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Abstract: Replication is an approach often used to speed up the execution of queries submitted to a large dataset. A 
compile-time/run-time approach is presented for minimizing the response time of 2-dimensional range when a distributed replica of a 
dataset exists. The aim is to partition the query payload (and its range) into subsets and distribute those to the replica nodes in a way 
that minimizes a client’s response time. However, since query size and distribution characteristics of data (data dense/sparse regions)  
in varying ranges are not known a priori, performing efficient load balancing and parallel processing over the unpredictable workload 
is difficult. A technique based on the creation and manipulation of dynamic spatial indexes for query payload estimation in 
distributed queries was proposed. The effectiveness of this technique was demonstrated on queries for analysis of archived 
earthquake-generated seismic data records. 
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1 Introduction 
 

Analysis of data is an important step in 
understanding and solving a scientific problem. Analysis 
involves extracting the data of interest from all available 
data sources and can occur at several stages along a data 
processing pipeline ranging from raw data to advanced 
data products. However, in many areas of science and 
engineering, the ability to analyze information is 
increasingly hindered by dataset sizes. The vast amount 
of data in scientific datasets makes efficient access to the 
data and management of potentially heterogeneous 
system resources for data processing a difficult task. 
Thus, subsetting and aggregation are widespread 
techniques used in large-scale scientific data intensive 
applications. First, subsets are calculated and distributed 
to the replica nodes and then the results are aggregated to 
create the response to the main query set. Such a 
technique is possible in cases where the distributed 
replica of a dataset exists. This work argues that a 
common compile/run-time programming support can be 
developed for applications in which large datasets are 
queried in distributed computing environments [1]. 

Distributed parallel processing is the most 
promising approach for designing scalable and high 
performance computers that are suitable for tackling 

distributed data processing problems. This approach 
provides significant advantages over the shared memory 
ones in terms of cost and scalability. However, systems 
based on this approach are much more complicated to 
program than shared memory machines. One major 
reason for this is the lack of a single global address space. 
As a result, programmers, compilers, or run-time 
environments are responsible for distributing code and 
data over processors as well as for managing 
communications among tasks. The distribution is 
significantly important for the efficiency of the parallel 
programs in a distributed memory machine. For a good 
data distribution, evenly distributing the workload over 
processors should be considered so that parallelism is 
maximized and communication is minimized. Yet, due to 
the stringent characteristics and dynamic nature of data, 
performing efficient load balancing and parallel 
processing over the unpredictable workload is not easy, 
the problem is illustrated in Fig. 1. The work is cut into 
independent smaller pieces, no matter they are of the 
same size ranges, or sizes are highly variable. Creating 
subsets for the uniformly distributed datasets such as 
raster images is straightforward. In contrast, creating 
subsets for non-uniformly distributed datasets is 
cumbersome; for example, vector data are defined with 
the (x, y) coordinates on a 2-dimensional plane (Fig. 1). 
In such a case, subsetting most probably results in data 
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Fig. 1 Problem illustration with straightforward partitioning: (a) 

Linestring/polygon data; (b) Point data 

 
and execution skews. 

In this work, a compile-time/run-time approach is 
presented for minimizing the response time of 
2-dimensional range queries when the distributed replica 
of a dataset exists. The proposed framework assumes that 
replica nodes are created in advance and the service-level 
binding information is stored in a file. The work 
presented is summarized as developing an efficient query 
planning strategy to determine the best combination of 
replica nodes and their corresponding payloads in order 
to optimize query response time in distributed 
environments. Enhancements are at the application level, 
not at network level. The technique is based on creating, 
updating and manipulating dynamic spatial indexes for 
query payload estimation in distributed queries. This 
technique takes the data dense/sparse regions into 
consideration (Fig. 1). A data structure called workload 
estimation table (WET) developed at compile-time and 
used during run-time to divide the workload for a range 
query into subranges carrying equal sizes of query 
payload. WET is routinely synchronized with the remote 
replicated datasets, occupies very little space, and 
provides accurate query-size estimates over a broad 
range of spatial queries. The effectiveness of the 
proposed technique is demonstrated on an earthquake 
simulation derived from Turkey’s archived seismic data 
records. 
 
