and dynamic caching management

of metadata. (5) The Filtering layer manages the filtering based on the user-defined mapping

rules to provide transformations between the Unified Schema (i.e. a unified schema is an inte-

gration of XML schemas of different information services) instances and local schema in-

stances. (6) The Information Resource Manager layer manages low-level information service

Client

TUPLE SPACE API

TUPLE POOL

Extended UDDI

WS API

TUPLE processor

Lifetime

Management

Persistency

Management

Fault Tolerance

Management

WS-Context

WS API
….

Request processor

Access Control Notification

Extended UDDI WS-Context ….

Information Resource Manager
PUB-SUB Network Manager

Unified

Schema API

Dynamic Caching

Management

Filter

ClientClient Client

Glue

Uniform Access

Interface

IN-Memory

Storage

Information

Resource &

Network Manager

implementations and provides decoupling between the Hybrid Service and sub-systems. (7)

The Pub-Sub Network layer manages communication between Hybrid Service instances by

utilizing publisher and subscriber sub-components to provide communication among the ser-

vice instances.

Figure 2 illustrates the distribution in Hybrid Service and shows N-node decentralized servic-

es from the perspective of a single service interacting with two clients. To achieve communi-

cation among the network nodes, the Hybrid Service utilizes a topic-based publish-subscribe

software multicasting mechanism. This is a multi-publisher, multicast communication me-

chanism, which provides message-based communication. In the prototype implementation, we

use an open source implementation of publish-subscribe paradigm (NaradaBrokering [21])

for message exchanges between peers. We identify following fundamental issues of designing

the Hybrid Service Replica Hosting System: service discovery, replica-content placement,

consistency enforcement, and request routing. These issues are discussed in the following

sections in the same order.

Subscriber

Publisher

Replica Server-2 Replica Server-N

Topic Based Publish-Subscribe
Messaging System

HTTP(S)

WSDL

Client

WSDL

Client

WSDL WSDL

Database

Replica Server-1

Database

Database

WSDL

HYBRID Service

WSDL

HYBRID Service

HYBRID Service

Ext UDDI

Database

WS-Context
...

Database

Ext UDDI

Database

WS-Context
...

Ext UDDI WS-Context
...

Figure 2 Distributed Hybrid Services.

4 Service Discovery

The Hybrid Service has a multicast discovery model to locate available services. In this mod-

el, the communication between network nodes happens via message exchanges. These mes-

sages are Server-Information Request and Response messages.

Server-Information Request and Response messages: A Hybrid Service node advertises its

existence when it first joins the network with a message, the Server-Information Request. The

purpose of this message is two-fold. First is to inform other servers about a newly joining

server. Second is to refresh the replica-server-information data structure with the updated

information (such as proximity and server load) every so often. This message is broadcasted

through publicly known topic to every other available network nodes. The proximity between

the initiator and the individual network nodes is calculated based on the elapse-time between

sending off the Server-Information Request and receiving the Server-Information Response

message. The response message is sent back by unicast over a unique topic to the initiator and

contains the server load information of the responding network node.

Service Discovery Model: Each Hybrid Service network node subscribes to the multicast

channel (publicly known topic) to receive Server-Information Request messages. On receiving

this request message, each node sends a response message, Server-Information Response

message, via unicast directly to the newcomer Hybrid Service. This way, each node makes

itself discoverable to other nodes in the system at the bootstrap. Each Hybrid Service node

constructs a replica-server-information data structure about other available replica servers in

the system. This data structure contains information about decision metrics such as server load

and proximity. Each node keeps its replica-server-information data structure refreshed by

sending out Server-Information Request messages periodically to obtain up-to-date informa-

tion. This way each node keeps track of status information of the available network nodes.

5 Replica-content placement

The Hybrid service utilizes both permanent and dynamic (temporary) replication to enhance

reliability and performance. The former replication technique is used as backup facility to

enhance reliability, while the latter is used for performance reasons. Permanent copies are

used to at least keep the minimum required number of replicas for the same data. Dynamic

(temporary) copies are used to reduce access latency, as they are replicated onto servers in the

proximity of demanding clients. The Hybrid service uses following two messages to provide

replica-content placement: Context Storage Request and Response.

Context Storage Request and Response messages: A Hybrid Service node advertises the need

for storage with a request message, the Context Storage Request. The purpose of this message

is two-fold. First is to assign handling of the storage operation to those Hybrid Service nodes

that are selected based on the replica-server selection policy. Second is to ask another Hybrid

Service node to replicate or take over maintaining a context to enhance the overall system

performance. With this message, the system is able to relocate/replicate contexts in the prox-

imity of demanding clients. It is used in dynamic replication process and enables reloca-

tion/replication of contexts due to changing client demands. The Context Storage Request

message is unicast over a unique topic to the selected replica server(s). By listening to its

unique topic, each existing node receives a Context Storage Request message, which in turn

includes the context under consideration. On receipt of a Context Storage Request message, a

Hybrid Service node stores the context and sends a Context Storage Response message to the

initiator. The Hybrid Service stores the context either as a permanent-copy or server-initiated

(temporary) copy based on whether the context is being created for fault-tolerance reasons or

performance reasons. The purpose of the response message is to inform the initiator that the

answering node hosts the context under consideration. This message is also sent out by unicast

directly to the initiator over a unique topic.

Decision metrics: The Hybrid Service takes both server load and proximity decision metrics

into account when making replica-content placement decisions. The server load metric is

represented with the following two factors: a) topical information (i.e. fraction of total unique

topics due to a given server on the network) and b) message rate (i.e. number of messages,

issued by end-users, within a unit of time). Server load is periodically recorded and it reflects

the average load of a Hybrid Service at a given time interval. The proximity metric is

represented by the distance in network space between Hybrid Service instances. The proximi-

ty metric information is obtained periodically by sending ping requests (Server-Information

Requests) to the available network nodes in the system through publish-subscribe system.

Permanent Replication: The Hybrid Service starts replica-content placement process (i.e. the

distribution of copies of a context into replica hosting environment), when a new context is

inserted to the Hybrid Service. This is needed to create certain number (predefined in the

configurations file) of permanent replicas. On receipt of a client’s publish request, an existing

node checks whether or not to honor the request in the local storage by checking the load

metric (see next paragraph for a discussion on how load is computed) with a maximum server

load watermark. The maximum server load watermark determines the maximum load on the

system. If a node is capable of storing, it performs the storage operation, and then starts the

replica content placement process. Otherwise, it omits the storage operation and directly starts

the replica-content placement process. The first step in replica content placement is to execute

replica-servers selection (see following three paragraphs for further discussion on selection

policy). Once the replica-server selection is completed, the initiator sends unicast message

(Context Storage Request message) to the selected replica-servers. On receipt of a storage

request, a replica server stores the context as a permanent-copy, followed by sending a re-

sponse (Context Storage Response message) directly to the initiator (via unicast). The purpose

of storing permanent-copy is for fault-tolerance. The number of permanent replicas is prede-

fined with minimum-fault-tolerance-watermark in the configurations file and will remain the

same for fault-tolerance reasons.

