

J. Cent. South Univ. (2014) 21: 190−198
DOI: 10.1007/s11771-014-1930-7

An adaptive range-query optimization technique with distributed replicas

Sayar Ahmet1, Pierce Marlon2, Fox C. Geoffrey2, 3, 4

1. Department of Computer Engineering, Kocaeli University, Kocaeli 41380, Turkey;
2. Department of Computer Science, Indiana University, Bloomington 47404, USA;

3. Community Grids Lab, Indiana University, Bloomington 47404, USA;
4. School of Informatics and Computing, Indiana University, Bloomington 47404, USA

© Central South University Press and Springer-Verlag Berlin Heidelberg 2014

Abstract: Replication is an approach often used to speed up the execution of queries submitted to a large dataset. A
compile-time/run-time approach is presented for minimizing the response time of 2-dimensional range when a distributed replica of a
dataset exists. The aim is to partition the query payload (and its range) into subsets and distribute those to the replica nodes in a way
that minimizes a client’s response time. However, since query size and distribution characteristics of data (data dense/sparse regions)
in varying ranges are not known a priori, performing efficient load balancing and parallel processing over the unpredictable workload
is difficult. A technique based on the creation and manipulation of dynamic spatial indexes for query payload estimation in
distributed queries was proposed. The effectiveness of this technique was demonstrated on queries for analysis of archived
earthquake-generated seismic data records.

Key words: distributed systems; load balancing; range query; query optimization

1 Introduction

Analysis of data is an important step in
understanding and solving a scientific problem. Analysis
involves extracting the data of interest from all available
data sources and can occur at several stages along a data
processing pipeline ranging from raw data to advanced
data products. However, in many areas of science and
engineering, the ability to analyze information is
increasingly hindered by dataset sizes. The vast amount
of data in scientific datasets makes efficient access to the
data and management of potentially heterogeneous
system resources for data processing a difficult task.
Thus, subsetting and aggregation are widespread
techniques used in large-scale scientific data intensive
applications. First, subsets are calculated and distributed
to the replica nodes and then the results are aggregated to
create the response to the main query set. Such a
technique is possible in cases where the distributed
replica of a dataset exists. This work argues that a
common compile/run-time programming support can be
developed for applications in which large datasets are
queried in distributed computing environments [1].

Distributed parallel processing is the most
promising approach for designing scalable and high
performance computers that are suitable for tackling

distributed data processing problems. This approach
provides significant advantages over the shared memory
ones in terms of cost and scalability. However, systems
based on this approach are much more complicated to
program than shared memory machines. One major
reason for this is the lack of a single global address space.
As a result, programmers, compilers, or run-time
environments are responsible for distributing code and
data over processors as well as for managing
communications among tasks. The distribution is
significantly important for the efficiency of the parallel
programs in a distributed memory machine. For a good
data distribution, evenly distributing the workload over
processors should be considered so that parallelism is
maximized and communication is minimized. Yet, due to
the stringent characteristics and dynamic nature of data,
performing efficient load balancing and parallel
processing over the unpredictable workload is not easy,
the problem is illustrated in Fig. 1. The work is cut into
independent smaller pieces, no matter they are of the
same size ranges, or sizes are highly variable. Creating
subsets for the uniformly distributed datasets such as
raster images is straightforward. In contrast, creating
subsets for non-uniformly distributed datasets is
cumbersome; for example, vector data are defined with
the (x, y) coordinates on a 2-dimensional plane (Fig. 1).
In such a case, subsetting most probably results in data

Received date: 2012−11−08; Accepted date: 2013−07−07
Corresponding author: Sayar Ahmet, Associate Professor, PhD; Tel: +90−262−3033583; E-mail; ahmet.sayar@kocaeli.edu.tr

J. Cent. South Univ. (2014) 21: 190−198

191

Fig. 1 Problem illustration with straightforward partitioning: (a)

Linestring/polygon data; (b) Point data

and execution skews.

