
Axis2, Middleware for Next Generation Web Services

Srinath Perera1, Chathura Herath1, Jaliya Ekanayake1, Eran Chinthaka2, Ajith Ranabahu2, Deepal
Jayasinghe2, Sanjiva Weerawarana2,Glen Daniels2

1. Indiana University, Bloomington, USA 2. Apache Software Foundation, USA
{hperera, cherath, jekenaya,}@cs.indiana.edu, {chinthaka, ajith, deepal, sanjiva,

 gdaniels} @apache.org

Abstract

Axis2, the next generation of Apache Web Services
middleware, is an effort to re-architecture Apache Web
Service stack to incorporate the changes in Web Services.
Among many improvements, Axis2 provides first class
Messaging and SOAP extension supports together with a
novel lightweight streaming based XML processing
Model. The architecture is build on top of a simple and
extensible core that provides the basic abstractions for
the rest of the system. We present the design and the
thought process behind the key abstractions by breaking
down the architecture in to three topics, XML Processing
Model, Extensible SOAP processing model and
Messaging Framework. This Paper explains the overall
architecture while concentrating on the three topics, and
demonstrate how they all fit together to yield Axis2.

1. Introduction

Axis2 is an effort to redesign Apache Web Services
stack in order to address the major changes took place in
Web Services stack since Axis1. Axis2 amalgamates
experience from two generations of Web Services
middleware, Apache SOAP and Axis, nevertheless
redesigned from scratch to suit the next generation of
Web Services.

Web Services are no longer just a promise for the
future; rather it is a reality now. While being used in the
real world, Web Services has evolved to suit the
requirement of that world. This touch with the reality has
redefined the values of Web Services, while deepening
our understanding about the realm. Axis2 is motivated by
such changes and knowledge gained as a result.
Following are few of the influential factors.
1. Adaptation of messaging semantics in contrast to RPC

semantics.
2. Improvements and wider understanding related to WS-

Addressing
3. Understanding gained by implementing WS-

Extensions like WS-Security [14], WS-Reliable
Messaging[15] and WS-Transactions, and the
proposals for a better SOAP processing Model

4. Availability of WS-Policy[4] and WS-Metadata [5]
exchanges

5. Performance considerations of Axis1[16], and
proposals for better XML processing

6. Availability of WSDL 2.0
Further more these developments have changed the

expectations of the users. As a result the Web Service
middleware developed 3 - 4 years back simply can not
live up to the new expectations of the users. This is not
because they are poorly designed; rather the assumptions
that were made at the time of their development are no
longer true. For example, three years ago synchronous
request-response Web Services were the defacto standard.
Axis1 supports only request-response interactions, an
obvious design decision at the time. However such
assumptions no longer hold and new requirements had to
be met with “not so smooth” techniques. Supporting new
requirements gracefully call for major architectural
reforms.

Axis2 incorporate those developments and restructure
the architecture around three topics.
1. XML Processing
2. SOAP Messaging
3. SOAP Extensions

Hence we shall focus our discussion on these three
topics. Rest of the paper is organized as follows; the next
section provides related works and Section 3 presents
Axis2 architecture in general. The sections 4, 5, 6 explain
the three topics and sections 7 conclude the discussion
with summery and future works.

2. Related Work

Axis2 architecture is influenced by Axis1, feedback
from users and experience gained from maintaining Axis1
for four years. Further more Apache SOAP [17] and
related Apache Web Service projects like Sandesha [18],
WSS4J [19] and Kandula [20] provide invaluable insights
to the architecture. According to our observations we
found Axis1 is limited in following three basic areas.

Axis1 defines the Handler architecture as a mechanism
for extending the SOAP Processing Model. Handlers are
components that can be registered with the Axis1
framework on per service basis. And they will be
executed before sending or processing SOAP Messages.
When executed, each Handler is provided with a
reference to the current SOAP Message, and handlers
may process the SOAP Headers. However the interfaces

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

and the Services provided to the Handlers turn out to be
insufficient and, to counter that, implementation of WS-*
specifications need to do additional work, thus making
those architectures complicated.

Axis1 XML processing model works on top of SAX
events. In order to provide a model that allows random
access to the SOAP Message, Axis1 has to record the
SAX events. Since SAX does not allow event flow to be
paused once started, resulting XML processing model
must record all the events. This was the major reason for
the performance problems of Axis1.

