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Abstract. We introduce a distributed high performance hybrid Information Service Ar-

chitecture, which forms a metadata replica hosting system to manage both highly-

dynamic, small-scale and relatively-large, static metadata associated to Grid/Web Servic-

es. We present an empirical evaluation of the proposed architecture and investigate its 

practical usefulness. The results demonstrate that the proposed system achieves high-

performance and fault-tolerance with negligible processing overheads. The results also 

indicate that efficient decentralized Information Service Architectures can be built by uti-

lizing publish-subscribe based messaging schemes.   

1 Introduction 

Information Services address the challenging problems of announcing and discovering re-

sources in Grids. Existing implementations of Grid Information Services present several chal-

lenges. Firstly, most of the existing work have centralized components and do not address 

high performance and fault-tolerance issues [1, 2]. Secondly, previous work do not address 

distributed information management requirements of dynamic Grid/Web Service collections 

such as efficient request distribution and replica-content placement strategies [2]. Thirdly, 

none of the existing work adopts changes in client demands for performance optimization [1, 

2]. Fourthly, previous work do not provide uniform interface for publishing and discovery of 

both dynamically generated and static information [1, 2]. We therefore see this as an important 

area of investigation.  

 

To present the applicability of this investigation, we identify metadata management require-

ments of two application use domains: Global Multimedia Collaboration System (Glo-

balMMCS [3]) and Pattern Informatics Geographical Information System Grid (PI GIS-Grid 

[4]). GlobalMMCS is a peer to peer collaboration environment, where videoconferencing 

sessions, with any number of widely distributed services, can take place. GlobalMMCS re-

quires persistent archival of session metadata to provide replay/playback and session failure 

recovery capabilities. The PI GIS-Grid is a workflow-style Grid application which requires 

storage of transitory metadata needed to correlate activities of participant entities. Both appli-

cation domains require a decentralized, fault-tolerant metadata hosting environment which can 

support scalability of large-scale, read-mostly, quasi-static information and performance re-

quirements of small-scale, highly-updated, dynamic information. Although much work has 

been done on information management in Grid Information Services, to our best knowledge, 



none of the previous work addresses the metadata management requirements of both of types 

of application use domains. 

 

In this paper, we propose a Grid Information Service that addresses aforementioned chal-

lenges of previous work and metadata management requirements of target application use 

domains. The main novelty of this paper is to describe the architecture, implementation and 

evaluation of Hybrid Grid Information Service (Hybrid Service) supporting both distributed 

and centralized paradigms and managing both dynamic, small-scale and quasi-static, large-

scale metadata. The implications of this research are four-fold.  First is to describe a Grid 

Information Service architecture, which responds to client demand changes. To our best 

knowledge, the proposed work is a pioneer approach that utilized multi-publisher, multicast 

communication to dynamic replication methodology in Grid Information Services without 

relying on information available on the Internet routers. Second is to describe the architecture 

of a fault tolerant and high performance Grid Information Service linking publish-subscribe 

based messaging schemes with associative shared memory platform for metadata manage-

ment. Third is to describe the architecture of a Hybrid Service that integrates different Grid 

Information Services by using unification and federation concepts. Fourth is to identify and 

analyze the key factors that affect the performance of a metadata-system with multi-publisher, 

multicast communication strategies.  

  

The organization of the rest of the paper is as follows. Section 2 reviews the background work. 

Section 3 discusses the Hybrid Grid Service Architecture. Sections 4-7 explain the design 

decision in fundamental issues of Hybrid Service Replica Hosting System: service discovery 

model, replica-content placement, consistency enforcement, access-request distribution. Sec-

tion 8 analyzes the performance evolution of the prototype implementation. Section 9 con-

cludes the paper with summary and future research directions.  

2 Background 

Existing service metadata discovery architectures can be broadly categorized as centralized 

and decentralized by the way they handle service information storage. In centralized approach, 

there is a central look-up mechanism where all services are dependent on one node. Main-

stream service discovery architectures (such as JINI [5]), which have been developed to pro-

vide discovery of remote services residing in distributed nodes in a wired network, are based 

on a central registry for service registration and discovery. Most central service discovery 

solutions (such as UDDI [6] and its extensions [7]) are database-based solutions and require 

disk accesses to query/publish metadata. In decentralized approach, the research trend mainly 

focuses on decentralized search, where all the peers of the system actively participate the 

discovery process with no central database. Some of previous solutions (such as Chord [8]) 

with pure decentralized storage models focused on the concept of distributed hash tables 

(DHT), which assumes the possession of an identifier that identifies the service to be discov-

ered. Some other decentralized approaches, such as Amazon Simple Storage Service (Amazon 

S3 [9]), focused on a peer-to-peer file distribution protocol called Bittorent, which is designed 

to distribute large amounts of widely distributed data onto peers, where each peer is capable of 

requesting and transferring data. Despite of their important features, previous metadata dis-

covery solutions do not address the application requirements of aforementioned target applica-

tion use domains. The centralized registry approach has good performance but presents limita-



tions such as single point of failure problem. Likewise, the decentralized registry approach 

also presents some limitations, as the resource placement at nodes is strictly enforced in struc-

tured peer-to-peer networks, which in turn cause a heavy overhead on the bootstrap of the 

network.  The DHT approach is good on routing messages but limited to primitive query ca-

pabilities (key-based queries) [10]. The Bittorent approach has also challenges as its perfor-

mance depends on the capacity of a centralized node (called tracker), which keeps track of 

peers in the network.  

 

The proposed system differs from previous metadata discovery architectures as described 

below. Firstly, it supports both distributed and centralized paradigms in one hybrid architec-

ture by linking publish-subscribe based messaging schemes with associative shared memory 

platform for metadata management. Secondly, apart from DHT based systems, it introduces a 

multi-publisher, multicast messaging infrastructure and communication protocol, which in 

turn enable advanced query capabilities to be routed between the network nodes. Thirdly, it 

explores a caching mechanism that would provide persistency and performance capabilities 

together. Existing work on Service Registries relies only on database solutions, which is good 

for persistency reasons; but requires I/O accesses every time when metadata access happens. 

Fourthly, it provides mutual exclusive access to the shared data, while none of the previous 

work on Service Registries support data-sharing. The proposed system design is discussed in 

Section 3 in details. 