In this work, a compile-time/run-time approach is
presented for minimizing the response time of
2-dimensional range queries when the distributed replica
of a dataset exists. The proposed framework assumes that
replica nodes are created in advance and the service-level
binding information is stored in a file. The work
presented is summarized as developing an efficient query
planning strategy to determine the best combination of
replica nodes and their corresponding payloads in order
to optimize query response time in distributed
environments. Enhancements are at the application level,
not at network level. The technique is based on creating,
updating and manipulating dynamic spatial indexes for
query payload estimation in distributed queries. This
technique takes the data dense/sparse regions into
consideration (Fig. 1). A data structure called workload
estimation table (WET) developed at compile-time and
used during run-time to divide the workload for a range
query into subranges carrying equal sizes of query
payload. WET is routinely synchronized with the remote
replicated datasets, occupies very little space, and
provides accurate query-size estimates over a broad
range of spatial queries. The effectiveness of the
proposed technique is demonstrated on an earthquake
simulation derived from Turkey’s archived seismic data
records.

2 Related work

Most replication studies address issues such as data

availability (e.g., in node and network failures) [2−3] and
maximizing I/O performance by duplicating data and
serving from different nodes (creating a content
distribution network). GANESAN et al [4] proposed a
partitioning technique on large-scale parallel databases in
peer-to-peer (P2P) systems. As tuples are inserted or
deleted, the partitions are adjusted, and data are moved to
achieve storage balance across the participating nodes. In
this approach, each participant server needs to be well
structured and informed about the whole P2P overlay
network. In contrast, our approach treats all the
participant servers as black boxes and only uses their
interfaces for data access. WENG et al [5] defined a
partial replication framework to speed up the execution
of range queries. In partial replication, a portion of
dataset, which is likely to be accessed more frequently, is
extracted, re-organized, and re-distributed across the
storage system. Again, in this approach, the participant
nodes need to be informed about the whole system and
must have extra services enabling them to communicate.
BEYNON et al [6] introduced a technique to support
execution of subsetting and aggregation operations for
querying large datasets in parallel. The authors focused
on optimizing ordinary striped access to uniformly
distributed datasets, such as images, maps, and dense
multi-dimensional arrays. However, their technique
might not give the expected performance gains when
using non-uniformly distributed datasets such as Earth
related vector datasets (census data, earthquake seismic
data, etc.).

Indexing is a well-known and widely used approach
to the optimization of query execution time for
non-uniformly distributed datasets [7]. Indexing keeps
metadata for datasets and enables efficient searching and
extraction for a given query. The Seti project proposed an
index structure for efficient range queries on non-
uniformly distributed spatial trajectory datasets [8]. To
create an index, an R-tree structure was used. A related
work was the TrajStore project [9]. The researchers
concentrated on trajectory datasets took the dense and
sparse regions into consideration and proposed a 2-level
index structure. They proved that the results were much
better than R-tree based indexes for 2-dimensional range
queries. Both projects focused on creating index enabled
range queries on non-uniformly distributed datasets, but
they used local datasets. However, when the datasets are
distributed and provided by third party services, range
query optimization becomes more challenging. Handling
distributed datasets in a performance efficient way
requires addressing the issues related to replications [5],
parallel queries [6], load-balancing (I/O parallelism) and
declustering. Some of these issues have overlapping
interests. In particular, declustering [10] is an approach
for the creation of an efficient query framework using

J. Cent. South Univ. (2014) 21: 190−198

192

indexlike structures. In declustering, datasets are
distributed across several storages in a well-structured
manner and information about the distribution is kept in
an index file. Query efficiency depends on how well
datasets are distributed across the storage nodes and how
well the index structures are compatible with the data
characteristics and query attributes.

This work solved the query approximation problem
to partition and shared the workload across the replicated
data nodes. A load-balancing (I/O parallelism) approach
was introduced for multi-dimensional distributed range
queries in replicated environments. The datasets were not
local or centralized. Therefore, the query size and
distribution characteristics of data of varying ranges were
not known a priori, and the data servers were treated as
black boxes. To optimize the load balancing and
efficiency of parallel queries, the data dense/sparse
regions were taken into consideration and approximated
before partitioning the original query [11]. Having
identified roughly equivalent partitions (in terms of
number of objects contained) offline, the resulting index
was used to split range queries into subqueries
(corresponding each to a spatial partition), which were
then distributed to the various servers in a round-robin
fashion. The proposed index table is called WET, which
is similar to a balanced kd-tree (short for k-dimensional
tree) index structure [12]. WET is also a special case of
binary space partitioning trees. It is not only an index but
also provides ready-to-use subranges of almost equal
sizes of query payloads. The terms of subranges and
partitions are used interchangeably throughout the work.