2 Related work 
 

Most replication studies address issues such as data 

availability (e.g., in node and network failures) [2−3] and 
maximizing I/O performance by duplicating data and 
serving from different nodes (creating a content 
distribution network). GANESAN et al [4] proposed a 
partitioning technique on large-scale parallel databases in 
peer-to-peer (P2P) systems. As tuples are inserted or 
deleted, the partitions are adjusted, and data are moved to 
achieve storage balance across the participating nodes. In 
this approach, each participant server needs to be well 
structured and informed about the whole P2P overlay 
network. In contrast, our approach treats all the 
participant servers as black boxes and only uses their 
interfaces for data access. WENG et al [5] defined a 
partial replication framework to speed up the execution 
of range queries. In partial replication, a portion of 
dataset, which is likely to be accessed more frequently, is 
extracted, re-organized, and re-distributed across the 
storage system. Again, in this approach, the participant 
nodes need to be informed about the whole system and 
must have extra services enabling them to communicate. 
BEYNON et al [6] introduced a technique to support 
execution of subsetting and aggregation operations for 
querying large datasets in parallel. The authors focused 
on optimizing ordinary striped access to uniformly 
distributed datasets, such as images, maps, and dense 
multi-dimensional arrays. However, their technique 
might not give the expected performance gains when 
using non-uniformly distributed datasets such as Earth 
related vector datasets (census data, earthquake seismic 
data, etc.). 

Indexing is a well-known and widely used approach 
to the optimization of query execution time for 
non-uniformly distributed datasets [7]. Indexing keeps 
metadata for datasets and enables efficient searching and 
extraction for a given query. The Seti project proposed an 
index structure for efficient range queries on non- 
uniformly distributed spatial trajectory datasets [8]. To 
create an index, an R-tree structure was used. A related 
work was the TrajStore project [9]. The researchers 
concentrated on trajectory datasets took the dense and 
sparse regions into consideration and proposed a 2-level 
index structure. They proved that the results were much 
better than R-tree based indexes for 2-dimensional range 
queries. Both projects focused on creating index enabled 
range queries on non-uniformly distributed datasets, but 
they used local datasets. However, when the datasets are 
distributed and provided by third party services, range 
query optimization becomes more challenging. Handling 
distributed datasets in a performance efficient way 
requires addressing the issues related to replications [5], 
parallel queries [6], load-balancing (I/O parallelism) and 
declustering. Some of these issues have overlapping 
interests. In particular, declustering [10] is an approach 
for the creation of an efficient query framework using 
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indexlike structures. In declustering, datasets are 
distributed across several storages in a well-structured 
manner and information about the distribution is kept in 
an index file. Query efficiency depends on how well 
datasets are distributed across the storage nodes and how 
well the index structures are compatible with the data 
characteristics and query attributes. 

This work solved the query approximation problem 
to partition and shared the workload across the replicated 
data nodes. A load-balancing (I/O parallelism) approach 
was introduced for multi-dimensional distributed range 
queries in replicated environments. The datasets were not 
local or centralized. Therefore, the query size and 
distribution characteristics of data of varying ranges were 
not known a priori, and the data servers were treated as 
black boxes. To optimize the load balancing and 
efficiency of parallel queries, the data dense/sparse 
regions were taken into consideration and approximated 
before partitioning the original query [11]. Having 
identified roughly equivalent partitions (in terms of 
number of objects contained) offline, the resulting index 
was used to split range queries into subqueries 
(corresponding each to a spatial partition), which were 
then distributed to the various servers in a round-robin 
fashion. The proposed index table is called WET, which 
is similar to a balanced kd-tree (short for k-dimensional 
tree) index structure [12]. WET is also a special case of 
binary space partitioning trees. It is not only an index but 
also provides ready-to-use subranges of almost equal 
sizes of query payloads. The terms of subranges and 
partitions are used interchangeably throughout the work. 
 