  

Another way of analyzing service discovery architectures could be based on the formation of 

the network and the way of handling discovery request distribution. In traditional wired net-

works, network formation is systematic since each node joining the system is assigned an 

identity by another device in the system [11]. Example wired network discovery architectures 

such as JINI [5] and Service Location Protocol [12] focus on discovering local area network 

services provided by devices like printer. In ad-hoc networks (unstructured peer-to-peer sys-

tems), there is no controlling entity and no constraint on the resource dissemination in the 

network. Existing solutions for service discovery for ad-hoc networks (e.g. pervasive compu-

ting environments) can be broadly categorized as broadcast-driven and advertisement-driven 

approaches [13]. In broadcast-driven approach, a service discovery request is broadcasted 

throughout the discovery network and each node satisfying the request sends a unicast re-

sponse message. In advertisement-driven approach, each service advertises itself to all availa-

ble peers with a “hello” message and all peers cache the advertisement of the broadcasting 

service. The WS-Discovery Specification [14] supports both broadcast-driven and advertise-

ment-based approaches by using a hardware multicast mechanism. To minimize the consump-

tion of network bandwidth, this specification supports the existence of registries and defines a 

multicast suppression behavior if a registry is available on the network. Existing solutions to 

service discovery architectures do not address the requirements of our target application do-

mains. The traditional wired-network based architectures are limited, as they depend on a 

controlling entity, which assigns identifiers to participating entities. The ad-hoc networks have 

also some limitations. If the size of the network is too big, the broadcast-driven approach has a 

disadvantage, since it utilizes significant network bandwidth, which in turn creates a large 

load on the network. The advertisement-driven approach does not scale, as the network nodes 

may have limited storage and memory capability. The WS-Discovery approach is promising 

to handle metadata in peer-to-peer computing environment; however, it has the disadvantage 

of being dependent on hardware multicast for message dissemination.   

 



The service discovery model of the proposed system differs from previous work as it does not 

have to rely on wired network discovery architecture or have any constraints on resource dis-

semination in the network. There are similarities between the proposed approach and the WS-

Discovery approach, as they both support broadcast and advertisement-based approaches in 

their service discovery model. Different from WS-Discovery approach, the Hybrid Service 

utilizes a software-multicast model by utilizing its own multi-publisher, multicast publishes-

subscribe based messaging scheme. The Hybrid Service discovery model and communication 

mechanism are discussed in Section 4 in details. 

 

Replication is a well-known and commonly used technique to improve the quality of metadata 

hosting environments. Replication can be categorized as permanent-replication and server-

initiated replication.  Permanent-replication keeps the copies of a data permanently for fault-

tolerance reasons, while the server-initiated replication creates the copies of a data temporarily 

to improve the responsiveness of the system. Sivasubramanian et al [15] give an extensive 

survey on designing and developing replica hosting environments, as does Robinovich in [16], 

paying particular attention to dynamic replication. These systems may be discussed under 

following design issues: a) distribution of client requests, b) selection of replica servers for 

replica placement, and c) consistency enforcement. Distribution of client requests is the prob-

lem of redirecting the request to the most appropriate replica server. Some of the existing 

solutions to this problem rely on the existence of a DNS-Server [16, 17].  These solutions 

utilize a redirector/proxy server that obtains physical location of a collection of data-systems 

hosting a replica of the requested data, and choose one to redirect client’s request. Replica 

placement is another issue that deals with selecting data hosting environments for replica 

placement and deciding how many replicas to have in the system. Most of the solutions [16, 

17], which apply to dynamic replication, assume all data-hosting servers to be ready and 

available for replica placement and ignore “dynamism” both in the network topology and in 

the data. In reality, data-systems can fail anytime and may present volatile behavior, while the 

data is being updated. The consistency enforcement issue is about ensuring all replicas of the 

same data to be the same. In [18] Tanenbaum gives a survey of different consistency enforce-

ment approaches, implementations, and update protocols.  

 

The fault-tolerance aspects of the proposed system’s architecture differ from previous work on 

permanent replica-content placement, as some of its application use domains are highly dy-

namic. To this end, the Hybrid Service supports both permanent and dynamic replication. 

There are similarities between the Robinovich’s dynamic replication methodology and our 

approach, since the proposed system adopts slightly modified versions of the replica selection 

and dynamic replication algorithms introduced by Rabinovich. Different from the Rabino-

vich’s work, the Hybrid Service utilizes its own communication protocol, which does not rely 

on the information available on the Internet Routers to locate network nodes. There are also 

differences in target application use domains of the two systems: Rabinovich’s approach is 

designed for web replica hosting systems, while the Hybrid Service is designed for distributed, 

service oriented architecture based Grid applications. The Hybrid Service system’s design 

rationale in deciding the strategies for replica-content placement, consistency enforcement and 

request distribution are discussed in Sections 5-7 in the same order in details.   



3 The Hybrid Grid Information Service 

We designed and built a Hybrid Grid Information Service (Hybrid Service) to support han-

dling and discovery of metadata associated with Grid/Web Services in Grid applications. The 

Hybrid Service is an add-on architecture that interacts with the local information systems and 

unifies them in a higher-level hybrid system. It provides a unifying architecture where one can 

assemble metadata instances of different information services. [19] describes the semantics of 

the Hybrid Service in details. In this paper, our main focus is to highlight the replica hosting 

environment aspects of the Hybrid Service and investigate various research issues related 

discovery, distribution and consistency.  

 

Figure 1 illustrates general view of the Hybrid Service (See the picture on the left in Figure 1). 

The proposed hybrid system introduces uniform access and information resource management 

abstraction layers: First layer supports one-to-many communication protocols, while the latter 

manages one-to-many information service implementations. The prototype of the system un-

ifies the two local information service implementations: WS-Context and Extended UDDI. It 

supports their communication protocols and utilizes publish-subscribe based messaging sys-

tems to enable communication in the information service network. 
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Figure 1 The picture on the left illustrates the general view of the Hybrid Service. The picture on the right illustrates 

the abstraction layers of the Hybrid Service from top-to-bottom. The dashed box indicates the Hybrid Service. 
 

Figure 1 also illustrates a detailed view of the Hybrid Service (See the picture on the right in 

Figure 1). (1) Uniform Access Interface layer, which consists of multiple XML APIs, provides 

unified access to the system. (2) The Request-processing layer extracts incoming requests, 

notifies clients of the state changes in metadata and enforces controlled access to the in-

memory storage. (3) TupleSpaces Access API provides access to a Tuple Pool (that is a gene-

ralized in-memory storage mechanism, implemented based on JavaSpaces Specification [20]) 

and supports all query/publish operations that can take place on the Tuple Pool. (4) The Tuple 

Processor layer processes metadata stored in the Tuple Pool and provides lifetime manage-

ment, persistency management, fault-tolerant management and dynamic caching management 

of metadata. (5) The Filtering layer manages the filtering based on the user-defined mapping 

rules to provide transformations between the Unified Schema (i.e. a unified schema is an inte-

gration of XML schemas of different information services) instances and local schema in-

stances. (6) The Information Resource Manager layer manages low-level information service 
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implementations and provides decoupling between the Hybrid Service and sub-systems. (7) 

The Pub-Sub Network layer manages communication between Hybrid Service instances by 

utilizing publisher and subscriber sub-components to provide communication among the ser-

vice instances.  

 

Figure 2 illustrates the distribution in Hybrid Service and shows N-node decentralized servic-

es from the perspective of a single service interacting with two clients. To achieve communi-

cation among the network nodes, the Hybrid Service utilizes a topic-based publish-subscribe 

software multicasting mechanism. This is a multi-publisher, multicast communication me-

chanism, which provides message-based communication. In the prototype implementation, we 

use an open source implementation of publish-subscribe paradigm (NaradaBrokering  [21]) 

for message exchanges between peers. We identify following fundamental issues of designing 

the Hybrid Service Replica Hosting System: service discovery, replica-content placement, 

consistency enforcement, and request routing. These issues are discussed in the following 

sections in the same order.  
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Figure 2 Distributed Hybrid Services. 