The load metric is recorded in a dynamic fashion periodically and reflects an indication of

server load since the previous measurements. At each measurement interval, the new server

load is calculated and recorded. The server load metric is represented by a vector reflecting

multiple components. In the prototype implementation, we used two components to represent

the load: topic information and message rate. This can easily be extended by including more

components (such as computational load and storage utilization) into the server load vector.

The value for the first component is estimated by finding the fraction of total unique topics

due to the server under consideration on the whole network. This values is computed by divid-

ing up the total number of local unique topics (i.e. # of unique topics created on the local sto-

rage) to the total number of global unique topics (i.e. # of unique topics created in the whole

network). The value for the second component is computed by the number of messages issued

by end-users within a unit of time. The server load metric is represented by a single value and

computed by the product of these two server load component at each measurement interval.

The proximity metric is also recorded in a dynamic fashion and reflects the proximity since

the previous measurements. The proximity is represented by the distance in network space

between Hybrid Service instances and obtained periodically by sending ping requests to the

available network nodes through publish-subscribe system. The proximity is measured by

latency in the ping request, which gives the distance information between the two Hybrid

Service instances. Each node keeps a proximity vector, i.e. distance vector, and refreshes it

periodically.

To select replica servers for replica-content placement, we adopt a replica selection algorithm

introduced by Rabinovic et al [16] and integrate it with our implementation. Based on the

Rabinovich’s approach, the replica server selection policy takes into account two decision

metrics: server load and proximity. The algorithm begins by identifying a replica server with

lowest server load and a replica server that is closest to the client. It then chooses the replica

(among these two) by comparing the server load of the least-loaded replica with the server-

load divided by two of the closest replica. This way, the algorithm chooses the closest replica

server for permanent replication unless it is overloaded. The replica server selection process is

repeated on target replica servers, until the initiator selects predefined number (minimum-

fault-tolerance-watermark) of replica servers for replica-content placement. The initiator

Hybrid Service chooses the best-ranked server among the selected replica-servers as the pri-

mary-copy to enforce consistency.

Dynamic replication: The Hybrid Service adopts a dynamic replication methodology intro-

duced by Rabinovich et al [16] and integrates it with its communication infrastructure. Rabi-

novich’s approach perform replica-content placement for two reasons: a) to reduce the load on

a replica server, b) to adopt changes in the client demands. In our prototype implementation,

we perform replication for the second reason, since our main interest is to create replicas, if it

is only beneficial for client proximity. Each Hybrid Service S runs the dynamic replication

algorithm with certain time intervals (dynamic-replication-time-interval) and re-evaluates the

placement of the contexts that are locally stored. The dynamic replication algorithm begins by

checking the local Hybrid Service if there are contexts that can be migrated or replicated onto

other servers in the proximity of clients that presented high demand for these contexts. It does

this by comparing the access request count for each context against some threshold values. If

the total demand count for a replica C at a Hybrid Service S (cntS (C)) is below a deletion-

threshold(S, C) and the replica is a temporary-copy, that replica will be deleted from local

storage of Hybrid Service S. If, for some Hybrid Service X, a single access count registered for

a replica C at a Hybrid Service S (cntS(X, C)) exceeds a migration-ratio, that service (service

X) is asked to host the replica C instead of service S. (Note that the migration-ratio is needed

to prevent a context migrate back and forth between the nodes. In our investigation, we chose

the migration-ratio value as % 60 based on the study introduced in [16]). This means service S

wants to migrate replica C to service X which is in the proximity of clients that has issued

enough access requests within the predefined time interval (dynamic-replication-time-

interval). In this case, replica C will be migrated to service X. To achieve this, a Context Sto-

rage Request is sent directly to service X by service S. On receipt of a Context Storage Re-

quest, service X creates a permanent copy of the context, followed by sending a Context Sto-

rage Response message. If the total demand count for a replica C at service S (cntS (C)) is

above a replication-threshold(S, C), then the system checks if there is a candidate Hybrid

Service, which has requested replica C. If, for some Hybrid Service Y, a single access count

registered for a replica C at service S (cntS(Y, C)) exceeds a replication-ratio, that service

(service Y) is asked to host a copy of replica C. (Note that, in order dynamic replication to ever

take place, the replication-ratio is selected below the migration-ratio [16]. In our investigation,

we chose the replication-ratio value as % 20.) This means service S wants to replicate replica

C to service Y that is in the proximity of clients that has issued access requests for this context.

In this case, replica C will be replicated to service X. To achieve this, a Context Storage Re-

quest is sent directly to service X by service S. On receipt of a Context Storage Request, ser-

vice X creates a temporary copy of the context, followed by sending a Context Storage Re-

sponse message.

6 Consistency enforcement

The Hybrid Service introduces two different models to address consistency requirements of

aforementioned application use domains. The first model is for read-mostly applications. For

these applications, the Hybrid Service allows clients to fetch copies of a context (permanent or

temporary) freely from the metadata store, since read-only copies of a context are considered

consistent. The second model is for consistency-sensitive applications with high update-ratio.

For these applications, the Hybrid Service requires clients to subscribe to unique topics of

contexts, so that they can be informed of the state changes immediately after an update occurs.

To implement these consistency models, the Hybrid Service employs the primary-copy ap-

proach, i.e., updates are originated from a single site, to ensure all replicas of a data to be the

same. In this section, we analyze the Hybrid Service implementation under three categories:

“update distribution”, “update propagation” and “primary-copy selection”. The Hybrid Ser-

vice performs these by using following messages: Primary-Copy Selection Request and Re-

sponse, Primary-Copy Notification, and Context Update Request and Propagation.

Primary-Copy Selection Request and Response messages: To provide consistency across the

copies of a context, updates are executed on the primary-copy host. If the primary-copy host

of a context is down, the first Hybrid Service node, which does not receive any response from

the primary-copy holding server, advertises the need for selection of primary-copy host with

following message: Primary-Copy Selection Request. This message is sent out by multicast by

the initiator Hybrid Service only to those servers holding the permanent-copy of the context

under consideration. The Primary-Copy Selection Request message is disseminated over a

unique topic corresponding to the metadata under consideration. We use the metadata key

(UUID) as the topic, which all nodes, holding the permanent-copy of the metadata, within the

system subscribe to. On receipt of a Primary-Copy Selection Request message, each node

responds with the Primary-Copy Selection Response message directly to the initiator node.