3 Architecture: Adaptive range query

optimization with distributed replicas

The proposed architecture is composed of
compile-time and run-time approaches for efficient
parallel execution of 2-dimensional range queries when
the distributed replicas of a dataset exist. During
compile-time, the system collects information about the
dataset and prepares an indexlike table to efficiently
partition the whole dataset into subranges (smaller
partitions). The query payloads that correspond to the
ranges in the table are expected to be equal in size. At
run-time, the system makes parallel queries in
accordance with the subranges calculated at
compile-time and then aggregates the results to create the
answer for the main query. The architecture aims at
eliminating data and execution skew for efficient I/O
parallelization. The proposed architecture promises some
advantages over naive (straightforward) partitioning such
as smaller response time, especially in systems with a
high degree of parallelism, and efficient usage of replica
nodes through load balancing.

3.1 Problem formulation
Figure 1 illustrates the problem regarding efficient

partitioning of ranges for non-uniformly distributed
datasets. Although this is a general class of problem, for
illustration purposes, geospatial domain is selected.
Figure 1(a) shows the city boundary data in the form of
linestrings or polygons, and Fig. 1(b) shows the seismic
data in the form of points. Those are spatial datasets and
defined/queried with 2-dimensional, (x, y) Cartesian
coordinates. The set of (x, y) coordinate values is
accessed with range queries. Ranges are called minimum
bounding rectangles (MBR) or bounding boxes. Both are
the same and formulated as R=[(minx, miny), (maxx,
maxy)]. (minx, miny) refers to the lower left, and (maxx,
maxy) refers to the upper right corners. minx, miny,
maxx and maxy are assumed to be integers or rational
numbers.

Considering a dataset as a subset of 2-dimensional
rational space, Q2, there are unlimited numbers of
rectangle (i.e., ranges) that can be defined over the data
space R. Let’s say data space R is partitioned into
non-overlapping rectangular regions {r1, r2, r3, …, rn}
where)].,(),,[(2211

iiiii yxyxr The number n changes
depending on the average sizes of ri set. As the average
sizes of ri increase, n decreases.

If the area of input rectangles (ri) is denoted by

A(ri), then, .)()(
1

n

k
irARA

If the query payloads of the input rectangles (ri) are

denoted by L(ri), then, .)()(
1

n

k
irLRL

The ordinary binary partitioning shown in Fig. 1
gives the best results for maximizing the performance in
parallel queries if the datasets were uniformly
distributed. To uniformly distribute datasets, query
payloads can be inferred from their range sizes. In other
words, sizes of partitions (ri in the figure) are
proportional to their corresponding payloads (number of
stars representing point data). However, optimal
partitioning of such data shown in Fig. 1 is difficult to
achieve because polygons, line-strings, points, etc., are
neither distributed uniformly nor of similar sizes.
Optimal partitioning is a process in which computational
load on each partition (L(ri)) becomes roughly the same.
L(ri) represents the number of points.

Load is mainly a cost measure to determine the
sizes of the partitions. The goal is to find out the most
efficient number of partitions and the size for a given
data space. The aim is to cut the data space R into
smaller pieces (ri) with approximately equal loads (L(ri))
and to enable the efficient load balancing for the parallel
queries. The solution approach is based on creating and
using WET, which is actually a 2-dimensional tree.

J. Cent. South Univ. (2014) 21: 190−198

193

The research problem can be illustrated on a sample
scenario. We have two replicated data servers serving
replicated data whose population in 2-dimensional space
is illustrated in Fig. 1(b). When doing a naive
partitioning (as illustrated in Fig. 1(b)) and assigning the
partitions to the replica servers in round-robin fashion,
the first replica server gets partitions r1 and r3, and the
second replica server gets partitions r2 and r4. As a result,
the first replica server serves 5 points and the second
replica server serves 27 points. This is not a fair sharing
of workload. By contrast, optimal partitioning is
expected to result in a workload sharing where each
replica server gets an equal number of points to serve,
i.e., 16 points. Even for such a small dataset,
performance gain would be almost two folds.

3.2 Compile-time (indexing)

At compile-time, the system prepares an indexlike
structure called WET. This section elaborates on WET
and its functionalities in sharing the main query payload
among the replica nodes.