4 Service Discovery 

The Hybrid Service has a multicast discovery model to locate available services. In this mod-

el, the communication between network nodes happens via message exchanges. These mes-

sages are Server-Information Request and Response messages.  

 

Server-Information Request and Response messages: A Hybrid Service node advertises its 

existence when it first joins the network with a message, the Server-Information Request. The 

purpose of this message is two-fold. First is to inform other servers about a newly joining 

server. Second is to refresh the replica-server-information data structure with the updated 

information (such as proximity and server load) every so often. This message is broadcasted 

through publicly known topic to every other available network nodes. The proximity between 

the initiator and the individual network nodes is calculated based on the elapse-time between 



sending off the Server-Information Request and receiving the Server-Information Response 

message. The response message is sent back by unicast over a unique topic to the initiator and 

contains the server load information of the responding network node.    

 
Service Discovery Model: Each Hybrid Service network node subscribes to the multicast 

channel (publicly known topic) to receive Server-Information Request messages. On receiving 

this request message, each node sends a response message, Server-Information Response 

message, via unicast directly to the newcomer Hybrid Service. This way, each node makes 

itself discoverable to other nodes in the system at the bootstrap. Each Hybrid Service node 

constructs a replica-server-information data structure about other available replica servers in 

the system. This data structure contains information about decision metrics such as server load 

and proximity. Each node keeps its replica-server-information data structure refreshed by 

sending out Server-Information Request messages periodically to obtain up-to-date informa-

tion. This way each node keeps track of status information of the available network nodes. 

5 Replica-content placement 

The Hybrid service utilizes both permanent and dynamic (temporary) replication to enhance 

reliability and performance. The former replication technique is used as backup facility to 

enhance reliability, while the latter is used for performance reasons. Permanent copies are 

used to at least keep the minimum required number of replicas for the same data. Dynamic 

(temporary) copies are used to reduce access latency, as they are replicated onto servers in the 

proximity of demanding clients. The Hybrid service uses following two messages to provide 

replica-content placement: Context Storage Request and Response. 

 

Context Storage Request and Response messages: A Hybrid Service node advertises the need 

for storage with a request message, the Context Storage Request. The purpose of this message 

is two-fold. First is to assign handling of the storage operation to those Hybrid Service nodes 

that are selected based on the replica-server selection policy. Second is to ask another Hybrid 

Service node to replicate or take over maintaining a context to enhance the overall system 

performance. With this message, the system is able to relocate/replicate contexts in the prox-

imity of demanding clients. It is used in dynamic replication process and enables reloca-

tion/replication of contexts due to changing client demands. The Context Storage Request 

message is unicast over a unique topic to the selected replica server(s). By listening to its 

unique topic, each existing node receives a Context Storage Request message, which in turn 

includes the context under consideration. On receipt of a Context Storage Request message, a 

Hybrid Service node stores the context and sends a Context Storage Response message to the 

initiator.  The Hybrid Service stores the context either as a permanent-copy or server-initiated 

(temporary) copy based on whether the context is being created for fault-tolerance reasons or 

performance reasons. The purpose of the response message is to inform the initiator that the 

answering node hosts the context under consideration. This message is also sent out by unicast 

directly to the initiator over a unique topic.   

 

Decision metrics: The Hybrid Service takes both server load and proximity decision metrics 

into account when making replica-content placement decisions. The server load metric is 

represented with the following two factors: a) topical information (i.e. fraction of total unique 



topics due to a given server on the network) and b) message rate (i.e. number of messages, 

issued by end-users, within a unit of time). Server load is periodically recorded and it reflects 

the average load of a Hybrid Service at a given time interval. The proximity metric is 

represented by the distance in network space between Hybrid Service instances. The proximi-

ty metric information is obtained periodically by sending ping requests (Server-Information 

Requests) to the available network nodes in the system through publish-subscribe system. 

 

Permanent Replication: The Hybrid Service starts replica-content placement process (i.e. the 

distribution of copies of a context into replica hosting environment), when a new context is 

inserted to the Hybrid Service. This is needed to create certain number (predefined in the 

configurations file) of permanent replicas. On receipt of a client’s publish request, an existing 

node checks whether or not to honor the request in the local storage by checking the load 

metric (see next paragraph for a discussion on how load is computed) with a maximum server 

load watermark. The maximum server load watermark determines the maximum load on the 

system. If a node is capable of storing, it performs the storage operation, and then starts the 

replica content placement process. Otherwise, it omits the storage operation and directly starts 

the replica-content placement process. The first step in replica content placement is to execute 

replica-servers selection (see following three paragraphs for further discussion on selection 

policy). Once the replica-server selection is completed, the initiator sends unicast message 

(Context Storage Request message) to the selected replica-servers. On receipt of a storage 

request, a replica server stores the context as a permanent-copy, followed by sending a re-

sponse (Context Storage Response message) directly to the initiator (via unicast). The purpose 

of storing permanent-copy is for fault-tolerance. The number of permanent replicas is prede-

fined with minimum-fault-tolerance-watermark in the configurations file and will remain the 

same for fault-tolerance reasons. 

 

The load metric is recorded in a dynamic fashion periodically and reflects an indication of 

server load since the previous measurements. At each measurement interval, the new server 

load is calculated and recorded. The server load metric is represented by a vector reflecting 

multiple components. In the prototype implementation, we used two components to represent 

the load: topic information and message rate. This can easily be extended by including more 

components (such as computational load and storage utilization) into the server load vector. 

The value for the first component is estimated by finding the fraction of total unique topics 

due to the server under consideration on the whole network. This values is computed by divid-

ing up the total number of local unique topics (i.e. # of unique topics created on the local sto-

rage) to the total number of global unique topics (i.e. # of unique topics created in the whole 

network). The value for the second component is computed by the number of messages issued 

by end-users within a unit of time. The server load metric is represented by a single value and 

computed by the product of these two server load component at each measurement interval. 

 

The proximity metric is also recorded in a dynamic fashion and reflects the proximity since 

the previous measurements. The proximity is represented by the distance in network space 

between Hybrid Service instances and obtained periodically by sending ping requests to the 

available network nodes through publish-subscribe system. The proximity is measured by 

latency in the ping request, which gives the distance information between the two Hybrid 

Service instances. Each node keeps a proximity vector, i.e. distance vector, and refreshes it 

periodically. 



To select replica servers for replica-content placement, we adopt a replica selection algorithm 

introduced by Rabinovic et al [16] and integrate it with our implementation. Based on the 

Rabinovich’s approach, the replica server selection policy takes into account two decision 

metrics: server load and proximity. The algorithm begins by identifying a replica server with 

lowest server load and a replica server that is closest to the client. It then chooses the replica 

(among these two) by comparing the server load of the least-loaded replica with the server-

load divided by two of the closest replica.  This way, the algorithm chooses the closest replica 

server for permanent replication unless it is overloaded. The replica server selection process is 

repeated on target replica servers, until the initiator selects predefined number (minimum-

fault-tolerance-watermark) of replica servers for replica-content placement. The initiator 

Hybrid Service chooses the best-ranked server among the selected replica-servers as the pri-

mary-copy to enforce consistency.  