The purpose of this message is to inform the initiator about the permanent-copy of the context

under consideration and give some information (such as hostname, transport protocols sup-

ported, communication ports) regarding how other nodes should communicate with the ans-

wering node. The response message is sent out by unicast over a unique topic. By listening to

this topic, the initiator receives the response message from the answering node.

Primary-Copy Notification message: A Hybrid Service node uses a Primary-Copy Notifica-

tion message to notify the newly selected primary-copy holder. This Notification message is

disseminated by unicast directly to the newly selected node. By listening to its unique topic,

each existing node may receive a primary-copy notification message, which in turn includes

the assignment for being the primary-copy of the context under consideration. Each primary-

copy holder of a given context subscribes to a unique topic (such as UUID/PrimaryCopy) to

receive messages aimed to the primary-copy holder of that context.

Context Update Request and Propagation messages: A Context Update Request message is

sent by a replica server to the primary-copy host to ask for handling the updates related with

the context under consideration. This message is sent out via unicast by the initiator Hybrid

Service directly to the primary-copy host over a unique topic. By listening to this topic, the

primary-copy-host receives the context update request message. A Context Update Propaga-

tion message is sent by the primary-copy host only to those servers holding the context under

consideration. This message is sent via multicast to the unique topic of the metadata imme-

diately after an update is carried out on the primary-copy to enforce consistency. By listening

to this topic, each existing permanent-copy holder node receives a Context Propagation mes-

sage, which in turn includes the updated version of the context under consideration.

Update distribution: The proposed system utilizes primary-copy approach to ensure all repli-

cas of a data to be the same. The update distribution algorithm begins with by checking if the

request contains a system-defined context key. If not, the system treats the request as if it is a

new publication request. Otherwise, the system treats publication request as if it is an update

request. An update operation is executed offline, i.e., just after an acknowledgement is sent to

the client. If the primary-copy host is the initiator node itself, then the update is handled local-

ly. If the primary-copy host is another node, then the update is forwarded to the primary-copy

holder. The initiator service sends a message, Context Update Request, by unicast directly to

the primary-copy-host for handing over the update operation. This message includes the up-

dated version of the context under consideration. On receipt of a Context Update Request

message, first, the primary-copy host extracts the updated version of the context from incom-

ing message. Then, it updates the local context if the timestamp of the updated version is big-

ger than the timestamp of the primary-copy.

Update propagation: The proposed system utilizes push methodology for update propaga-

tion, multicast methodology for update dissemination and transmits the whole contents of

updates. By using the push methodology, the Hybrid Service, holding the primary-copy of a

context, propagates the updates immediately after an update occurs. By using the multicast

methodology, the Hybrid Service propagates a context-update request to all available perma-

nent-copy holding servers. The update propagation algorithm begins with by executing the

update request at the primary-copy holding service. After the update process is completed, a

Context Update Propagation message is sent to only those servers holding the permanent-copy

of the context under investigation. The purpose of the Context Update Propagation is to reflect

updates to the redundant copies immediately after the update occurs. On receipt of a Context

Update Propagation message from the primary-copy, the initiator Hybrid Service node

changes the status of the context under consideration from “updated” to “normal”. If there is

no response received from primary-copy host within predefined time interval (time-

out_period), the primary-copy host is decided to be down. In this case, the initiator node se-

lects a new primary-copy host by using primary-copy selection algorithm. After a new prima-

ry-copy host is selected, the update distribution process is re-executed.

The system assigns a synchronized timestamp to each published context (newly written or

updated). This is achieved by utilizing NaradaBrokering Network Time Protocol (NTP) proto-

col based timing facility. By utilizing this capability, the Hybrid Service gives sequence num-

bers to published data to ensure an order on concurrent write operations. This way,

write/update requests are carried out on a data item x at primary-copy host s, in the order in

which these requests are published into the distributed metadata store. However, this approach

has also some practical limits, as the update rate is bounded by the timestamp accuracy of the

synchronized timestamps.

Primary-copy selection: The primary-copy selection process is used to select a new primary-

copy host, whenever the original primary-copy host is down. The primary-copy selection

algorithm begins with by broadcasting a Primary-Copy Selection Request message to those

servers holding the context to select the new primary-copy host. On receipt of a Primary-Copy

Selection Request message, each replica-holding server issues a Primary-Copy Selection Re-

sponse message. On receipt of the Response messages, the initiator obtains the information

about nodes carrying the permanent copy of the context. Then the initiator selects the best

replica server based on the aforementioned replica-server selection algorithm. After the selec-

tion is completed, a Primary-Copy Notification message is sent to the selected server naming

it as the new primary-copy host. On receipt of a Primary-Copy Notification message, the per-

manent-copy holder becomes the new primary-copy holder and subscribes the unique address

(/UUID/PrimaryCopy) corresponding to the primary-copy of the context.

7 Access request distribution

The Hybrid Service employs a broadcast based request distribution. Based on this scheme, if a

query cannot be granted locally and requires external metadata, the request is broadcasted to

those nodes hosting the requested metadata in the network at least to retrieve one response

satisfying the request. This way the service is able to probe the network to look for a running

server carrying the right information at the time of the query. The communication between

network nodes for request access distribution happens via following messages: Context

Access Request and Response.

Context Access Request and Response messages: A Hybrid Service node advertises the need

for context access with the Context Access Request to the system. The purpose of the Context

Access Request is to ask those servers, holding the context under demand, for query handling.

This message is disseminated to only those nodes holding the context under consideration.

This is done by multicasting the message through the unique topic corresponding to the meta-

data. (Note that we use UUID of the metadata as topic). By listening to this topic, each node,

holding the context under consideration, receives a Context Access Request message, which in

turn includes the context query under consideration. On receipt of a Context Access Request

message, each Hybrid Service sends a Context Access Response message, which contains the

context under demand, to the initiator. This message is sent out by unicast directly to the in-

itiator over a unique topic. By listening to this topic, the initiator receives the response mes-

sages from nodes that answered the access request.