WET is a representation of the data distribution
characteristics in the form of a list of small ranges whose
query sizes are relatively close to each other. WET is an
index table representing related data in a remote database.
Due to the dynamic nature of data, WET is created once
and synchronized/refined at time intervals to reflect the
changes in a remote database. Time intervals are defined
by application developers. The interval change depends
on the data dynamicity. WET carries only the minimum
bounding rectangles, not the actual data. Our aim is to
partition the data space into rectangular regions in such a
way that each pair of rectangular regions overlaps only at
the boundaries and each rectangular region’s
corresponding query sizes are as equal as possible. Our
algorithm continues to partition the rectangular regions
recursively until the query sizes for subregions are less
than or equal to threshold query payload size (t). In
addition, the size differences between the partitions, i.e.,
subregions (fluctuation), are controlled by the error
parameter (Er). Er is a tunable parameter that can be set
to any value such that 0< Er <1. As Er gets closer to 0,
partitions’ query sizes get closer to each other and WET
provides better information for I/O parallelization. On
the other hand, the time to create WET increases. At each
iteration, a region (R) is partitioned into two subregions
(R1 and R2). Eventually, at the end of the recursive
iterations, every partition Ri has a query payload less
than or equal to t, and the ratio of query payloads of any
Ri and Rj becomes close to 1 depending on the
pre-defined Er value. The formula of the recursive
partitioning algorithm is given in Eq. (1).

The recursive algorithm to create/refine WET is

PT(R, t, Er)=PT(R1, t, Er)+PT(R2, t, Er) (1)

where PT is the main routine creating/refining WET, R is
the overall range covering all the data in the database, t is
the threshold query payload size (allowable maximum
query size for a partition), which is a predefined value, Er
is the maximum allowable query size difference between
subregions obtained from binary cut, which is a
predefined value as

)](),(max[

|)()(|

21

21
r RLRL

RLRL
E

 (2)

PT(R, t, Er) is a routine to recursively partition the

region R into subregions whose corresponding query
sizes are less than t, as shown in Fig. 2. PT is based on
binary partitioning but makes a balanced partition at each
iteration as improvement. To make balanced partitions,
PT routine calls the PTInBalance (Fig. 3) subroutine.
PTInBalance finds the most efficient cutting point (MP)
for a range R in which the ratio of the difference in query
payload sizes to the maximum of the query payload sizes
is less than Er. PTInBalance (Fig. 3) is a way of
determining the center of gravity for range R in terms of
query payload. The query payload for each range is
obtained by getData(Ri) routine. It makes a remote call to
the database and gets the actual data. The time to finish
partitioning of R into R1 and R2 depends on the error
parameter Er. As Er decreases, the time for algorithm to
finish increases. The algorithm produces a WET in which
there is no subregion whose query size is larger than any
other subregion’s query size more than (1+Er) times.

PTInBalance(R, Er) does not take threshold data
size as parameter because its task is only cutting the
given region R into two subregions whose query sizes
fluctuate with the error Er. The algorithm interacts with
the remote data server at each iteration and makes
queries with newly calculated ranges. According to the
results of the query sizes, it adapts the ranges and repeats
the same thing with newly calculated queries. It keeps
doing this until the query sizes for the partitions get close
to each other based on predefined Er. If Er is defined as 0,
it means both query sizes for the partitions are equal. In

PT(R, t, Er)
 [(R1, size1):(R2, size2)]=PTInBalance(R, Er)
 If ((size1≤t) or (size2≤t)) {*/sizes are almost the same/*

/*Put the partitions into memory/disk as paris*/
Store(<R1, size1>)
Store(<R2, size2>)
Return

 }
 Else

PT(R1, t, Er); PT(R2, t, Er) /**recursive calls/
}

Fig. 2 Recursive binary partitioning routine

J. Cent. South Univ. (2014) 21: 190−198

194

that case, all the partitions are of equal size that is equal
to the threshold data size t.

Let’s make it clear how the algorithm works on the
sample dataset given in Fig. 4(a). The coordinate values
of the data lie in range R, R=((0,0), (1,1)). Figure 4(b)
shows a sample WET created from the sample dataset in
Fig. 4(a). Since the total query size in database (Load) is
32 MB, t is 5 MB, and Er is 0.2, the minimum partition
size is calculated as 4 MB. After running the algorithm
given above, we get a WET which has 7 partitions as
listed below:

((0.00, 0.00), (0.45, 0.56)), ((0.45, 0.00), (0.74,
0.56)), ((0.74, 0.00), (1.00, 0.64)), ((0.74, 0.64), (1.00,
0.81)), ((0.74, 0.81), (1.00, 1.00)), ((0.64, 0.56), (0.74,
0.75)) and ((0.00, 0.56), (0.64, 1.00)).