 

Dynamic replication: The Hybrid Service adopts a dynamic replication methodology intro-

duced by Rabinovich et al [16] and integrates it with its communication infrastructure. Rabi-

novich’s approach perform replica-content placement for two reasons: a) to reduce the load on 

a replica server, b) to adopt changes in the client demands. In our prototype implementation, 

we perform replication for the second reason, since our main interest is to create replicas, if it 

is only beneficial for client proximity. Each Hybrid Service S runs the dynamic replication 

algorithm with certain time intervals (dynamic-replication-time-interval) and re-evaluates the 

placement of the contexts that are locally stored. The dynamic replication algorithm begins by 

checking the local Hybrid Service if there are contexts that can be migrated or replicated onto 

other servers in the proximity of clients that presented high demand for these contexts. It does 

this by comparing the access request count for each context against some threshold values. If 

the total demand count for a replica C at a Hybrid Service S (cntS (C)) is below a deletion-

threshold(S, C) and the replica is a temporary-copy, that replica will be deleted from local 

storage of Hybrid Service S. If, for some Hybrid Service X, a single access count registered for 

a replica C at a Hybrid Service S (cntS(X, C)) exceeds a migration-ratio, that service (service 

X) is asked to host the replica C instead of service S. (Note that the migration-ratio is needed 

to prevent a context migrate back and forth between the nodes. In our investigation, we chose 

the migration-ratio value as % 60 based on the study introduced in [16]). This means service S 

wants to migrate replica C to service X which is in the proximity of clients that has issued 

enough access requests within the predefined time interval (dynamic-replication-time-

interval). In this case, replica C will be migrated to service X. To achieve this, a Context Sto-

rage Request is sent directly to service X  by service S. On receipt of a Context Storage Re-

quest, service X creates a permanent copy of the context, followed by sending a Context Sto-

rage Response message. If the total demand count for a replica C at service S (cntS (C)) is 

above a replication-threshold(S, C), then the system checks if there is a candidate Hybrid 

Service, which has requested replica C. If, for some Hybrid Service Y, a single access count 

registered for a replica C at service S (cntS(Y, C)) exceeds a replication-ratio, that service 

(service Y) is asked to host a copy of replica C. (Note that, in order dynamic replication to ever 

take place, the replication-ratio is selected below the migration-ratio [16]. In our investigation, 

we chose the replication-ratio value as % 20.) This means service S wants to replicate replica 

C to service Y that is in the proximity of clients that has issued access requests for this context. 

In this case, replica C will be replicated to service X. To achieve this, a Context Storage Re-

quest is sent directly to service X  by service S. On receipt of a Context Storage Request, ser-

vice X creates a temporary copy of the context, followed by sending a Context Storage Re-

sponse message. 



6 Consistency enforcement 

The Hybrid Service introduces two different models to address consistency requirements of 

aforementioned application use domains. The first model is for read-mostly applications. For 

these applications, the Hybrid Service allows clients to fetch copies of a context (permanent or 

temporary) freely from the metadata store, since read-only copies of a context are considered 

consistent. The second model is for consistency-sensitive applications with high update-ratio. 

For these applications, the Hybrid Service requires clients to subscribe to unique topics of 

contexts, so that they can be informed of the state changes immediately after an update occurs. 

To implement these consistency models, the Hybrid Service employs the primary-copy ap-

proach, i.e., updates are originated from a single site, to ensure all replicas of a data to be the 

same. In this section, we analyze the Hybrid Service implementation under three categories: 

“update distribution”, “update propagation” and “primary-copy selection”. The Hybrid Ser-

vice performs these by using following messages: Primary-Copy Selection Request and Re-

sponse, Primary-Copy Notification, and Context Update Request and Propagation. 

 

Primary-Copy Selection Request and Response messages: To provide consistency across the 

copies of a context, updates are executed on the primary-copy host. If the primary-copy host 

of a context is down, the first Hybrid Service node, which does not receive any response from 

the primary-copy holding server, advertises the need for selection of primary-copy host with 

following message: Primary-Copy Selection Request. This message is sent out by multicast by 

the initiator Hybrid Service only to those servers holding the permanent-copy of the context 

under consideration. The Primary-Copy Selection Request message is disseminated over a 

unique topic corresponding to the metadata under consideration. We use the metadata key 

(UUID) as the topic, which all nodes, holding the permanent-copy of the metadata, within the 

system subscribe to. On receipt of a Primary-Copy Selection Request message, each node 

responds with the Primary-Copy Selection Response message directly to the initiator node. 

The purpose of this message is to inform the initiator about the permanent-copy of the context 

under consideration and give some information (such as hostname, transport protocols sup-

ported, communication ports) regarding how other nodes should communicate with the ans-

wering node. The response message is sent out by unicast over a unique topic. By listening to 

this topic, the initiator receives the response message from the answering node.  

 

Primary-Copy Notification message: A Hybrid Service node uses a Primary-Copy Notifica-

tion message to notify the newly selected primary-copy holder. This Notification message is 

disseminated by unicast directly to the newly selected node. By listening to its unique topic, 

each existing node may receive a primary-copy notification message, which in turn includes 

the assignment for being the primary-copy of the context under consideration. Each primary-

copy holder of a given context subscribes to a unique topic (such as UUID/PrimaryCopy) to 

receive messages aimed to the primary-copy holder of that context.  

 

Context Update Request and Propagation messages: A Context Update Request message is 

sent by a replica server to the primary-copy host to ask for handling the updates related with 

the context under consideration. This message is sent out via unicast by the initiator Hybrid 

Service directly to the primary-copy host over a unique topic. By listening to this topic, the 

primary-copy-host receives the context update request message. A Context Update Propaga-

tion message is sent by the primary-copy host only to those servers holding the context under 



consideration. This message is sent via multicast to the unique topic of the metadata imme-

diately after an update is carried out on the primary-copy to enforce consistency. By listening 

to this topic, each existing permanent-copy holder node receives a Context Propagation mes-

sage, which in turn includes the updated version of the context under consideration.  

 

Update distribution: The proposed system utilizes primary-copy approach to ensure all repli-

cas of a data to be the same. The update distribution algorithm begins with by checking if the 

request contains a system-defined context key. If not, the system treats the request as if it is a 

new publication request. Otherwise, the system treats publication request as if it is an update 

request. An update operation is executed offline, i.e., just after an acknowledgement is sent to 

the client. If the primary-copy host is the initiator node itself, then the update is handled local-

ly. If the primary-copy host is another node, then the update is forwarded to the primary-copy 

holder. The initiator service sends a message, Context Update Request, by unicast directly to 

the primary-copy-host for handing over the update operation. This message includes the up-

dated version of the context under consideration. On receipt of a Context Update Request 

message, first, the primary-copy host extracts the updated version of the context from incom-

ing message. Then, it updates the local context if the timestamp of the updated version is big-

ger than the timestamp of the primary-copy.  