Request distribution: The Hybrid Service prototype implements a request distribution me-

thodology, which is based on broadcast dissemination, where the requests are distributed to

those servers holding the context under consideration. This approach does not require keeping

track of locations of every single data located in the system. The request distribution algorithm

begins with by issuing a Context Access Request message to the multicast group. This mes-

sage contains minimum required information (such as context key) regarding the context in

demand. On receipt of a Context Access Request message, a replica-holding Hybrid Service

issues a Context Access Response message. Note that, each server keeps track of the count of

access requests and the locations where access requests come from for each context. In turn,

this enables the system to apply dynamic replication process and adapt to sudden bursts of

client demands coming from a remote replica. This is why, if the access request is granted,

each server registers the incoming access request in the access-demanding-server-information

data structure and increments the total access-request-count of the context under investigation.

On receiving first Context Access Response message, the initiator Hybrid Service, obtains the

context that can satisfy the query under consideration. Then a response message is sent back to

inquiring client. The initiator only waits for responses that arrive within the predefined timeout

value. If there is no available Hybrid Service node that can satisfy the context query within the

timeout duration, the access process ends and a “not found” message is sent to the client.

8 Prototype Evaluation

An earlier evaluation study was conducted in [22] to investigate the performance of the proto-

type of the centralized version of the Hybrid Service. This study concluded that one can

achieve noticeable performance improvements for standard inquiry/publish operations by

simply employing an in-memory storage mechanism. In this research, we conduct an evalua-

tion of the prototype of the Hybrid Service Replica Hosting System to understand its practical

usefulness. To this end, the following research questions are being addressed:

• What is the effectiveness of the system in responding metadata access queries from

the perspective of interacting clients?

• What is the cost of the access request distribution in terms of the time required to

fetch a copy of a data (satisfying an access request) from a remote location?

• What is the effect of dynamic replication in the cost of the access request distribution

in terms of the time required to fetch a copy of a data?

• What is the cost of the storage request distribution for fault-tolerance in terms of the

time required to create replicas at remote locations?

• What is the cost of consistency enforcement in terms of the time required to carry out

updates at the primary-copy holder?

Experimental setup environment: We explore the tradeoffs in choosing multi-publisher,

multicast communication mechanism to implement a replica hosting environment. To do this,

we conduct several experiments: effectiveness, distribution, dynamic replication, fault-

tolerance and consistency enforcement. We leave out an extensive scalability experiment that

would show the system work with high number of service nodes as a future study, as it is not

the main focus of this evaluation. Thus, for the decentralized setting experiments, we have

selected several nodes that are separated by significant network distances to facilitate the test-

ing. The machines, used in these experiments, are summarized in Table 1.

 Summary of Machine Configurations

 Location Processor RAM OS

gf6.ucs.indiana.edu

Bloomington,

IN, USA

Intel® Xeon™

CPU (2.40GHz)

2GB total GNU/Linux

(kernel release

2.4.22)

complexity.ucs.indiana.edu
Indianapolis,

IN, USA

Sun-Fire-88,

sun4u sparc SUNW

16GB total SunOS 5.9

lonestar.tacc.utexas.edu

Austin,

TX, USA

Intel(R) Xeon(TM)

CPU 3.20GHz

4GB total GNU/Linux

(kernel release

2.6.9)

tg-login.sdsc.teragrid.org

San Diego,

CA, USA

Genuine Intel IA-64,

Itanium 2,

4 processors

8GB total GNU/Linux

vlab2.scs.fsu.edu

Tallahassee,

FL, USA

Dual Core AMD

Opteron(tm)

Processor 270

2GB total GNU/Linux

(kernel release

2.6.16)

Table 1 Summary of the machines used in decentralized setting experiments

We wrote all our code in Java, using the Java 2 Standard Edition compiler with version 1.5. In

the experiments, we used Tomcat Apache Server with version 5.5.8 and Axis software with

version 2 as a container. The maximal heap size of the JVM was set to 1024MB by using the

option –Xmx1024m. The Tomcat Apache Server uses multiple threads to handle concurrent

requests. In the experiments, we increased the default value for maximum number of threads

to 1000 to be able to test the system behavior for high number of concurrent clients. As back-

end storage, we use MySQL database with version 4.1. We used the “nanoTime()” timing

function that comes with Java 1.5 software.

Analyzing the results gathered from the experiments, we encountered some outliers (abnormal

values). These outlier observations are numerically distant from the rest of observation data.

The cause of the outliers is mainly the external effects, i.e., problems with network and server,

as these outlier observations were not seen on the internal timing observations measuring only

the system processing time. Due to outliers, the average may not be representative for the

mean value of the observation times. This in turn may affect the results. For example, these

outliers may increase the average execution time and the standard deviation. In order to avoid

abnormalities in the results, we removed the outliers by utilizing the Z-filtering methodology.

In Z-filtering, first, the average and standard deviation values are calculated. Then a simple

test is applied. [abs(measurement_i-measurement_average)] / stdev > z_value_cutoff. This test

discards the anomalies. After first filtering is over, the new average and standard deviation

values are calculated with the remaining observation times. This process was recursively ap-

plied until no filtering occurred.

Simulation Parameters: Table 2 gives the simulation parameters for the fault-tolerance,

distribution, dynamic replication and replica-content placement experiments. Note that, there

are a number of tradeoffs involved in choosing simulation parameters. We repeated these

experiments by varying values of parameters and explored these tradeoffs. We discuss some

of the tradeoffs and our rationale in deciding these simulation parameters below. Here, we

investigate an approximation of the optimal system performance. Thus, the results measured

with the selected simulation parameters will be the optimal upper bound of the system perfor-

mance.

metadata size and volume: We chose metadata size and volume from a real life application,

i.e. Pattern Informatics, where the Hybrid Service is used. Thus, the metadata size and volume

are 1.7 KB and 1000 respectively. An illustration of this metadata is given in Appendix A.

dynamic-replication-time-interval: In order to provide dynamic replication, metadata in-

stances in a Hybrid Service are replicated in replica-hosting environment in a dynamic fashion

within certain time intervals (dynamic-replication-time-interval). If the dynamic-replication-

time-interval is chosen to be too small, then the system performance will be affected. If this

time interval is too big, then the system will not adapt well to changes in client demands such

as sudden bursts of request that come in from an unexpected location. Rabinovich et al intro-

duced an extensive study on choosing values for the dynamic-replication tunable parameters.