Figure 4 illustrates that the regions having higher
data density are most probably cut into a higher number
of subregions, this partition indicates unit query ranges
for parallelization.

The complexity analysis of WET table creation is
studied. WET table is similar to kd-tree structure. As in
kd-trees, R is split into 2 equal-sized subregions. Let

T(R) be the time needed to build a WET table on range
R; and T(1)=O(1), and then T(R)=2T(R)+x. In the case of
kd-trees, x represents the time to calculate the median of
a set of n values, which is computed in O(n) time.
Overall kd-tree creation takes O(nlogn) time according to
the master theorem case-2. However, in the case of WET
creation, since the data are not local, and their
distribution is not known a priori, it is not possible to
clearly define the time x that is required to divide R into
almost equal-sized subregions. x is actually the time to
finish PTInBalance subroutine for one partitioning.
PTInBalance includes a remote subroutine called getData,
and it makes computation complexity hard to solve.
Since the remote data servers are taken as black
boxes, their computation complexities can not be
estimated. If PTInBalance takes linear time in terms of
range R, then WET table creation takes O(RlogR) time. If
it takes quadratic time, WET table creation takes O(R2)
time.

3.3 Run time

The output of the compile-time query planning is

PTInBalance(R, Er) {

 current_Er=1;

 l=maxx

 r=maxx

 While (current_Er>Er) {

mp=(l+r)/2

R1=minx, miny, mp, maxy /*R=R1+R2*/

R2=mp, miny, maxx, maxy

data1=getData(R1)

data2=getData(R2)

If (size(data1)>size(data2));

 {r=mp}

else

 {l=mp}

current_Er=(size(data1)−size(data2))/max[size(data1), size(data2)]

 }

 return [(R1, size(data1)):(R2, size(data2))]

}

Fig. 3 Routine to find out best point to cut range R

Fig. 4 Sample data space (a) and corresponding partitions (b) in WET

J. Cent. South Univ. (2014) 21: 190−198

195

used at run-time to determine the best set of ranges to
maximize I/O parallelism. At run-time, the system
inspects the subranges and creates the parallel queries for
subranges for a given query, hands them off to the replica
nodes, and aggregates the results from subrange queries
to create the response for the main query range.
Information about the replica nodes is kept in a local file.
This file is prepared at compile-time. The execution steps
are elaborated as follows.

The client-side interaction is handled at run-time.
As a first step, the main query range is positioned on
WET and overlapping subranges in WET are calculated.
The output of this work is the set of rectangles
overlapping with the main query range. This is only a
comparison of rectangles to see if they overlap in
2-dimensional space.

Let’s illustrate this with a sample scenario, as
illustrated in Fig. 5. The sample main query with range R
is positioned on WET. R overlaps with p5, p6, p7, p8, p9
and p10. The set of ranges on which parallel queries are
performed are calculated as p5, p6, p7, p8, r1 and r2. If the
application does not treat partial and total overlapping
ranges differently, then the selected ranges are calculated
as p5, p6, p7, p8, p9, and p10, and r1 and r2 are the partial
overlappings with p9 and p10, respectively. Application
developers can choose partial or total overlapping
depending on the data formats they use. For the point
datasets, partial overlapping would give the best results
but for polygon datasets both would give almost the
same result.

Fig. 5 Illustration of query decomposition with sample scenario

In the second step, the system creates/emulates the

main query with the newly calculated subranges. In other
words, parallel queries are created for the subranges. The
subqueries inherit all the attributes from the main query
except for the range attribute defining their rectangular
shapes. As shown in Fig. 5, queries created for the
partitions p5, p6, p7, p8, r1 and r2 have all of the same
attributes except for their ranges. The structures of the
queries change depending on the applications and remote
servers. For example, remote servers might be common

database servers or databases might be integrated to the
system through middleware with standard service
interfaces.