 

Update propagation: The proposed system utilizes push methodology for update propaga-

tion, multicast methodology for update dissemination and transmits the whole contents of 

updates. By using the push methodology, the Hybrid Service, holding the primary-copy of a 

context, propagates the updates immediately after an update occurs. By using the multicast 

methodology, the Hybrid Service propagates a context-update request to all available perma-

nent-copy holding servers. The update propagation algorithm begins with by executing the 

update request at the primary-copy holding service. After the update process is completed, a 

Context Update Propagation message is sent to only those servers holding the permanent-copy 

of the context under investigation. The purpose of the Context Update Propagation is to reflect 

updates to the redundant copies immediately after the update occurs. On receipt of a Context 

Update Propagation message from the primary-copy, the initiator Hybrid Service node 

changes the status of the context under consideration from “updated” to “normal”. If there is 

no response received from primary-copy host within predefined time interval (time-

out_period), the primary-copy host is decided to be down. In this case, the initiator node se-

lects a new primary-copy host by using primary-copy selection algorithm. After a new prima-

ry-copy host is selected, the update distribution process is re-executed.  

 

The system assigns a synchronized timestamp to each published context (newly written or 

updated). This is achieved by utilizing NaradaBrokering Network Time Protocol (NTP) proto-

col based timing facility. By utilizing this capability, the Hybrid Service gives sequence num-

bers to published data to ensure an order on concurrent write operations. This way, 

write/update requests are carried out on a data item x at primary-copy host s, in the order in 

which these requests are published into the distributed metadata store. However, this approach 

has also some practical limits, as the update rate is bounded by the timestamp accuracy of the 

synchronized timestamps.  

 



Primary-copy selection: The primary-copy selection process is used to select a new primary-

copy host, whenever the original primary-copy host is down. The primary-copy selection 

algorithm begins with by broadcasting a Primary-Copy Selection Request message to those 

servers holding the context to select the new primary-copy host. On receipt of a Primary-Copy 

Selection Request message, each replica-holding server issues a Primary-Copy Selection Re-

sponse message. On receipt of the Response messages, the initiator obtains the information 

about nodes carrying the permanent copy of the context.  Then the initiator selects the best 

replica server based on the aforementioned replica-server selection algorithm. After the selec-

tion is completed, a Primary-Copy Notification message is sent to the selected server naming 

it as the new primary-copy host. On receipt of a Primary-Copy Notification message, the per-

manent-copy holder becomes the new primary-copy holder and subscribes the unique address 

(/UUID/PrimaryCopy) corresponding to the primary-copy of the context.  

7 Access request distribution 

The Hybrid Service employs a broadcast based request distribution. Based on this scheme, if a 

query cannot be granted locally and requires external metadata, the request is broadcasted to 

those nodes hosting the requested metadata in the network at least to retrieve one response 

satisfying the request. This way the service is able to probe the network to look for a running 

server carrying the right information at the time of the query. The communication between 

network nodes for request access distribution happens via following messages: Context 

Access Request and Response.  

 

Context Access Request and Response messages: A Hybrid Service node advertises the need 

for context access with the Context Access Request to the system. The purpose of the Context 

Access Request is to ask those servers, holding the context under demand, for query handling. 

This message is disseminated to only those nodes holding the context under consideration. 

This is done by multicasting the message through the unique topic corresponding to the meta-

data. (Note that we use UUID of the metadata as topic). By listening to this topic, each node, 

holding the context under consideration, receives a Context Access Request message, which in 

turn includes the context query under consideration. On receipt of a Context Access Request 

message, each Hybrid Service sends a Context Access Response message, which contains the 

context under demand, to the initiator. This message is sent out by unicast directly to the in-

itiator over a unique topic. By listening to this topic, the initiator receives the response mes-

sages from nodes that answered the access request.  

 

Request distribution: The Hybrid Service prototype implements a request distribution me-

thodology, which is based on broadcast dissemination, where the requests are distributed to 

those servers holding the context under consideration. This approach does not require keeping 

track of locations of every single data located in the system. The request distribution algorithm 

begins with by issuing a Context Access Request message to the multicast group. This mes-

sage contains minimum required information (such as context key) regarding the context in 

demand. On receipt of a Context Access Request message, a replica-holding Hybrid Service 

issues a Context Access Response message. Note that, each server keeps track of the count of 

access requests and the locations where access requests come from for each context. In turn, 

this enables the system to apply dynamic replication process and adapt to sudden bursts of 

client demands coming from a remote replica. This is why, if the access request is granted, 



each server registers the incoming access request in the access-demanding-server-information 

data structure and increments the total access-request-count of the context under investigation. 

On receiving first Context Access Response message, the initiator Hybrid Service, obtains the 

context that can satisfy the query under consideration. Then a response message is sent back to 

inquiring client. The initiator only waits for responses that arrive within the predefined timeout 

value. If there is no available Hybrid Service node that can satisfy the context query within the 

timeout duration, the access process ends and a “not found” message is sent to the client.  

8 Prototype Evaluation 

An earlier evaluation study was conducted in [22] to investigate the performance of the proto-

type of the centralized version of the Hybrid Service. This study concluded that one can 

achieve noticeable performance improvements for standard inquiry/publish operations by 

simply employing an in-memory storage mechanism. In this research, we conduct an evalua-

tion of the prototype of the Hybrid Service Replica Hosting System to understand its practical 

usefulness. To this end, the following research questions are being addressed:  

• What is the effectiveness of the system in responding metadata access queries from 

the perspective of interacting clients? 

• What is the cost of the access request distribution in terms of the time required to 

fetch a copy of a data (satisfying an access request) from a remote location? 

• What is the effect of dynamic replication in the cost of the access request distribution 

in terms of the time required to fetch a copy of a data? 

• What is the cost of the storage request distribution for fault-tolerance in terms of the 

time required to create replicas at remote locations? 

• What is the cost of consistency enforcement in terms of the time required to carry out 

updates at the primary-copy holder? 

 

Experimental setup environment:  We explore the tradeoffs in choosing multi-publisher, 

multicast communication mechanism to implement a replica hosting environment. To do this, 

we conduct several experiments: effectiveness, distribution, dynamic replication, fault-

tolerance and consistency enforcement. We leave out an extensive scalability experiment that 

would show the system work with high number of service nodes as a future study, as it is not 

the main focus of this evaluation. Thus, for the decentralized setting experiments, we have 

selected several nodes that are separated by significant network distances to facilitate the test-

ing. The machines, used in these experiments, are summarized in Table 1. 

                                                      Summary of Machine Configurations 

 Location Processor RAM OS 

gf6.ucs.indiana.edu 

Bloomington,  

IN, USA 

Intel® Xeon™  

CPU (2.40GHz) 

2GB total GNU/Linux 

(kernel release 

2.4.22) 

complexity.ucs.indiana.edu 
Indianapolis,  

IN, USA 

Sun-Fire-88,  

sun4u sparc SUNW 

16GB total SunOS 5.9 

lonestar.tacc.utexas.edu 

Austin,  

TX, USA 

Intel(R) Xeon(TM)  

CPU 3.20GHz 

4GB total GNU/Linux 

(kernel release 

2.6.9) 

tg-login.sdsc.teragrid.org 

San Diego,  

CA, USA 

Genuine Intel IA-64,  

Itanium 2,  

4 processors 

8GB total GNU/Linux 

vlab2.scs.fsu.edu 

Tallahassee,  

FL, USA 

Dual Core AMD  

Opteron(tm)  

Processor 270 

2GB total GNU/Linux 

(kernel release 

2.6.16) 

Table 1 Summary of the machines used in decentralized setting experiments  



We wrote all our code in Java, using the Java 2 Standard Edition compiler with version 1.5. In 

the experiments, we used Tomcat Apache Server with version 5.5.8 and Axis software with 

version 2 as a container. The maximal heap size of the JVM was set to 1024MB by using the 

option –Xmx1024m. The Tomcat Apache Server uses multiple threads to handle concurrent 

requests. In the experiments, we increased the default value for maximum number of threads 

to 1000 to be able to test the system behavior for high number of concurrent clients. As back-

end storage, we use MySQL database with version 4.1. We used the “nanoTime()” timing 

function that comes with Java 1.5 software. 