In our investigation, we chose the simulation parameters relying on their study in [16]. Thus,

the value of dynamic-replication-time-interval is every 100 seconds.

minimum-fault-tolerance-watermark: To provide a certain level of fault-tolerance, we use a

minimum-fault-tolerance-watermark indicating minimum required degree of replication. If the

value is chosen to be high, then the time and system resources required completing replica-

content placement and keeping these replicas up-to-date would be high. If the value is chosen

to be too small, then the degree of replication (fault-tolerance level) will below. To facilitate

testing of the system, we choose the minimum-fault-tolerance-watermark to be 3.

timeout-period: The tunable timeout-period value indicates the amount of time that a Hybrid

Service node is willing to wait to receive response messages. If the timeout-period is too

small, the initiator of a request will not wait enough for the context access responses coming

from a multicast group. If the timeout-period is too big, then the query initiator may have to

wait for a long time unnecessarily for some information that does not exist in the replica-

hosting environment. To facilitate testing of the system, we choose the time-out value to be

10000 seconds.

deletion-threshold: If a temporary-copy (server-initiated) of a context is in low demand and

its demand count is below deletion-threshold, then this temporary copy needs to be deleted.

The deletion-threshold determines the rate for migration and replication occurring in the sys-

tem. If a deletion-threshold is selected too low, the system will create more temporary copies,

which will lead into high number of message exchanges in the system. If a deletion-threshold

is too high, the system will keep low-demand temporary copies of a context unnecessarily. In

our investigation, we chose the deletion-threshold value to be 0.03 request per second based

on the study introduced in [16].

replication-threshold: If a context is in high demand and its demand count is above a replica-

tion-threshold, then the context is replicated as a temporary-copy. If the replication-threshold

is selected to be too high, then the system will not adapt well to high number of client de-

mands. If the replication-threshold is too low, the system will try to create temporary replicas

at every remote replica where small number of requests comes in. This may cause unnecessary

consumption of system resources. In our investigation, we chose the replication-threshold

value to be 0.18 requests per second based on the study introduced in [16].

simulation parameters Values

metadata-size 1.7 Kbytes

metadata-volume 1000

time-out value 10000 seconds

replication-threshold 0.18 requests per second

deletion-threshold 0.03 requests per second

minimum-fault-tolerance-watermark 3

dynamic-replication-time-interval every 100 second

 Table 2 Simulation parameters for the experiments

Effectiveness experiment: The effectiveness experiment is conducted to understand the per-

formance and scalability of the prototype implementation for standard key-based query opera-

tions from a client’s perspective. To conduct this experiment, two different test-phases are

completed. In the first test-phase following cases are completed: a single client sends inquiry

requests to an echo service which receives a message and then sends it back to the client with

no processing applied; a single client sends inquiry requests to a Hybrid Service which grants

the request in in-memory storage. These test cases were repeated five times, each with 200

observations and we recorded the average response time. In the second testing phase, we in-

vestigated the following research question: How well does the Hybrid Service perform when

the message rate per second is increased? To answer this question, we ramped-up the work

load (number of messages sent per second) until the system performance degrades. To facili-

tate the testing, we use WS-Context Schema standard key-based query operations. This inves-

tigation is conducted using a Linux cluster with eight nodes located at the Community Grids

Laboratory of Indiana University. Each node was equipped with Intel® Xeon™ CPU

(2.40GHz), 2 GB RAM and ran Linux kernel 2.4.22. Both the Hybrid Service and testing

client application were located in two different servers located in the same Linux cluster. The

size of the metadata and size of the registry were 1.7 KB and 5000 metadata respectively. An

illustration of this metadata is given in Appendix A.

Figure 3 The figure on the left illustrates the round trip time chart for metadata inquiry requests. The figure on the
right illustrates the metadata inquiry response times at various levels of message rates per second. The time units are

in milliseconds.

Results of the effectiveness experiment: The results of the experiment were depicted in the

figure above. Analyzing the results, we observe that the Hybrid Service achieves negligible

processing overheads when responding client’s queries by simply employing an in-memory

storage mechanism. Analyzing the results, we also concluded that Hybrid Service performed

well under increasing message rates. For inquiry request messages, we observe a threshold

value after which the system performance starts decreasing due to high message rate. This

threshold is mainly due to the limitations of Web Service container, as we observe the similar

threshold when we test the system with an echo service that returns the input parameter passed

to it with no message processing is applied.

Note that, this study proposes a system architecture that would address the two types of meta-

data domains: large-scale, static metadata and small-scale, dynamic metadata. For the first

type, metadata can be replicated freely without concerning consistency, since the client ac-

cesses do not cause replica divergence. For the second type, metadata replication effectiveness

is not a concern, as the state changes are propagated directly to application through a notifica-

tion capability. Recall that, the Hybrid Service introduces a consistency model which requires

consistency-sensitive applications to subscribe to unique-metadata-topics to receive updates.

5

6

7

8

9

10

1 2 3 4 5

T
im

e
 (

m
ill

is
e

co
n

d
s)

Repeated Test Cases

0

10

20

30

40

50

60

0 200 400 600 800 1000

a
ve

ra
g

e
 r

o
u

n
d

 t
ri

p
 t

im
e

 (
m

se
c)

message rate (message/per second)

Therefore, we leave out the investigation of effectiveness of the replica-content placement

(from client’s perspective). Instead, we explore the effectiveness our replication approach

from server’s perspective. To achieve this, we conduct the fault-tolerant experiment, which

will be discussed later in the paper, to investigate the processing overheads involved in repli-

ca-content placement.

Distribution experiment: In this experiment, we conducted various testing cases to investi-

gate the cost of distribution. We measured the cost of distributing access request into remote

servers separated with significant network distances. In particular, we performed this experi-

ment to answer following questions: a) what is the cost of access request distribution in terms

of time required to fetch copies of a data (satisfying an access query) from remote locations?,

b) how does the cost of distribution change when using multiple intermediary brokers for

communication?, c) how does the performance of the distribution change for continuous,

uninterrupted operations?

NB
node

Hybrid

Service
instance

Hybrid
Service
instance

Bloomington, IN 3 different instance located 3
different remote locations:

1 - Indianapolis, IN

2- Tallahassee, FL

3- San Diego, CA

Hybrid
Service
instance

Hybrid
Service

instance

Bloomington, IN 3 different instance located 3
different remote locations:

1 - Indianapolis, IN

2- Tallahassee, FL

3- San Diego, CA

NB
node

NB
node

Figure 4 The design of the distribution experiment. The rounded shapes indicate NaradaBrokering nodes. The rectan-

gle shapes indicate Hybrid Service instances located at different locations. The first test was conducted with one

broker where the broker is located before the Hybrid Service instance in Bloomington, IN, while the second test was

conducted with two broker nodes each sitting on the same machine before the Hybrid Service instance.