After creating subqueries for each partition, queries
are assigned to the replicas through a separate thread of
works in round-robin fashion [13]. The technique
presented here ensures that each replica gets almost
equal number of partitions. Moreover, since the
subranges have almost equal query payloads, the
replicated nodes have an almost equal workload. The
subqueries are assigned to separate threads to capture the
data from replica. The number of partitions each replica
is calculated as

replicas

partition

N

N
S (3)

replicaspartitionrmg SNNN (4)

where S is the share number of subqueries and Nrmg is the
number of subqueries remaining (0 ≤ Nrmg ≤ Nreplicas−1).
If there are no subqueries remaining, then Nrmg=0 and
every replica node is assigned a share number of
subqueries. If Nrmg is different from 0, then the first Nrmg
replicas are assigned S+1 subqueries each and the
remaining replicas are assigned share subqueries each.
This scenario of sharing is a natural result of the
round-robin approach. After all threads are done with
their work, the master thread aggregates the results,
creates the final response to the main query, and sends
the main query response to the client.

4 Results

2-dimensional range queries are used frequently in
various applications such as spatial databases, geospatial
information systems (GIS), computer vision, computer
aided design (CAD) in engineering, and astronomy. In
such applications, the data points are usually represented
by 2-dimensional vectors corresponding to their
locations. In addition, datasets are defined with both
geometric and nongeometric attributes. In this work, the
proposed technique in the (GIS) domain is examined and
evaluated, which manages geographic datasets having
geometric attributes such as points, lines, polylines, and
polygons. These attributes are defined with point or point
sets in some predefined standard formats (open
geospatial consortium (OGC)) and accessed-queried with
minimum bounding rectangles (MBR), also called
bounding boxes.

This section presents the application of the proposed
query optimization technique to distributed map
rendering [14−15]. The system is a collection of OGC
compatible GIS web services [16]. A map is composed of
multiple data-layers. Layers are visual representations of

J. Cent. South Univ. (2014) 21: 190−198

196

homogeneous geographic datasets provided by web map
service (WMS) and web feature service (WFS) in the
form of images and GML data, respectively. Geographic
markup language (GML) data provided by WFS are
converted to map layers at the WMS side. This is called
vertical composition of map layers. Each layer in a map
can be partitioned into addressable smaller partitions
(bounding boxes) and each chunk can be handed off to a
replica node. Replica nodes are WFS [17] or WMS [18].
This is called horizontal composition and it requires
extra work on the side where the partitioning and
composition work is done. The technique presented in
Section 3 is for horizontal decomposition, which is based
on query decomposition. Queries are 2-dimensional
range queries defined in rectangular shapes and
formulated as (minx, miny, maxx and maxy). Figure 6
shows sample range query (x, y, x′, y′), and its partitions
(R1, R2, R3, and R4).

For the test case scenario, 2-layer map images are
studied. The first layer (base-map) is LandSat imagery of
Turkey, obtained from the NASA OneEarth project’s
OGC compatible WMS. The second layer is earthquake
seismic data of Turkey recorded from 1992 to 2005.
These feature datasets are kept in a database and served
to the system through standard WFS web service
interfaces. The WFS are replicated nodes for the test
evaluations. Earthquake seismic data have some major
attributes such as magnitude, location (x and y
coordinates), date/time, and some other minor attributes.
Queries to create maps from those datasets are done
based on these attributes. Varying compositions of those

parameter values change the queries’ payloads.
The test setup shown in Fig. 6 illustrates two

approaches, one is the straight-forward query approach
and the other is the parallel query approach. Queries
from clients are created by the interactive map tools
originally developed for standard WMS services. Our
implementation of WMS, which is called federator in
Fig. 6, is enhanced with the proposed technique. The
efficiency of our solution approach on such situations is
demonstrated in a use case scenario (Fig. 6). This setup
is a real world application developed for distributed
earthquake analysis.

Performance is evaluated with earthquake seismic
data kept in relational tables in MySQL database and
integrated into the system through WFS. There are four
computers with quad-cores each, and each computer has
processors running at 2.33 GHz with RAM of 8 GB, and
located in wide area network (WAN). There are four
replicated WFS servers deployed on those computers.
The active number of WFS at anytime during the test is
gradually increased for the purpose of the performance
evaluation (see Fig. 7).

In our experiments, we seek to answers to the
following questions with the evaluation tests:

1) How do the number of replicas (WFS) and
number of partitions (Ri) together affect the
performance?

2) How is the number of partitions (for a specific
query size) affected by the WET’s threshold query size
(t)?