 

Analyzing the results gathered from the experiments, we encountered some outliers (abnormal 

values). These outlier observations are numerically distant from the rest of observation data. 

The cause of the outliers is mainly the external effects, i.e., problems with network and server, 

as these outlier observations were not seen on the internal timing observations measuring only 

the system processing time. Due to outliers, the average may not be representative for the 

mean value of the observation times. This in turn may affect the results. For example, these 

outliers may increase the average execution time and the standard deviation. In order to avoid 

abnormalities in the results, we removed the outliers by utilizing the Z-filtering methodology. 

In Z-filtering, first, the average and standard deviation values are calculated. Then a simple 

test is applied. [abs(measurement_i-measurement_average)] / stdev > z_value_cutoff. This test 

discards the anomalies. After first filtering is over, the new average and standard deviation 

values are calculated with the remaining observation times. This process was recursively ap-

plied until no filtering occurred.   

 

Simulation Parameters: Table 2 gives the simulation parameters for the fault-tolerance, 

distribution, dynamic replication and replica-content placement experiments. Note that, there 

are a number of tradeoffs involved in choosing simulation parameters. We repeated these 

experiments by varying values of parameters and explored these tradeoffs. We discuss some 

of the tradeoffs and our rationale in deciding these simulation parameters below. Here, we 

investigate an approximation of the optimal system performance. Thus, the results measured 

with the selected simulation parameters will be the optimal upper bound of the system perfor-

mance. 

 

metadata size and volume: We chose metadata size and volume from a real life application, 

i.e. Pattern Informatics, where the Hybrid Service is used. Thus, the metadata size and volume 

are 1.7 KB and 1000 respectively. An illustration of this metadata is given in Appendix A.  

 

dynamic-replication-time-interval: In order to provide dynamic replication, metadata in-

stances in a Hybrid Service are replicated in replica-hosting environment in a dynamic fashion 

within certain time intervals (dynamic-replication-time-interval). If the dynamic-replication-

time-interval is chosen to be too small, then the system performance will be affected. If this 

time interval is too big, then the system will not adapt well to changes in client demands such 

as sudden bursts of request that come in from an unexpected location. Rabinovich et al  intro-

duced an extensive study on choosing values for the dynamic-replication tunable parameters. 

In our investigation, we chose the simulation parameters relying on their study in [16]. Thus, 

the value of dynamic-replication-time-interval is every 100 seconds. 



minimum-fault-tolerance-watermark: To provide a certain level of fault-tolerance, we use a 

minimum-fault-tolerance-watermark indicating minimum required degree of replication. If the 

value is chosen to be high, then the time and system resources required completing replica-

content placement and keeping these replicas up-to-date would be high. If the value is chosen 

to be too small, then the degree of replication (fault-tolerance level) will below. To facilitate 

testing of the system, we choose the minimum-fault-tolerance-watermark to be 3. 

 

timeout-period: The tunable timeout-period value indicates the amount of time that a Hybrid 

Service node is willing to wait to receive response messages. If the timeout-period is too 

small, the initiator of a request will not wait enough for the context access responses coming 

from a multicast group. If the timeout-period is too big, then the query initiator may have to 

wait for a long time unnecessarily for some information that does not exist in the replica-

hosting environment. To facilitate testing of the system, we choose the time-out value to be 

10000 seconds. 

 

deletion-threshold: If a temporary-copy (server-initiated) of a context is in low demand and 

its demand count is below deletion-threshold, then this temporary copy needs to be deleted.  

The deletion-threshold determines the rate for migration and replication occurring in the sys-

tem. If a deletion-threshold is selected too low, the system will create more temporary copies, 

which will lead into high number of message exchanges in the system. If a deletion-threshold 

is too high, the system will keep low-demand temporary copies of a context unnecessarily. In 

our investigation, we chose the deletion-threshold value to be 0.03 request per second based 

on the study introduced in [16].    

 

replication-threshold: If a context is in high demand and its demand count is above a replica-

tion-threshold, then the context is replicated as a temporary-copy. If the replication-threshold 

is selected to be too high, then the system will not adapt well to high number of client de-

mands. If the replication-threshold is too low, the system will try to create temporary replicas 

at every remote replica where small number of requests comes in. This may cause unnecessary 

consumption of system resources. In our investigation, we chose the replication-threshold 

value to be 0.18 requests per second based on the study introduced in [16]. 

  

simulation parameters Values 

metadata-size 1.7 Kbytes 

metadata-volume 1000 

time-out value 10000 seconds 

replication-threshold 0.18 requests per second 

deletion-threshold 0.03 requests per second 

minimum-fault-tolerance-watermark  3 

dynamic-replication-time-interval every 100 second 

                                                  Table 2 Simulation parameters for the experiments  

 

Effectiveness experiment: The effectiveness experiment is conducted to understand the per-

formance and scalability of the prototype implementation for standard key-based query opera-

tions from a client’s perspective. To conduct this experiment, two different test-phases are 

completed. In the first test-phase following cases are completed: a single client sends inquiry 



requests to an echo service which receives a message and then sends it back to the client with 

no processing applied; a single client sends inquiry requests to a Hybrid Service which grants 

the request in in-memory storage. These test cases were repeated five times, each with 200 

observations and we recorded the average response time. In the second testing phase, we in-

vestigated the following research question: How well does the Hybrid Service perform when 

the message rate per second is increased? To answer this question, we ramped-up the work 

load (number of messages sent per second) until the system performance degrades. To facili-

tate the testing, we use WS-Context Schema standard key-based query operations. This inves-

tigation is conducted using a Linux cluster with eight nodes located at the Community Grids 

Laboratory of Indiana University. Each node was equipped with Intel® Xeon™ CPU 

(2.40GHz), 2 GB RAM and ran Linux kernel 2.4.22. Both the Hybrid Service and testing 

client application were located in two different servers located in the same Linux cluster. The 

size of the metadata and size of the registry were 1.7 KB and 5000 metadata respectively. An 

illustration of this metadata is given in Appendix A. 

 

 

                                 

Figure 3 The figure on the left illustrates the round trip time chart for metadata inquiry requests. The figure on the 
right illustrates the metadata inquiry response times at various levels of message rates per second. The time units are 

in milliseconds. 