Thirdly as mentioned in the introduction, Axis1
assumed Request Response synchronous interaction thus
lack messaging support.

 Further more, among the Web service middleware
following projects can be considered peers.

XSUL2[10] developed at Indiana University provide a
SOAP processing model based on XML Pull parsing and
achieved impressive performance results [11]. Further
more XSUL2 provides support for one-way, request-
response interactions with synchronous / asynchronous
behavior.

Colombo project [12] developed by IBM research
provides a framework for service oriented applications
that include a Web Service stack with transactional
reliable and secure interactions support.

New version of the JAX-RPC specification, JAX-WS
[23] and the reference implementation incorporates
messaging, WS-Security, improved data bindings and
annotation support as notable changes. Axis2 will provide
a JAX-WS compatible layer in due course.

Among commercial products, following two provides
the most comprehensive Web Services frameworks.

Windows Communication Framework (WCF –
formerly known as Indigo) by Microsoft corporation
provides a base for service oriented architectures with
support for transactional reliable and secure interactions.

Systinet Server provides a Web Service stack with
security and reliable messaging support. The server is
available in both C++ and Java languages.

3. Axis2 Architecture

Axis2, being a community project, should address
wide range of scenarios and interests. Resulting
architecture tends to be complex, and hence maintaining
simplicity and elegance of the system is a major
challenge.

This challenge is addressed by defining a minimal but
extensible core that includes SOAP processing Model,
XML processing, Messaging frameworks and abstractions
to implement other aspects like transports and
deployment. These “non-core” aspects are layered and
have minimal correlation with the core architecture. For
example, we consider data binding as a separately solved
problem that is orthogonal to the Web Services
architecture. Axis2 supports multiple data bindings yet the
core is not aware of its existence.

A system can be explained in terms of functionality,
subsystems and API provided for the users. In next
section, we shall look at Axis2 in each of these angles.

Figure1: Axis2 Architecture

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

3.1 Functionality of Axis2

Axis2 is not just a tool kit for sending and receiving
SOAP Messages, rather it provides the foundation for the
Apache Web Services stack. It provides abstractions and
services that are used in every aspects of the Web
Services stack. The key functionalities provided by
Axis2 are enumerated below.
1. A Framework to develop, to deploy, to invoke, and to

manage Web Services.
2. Extensible SOAP processing model and services need
to develop WS-* specifications
3. Framework for modeling different Message Exchange
Patterns (MEPs) and perform synchronous and
asynchronous interactions
4. Pluggable Transports and data binding
5. WS-Addressing support
6. Message Transmission and Optimization Mechanism
(MTOM) support
7. Representational State Transfer (REST) support

Figure 1 shows the subsystems of Axis2. Three
subsystems, XML processing Model, SOAP processing
model and Information Model are considered the Core,
and they layout the foundation for rest of the systems.
Non core sub systems are either pluggable, or can be
replaced with minimal effort, where as the core
subsystems are indivisible with Axis2.

Information Model contains states of Axis2 and is
usually populated by the deployment mechanism. Starting
Axis2 involves initializing the information model and
transport Receivers.

Incoming SOAP message is received by a Transport
receiver and handed over to SOAP processing Model, at
the end of the processing; the message is handed over to
the Message Receiver to invoke the business logic.

Outgoing SOAP Message is initiated by the Client API
or the Message Receiver and handed over to SOAP
processing Model, once processed; Message is passed to
the transport Sender and sent to the target endpoint.

3.2 Axis2 User Interfaces and tools

Axis2 provides interface for three groups, Web Service
users, Web Service Developers and Developers of the
WS-* specifications. Basic interfaces can be listed as
follows.
1. Client API for invoking Web Services
2. Server API for developing/deploying Web Services
3. WSDL2Java tool to code generate server or/and Client

side code from a WSDL
4. Handler API for extending the SOAP processing model
5. Deployment API for configuring Axis2

The topics like WSDL, deployment, MTOM and
REST are interesting by their own right. However we will
not discuss them here as they are not central to the Axis2

core architecture. In the rest of this paper we will
systematically discuss the three basic topics XML
Processing Model, Extensible SOAP processing model
and Messaging Framework.