3 Architecture: Adaptive range query 

optimization with distributed replicas 
 

The proposed architecture is composed of 
compile-time and run-time approaches for efficient 
parallel execution of 2-dimensional range queries when 
the distributed replicas of a dataset exist. During 
compile-time, the system collects information about the 
dataset and prepares an indexlike table to efficiently 
partition the whole dataset into subranges (smaller 
partitions). The query payloads that correspond to the 
ranges in the table are expected to be equal in size. At 
run-time, the system makes parallel queries in 
accordance with the subranges calculated at 
compile-time and then aggregates the results to create the 
answer for the main query. The architecture aims at 
eliminating data and execution skew for efficient I/O 
parallelization. The proposed architecture promises some 
advantages over naive (straightforward) partitioning such 
as smaller response time, especially in systems with a 
high degree of parallelism, and efficient usage of replica 
nodes through load balancing. 

3.1 Problem formulation 
Figure 1 illustrates the problem regarding efficient 

partitioning of ranges for non-uniformly distributed 
datasets. Although this is a general class of problem, for 
illustration purposes, geospatial domain is selected. 
Figure 1(a) shows the city boundary data in the form of 
linestrings or polygons, and Fig. 1(b) shows the seismic 
data in the form of points. Those are spatial datasets and 
defined/queried with 2-dimensional, (x, y) Cartesian 
coordinates. The set of (x, y) coordinate values is 
accessed with range queries. Ranges are called minimum 
bounding rectangles (MBR) or bounding boxes. Both are 
the same and formulated as R=[(minx, miny), (maxx, 
maxy)]. (minx, miny) refers to the lower left, and (maxx, 
maxy) refers to the upper right corners. minx, miny, 
maxx and maxy are assumed to be integers or rational 
numbers. 

Considering a dataset as a subset of 2-dimensional 
rational space, Q2, there are unlimited numbers of 
rectangle (i.e., ranges) that can be defined over the data 
space R. Let’s say data space R is partitioned into 
non-overlapping rectangular regions {r1, r2, r3, …, rn} 
where )].,(),,[( 2211

iiiii yxyxr   The number n changes 
depending on the average sizes of ri set. As the average 
sizes of ri increase, n decreases. 

If the area of input rectangles (ri) is denoted by 

A(ri), then, .)()(
1




n

k
irARA  

If the query payloads of the input rectangles (ri) are 

denoted by L(ri), then, .)()(
1




n

k
irLRL  

The ordinary binary partitioning shown in Fig. 1 
gives the best results for maximizing the performance in 
parallel queries if the datasets were uniformly  
distributed. To uniformly distribute datasets, query 
payloads can be inferred from their range sizes. In other 
words, sizes of partitions (ri in the figure) are 
proportional to their corresponding payloads (number of 
stars representing point data). However, optimal 
partitioning of such data shown in Fig. 1 is difficult to 
achieve because polygons, line-strings, points, etc., are 
neither distributed uniformly nor of similar sizes. 
Optimal partitioning is a process in which computational 
load on each partition (L(ri)) becomes roughly the same. 
L(ri) represents the number of points. 