3) When the number of replicas (WFS) is kept the

Fig. 6 Test setup

J. Cent. South Univ. (2014) 21: 190−198

197

Fig. 7 Parallel query optimization performance

same, how does the partition-threshold size in WET
affect the performance?

The values in Figs. 7 and 8 are obtained by running
the tests on 10 randomly selected different regions (R).
The areas of those regions (data space) are of varying
sizes (Area(Ri)) but their corresponding query sizes are of
10 MB (Load(Ri)). As seen from Fig. 7, the system
accesses the 10 MB of data in 65.06 s when the single
query is used (see also the straightforward approach in
Fig. 6). The average number of parallel queries is defined
by the region’s data distribution characteristics, the
parameters used to build WET (threshold query size t
and error Er), and the actual main query size. WET built
with different threshold query sizes might give different
numbers of partitions for the same query ranges.

Fig. 8 Overhead times of parallelization

As illustrated in Fig. 7, in the case of having 4

replicas (WFS), the best performance is obtained by
using 2 MB of threshold partition size. In such a case, the
response time for 10 MB of query payload becomes
12.87 s. If the query is not parallelized, then for the
single query of 10 MB payload the response time would
be 65.06 s. As a result, the system is almost 5 times faster

with the proposed technique using the WET index table
for creating parallel queries.

The performance gain from the parallel querying
increases as the partition number increases, as long as
there are enough replicas. Above a specific threshold
partition size, however, the ratio of the performance gain
starts decreasing. This specific partition size changes
depending on the other parameters such as number of
replicas, error and query sizes. This pattern can be seen
for each line representing a different number of replicas
(Fig. 7). For example, in the case of using 4 WFS
(circled-line), the threshold value for the partition size is
about 2 MB. At this threshold value, the average number
of partition is 8.5. The initial increase is due to improved
load balance by reducing the effect of fluctuation in
partitions’ loads, and the decrease is due to the
nonparallelizable overheads and limited number of
replicas. In addition, success of parallel queries is based
on how well we share the workload with replica nodes.

As Er decreases, the balance in the workload share
increases and gives better average query response times.
It is explained through I/O parallelism, which is a natural
result of the algorithm used to create WET (see Figs. 2
and 3). As the Er value gets smaller, WET refinement
takes a longer time. However, this is done at compile-
time, and it does not affect the response time of the
actual queries from the clients. As the number of replicas
increases, the performance increases. As the threshold
query size decreases, the fluctuation in query sizes
between the partitions decreases and the degree of equal
workload sharing increases.

As Fig. 7 illustrates, the response time does not
scale linearly with the number of replicas. This is due to
the decreasing threshold query size (t), which is
represented by the x-axis. t is explained earlier in Eq. (1)
and the following paragraph. The partition query sizes
are around t and fluctuate with Er=0.2. For queries of the
same size (such as 10 MB as in Fig. 7), if t decreases,
then both the number of partitions and the number of
corresponding queries increase, and as a result, each
replica gets more queries in parallel. An increased
number of parallel queries on a WFS causes performance
degradation because of the context switch time and
related overheads. To eliminate this problem, we need to
find a way to derive the cutoff parameter, the threshold
partition size that leads to the best performance. This will
be studied in the future.

Figure 8 illustrates the overhead time from
partitioning and parallel processing. There are three
overhead time compared to straightforward single
process work, calculating overlapped partitions,
subquery creations, and aggregating the subquery results.
The figure also shows the pattern of the changes in the
overhead time, according to the changing partition

J. Cent. South Univ. (2014) 21: 190−198

198

numbers, and their relative weights in total overhead.
Because of the overhead time, if we do an unnecessary
amount of partitioning, then there will not be a
performance gain for less than a threshold-data size, but
we see from the figure that it is less than some small
amount that does not affect the overall performance
considerably.

5 Conclusions

1) A compile/run-time approach is presented for
execution of range queries on distributed nodes when
replica optimization is employed. The technique is based
on WET, which estimates the main query payload and
partitions it into the most efficient numbers and sizes of
subqueries.

2) The solution presented in this work treats the data
servers as black boxes and does not touch their inner
structure. Data servers are used only through their
publicly available standard service interfaces.

3) The proposed approach is based on
approximating the query size in advance. Algorithms for
eliminating data skew is focused to achieve efficient I/O
parallelization, although the proposed technique can be
generalized to handle execution skew as well. The
system runs the best for point data sets. However, in case
of polygen data sets, the system might not give the
expected performance gains.