Results of the distribution experiment: We conducted distribution experiments for three

different locations corresponding to three different network spaces. For each location, the

system is tested for more than 25 thousand continuous operations and the time for each opera-

tion was recorded. By analyzing the results, we observed that the system shows stable perfor-

mance for continuous, uninterrupted request distribution operations. To investigate the bottle-

necks, we extracted the processing time involved for access request distribution. We depict the

time spent in various sub-activities of distribution in Figure 5 and list the results in Table 3.

The results indicated that regardless of how the Hybrid Service instances are distributed, the

system showed the same stable and negligible performance, which is around 3.6 ms when

using one intermediary broker. This time includes the Hybrid Service system processing over-

head and overhead of using an intermediary broker as part of publish-subscribe system. We

observe that the overhead of access request distribution increases only by 1.2 ms when we use

an additional intermediary broker.

Figure 5 Time spent in various sub-activities of the request distribution scheme of the Hybrid Service

 one broker two brokers latency

bloomington-indianapolis 3.59 4.79 2.42

bloomington-tallahassee 3.55 4.78 36.05

bloomington-san diego 3.63 4.92 66

Table 3 Statistics for the figure above. Overhead of request distribution. Average timing is in milliseconds.

Dynamic replication experiment: In this experiment, we conducted a testing case to investi-

gate the performance of dynamic replication. We used the dynamic replication for perfor-

mance optimization to replicate temporary copies of contexts to where they wanted. In this

experiment, we simulated a workload, where we have a thousand metadata in the Hybrid Ser-

vice instance located at Indianapolis, IN. In this testing case, metadata from the Indianapolis

instance was requested randomly by the Hybrid Service instance located at Bloomington. If

the remote metadata is replicated to local site, the system simply obtains the data from local

in-memory storage. We conducted two testing cases to answer the following questions: a)

What is the cost of access distribution to fetch copies of a context from the remote location

(Indianapolis), when the dynamic replication is disabled?, b) What is the cost of access distri-

bution to fetch copies of a context from the remote location (Indianapolis), when dynamic

replication is enabled?

0

10

20

30

40

50

60

70

bloomington-indianapolis bloomington-tallahassee bloomington-san diego

T
im

e
 (
m

s
)

overhead of distribution when using one intermediary broker

overhead of distribution when using two intermediary brokers

latency

NB

node

Hybrid

Service

instance

Hybrid

Service
instance

Bloomington, IN Indianapolis, IN

Test-1 Distribution with Dynamic Replication Disabled

Test-2 Distribution with Dynamic Replication Enabled

NB

node

Hybrid

Service
instance

Hybrid

Service
instance

Bloomington, IN Indianapolis, IN

Figure 6 The design of the dynamic replication experiment. The rounded shapes indicate NaradaBrokering nodes. The

rectangle shapes indicate Hybrid Service instances located at different locations. In the first testing case, dynamic

replication capability is disabled. In the second testing case, dynamic replication capability is enabled.

Results of the dynamic replication experiment: Based on the results depicted in Figure 7, in

this experiment, we observed that the dynamic replication methodology could actually move

highly requested metadata to where they wanted. We observed that the system stabilized after

around 16 minutes. Here, the system managed to move half of the metadata to the local site

after around 8 minutes, where we observed the highest peak in the standard deviation values.

This is simply because half of the access requests were granted locally, while the other half

were granted at the remote location.

Figure 7 The results of the dynamic replication experiment. This figure depicts the metadata access latency and the

standard deviation for two cases: a) first case is when dynamic replication option is disabled, b) second case is when

dynamic replication option is enabled. The x-axis indicated the dynamic replica-content placement decision frequen-

cy, while the y-axis indicates the metadata access-latency.

0

1

2

3

4

5

6

7

0 5 10 15 20 25

L
a
te

n
c
y
 (

m
s
)

Every 100 second

Dynamic Replication Performance Chart - Distribution between
Bloomington, IN and Indianapolis, IN

Average -
Distribution with
Dynamic Replication

STDev - Distribution
with Dynamic
Replication

Average -
Distribution

STDev - Distribution

Fault-tolerance experiment: In this experiment, we conducted various testing cases to inves-

tigate the cost of fault-tolerance when moving from centralized system to a decentralized

replica hosting system. In particular, we performed our testing cases to answer following

questions: a) What is the cost of replica-content placement for fault-tolerance in terms of the

time required to create replicas at remote locations?, b) How does the system behavior change

for continuous, uninterrupted replica-content placement operations?. To answer these ques-

tions, we conducted two testing cases: The first test was conducted with one broker when the

broker was located before the Hybrid Service instance at Bloomington, IN. The second test

was conducted with two brokers each sitting on the same machine before the Hybrid Service

instances. In this experiment, we increased the fault tolerance level gradually and measured

end-to-end latency for replica-content placement.

Hybrid

Service

instance

Hybrid

Service

instance

Bloomington, IN

NB node NB node

Hybrid

Service

instance
NB node

Hybrid

Service

instance
NB node

Indianapolis, IN

Tallahassee, FL

San Diego, CA

Hybrid

Service

instance

Hybrid

Service

instance
Bloomington, IN

NB node

Hybrid
Service

instance

Hybrid

Service

instance

Indianapolis, IN

Tallahassee, FL

San Diego, CA

Test - 1

Test - 2

Figure 8 The design of the fault tolerance experiment. The rounded shapes indicate NaradaBrokering nodes. The
rectangle shapes indicate Hybrid Service instances located at different locations. In the first testing case, we measure

the end-to-end latency for varying number replica-content creation with only one broker. In the second case, we

repeat the same test with two brokers.

Results of the fault-tolerant experiment: We conduct this testing case for one to three repli-

ca creations. For each testing case, the system is tested for more than thousand continuous

operations and the time for each operation was recorded. By analyzing the results, we ob-

served that the system performs stable for continuous, uninterrupted replica creation opera-

tions. To investigate the bottlenecks, we extract the processing time involved in replication

creation. We depict the time spent in various sub-activities of replica creation in the figure

below. The results indicate that the time required for one replica creation is only four millise-

conds. The cost of replica creation time includes the Hybrid Service system processing over-

head and overhead of using an intermediary broker as part of publish-subscribe system. We

also observe that the time required for replica creation increases, as the number of replica

copies increases. This is because; the system has to perform an additional unicast message for

each additional replica creation. The time required for a unicast message is less than one milli-

second. The results also indicated that, the overhead of replica-content creation increases only

by 1.2 ms, when we use an additional intermediary broker.