Load is mainly a cost measure to determine the 
sizes of the partitions. The goal is to find out the most 
efficient number of partitions and the size for a given 
data space. The aim is to cut the data space R into 
smaller pieces (ri) with approximately equal loads (L(ri)) 
and to enable the efficient load balancing for the parallel 
queries. The solution approach is based on creating and 
using WET, which is actually a 2-dimensional tree. 
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The research problem can be illustrated on a sample 
scenario. We have two replicated data servers serving 
replicated data whose population in 2-dimensional space 
is illustrated in Fig. 1(b). When doing a naive 
partitioning (as illustrated in Fig. 1(b)) and assigning the 
partitions to the replica servers in round-robin fashion, 
the first replica server gets partitions r1 and r3, and the 
second replica server gets partitions r2 and r4. As a result, 
the first replica server serves 5 points and the second 
replica server serves 27 points. This is not a fair sharing 
of workload. By contrast, optimal partitioning is 
expected to result in a workload sharing where each 
replica server gets an equal number of points to serve, 
i.e., 16 points. Even for such a small dataset, 
performance gain would be almost two folds. 
 
3.2 Compile-time (indexing) 

At compile-time, the system prepares an indexlike 
structure called WET. This section elaborates on WET 
and its functionalities in sharing the main query payload 
among the replica nodes. 

WET is a representation of the data distribution 
characteristics in the form of a list of small ranges whose 
query sizes are relatively close to each other. WET is an 
index table representing related data in a remote database. 
Due to the dynamic nature of data, WET is created once 
and synchronized/refined at time intervals to reflect the 
changes in a remote database. Time intervals are defined 
by application developers. The interval change depends 
on the data dynamicity. WET carries only the minimum 
bounding rectangles, not the actual data. Our aim is to 
partition the data space into rectangular regions in such a 
way that each pair of rectangular regions overlaps only at 
the boundaries and each rectangular region’s 
corresponding query sizes are as equal as possible. Our 
algorithm continues to partition the rectangular regions 
recursively until the query sizes for subregions are less 
than or equal to threshold query payload size (t). In 
addition, the size differences between the partitions, i.e., 
subregions (fluctuation), are controlled by the error 
parameter (Er). Er is a tunable parameter that can be set 
to any value such that 0< Er <1. As Er gets closer to 0, 
partitions’ query sizes get closer to each other and WET 
provides better information for I/O parallelization. On 
the other hand, the time to create WET increases. At each 
iteration, a region (R) is partitioned into two subregions 
(R1 and R2). Eventually, at the end of the recursive 
iterations, every partition Ri has a query payload less 
than or equal to t, and the ratio of query payloads of any 
Ri and Rj becomes close to 1 depending on the 
pre-defined Er value. The formula of the recursive 
partitioning algorithm is given in Eq. (1). 

The recursive algorithm to create/refine WET is 

 
PT(R, t, Er)=PT(R1, t, Er)+PT(R2, t, Er)                     (1) 
 
where PT is the main routine creating/refining WET, R is 
the overall range covering all the data in the database, t is 
the threshold query payload size (allowable maximum 
query size for a partition), which is a predefined value, Er 
is the maximum allowable query size difference between 
subregions obtained from binary cut, which is a 
predefined value as 
 

)](),(max[

|)()(|

21

21
r RLRL

RLRL
E


                                      (2) 

 
PT(R, t, Er) is a routine to recursively partition the 

region R into subregions whose corresponding query 
sizes are less than t, as shown in Fig. 2. PT is based on 
binary partitioning but makes a balanced partition at each 
iteration as improvement. To make balanced partitions, 
PT routine calls the PTInBalance (Fig. 3) subroutine. 
PTInBalance finds the most efficient cutting point (MP) 
for a range R in which the ratio of the difference in query 
payload sizes to the maximum of the query payload sizes 
is less than Er. PTInBalance (Fig. 3) is a way of 
determining the center of gravity for range R in terms of 
query payload. The query payload for each range is 
obtained by getData(Ri) routine. It makes a remote call to 
the database and gets the actual data. The time to finish 
partitioning of R into R1 and R2 depends on the error 
parameter Er. As Er decreases, the time for algorithm to 
finish increases. The algorithm produces a WET in which 
there is no subregion whose query size is larger than any 
other subregion’s query size more than (1+Er) times. 