References

[1] TANENBAUM A S, van STEEN M. Distributed systems: Principles

and paradigms prentice hall upper saddle river [M]. 2nd ed. Upper

Saddle river, USA: 2006: 704.

[2] CHEN C M, CHENG C T. Replication and retrieval strategies of

multidimensional data on parallel disks [C]// CIKM ’03 Proceedings

of the Twelfth International Conference on Information and

Knowledge Management. New York, NY, USA: ACM Press, 2003:

32−39.

[3] CHERVENAK A, DEELMAN E, FOSTER I, GUY L, HOSCHEK W,

IAMNITCHI A, KESSELMAN C, KUNSZT P, RIPEANU M,

SCHWARTZKOPF B, STOCKINGER H, STOCKINGER K,

TIERNEY B. Giggle: A framework for constructing scalable replica

location supercomputing [C]// ACM/IEEE 2002 Conference.

Baltimore, USA: IEEE Computer Society Press, 2002: 1−17.

[4] GANESAN P, BAWA M, GARCIA-MOLINA H. Online balancing

of range-partitioned data with applications to peer-to-peer

systemsvery large database (VLDB) [C]// Proceedings fo the 30th

International Conference on Very Large Data Bases. Toronto, Canada:

Morgan Kaufmam, 2004: 444−455.

[5] WENG L, CATALYUREK U, KURC T, AGRAWAL G, SALTZ J.

Servicing range queries on multidimensional datasets with partial

replicas IEEE international symposium on cluster computing and the

grid [C]// CCGrid 2005. Cardiff, UK: IEEE, 2005: 726−733.

[6] BEYNON M, CHANG C, CATALYUREK U, KURC T, SUSSMAN

A, ANDRADE H, FERREIRA R, SALTZ J. Processing large-scale

multi-dimensional data in parallel and distributed environments [J].

Parallel Computing-Parallel Data-Intensive Algorithms and

Applications, 2002, 28(5): 827−859.

[7] DEWITT D, GRAY J. Parallel database systems: The future of high

performance database systems [J]. ACM Communications, 1992,

35(6): 85−98.

[8] CHAKKA V P, EVERSPAUGH A, PATEL J M. Indexing large

trajectory data sets with SETI [C]// Conference on Innovative Data

Systems Research (CIDR-2003). CA, USA: VLDB, 2003: 281−291.

[9] MAUROUX C P, WU E, MADDEN S. TrajStore: An adaptive

storage system for very large trajectory data sets [C]// IEEE 26th

International Conference on Data Engineering (ICDE). Long Beach,

CA: IEEE Press, 2010: 109−120.

[10] JOEL B M, SALTZ J H. Scalability analysis of declustering methods

for multidimensional range queries [J]. IEEE Transactions on

Knowledge and Data Engineering, 1998, 10(2): 310−327.

[11] BENTLEY J L. Multidimensional binary search trees used for

associative searching [J]. Communications of the ACM, 1975, 18(9):

509−517.

[12] FILHO Y S. Avarage case analysis of region search in balanced k-d

trees [J]. Information Processing Letters, 1979, 8(5): 219−223.

[13] TANENBAUM A S. Modern operating systems [M]. New Jersey,

USA: Pearson Prentice Hall, 2008.

[14] SAYAR A, PIERCE M, FOX G. Developing GIS visualization web

services for geophysical applications [C]// Turkey: ISPRS Spatial

Data Mining Workshop Ankara, 2005.

[15] SAYAR Ahmet, PIERCE Marlon, FOX Geoffrey-Charles. Grid

technology for maximizing collaborative decision management and

support: Advancing effective virtual organizations [M]. Bedfordshire,

UK: IGI Global-Information Science Reference, 2009: 360−368.

[16] AYDIN G, SAYAR A, GADGIL H, AKTAS M S, FOX G C, KO S,

BULUT H, PIERCE M E. Building and applying geographical

information systems grids [J]. Concurrency and Computation:

Practice and Experience, 2008, 20(14): 1653−1695.

[17] VRETANOS P A. Web Feature Service Implementation Specification

[EB/OL]. 2002−11−02.

[18] BEAUJARDIERE J. OGC Web Map Service Interface [EB/OL].

Open GIS Consortium Inc. (OGC), 2006−03−15.

(Edited by FANG Jing-hua)