 

Results of the effectiveness experiment: The results of the experiment were depicted in the 

figure above. Analyzing the results, we observe that the Hybrid Service achieves negligible 

processing overheads when responding client’s queries by simply employing an in-memory 

storage mechanism. Analyzing the results, we also concluded that Hybrid Service performed 

well under increasing message rates. For inquiry request messages, we observe a threshold 

value after which the system performance starts decreasing due to high message rate. This 

threshold is mainly due to the limitations of Web Service container, as we observe the similar 

threshold when we test the system with an echo service that returns the input parameter passed 

to it with no message processing is applied. 

 

Note that, this study proposes a system architecture that would address the two types of meta-

data domains: large-scale, static metadata and small-scale, dynamic metadata. For the first 

type, metadata can be replicated freely without concerning consistency, since the client ac-

cesses do not cause replica divergence. For the second type, metadata replication effectiveness 

is not a concern, as the state changes are propagated directly to application through a notifica-

tion capability. Recall that, the Hybrid Service introduces a consistency model which requires 

consistency-sensitive applications to subscribe to unique-metadata-topics to receive updates. 
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Therefore, we leave out the investigation of effectiveness of the replica-content placement 

(from client’s perspective). Instead, we explore the effectiveness our replication approach 

from server’s perspective. To achieve this, we conduct the fault-tolerant experiment, which 

will be discussed later in the paper, to investigate the processing overheads involved in repli-

ca-content placement. 

 

Distribution experiment: In this experiment, we conducted various testing cases to investi-

gate the cost of distribution. We measured the cost of distributing access request into remote 

servers separated with significant network distances. In particular, we performed this experi-

ment to answer following questions: a) what is the cost of access request distribution in terms 

of time required to fetch copies of a data (satisfying an access query) from remote locations?, 

b) how does the cost of distribution change when using multiple intermediary brokers for 

communication?, c) how does the performance of the distribution change for continuous, 

uninterrupted operations? 
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Figure 4 The design of the distribution experiment. The rounded shapes indicate NaradaBrokering nodes. The rectan-

gle shapes indicate Hybrid Service instances located at different locations. The first test was conducted with one 

broker where the broker is located before the Hybrid Service instance in Bloomington, IN, while the second test was 

conducted with two broker nodes each sitting on the same machine before the Hybrid Service instance.  

 

Results of the distribution experiment: We conducted distribution experiments for three 

different locations corresponding to three different network spaces. For each location, the 

system is tested for more than 25 thousand continuous operations and the time for each opera-

tion was recorded. By analyzing the results, we observed that the system shows stable perfor-

mance for continuous, uninterrupted request distribution operations. To investigate the bottle-

necks, we extracted the processing time involved for access request distribution. We depict the 

time spent in various sub-activities of distribution in Figure 5 and list the results in Table 3. 

The results indicated that regardless of how the Hybrid Service instances are distributed, the 

system showed the same stable and negligible performance, which is around 3.6 ms when 

using one intermediary broker. This time includes the Hybrid Service system processing over-



head and overhead of using an intermediary broker as part of publish-subscribe system. We 

observe that the overhead of access request distribution increases only by 1.2 ms when we use 

an additional intermediary broker.  
 

 

 

 

Figure 5 Time spent in various sub-activities of the request distribution scheme of the Hybrid Service 

  

 one broker two brokers latency 

bloomington-indianapolis 3.59 4.79 2.42 

bloomington-tallahassee 3.55 4.78 36.05 

bloomington-san diego 3.63 4.92 66 

Table 3 Statistics for the figure above. Overhead of request distribution. Average timing is in milliseconds. 

 

Dynamic replication experiment: In this experiment, we conducted a testing case to investi-

gate the performance of dynamic replication. We used the dynamic replication for perfor-

mance optimization to replicate temporary copies of contexts to where they wanted. In this 

experiment, we simulated a workload, where we have a thousand metadata in the Hybrid Ser-

vice instance located at Indianapolis, IN. In this testing case, metadata from the Indianapolis 

instance was requested randomly by the Hybrid Service instance located at Bloomington. If 

the remote metadata is replicated to local site, the system simply obtains the data from local 

in-memory storage. We conducted two testing cases to answer the following questions: a) 

What is the cost of access distribution to fetch copies of a context from the remote location 

(Indianapolis), when the dynamic replication is disabled?, b) What is the cost of access distri-

bution to fetch copies of a context from the remote location (Indianapolis), when dynamic 

replication is enabled?  
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Figure 6 The design of the dynamic replication experiment. The rounded shapes indicate NaradaBrokering nodes. The 

rectangle shapes indicate Hybrid Service instances located at different locations. In the first testing case, dynamic 

replication capability is disabled. In the second testing case, dynamic replication capability is enabled. 

 
Results of the dynamic replication experiment: Based on the results depicted in Figure 7, in 

this experiment, we observed that the dynamic replication methodology could actually move 

highly requested metadata to where they wanted. We observed that the system stabilized after 

around 16 minutes. Here, the system managed to move half of the metadata to the local site 

after around 8 minutes, where we observed the highest peak in the standard deviation values. 

This is simply because half of the access requests were granted locally, while the other half 

were granted at the remote location. 

 

 
Figure 7 The results of the dynamic replication experiment. This figure depicts the metadata access latency and the 

standard deviation for two cases: a) first case is when dynamic replication option is disabled, b) second case is when 

dynamic replication option is enabled. The x-axis indicated the dynamic replica-content placement decision frequen-

cy, while the y-axis indicates the metadata access-latency.  

0

1

2

3

4

5

6

7

0 5 10 15 20 25

L
a
te

n
c
y
 (

m
s
)

Every 100 second

Dynamic Replication Performance Chart - Distribution between 
Bloomington, IN and Indianapolis, IN

Average -
Distribution with 
Dynamic Replication

STDev - Distribution 
with Dynamic 
Replication

Average -
Distribution

STDev - Distribution



Fault-tolerance experiment: In this experiment, we conducted various testing cases to inves-

tigate the cost of fault-tolerance when moving from centralized system to a decentralized 

replica hosting system. In particular, we performed our testing cases to answer following 

questions: a) What is the cost of replica-content placement for fault-tolerance in terms of the 

time required to create replicas at remote locations?, b) How does the system behavior change 

for continuous, uninterrupted replica-content placement operations?. To answer these ques-

tions, we conducted two testing cases: The first test was conducted with one broker when the 

broker was located before the Hybrid Service instance at Bloomington, IN. The second test 

was conducted with two brokers each sitting on the same machine before the Hybrid Service 

instances. In this experiment, we increased the fault tolerance level gradually and measured 

end-to-end latency for replica-content placement.  
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Figure 8 The design of the fault tolerance experiment. The rounded shapes indicate NaradaBrokering nodes. The 
rectangle shapes indicate Hybrid Service instances located at different locations. In the first testing case, we measure 

the end-to-end latency for varying number replica-content creation with only one broker. In the second case, we 

repeat the same test with two brokers. 