4. XML Processing Model and
Performance

4.1 XML processing and Web Services

XML processing, the decisive factor for performance,
faces a conflict of interests inside a Web Service
middleware framework. In one hand the framework
should provide efficient XML processing, on the other
hand it should provide users with a simple and easy to use
representation of XML.

Handling an XML document involves managing
documents in three different states.
1. The source form (input stream/object)
2. The intermediate form (usually a tree structure

denoting the XML info set)
3. Processing specific format

The first and the last states are inherent to the SOAP
processing and can not be avoided. By means of efficient
XML processing we try to reduce intermediate form as
much as possible since the usual way of transferring
between state 1 and state 3 is via state 2.

Key for efficient XML processing lies in the ability to
do sequential processing, without moving back and forth
in the XML document. Before moving further we should
look at the SOAP processing model and investigate the
possibilities of sequential processing.

4.2 SOAP and XML processing models

SOAP message has two parts, the Headers that
provides the information about the service behavior and
the body that includes the payload. At SOAP Processing
those two parts are processed in order. According to the
SOAP processing rules, SOAP Header processing
requires random access, because they need to move back
and forth among data. However overhead introduced by
the SOAP Headers is generally limited since headers are
smaller compared to the SOAP Body. The SOAP Body
processing usually involves data binding, which can be
done in a streaming fashion.

When a SOAP message is being sent the SOAP Body
is constructed from parameters in the programming
language representation and SOAP Headers are filled by
the SOAP processing model. Again SOAP Body
construction can be done in streaming fashion.

But it is important to note that there are use cases like
WS-Security [13] where the SOAP Header processing
requires accesses to SOAP Body, and in those cases it is
harder to do the SOAP Body processing in streaming
fashion.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

4.3 XML processing model Architecture

Previous section concludes that the SOAP processing
can not always perform in a streaming fashion (Due to
WS-Security use case). But when we exclude such special
use cases like the WS security use case, there are a
number of instances where this optimization is possible
and profitable.

 Axis2 approach is to streamline the SOAP processing
whenever it is possible and to handle the complexities
transparently when the processing can not be streamlined.

Axis2 XML processing model tries to achieve this
objective by limiting the intermediate form of the XML
document as much as possible. Axis Object Model
(AXIOM) tries to provide a simpler interface to users
while handling complexities of the efficient XML
Processing behind the curtain. Users may provide a
source (input stream or a Java object) and create a virtual
XML segment, where the source will not be read but just
kept inside the XML Segment. When the user traverses
the XML Segment, AXIOM reads data out of the source,
but tries to read data as late as possible. We call this
approach “on demand (lazy) parsing”.

If so chosen, users of the tree model (XML Segment),
can request for STAX [7] events for a selected part of the
tree model and let AXIOM know that tree model is no
longer required. Usually this happens at end of the SOAP
Header processing, and request is for STAX events of the
SOAP Body. In most cases, the Body part of the source
has not been accessed and STAX events can be directly
generated from the source. If the model is half built, the
first part of the STAX events are generated from the half
built model and the rest will be generated directly from
the underline STAX parser.

When a SOAP Message is received, the Headers are
processed first and then the Body is processed. Headers
processing always involves moving back and forth among
Headers, hence needs a tree Model. However if
processing does not access the body, events will be read
directly off the source, (which is an input stream in this
case) and fed to business logic invocation which is
usually done in streaming fashion.

Conversely, when a SOAP Message is sent, the
information that needs to be sent in the SOAP Body is
provided in some programming language representation
(e.g. Java objects/DOM). Those objects act as the sources,
and they could be directly written to the stream if the
Header processing that follows does not accesses the
information represented by the source objects.

In both these cases if SOAP Header processing
accesses the SOAP Body, the intermediate object model
can not be avoided. But AXIOM provides a model to
build a lesser amount of intermediate model as far as
possible. Furthermore when the optimization is not
possible, it is handled transparently and upper layers do

not need to worry about complexities of efficient XML
parsing.

5. Extensible SOAP Processing Model

5.1 Introduction to SOAP processing

Web Services are defined by SOAP, WSDL and UDDI
specifications and set of WS-* specifications that
explained other aspects like Security, Reliability and
Transactions. Each of this aspect is defined as a SOAP
Extension, and a given service may associate one or more
aspects with itself.