Figure 9 Time spent in various sub-activities of the replica-content creation scheme of the Hybrid Service.

one

broker

two

brokers

end-to-end

latency

1 replica (Indianapolis) 4.02 5.27 2.43

2 replicas (Indianapolis–Tallahassee) 4.54 5.67 36.05

3 replicas (Indianapolis–Tallahassee –San Diego) 5.13 6.24 65.90

 Table 4 Statistics for the figure above. Overhead of replica-content creation. Average timing is in milliseconds.

Consistency enforcement experiment: The design of the consistency enforcement is similar

to the distribution experiment depicted in Figure 4. In this experiment, our aim is to answer

the following questions: a) What is the cost of consistency enforcement in terms of the time

required to carry out updates at the primary-copy holder?, b) How does the system behavior

change for continuous, uninterrupted update operations (for consistency enforcement)? To this

end, we conducted two tests: The first test was conducted with one broker where the broker is

located before the Hybrid Service instance in Bloomington, IN, while the second test was

conducted with two broker nodes each sitting on the same machine before the Hybrid Service

instances. In this experiment, we measured the time required to distribute an update request to

the primary-copy holder of the context under consideration for consistency enforcement rea-

sons.

Consistency enforcement experiment results: We conduct this testing case for three differ-

ent locations. For each location, the system was tested for more than 25 thousand continuous

operations. For each operation, time was recorded. By analyzing the results, we observe that

0

10

20

30

40

50

60

70

1 replica creation (Indianapolis) 2 replica creation (Indianapolis,
IN - Tallahassee, FL)

3 replica creation (Indianapolis-
IN, Tallahassee-FL, San Diego-

CA)

T
im

e
 (

m
s
)

overhead of replica creation when using one intermediary broker

overhead of replica creation when using two intermediary brokers

end-to-end latency

the system shows stable performance over time for continuous consistency enforcement op-

erations. Based on the observations, we extract the processing time involved to provide con-

sistency enforcement using publish-subscribe based messaging schemes. We depict the time

spent in various sub-activities of distributing and carrying out the update request at the prima-

ry-copy holder in the figure below. The cost of consistency enforcement includes the Hybrid

Service system processing overhead (for distributing update request to primary-copy holder)

and overhead of using an intermediary broker as part of publish-subscribe system. We observe

that the time required for consistency enforcement does not change regardless of how Hybrid

System instances are distributed. Similar to our results in the previous two experiments, we

observe that the overhead of consistency enforcement increases only by 1.2 ms when we use

an additional intermediary broker.

Figure 10 Time spent in various sub-activities of the Hybrid Service consistency enforcement scheme. The results
analyze the overhead of distributing update requests to the primary-copy holder where the update requests take place

for consistency enforcement reasons.

 one broker two brokers

end-to-end

latency

Bloomington – Indianapolis 4.05 5.32 2.42

Bloomington – Tallahassee 3.83 5.03 36.05

Bloomington – San Diego 4.07 5.49 66

Table 5 Statistics for the figure above. Statistics for overhead of update distribution. Average timing is in millise-

conds.

9 Conclusions and Future Research Directions

This research presented a high performance, distributed Grid Information Service Architec-

ture, Hybrid Grid Information Service, as a metadata replica hosting environment. To achieve

distribution, the Hybrid Service uses publish-subscribe based messaging schemes to provide

interaction among the distributed instances of the service. It utilizes a topic based publish-

subscribe messaging communication to implement fundamental aspects of decentralized in-

0

10

20

30

40

50

60

70

bloomington-indianapolis bloomington-tallahassee bloomington-san diego

T
im

e
 (

m
s
)

overhead of consistency enforcement when using one intermediary broker

overhead of consistency enforcement when using two intermediary brokers

latency

formation systems such as fault-tolerance, access-request distribution, and consistency en-

forcement. To achieve high-performance in metadata access and improve the overall perfor-

mance of the system, the Hybrid Service utilizes a performance optimization technique: dy-

namic migration/replication. This technique improves overall system performance by mov-

ing/replicating highly requested metadata to where they wanted.

The evaluation of the system prototype pointed out the following results. Firstly, it pointed out

that the Hybrid Service is an effective solution with its negligible processing overheads and its

high-performance under heavy workloads. Secondly, it pointed that the Hybrid Service

presents stable behavior for access request distribution, replica creation and consistency en-

forcement over a high number continuous operations. Thirdly, it indicated that the cost of

distribution, fault tolerance and consistency enforcement is in the order of milliseconds. These

promising results shows that high-performance, distributed Grid Information Service Archi-

tectures can be built by utilizing publish-subscribe based messaging schemes. Fourthly, it

pointed out that high-performance metadata access can be achieved by utilizing dynamic rep-

lication/migration technique. This technique also reduces the cost of repetitive access requests

by moving temporary copies of contexts to where they wanted. Fifthly, it indicated the differ-

ences in the processing costs of different aspects of the distributed system. For example, the

cost of fault tolerance is higher than the cost of distribution and consistency enforcement. This

is because; there is an additional time required for performing additional unicast messages for

higher fault-tolerance levels. Finally, it pointed out the trade-off between performance and

fault-tolerance. The results indicated that the cost of replica-content creation increases, when

the degree of fault-tolerance increased.

We applied the introduced system into different application domains such as geographical

information system and sensor grids [4, 23-25], management of real-time streams in collabora-

tion grids [26, 27]. We intend to investigate how good the system architecture is by applying it

into wider range of application domains. We also plan on expanding the prototype evaluation

by including an extensive scalability experiment, which would test the system with large

communities of nodes, and an effectiveness experiment, which would test the replica-content

placement efficiency from a client’s perspective. An additional area of future investigation is

information security. To complete the system, we intend to research an information security

mechanism for the distributed replica hosting system. This effort should research the security

concerns related to communication between network nodes and users, as well as security con-

cerns related to authorization to deal with access control.

Acknowledgement: We thank Dr. Plale for stimulating discussions and her feedback on this

research. This work is supported by the Advanced Information Systems Technology Program

of NASA’s Earth-Sun System Technology Office.