PTInBalance(R, Er) does not take threshold data 
size as parameter because its task is only cutting the 
given region R into two subregions whose query sizes 
fluctuate with the error Er. The algorithm interacts with 
the remote data server at each iteration and makes 
queries with newly calculated ranges. According to the 
results of the query sizes, it adapts the ranges and repeats 
the same thing with newly calculated queries. It keeps 
doing this until the query sizes for the partitions get close 
to each other based on predefined Er. If Er is defined as 0, 
it means both query sizes for the partitions are equal. In  
 

PT(R, t, Er) 
   [(R1, size1):(R2, size2)]=PTInBalance(R, Er) 
   If ((size1≤t) or (size2≤t)) {*/sizes are almost the same/*

/*Put the partitions into memory/disk as paris*/ 
Store(<R1, size1>) 
Store(<R2, size2>) 
Return 

   } 
   Else 

PT(R1, t, Er); PT(R2, t, Er)  /**recursive calls/ 
} 

 
Fig. 2 Recursive binary partitioning routine 
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that case, all the partitions are of equal size that is equal 
to the threshold data size t. 

Let’s make it clear how the algorithm works on the 
sample dataset given in Fig. 4(a). The coordinate values 
of the data lie in range R, R=((0,0), (1,1)). Figure 4(b) 
shows a sample WET created from the sample dataset in 
Fig. 4(a). Since the total query size in database (Load) is 
32 MB, t is 5 MB, and Er is 0.2, the minimum partition 
size is calculated as 4 MB. After running the algorithm 
given above, we get a WET which has 7 partitions as 
listed below: 

((0.00, 0.00), (0.45, 0.56)), ((0.45, 0.00), (0.74, 
0.56)), ((0.74, 0.00), (1.00, 0.64)), ((0.74, 0.64), (1.00, 
0.81)), ((0.74, 0.81), (1.00, 1.00)),  ((0.64, 0.56), (0.74, 
0.75)) and ((0.00, 0.56), (0.64, 1.00)). 

Figure 4 illustrates that the regions having higher 
data density are most probably cut into a higher number 
of subregions, this partition indicates unit query ranges 
for parallelization. 

The complexity analysis of WET table creation is 
studied. WET table is similar to kd-tree structure. As in 
kd-trees, R is split into 2 equal-sized subregions. Let  

T(R) be the time needed to build a WET table on range  
R; and T(1)=O(1), and then T(R)=2T(R)+x. In the case of 
kd-trees, x represents the time to calculate the median of 
a set of n values, which is computed in O(n) time. 
Overall kd-tree creation takes O(nlogn) time according to 
the master theorem case-2. However, in the case of WET 
creation, since the data are not local, and their 
distribution is not known a priori, it is not possible to 
clearly define the time x that is required to divide R into 
almost equal-sized subregions. x is actually the time to 
finish PTInBalance subroutine for one partitioning. 
PTInBalance includes a remote subroutine called getData, 
and it makes computation complexity hard to solve. 
Since the remote data servers are taken as black    
boxes, their computation complexities can not be 
estimated. If PTInBalance takes linear time in terms of 
range R, then WET table creation takes O(RlogR) time. If 
it takes quadratic time, WET table creation takes O(R2) 
time. 
 
3.3 Run time 

The output of the compile-time query planning is 
 

 
PTInBalance(R, Er) { 

   current_Er=1; 

   l=maxx 

   r=maxx 

   While (current_Er>Er) { 

mp=(l+r)/2 

R1=minx, miny, mp, maxy  /*R=R1+R2*/

R2=mp, miny, maxx, maxy 

  
 
 
 

data1=getData(R1) 

data2=getData(R2) 

If (size(data1)>size(data2)); 

   {r=mp} 

else 

   {l=mp} 

current_Er=(size(data1)−size(data2))/max[size(data1), size(data2)]

   } 

   return [(R1, size(data1)):(R2, size(data2))] 

} 

 

Fig. 3 Routine to find out best point to cut range R 

 

 
Fig. 4 Sample data space (a) and corresponding partitions (b) in WET 
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used at run-time to determine the best set of ranges to 
maximize I/O parallelism. At run-time, the system 
inspects the subranges and creates the parallel queries for 
subranges for a given query, hands them off to the replica 
nodes, and aggregates the results from subrange queries 
to create the response for the main query range. 
Information about the replica nodes is kept in a local file. 
This file is prepared at compile-time. The execution steps 
are elaborated as follows. 