Those aspects are developed as plug-ins to SOAP
processing model and a Service may enable aspects
related to the plug-ins by associating them. For example
Reliability and Security are two aspects, and could be
implemented as plug-ins. Service can have reliability and
security (or one of the two) by associating the
corresponding plug-in(s) into the framework. Each plug-
in should be able to work by itself as well as co-exists
with the other plug-ins the service might associates with.

This approach simplifies the user’s task to a great
extent since each of this extension is available as a single
entity, and they can be enabled by associating them. But
on the other hand Web Service middleware has to solve
more complex problems, as they should generalize these
aspects and behavior. Axis2 provides an environment to
develop those extensions, taking that generalization yet
another step forward.

5.2 Challenges presents by SOAP
Processing Model

Axis1 provides basic support for these SOAP
extensions using Handler framework. A Handler is a
component that can be registered with SOAP processing
model in either global or per service basis. Axis1 SOAP
processing model executes registered Handlers before
sending an outgoing SOAP message or invoking business
logic of an incoming SOAP message. The Handlers can
be deployed via Axis1 deployment mechanism. This
Handler architecture was an extension of Interceptor [6]
pattern used in CORBA. They were first introduced by
Axis1 and later adopted and standardized by JAX-RPC
[9] specification.

But interaction and co-existence of SOAP extensions
could be very complex. While using the Handler
architecture provided by Axis1, the authors of the SOAP
extensions and the users of those extensions, face
following difficulties.
1. Some SOAP extensions depend on other extensions

and some are affected by the other, as a result
execution order of extensions is critical.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

2. The efficient implementations of SOAP extensions
require more sophisticated services from the
framework than just accessing the current SOAP
message

3. Deploying and associating SOAP extensions with a
Web Service is complex and long procedure.
There are interdependencies among SOAP extensions,

for example most of the extensions depend on WS-
Addressing, and hence the WS-Addressing extension
should be executed before other extensions. Each
extension should work independently and the framework
should adopt itself when extensions co-exist. With Axis1
it is up to the Web Service developer to provide a total
ordering of associating Handlers. However it is the SOAP
extension developer who is aware of the dependencies
among different SOAP extensions. As a result, providing
a total order for the extensions needs deep knowledge on
workings of SOAP extensions. This overloads Web
Service developer thus limiting usability of SOAP
extensions. This can be addressed by providing a
mechanism for SOAP extension developer to express the
partial order of each SOAP extension with itself and
calculating the absolute order at the execution time.

Efficient implementations of most extensions require
much more complex services from the framework than
the mere access to the current SOAP message. Few of
such services are as follows.
1. Pause the execution and restart it later
2. Add new operation to the current Service
3. Access the related messages grouped together
4. Start a new sub execution path

With Axis1 the interface between SOAP extensions
and SOAP processing model is loosely defined. Hence
installation and engagement of different Extension vary.
As a result getting a SOAP extension to work is a
demanding and time consuming task.

5.3 Processing Model Architecture

Axis2 extends the Axis1 Handler architecture to
provide better support for the SOAP extensions. New
architecture introduces the Module, a higher level
abstraction for related set of Handlers grouped together. A
Module typically represents a SOAP extension and in
addition to Handlers, includes rules (Phase Rules) that
express the partial order of the Handlers with in the
Module and operations that should be added to the service
the Module is associated with.

Module is given an archive format by Axis2
deployment model. The Module is bundled according to
this archive format and it can be deployed by copying the
archive to the Axis2 repository. Once it is copied Axis2
deployment model parse it and make it available to the
rest of the system.

Use of the Module is best explained by examples. A
Module represents a SOAP extension like Reliable

Messaging or Addressing. Module contains all the
information that needs to make that SOAP extension
enable with a service, and service developer can enable
one or more SOAP extensions (e.g. Addressing, Reliable
Messaging) by just associating Modules with services.
The crux of this approach is to develop self contained set
of Modules that can be used with services by just
associating them with services. The association of service
with a Module is termed as “the service engages the
Module”. For an example if a service engage addressing
module, the configured addressing Handlers will be added
to Handler chain and service will support addressing.

If a service engage two SOAP Extensions (Modules),
the order of the Handlers from different Modules is
important. For an example, if Reliable Messaging and
addressing are enabled, the addressing Handlers should be
placed before the Reliable Messaging Handlers because
latter depends on the data processed by the former. The
above mentioned rules are used to make sure the correct
order is preserved.