Appendix

A. Sample WS-Context Schema XML metadata

<?xml version="1.0" encoding="UTF-8"?>

<wscontext:context

 xmlns:wscontext="http://datatype.fthpis.cgl/"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <contextKey>ABCCE800-AB35-11DA-A4FC-C80C5880CB18</contextKey>

 <serviceKey>ABCCE800-AB35-11DA-A4FC-C80C5880CB19</serviceKey>

 <sessionKey>ABCCE800-AB35-11DA-A4FC-C80C5880CB20</sessionKey>

 <name>context://GIS/PI/ABCCE544-CX35-11EA-BVFC-C34C7789CB33</name>

 <value>context:///GIS/VC/3ea29661-2d5e-11db-8c56-cf37cd202027/3ebd7162-2d5e-11db-8c56-

cf37cd202027/cost</value>
 <valueType>String</valueType>

 <lease>

 <timeout>1000</timeout>
 <isInfinite>false</isInfinite>

 </lease>

 <version>1</version>

</wscontext:context>

Bibliography

1. M. Gerndt, R.W., Z. Balaton, G. Gombás, P. Kacsuk, Zs. Németh, N. Podhorszki, H-L.

Truong, T. Fahringer, M. Bubak, E. Laure, T. Margalef, Performance Tools for the Grid: State

of the Art and Future. 2004, Shaker Verlag.

2. Zanikolas, S., Sakellariou, R., A Taxonomy of Grid Monitoring Systems. . Future Generation

Computer Systems, 21(1), 2005: p. pp. 163--188.

3. Wu, W., et al., Grid Service Architecture for Videoconferencing, in "Grid Computational

Methods" Edited by M.P. Bekakos, G.A. Gravvanis and H.R. Arabnia.

4. Aktas, M.S., et al., iSERVO: Implementing the International Solid Earth Research Virtual

Observatory by Integrating Computational Grid and Geographical Information Web Services.

PAGEOPH, 2004.

5. Ken Arnold, A.W., Byran O’Sullivan, Robert Scheifler, and Jim Waldo, The JINI Specifica-

tion. 1999: Addison-Wesley, Reading, MA.

6. Bellwood, T., Clement, L., and von Riegen, C., UDDI Version 3.0.1: UDDI Spec Technical

Committee Specification http://uddi.org/pubs/uddi-v3.0.1-20031014.htm. 2003.

7. GRIMOIRES - UDDI compliant Web Service registry with metadata annotation extension,

availble at http://sourceforge.net/projects/grimoires.

8. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D. R., Kaashoek, M. F., Dabek, F., Balakrish-

nan, H. Chord: A Scalable Peer-to-Peer Lookup Protocol for Internet Applications. in

IEEE/ACM Trans. on Networking. 2001.

9. M. Palankar, A.O., A. Iamnitchi, and M. Ripeanu, Amazon S3 for Science Grids: a Viable

Solution? 4th USENIX Symposium on Networked Systems Design and Implementation

(NSDI'07), 2007.

10. Milojicic, D.S., et al. , Peer-to-Peer Computing, in HP Labs Technical Report HPL-2002-57.

2002, HP Labs.

11. S. Helal, N.D., and C. Lee. Konark-A Service Discovery and Delivery Protocol for Ad-Hoc

Networks. in In Third IEEE Conference on Wireless Communications Network (WCNC).

March 2003. New Orleans, USA.

12. Guttman, E., Perkins, C., Veizades, J., Service Location Protocol, RFC 2165, available at

http://rfc.net/rfc2165.html. 1997.

13. Tang, D., Chang, D., Tanaka, K., Baker, M., Resource Discovery in Ad-Hoc Networks, in CSL-

TR-98-769. 1998, Stanford University.

14. Beatty, J., Kakivaya, G., Kemp, D., Kuehnel, T., Lovering, B., Roe, B., St. John, C., Schlim-

mer, J., Simonnet, G., Walter, D., Weast, J., Yarmosh, Y., and Yendluri, P. , Web Services Dy-

namic Discovery (WS-Discovery) available from http://msdn.microsoft.com/library/en-

us/dnglobspec/html/ws-discovery.pdf. 2004.

15. Sivasubramanian, S., Szymaniak, M., Pierre, G., Steen, M., Replication for Web Hosting Sys-

tems. ACM Computing Surveys, 36(3):291--334, 2004.

16. Rabinovich, M., Rabinovich, I., Rajaraman, R., Aggarwal, A. A Dynamic Object Replication

and Migration Protocol for an Internet Hosting Service. in Proc. 19th Int'l Conf. Distributed

Computing Systems. 1999.

17. Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., and Weihl, B., Globally distributed

content delivery. IEEE Internet Computing, 2002: p. pp 50-58.

18. Tanenbaum, A., Van Steen, M., Distributed Systems Principles and Paradigms. 2002. Cited in

page 326.

19. Aktas, M.S., Information federation in Grid Information Services, in Computer Science. 2007,

Indiana University: Bloomington, IN.

20. Sun_Microsystems, JavaSpaces Specification Revision 1.0, 1999 available at

http://www.sun.com/jini/specs/js.ps.

21. Pallickara, S., Fox, G. NaradaBrokering: A Distributed Middleware Framework and Architec-

ture for Enabling Durable Peer-to-Peer Grids. in Proceedings of ACM/IFIP/USENIX Interna-

tional Middleware Conference Middleware-2003. 2003. Rio Janeiro, Brazil.

22. Mehmet S. Aktas, G.C.F., Marlon Pierce, XML Metadata Services. Concurr. Comput. : Pract.

Exper., 2008.

23. Aydin, G., et al. SERVOGrid Complexity Computational Environments (CCE) Integrated

Performance Analysis. in Grid Computing, 2005. The 6th IEEE/ACM International Workshop

on. 2005: IEEE.

24. Aktas, M.S., et al. Implementing Geographical Information System Grid Services to Support

Computational Geophysics in a Service-Oriented Environment. in NASA Earth-Sun System

Technology Conference http://esto.nasa.gov/conferences/estc2005/index.html University of

Maryland, Adelphi, Maryland, June 28 - 30, 2005. All material is online for paper , presenta-

tion http://www.esto.nasa.gov/conferences/estc2005/Presentations/a6p2.pdf , and abstract

http://www.esto.nasa.gov/conferences/estc2005/author.html. 2005.

25. Aydin, G., Aktas, Mehmet S., Fox, Geoffrey C., Gadgil, Harshawardhan, Pierce, Marlon,

Sayar, Ahmet, SERVOGrid Complexity Computational Environments (CCE) Integrated Per-

formance Analysis. 2005.

26. Fox, G., et al. Management of Real-Time Streaming Data Grid Services. in Invited talk at

Fourth International Conference http://kg.ict.ac.cn/GCC2005 on Grid and Cooperative Com-

puting (GCC2005), held in Beijing, China, Nov 30-Dec 3, 2005. 2005.

27. Fox, G., et al. Real Time Streaming Data Grid Applications. in Invited talk at TIWDC 2005

CNIT Tyrrhenian International Workshop http://iwdc.cnit.it/ on Digital Communications July

4-6 2005. 2005.