 
Results of the fault-tolerant experiment: We conduct this testing case for one to three repli-

ca creations. For each testing case, the system is tested for more than thousand continuous 

operations and the time for each operation was recorded. By analyzing the results, we ob-

served that the system performs stable for continuous, uninterrupted replica creation opera-

tions. To investigate the bottlenecks, we extract the processing time involved in replication 

creation. We depict the time spent in various sub-activities of replica creation in the figure 

below. The results indicate that the time required for one replica creation is only four millise-

conds. The cost of replica creation time includes the Hybrid Service system processing over-

head and overhead of using an intermediary broker as part of publish-subscribe system. We 

also observe that the time required for replica creation increases, as the number of replica 

copies increases. This is because; the system has to perform an additional unicast message for 

each additional replica creation. The time required for a unicast message is less than one milli-



second. The results also indicated that, the overhead of replica-content creation increases only 

by 1.2 ms, when we use an additional intermediary broker. 

 

 
 

Figure 9 Time spent in various sub-activities of the replica-content creation scheme of the Hybrid Service. 

 

 

one  

broker 

two  

brokers 

end-to-end  

latency 

1 replica (Indianapolis) 4.02 5.27 2.43 

2 replicas (Indianapolis–Tallahassee) 4.54 5.67 36.05 

3 replicas (Indianapolis–Tallahassee –San Diego) 5.13 6.24 65.90 

    Table 4 Statistics for the figure above. Overhead of replica-content creation. Average timing is in milliseconds. 

 
Consistency enforcement experiment: The design of the consistency enforcement is similar 

to the distribution experiment depicted in Figure 4. In this experiment, our aim is to answer 

the following questions: a) What is the cost of consistency enforcement in terms of the time 

required to carry out updates at the primary-copy holder?, b) How does the system behavior 

change for continuous, uninterrupted update operations (for consistency enforcement)? To this 

end, we conducted two tests: The first test was conducted with one broker where the broker is 

located before the Hybrid Service instance in Bloomington, IN, while the second test was 

conducted with two broker nodes each sitting on the same machine before the Hybrid Service 

instances. In this experiment, we measured the time required to distribute an update request to 

the primary-copy holder of the context under consideration for consistency enforcement rea-

sons. 

 

 

Consistency enforcement experiment results: We conduct this testing case for three differ-

ent locations. For each location, the system was tested for more than 25 thousand continuous 

operations. For each operation, time was recorded. By analyzing the results, we observe that 
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the system shows stable performance over time for continuous consistency enforcement op-

erations. Based on the observations, we extract the processing time involved to provide con-

sistency enforcement using publish-subscribe based messaging schemes. We depict the time 

spent in various sub-activities of distributing and carrying out the update request at the prima-

ry-copy holder in the figure below. The cost of consistency enforcement includes the Hybrid 

Service system processing overhead (for distributing update request to primary-copy holder) 

and overhead of using an intermediary broker as part of publish-subscribe system. We observe 

that the time required for consistency enforcement does not change regardless of how Hybrid 

System instances are distributed. Similar to our results in the previous two experiments, we 

observe that the overhead of consistency enforcement increases only by 1.2 ms when we use 

an additional intermediary broker.  

 

 
Figure 10 Time spent in various sub-activities of the Hybrid Service consistency enforcement scheme. The results 
analyze the overhead of distributing update requests to the primary-copy holder where the update requests take place 

for consistency enforcement reasons.   

 

 one broker two brokers 

end-to-end  

latency 

Bloomington – Indianapolis 4.05 5.32 2.42 

Bloomington – Tallahassee 3.83 5.03 36.05 

Bloomington – San Diego 4.07 5.49 66 

Table 5 Statistics for the figure above. Statistics for overhead of update distribution. Average timing is in millise-

conds. 

9 Conclusions and Future Research Directions 

This research presented a high performance, distributed Grid Information Service Architec-

ture, Hybrid Grid Information Service, as a metadata replica hosting environment. To achieve 

distribution, the Hybrid Service uses publish-subscribe based messaging schemes to provide 

interaction among the distributed instances of the service. It utilizes a topic based publish-

subscribe messaging communication to implement fundamental aspects of decentralized in-
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formation systems such as fault-tolerance, access-request distribution, and consistency en-

forcement. To achieve high-performance in metadata access and improve the overall perfor-

mance of the system, the Hybrid Service utilizes a performance optimization technique: dy-

namic migration/replication. This technique improves overall system performance by mov-

ing/replicating highly requested metadata to where they wanted.  

 

The evaluation of the system prototype pointed out the following results. Firstly, it pointed out 

that the Hybrid Service is an effective solution with its negligible processing overheads and its 

high-performance under heavy workloads. Secondly, it pointed that the Hybrid Service 

presents stable behavior for access request distribution, replica creation and consistency en-

forcement over a high number continuous operations. Thirdly, it indicated that the cost of 

distribution, fault tolerance and consistency enforcement is in the order of milliseconds. These 

promising results shows that high-performance, distributed Grid Information Service Archi-

tectures can be built by utilizing publish-subscribe based messaging schemes. Fourthly, it 

pointed out that high-performance metadata access can be achieved by utilizing dynamic rep-

lication/migration technique. This technique also reduces the cost of repetitive access requests 

by moving temporary copies of contexts to where they wanted. Fifthly, it indicated the differ-

ences in the processing costs of different aspects of the distributed system. For example, the 

cost of fault tolerance is higher than the cost of distribution and consistency enforcement. This 

is because; there is an additional time required for performing additional unicast messages for 

higher fault-tolerance levels. Finally, it pointed out the trade-off between performance and 

fault-tolerance. The results indicated that the cost of replica-content creation increases, when 

the degree of fault-tolerance increased. 

  

We applied the introduced system into different application domains such as geographical 

information system and sensor grids [4, 23-25], management of real-time streams in collabora-

tion grids [26, 27]. We intend to investigate how good the system architecture is by applying it 

into wider range of application domains. We also plan on expanding the prototype evaluation 

by including an extensive scalability experiment, which would test the system with large 

communities of nodes, and an effectiveness experiment, which would test the replica-content 

placement efficiency from a client’s perspective. An additional area of future investigation is 

information security. To complete the system, we intend to research an information security 

mechanism for the distributed replica hosting system. This effort should research the security 

concerns related to communication between network nodes and users, as well as security con-

cerns related to authorization to deal with access control.  
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Appendix 

 

 

A. Sample WS-Context Schema XML metadata 

<?xml version="1.0" encoding="UTF-8"?> 

<wscontext:context  

 xmlns:wscontext="http://datatype.fthpis.cgl/"  

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 

 <contextKey>ABCCE800-AB35-11DA-A4FC-C80C5880CB18</contextKey> 

 <serviceKey>ABCCE800-AB35-11DA-A4FC-C80C5880CB19</serviceKey> 

 <sessionKey>ABCCE800-AB35-11DA-A4FC-C80C5880CB20</sessionKey> 

 <name>context://GIS/PI/ABCCE544-CX35-11EA-BVFC-C34C7789CB33</name> 

 <value>context:///GIS/VC/3ea29661-2d5e-11db-8c56-cf37cd202027/3ebd7162-2d5e-11db-8c56-

cf37cd202027/cost</value> 
 <valueType>String</valueType> 

 <lease> 

  <timeout>1000</timeout> 
  <isInfinite>false</isInfinite> 

 </lease> 

 <version>1</version> 

</wscontext:context> 
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