 When the Reliable Message is enabled, the engaged
service need to have a new operations to create a message
sequence and end a message sequence. This is viewed as
the Module injecting an operation in to engaged service
and named as “Operation injection”. There are other
extensions (e.g. Secure Conversation) that need similar
functionality and as a result Operation injection is added
to the Module definition.

When the archived module is loaded by the
deployment system, the module is said to be available.
Services or operations may engage them and associate the
extensions provided by the module to itself. According to
the rules and operations, Axis2 configure the Handlers
and add them to the Handler chains associated with each
service or operation.

For performance reasons, the Handler chains are
calculated at the deployment time; however the handler
chains can be recalculated to support the change in
configuration done at runtime. For an example if service
requester and provider using Metadata Exchange [5],
decides that the security is needed to continue their
interaction, Axis2 can add the security module in runtime
and recalculate the handler chains.

5.4 RM Server side as a Case Study

This section provides an overview of Reliable
Messaging implementation (Sandesha2 [18]) to
demonstrate how Axis2 SOAP processing models
functions.

According to Reliable Messaging protocol, a Reliable
Messaging enabled Service will provide two operations,
Create Sequence and Terminate Sequence to the Client.
Client will initiate a Message sequence using the create
sequence Operation and send messages to the Server.
Server makes sure they are executed in correct order

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

regardless of the order they are received. For each
successful message the server send back an
acknowledgment message.

Sandesha2 is implemented as a Module that has a
Reliable Messaging Handler and two operations Create
Sequence and Terminate Sequence. When a service
engages the module the two operations are injected to the
Service and made available as operations of the service.
The Clients may initiate or terminate a sequence using
those two operations.

When a Message arrives, the Reliable Messaging
Module sends back an acknowledgment using a new
outgoing Pipe (More on Pipes will be covered in the last
section). The order of the Messages is examined and if
they are in order they shall be executed. If they are not in
order, execution is paused and the state is saved. Later
when successive messages complete the order, execution
for each message is resumed.

Reliable Messaging may depend on WS-Addressing
and WS-Security extensions and those requirements are
provided as “Phase Rules”. SOAP processing model
manages order of Handlers accordingly.

6. SOAP Messaging support

6.1 Introduction to Messaging

Three years ago request response interactions were
defacto standard for Web Services. But distributed
interactions have different considerations than their local
counterparts and are best addressed with messaging.

 SOAP Messaging is built on two basic operations,
Message sending and receiving. Some of those messages
are related, and grouped together to create Message
Exchange Patterns (MEP). Simplest MEP has a single
Message and the most common MEP is In-out MEP
which represents a Request-Response interaction.
However it is also possible to define more complex
patterns like publish-subscribe interactions.

Transports used for messaging are two types, one way
transports (e.g. SMTP, JMS) and two way transports (e.g.
HTTP, TCP). One way transports are unidirectional
where as two way transports are bidirectional. The two
way transports can effectively act as a one way transport
by utilizing only one direction, good example is HTTP
replying with “HTTP 200 ACEPTED” to say that there is
no content in the response.

Behavior of SOAP Nodes between two related
Messages defines synchronous and asynchronous nature
of the interaction. But the term
synchronous/asynchronous is used to denote Client API
level as well as transport level, and is a common source of
confusion. Former is decided by whether client side
thread of execution wait for the invocation to be
complete, and the latter is used to explain behavior of the

transport between the related Messages. If sent Messages
and received Messages are transported in different
transport connections they are Transport level
asynchronous, and if they are transported in same
connection they are transport level synchronous.

To capture these different aspects of messaging the
architecture need to be inherently message centric. Due
to lack of messaging support in Web Service middleware,
those problems have been tackled on top of Web Services
middleware adopting a layered approach [21], [22]. But
we believe that those problems are best addressed inside
core of Web Service middleware itself, where the intimate
detail about the messaging is available. We shall look in
to the Axis2 messaging architecture in the next section.

6.2 Messaging Architecture

Axis2 messaging architecture provides a framework to
model different MEPs, and their synchronous and
asynchronous aspects. In this section we shall discuss the
architecture in detail.