The client-side interaction is handled at run-time. 
As a first step, the main query range is positioned on 
WET and overlapping subranges in WET are calculated. 
The output of this work is the set of rectangles 
overlapping with the main query range. This is only a 
comparison of rectangles to see if they overlap in 
2-dimensional space. 

Let’s illustrate this with a sample scenario, as 
illustrated in Fig. 5. The sample main query with range R 
is positioned on WET. R overlaps with p5, p6, p7, p8, p9 
and p10. The set of ranges on which parallel queries are 
performed are calculated as p5, p6, p7, p8, r1 and r2. If the 
application does not treat partial and total overlapping 
ranges differently, then the selected ranges are calculated 
as p5, p6, p7, p8, p9, and p10, and r1 and r2 are the partial 
overlappings with p9 and p10, respectively. Application 
developers can choose partial or total overlapping 
depending on the data formats they use. For the point 
datasets, partial overlapping would give the best results 
but for polygon datasets both would give almost the 
same result. 
 

 
Fig. 5 Illustration of query decomposition with sample scenario 

 
In the second step, the system creates/emulates the 

main query with the newly calculated subranges. In other 
words, parallel queries are created for the subranges. The 
subqueries inherit all the attributes from the main query 
except for the range attribute defining their rectangular 
shapes. As shown in Fig. 5, queries created for the 
partitions p5, p6, p7, p8, r1 and r2 have all of the same 
attributes except for their ranges. The structures of the 
queries change depending on the applications and remote 
servers. For example, remote servers might be common 

database servers or databases might be integrated to the 
system through middleware with standard service 
interfaces. 

After creating subqueries for each partition, queries 
are assigned to the replicas through a separate thread of 
works in round-robin fashion [13]. The technique 
presented here ensures that each replica gets almost 
equal number of partitions. Moreover, since the 
subranges have almost equal query payloads, the 
replicated nodes have an almost equal workload. The 
subqueries are assigned to separate threads to capture the 
data from replica. The number of partitions each replica 
is calculated as 
 














replicas

partition

N

N
S                                                (3) 

 
replicaspartitionrmg SNNN                                 (4) 

 
where S is the share number of subqueries and Nrmg is the 
number of subqueries remaining (0 ≤ Nrmg ≤ Nreplicas−1). 
If there are no subqueries remaining, then Nrmg=0 and 
every replica node is assigned a share number of 
subqueries. If Nrmg is different from 0, then the first Nrmg 
replicas are assigned S+1 subqueries each and the 
remaining replicas are assigned share subqueries each. 
This scenario of sharing is a natural result of the 
round-robin approach. After all threads are done with 
their work, the master thread aggregates the results, 
creates the final response to the main query, and sends 
the main query response to the client. 
 
4 Results 
 

2-dimensional range queries are used frequently in 
various applications such as spatial databases, geospatial 
information systems (GIS), computer vision, computer 
aided design (CAD) in engineering, and astronomy. In 
such applications, the data points are usually represented 
by 2-dimensional vectors corresponding to their 
locations. In addition, datasets are defined with both 
geometric and nongeometric attributes. In this work, the 
proposed technique in the (GIS) domain is examined and 
evaluated, which manages geographic datasets having 
geometric attributes such as points, lines, polylines, and 
polygons. These attributes are defined with point or point 
sets in some predefined standard formats (open 
geospatial consortium (OGC)) and accessed-queried with 
minimum bounding rectangles (MBR), also called 
bounding boxes. 