Different types of MEPs are infinite, hence only way
to support them is to provide building blocks that can be
put together to model arbitrary MEPs

The basic building blocks of messaging, the operations
sending and receiving are implemented as Pipes.
Following figure denote three layered Axis2 Messaging
architecture. The bottom layer of the figure represents
Handler architecture that defines the Pipes. The Pipes
consists of Axis2 defined inbuilt handlers, as well as user
defined custom Handlers.

Each pipe does not assume anything about correlation
with the other pipes, and those correlations are
implemented by the next layer that composes basic pipes
and create complex message interaction. At the second
layer of the figure, Operation Clients (Client API) and the
Message Receivers (Service API) know detail about
current MEP. They are not part of the Axis2 core, and are
pluggable.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

Figure 4: Messaging Architecture

For example In-Out Operation client knows there will
be a response Message and prepare the system for
accepting the response message. Similarly the In-Out
Message Receiver knows there should be a response
Message and initiates an Out-Pipe at end of the In-Pipe.
Axis2 provides an implementation for In-Only and In-Out
MEPs, but users can write new ones and registers them.
The correct MEP is picked up by the deployment
configuration and usually those configurations are built
base on WSDL information.

When utilizing its full Messaging capabilities, Axis2
became a peer-to-peer system. To accept related messages
that are transport level asynchronous and do not use
polling, message initiator needs to set up a Transport
Listener. In one hand this could be a simple standalone
client starting a simple HTTP server from Java, or on the
other hand the client could be a J2EE application running
on a J2EE server and might use a Servlet as the means of
receiving those messages. Then both Server and Client
would have transport Listeners running, and would play
role of sending and receiving Messages in same manner.

Axis2 Server and Client are identical at architecture
level. They share same execution mechanism (Pipes) and
same information model. When a SOAP Message is being
sent (transport level asynchronous) and if there are related
messages to be arrived, Axis2 registers an operation that
would match with dispatching properties of the related
messages. The related SOAP messages are processed in
same way the incoming SOAP Messages are processed in
the Server. If WS-Addressing Relates-To property is
present, the Message is automatically correlated and
added to correct message group of the information Model.

A deployed Web Services can not be identified as
(transport level) synchronous or asynchronous, and that is
decided by Service Requester. Depending on value of

WS-Addressing Reply-To property the service Provider
should send the related messages (if there are any) to
correct destination.

Following this philosophy, a Service deployed in
Axis2 is neither synchronous nor asynchronous. The
Service Requester may decide it by specifying WS-
Addressing Reply-To Headers of SOAP Message.
Incoming SOAP Message triggers an In-Pipe; the
execution that follows may generate related messages
according to the Message Exchange Pattern. If WS-
Addressing Reply-To Header is present and its value is
not anonymous, related messages will be sent to the
Reply-To address and otherwise anonymous address is
assumed and related messages are sent back via return
channel of the transport the SOAP Message was received.

Axis2 handles transports via Transport Senders and
Transport Receiver interfaces. The core architecture is not
aware of finer details about each transport, and as a result
new transports can be plugged in via the deployment
model. Different Axis2 supported transports are
categorized as one way and two way transports. However
difference and complexities are hidden behind Client API
and as a result user is unaware of such complexities.

In summary Axis2 messaging architecture is based on
Pipes that can be composed by upper layers to create
complex message interactions. Those compositions are
pluggable so user can define new MEPs. The Message
path is decided based on WS-Addressing and the related
messages are sent in conformance to WS-Addressing
properties. The resulting architecture provides a peer-to-
peer model that supports multiple MEPs as well as both
transport and client API level synchronous asynchronous
behavior.

7. Summary and future work

Axis2 amalgamates the experiences gained by
developing Axis1 and Apache Web Services projects. The
Axis2 core architecture is comprises of an XML
processing Model, SOAP processing model and
Messaging framework.

Axis2 has just released version 0.94 as and in the
process of testing and incorporating user feedback. The
development effort is continuing and currently the team is
concentrating on performance and standard conformance.

At the same time effort to implement other SOAP
extensions on Axis2 has begun; current release has an
initial version of WS-Security bundled with it. Effort for
WS-Reliable Messaging, WS-Secure conversation, WS-
Transaction and WS-Policy is underway.

Apache Web Services project thrive to provide
complete Web Service stack on top of Axis2, and to
continue Apache legacy on Web Services.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

8. Acknowledgement

Axis2 is a community effort; in addition to the authors
of this paper, Davanum Srinivas, Aleksander Slominski,
Dasarath Weerathunga, Venkat Reddy, Ashutosh Shahi,
Jayachandra Sekhara, Thilina Gunarathne, Ruchith
Fernando, and Saminda Abeyruwan have been key
contributors to the design and implementation of the
Axis2.

9. References

[1] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N.
Mendelsohn, H. F. Nielsen, S. Thatte, and D. Winer,
‘‘Simple Object Access Protocol (SOAP) 1.1,’’
http://www.w3.org/TR/SOAP, May 2000.

[2] E. Christensen, F. Curbera, G. Meredith, and S.
Weerawarana, ‘‘Web Services Description Language
(WSDL 1.1),’’ W3C Note,
http://www.w3.org/TR/wsdl, March 2001.

[3] D. Box, E. Christensen, F. Curbera, D. Ferguson, J.
Frey, M. Hadley, C. Kaler, D. Langworthy, F.
Leymann, B. Lovering, S. Lucco, S. Millet, N.
Mukhi, M. Nottingham, D. Orchard, J. Shewchuk, E.
Sindambiwe, T. Storey, S. Weerawarana, and S.
Winkler, ‘‘Web Services Addressing (WS-
Addressing),’’ W3C Member Submission, August
10,

[4] D. Box, F. Curbera, D. Langworty, A. Nadalin, N.
Nagaratnam, M. Nottingham, C. von Riegen, and J.
Shewchuk, ‘‘Web Services Policy Framework (WS-
Policy Framework),’’ 2002,

[5] F. Curbera and J. Schlimmer (Eds.) ‘‘Web Services
Metadata Exchange (WS-MetadataExchange)’’
(September 2004),

[6] P. Narasimhan, L. Moser, and P. Mellior-Smith,
‘‘Using Interceptors to enhance CORBA,’’ Computer
32, No. 7, 62–68, July 1999.

[7] Christopher Fry et, al. Streaming API for XML
(STAX) Specification, (October 2003)

[8] Jeff Suttor, Norman Walsh, and Kohsuke Kawaguchi
JSR 206 Java API for XML (JAXP) Processing
Specification, (December 2003)

[9] Roberto Chinnici et, al. Java APIs for XML based
RPC (JAX-RPC) Specification, (October 2003)

[10]XSUL2 http://www.extreme.indiana.edu/xgws/xsul/
[11]Michael R. Head1, Madhusudhan Govindaraju,

Aleksander Slominski, Pu Liu, Nayef Abu-Ghazaleh,
Robert van Engelen3, Kenneth Chiu, Michael J.
Lewis, “A Benchmark Suite for SOAP-based
Communication in Grid Web Services”, November
2005.

[12]F. Curbera, M. J. Duftler, R. Khalaf, W. A. Nagy, ,
N. Mukhi, S. Weerawarana, “Colombo: Lightweight

middleware for service-oriented computing”, IBM
Systems Journal, Volume 44, Number 4, 2005

[13]David Chappell et, al. “Introducing Indigo: An Early
Look”. MSDN library, (February 2005)

[14]Chris Kaler et, al. “Web Services Security
Specification” , (April 2002)

[15]Christopher Ferris et, al. “Web Services Reliable
Messaging Protocol”, (WS-ReliableMessaging),
(February 2005)

[16]The Apache Project Axis Java, http://ws.apache.org/
axis/.

[17]The Apache Project SOAP, http://ws.apache.org/
soap/.

[18]The Apache Project Sandesha, http://ws.apache.org/
sandesha/.

[19]The Apache Project WSS4j, http://ws.apache.org/
wss4j/.

[20]The Apache Project Kandula, http://ws.apache.org/
kandula/.

[21]Uwe Zdun et, Markus Voelter, Michael Kircher
“Pattern-Based Design of an Asynchronous
Invocation Framework for Web Services”,
International Journal of Web Service Research ,
Volume 1, No. 3, 2004

[22]Geoffrey Fox, Shrideep Pallickara, Savas Parastatidis
“Towards Flexible Messaging for SOAP Based
Services”

[23]Roberto Chinnici, Marc Hadley, Rajiv Mordani, "The
Java API for XML Web Services (JAX-WS) 2.0
Proposed Final Draft, (October 7, 2005)

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