This section presents the application of the proposed 
query optimization technique to distributed map 
rendering [14−15]. The system is a collection of OGC 
compatible GIS web services [16]. A map is composed of 
multiple data-layers. Layers are visual representations of 
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homogeneous geographic datasets provided by web map 
service (WMS) and web feature service (WFS) in the 
form of images and GML data, respectively. Geographic 
markup language (GML) data provided by WFS are 
converted to map layers at the WMS side. This is called 
vertical composition of map layers. Each layer in a map 
can be partitioned into addressable smaller partitions 
(bounding boxes) and each chunk can be handed off to a 
replica node. Replica nodes are WFS [17] or WMS [18]. 
This is called horizontal composition and it requires 
extra work on the side where the partitioning and 
composition work is done. The technique presented in 
Section 3 is for horizontal decomposition, which is based 
on query decomposition. Queries are 2-dimensional 
range queries defined in rectangular shapes and 
formulated as (minx, miny, maxx and maxy). Figure 6 
shows sample range query (x, y, x′, y′), and its partitions 
(R1, R2, R3, and R4). 

For the test case scenario, 2-layer map images are 
studied. The first layer (base-map) is LandSat imagery of 
Turkey, obtained from the NASA OneEarth project’s 
OGC compatible WMS. The second layer is earthquake 
seismic data of Turkey recorded from 1992 to 2005. 
These feature datasets are kept in a database and served 
to the system through standard WFS web service 
interfaces. The WFS are replicated nodes for the test 
evaluations. Earthquake seismic data have some major 
attributes such as magnitude, location (x and y 
coordinates), date/time, and some other minor attributes. 
Queries to create maps from those datasets are done 
based on these attributes. Varying compositions of those 

parameter values change the queries’ payloads. 
The test setup shown in Fig. 6 illustrates two 

approaches, one is the straight-forward query approach 
and the other is the parallel query approach. Queries 
from clients are created by the interactive map tools 
originally developed for standard WMS services. Our 
implementation of WMS, which is called federator in  
Fig. 6, is enhanced with the proposed technique. The 
efficiency of our solution approach on such situations is 
demonstrated in a use case scenario (Fig. 6). This setup 
is a real world application developed for distributed 
earthquake analysis. 

Performance is evaluated with earthquake seismic 
data kept in relational tables in MySQL database and 
integrated into the system through WFS. There are four 
computers with quad-cores each, and each computer has 
processors running at 2.33 GHz with RAM of 8 GB, and 
located in wide area network (WAN). There are four 
replicated WFS servers deployed on those computers. 
The active number of WFS at anytime during the test is 
gradually increased for the purpose of the performance 
evaluation (see Fig. 7). 

In our experiments, we seek to answers to the 
following questions with the evaluation tests: 

1) How do the number of replicas (WFS) and 
number of partitions (Ri) together affect the 
performance? 

2) How is the number of partitions (for a specific 
query size) affected by the WET’s threshold query size 
(t)? 

3) When the number of replicas (WFS) is kept the 
 

 
Fig. 6 Test setup 
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Fig. 7 Parallel query optimization performance 

 
same, how does the partition-threshold size in WET 
affect the performance? 

The values in Figs. 7 and 8 are obtained by running 
the tests on 10 randomly selected different regions (R). 
The areas of those regions (data space) are of varying 
sizes (Area(Ri)) but their corresponding query sizes are of 
10 MB (Load(Ri)). As seen from Fig. 7, the system 
accesses the 10 MB of data in 65.06 s when the single 
query is used (see also the straightforward approach in 
Fig. 6). The average number of parallel queries is defined 
by the region’s data distribution characteristics, the 
parameters used to build WET (threshold query size t 
and error Er), and the actual main query size. WET built 
with different threshold query sizes might give different 
numbers of partitions for the same query ranges. 
 

  
Fig. 8 Overhead times of parallelization 

 
As illustrated in Fig. 7, in the case of having 4 

replicas (WFS), the best performance is obtained by 
using 2 MB of threshold partition size. In such a case, the 
response time for 10 MB of query payload becomes 
12.87 s. If the query is not parallelized, then for the 
single query of 10 MB payload the response time would 
be 65.06 s. As a result, the system is almost 5 times faster 

with the proposed technique using the WET index table 
for creating parallel queries. 

The performance gain from the parallel querying 
increases as the partition number increases, as long as 
there are enough replicas. Above a specific threshold 
partition size, however, the ratio of the performance gain 
starts decreasing. This specific partition size changes 
depending on the other parameters such as number of 
replicas, error and query sizes. This pattern can be seen 
for each line representing a different number of replicas 
(Fig. 7). For example, in the case of using 4 WFS 
(circled-line), the threshold value for the partition size is 
about 2 MB. At this threshold value, the average number 
of partition is 8.5. The initial increase is due to improved 
load balance by reducing the effect of fluctuation in 
partitions’ loads, and the decrease is due to the 
nonparallelizable overheads and limited number of 
replicas. In addition, success of parallel queries is based 
on how well we share the workload with replica nodes. 

As Er decreases, the balance in the workload share 
increases and gives better average query response times. 
It is explained through I/O parallelism, which is a natural 
result of the algorithm used to create WET (see Figs. 2 
and 3). As the Er value gets smaller, WET refinement 
takes a longer time. However, this is done at compile- 
time, and it does not affect the response time of the 
actual queries from the clients. As the number of replicas 
increases, the performance increases. As the threshold 
query size decreases, the fluctuation in query sizes 
between the partitions decreases and the degree of equal 
workload sharing increases. 

As Fig. 7 illustrates, the response time does not 
scale linearly with the number of replicas. This is due to 
the decreasing threshold query size (t), which is 
represented by the x-axis. t is explained earlier in Eq. (1) 
and the following paragraph. The partition query sizes 
are around t and fluctuate with Er=0.2. For queries of the 
same size (such as 10 MB as in Fig. 7), if t decreases, 
then both the number of partitions and the number of 
corresponding queries increase, and as a result, each 
replica gets more queries in parallel. An increased 
number of parallel queries on a WFS causes performance 
degradation because of the context switch time and 
related overheads. To eliminate this problem, we need to 
find a way to derive the cutoff parameter, the threshold 
partition size that leads to the best performance. This will 
be studied in the future. 

Figure 8 illustrates the overhead time from 
partitioning and parallel processing. There are three 
overhead time compared to straightforward single 
process work, calculating overlapped partitions, 
subquery creations, and aggregating the subquery results. 
The figure also shows the pattern of the changes in the 
overhead time, according to the changing partition 
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numbers, and their relative weights in total overhead. 
Because of the overhead time, if we do an unnecessary 
amount of partitioning, then there will not be a 
performance gain for less than a threshold-data size, but 
we see from the figure that it is less than some small 
amount that does not affect the overall performance 
considerably. 
 
5 Conclusions 
 

1) A compile/run-time approach is presented for 
execution of range queries on distributed nodes when 
replica optimization is employed. The technique is based 
on WET, which estimates the main query payload and 
partitions it into the most efficient numbers and sizes of 
subqueries.  

2) The solution presented in this work treats the data 
servers as black boxes and does not touch their inner 
structure. Data servers are used only through their 
publicly available standard service interfaces. 

3) The proposed approach is based on 
approximating the query size in advance. Algorithms for 
eliminating data skew is focused to achieve efficient I/O 
parallelization, although the proposed technique can be 
generalized to handle execution skew as well. The 
system runs the best for point data sets. However, in case 
of polygen data sets, the system might not give the 
expected performance gains. 
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