
 Advanced Scheduling Strategies and Grid Programming
Environments

Bruno Schulze1, Geoffrey C Fox2

1. National Laboratory for Scientific Computing (LNCC), Av. Getulio Vargas 333,

Petropolis – RJ, Brazil
2. Indiana University, USA

schulze@lncc.br, gcf@indiana.edu

 1. BACKGROUND

This special issue focuses on “advanced scheduling strategies and Grid programming
environments”, and is based on selected papers from the 6th International Workshop on
Middleware for Grid Computing (MGC 2008) and 2nd Latin American Grid (LAGrid 2008)
workshop . The authors were invited to provide extended versions of their original papers
taking into account comments and suggestions raised during the peer review process and
comments from the audience during the workshops. MGC 2008 relevant contributions
have been provided by Kane and Dillaway, Abbes et al., Reis and Cerqueira, Finger et al.
and Kuijl et al. From the LAGrid 2008 side relevant contribuitions as well have been
provided by Martins et al., Costa and Cardozo, Mury et al. and Cáceres et al. These
contributions focus mainly on:

 performance of running parallel algorithms with considerable communication among
processors on the InteGrade grid;

 prediction of the availability of a resource (CPU, RAM, disk space) as a
fundamental activity in opportunistic grids;

 Cyclotron - a prototype cycle-scavenging grid that addresses the security and
usability concerns typical of enterprises considering deployment of such systems;

 a decentralized and fault-tolerant software system, called PastryGrid, for Desktop
Grid resources management;

 integration of the MPI programming model as part of the InteGrade grid computing
middleware;

 Grid scheduling algorithm using multi-attribute utility theory and multi-objective
optimization;

 diagnosis model for detecting and excluding misbehaving units by using
mechanisms such as reputation-based analysis, voting scheme and honeypots;

 task distribution, load balancing and failure treatment in a grid environment and
 a tool called CPUReserve which guarantees processing performance isolation

among applications and makes resource sharing more flexible.

Grid-enabled environments have been motivated by work in service-oriented computing,
and designed as a set of services that are provided by individuals or institutions. In this
scenario, a level of automation is necessary to achieve scalability, requiring intelligent
infrastructure management capabilities to be utilized alongside existing approaches.
Despite the emerging complexity and capability made available in Grid environments, it is
worthy to mention that developing cross-grid applications that span different virtual
organizations (VOs) has remained difficult. For instance, there is no co-scheduling of
resources across more than one VO.

Cloud computing concepts have recently emerged to address limitations of Grid
environments, a key focus is the use of virtualization technologies (at both platform and
middleware levels) and replication through machine/service imaging. However limitations
initially found with Grid computing remain. It is useful to note that a computing Cloud can
be designed on top of an existing Grid, as it also comprises heterogeneous components
that have been integrated using a top-down approach. Similarly, Cloud computing systems
are mostly created with the objective of providing a determined set of capabilities to a user,
so the interface is an important part of the design.

Scheduling challenges for enabling the deployment and execution of Grid-based parallel
applications have been addressed by the selected papers in this special issue, with the
development of models and techniques evaluated accordingly by prototyping and
simulations.

2. SPECIAL ISSUE PAPERS
Kane discusses Cyclotron a prototype cycle-scavenging grid that addresses the
security and usability concerns typical of enterprises considering deployment of
such systems. Although enterprises have large numbers of workstations that remain
idle outside of working hours, and are thus ideal for use in a cycle-scavenging grid,
current solutions have failed to address the security requirements of many
enterprises. Cycle-scavenging grids have been far more successful in academic
environments and volunteer computing projects where security considerations are
typically less stringent. Consequently, enterprises have continued to favor the
deployment of dedicated and centrally administered compute clusters, incurring the
cost of the cluster, its infrastructure, cooling, power, and personnel on top of the
cost of the workstations on employees' desks that remain idle two-thirds of the time.
To address these enterprise requirements, Cyclotron executes jobs inside a virtual
machine environment on employee’s workstations. This provides a greater degree
of isolation from the workstation host than do other solutions, and allows the use of
a homogenous operating environment for grid application development and
execution. Access control is managed by a declarative security-policy based
infrastructure, that supports flexible authorization rules and the constrained
delegation of access rights. Code objects, both virtual machine images and
individual code bundles, are treated as first-class entities with a unique identity
described by their hash values. This allows Cyclotron to both verify the integrity of
deployed code and provide policy-based control over what is allowed to execute in
the grid.

Abbes et al. discuss that Desktop Grid systems are attractive when running
distributed applications with significant computational requirements. While the
increasing number of users of such systems does demonstrate the potential of
Desktop Grid, current implementations, for instance Boinc, United Devices,
Seti@Home, Distributed.Net and Xtrem-Web still follow the client-server or
master/slave paradigm. The computing power which can be obtained from these
systems is constrained by the performance criteria of the master. This is particularly
the case for data-intensive applications. Then, depending on the performance of the
master, with many thousands of workers (or slaves), the central scheduler could
become a bottleneck. Such problem does not occur with a decentralized resources

management. Furthermore, centralized platforms require a full supervision by an
administrative staff which guarantees the operation of the master. Although the
crash of the master is infrequent and replication techniques can resolve this
problem when it occurs, we still believe in the need to decentralized approaches,
since all computing departments do not have the same type of equipment quality
and resources. This paper proposes a decentralized and fault-tolerant software
system, called PastryGrid, for Desktop Grid resources management. Its main
principle is to eliminate the need for a centralized server, therefore to remove the
single point of failure and bottleneck of existing Desktop Grids. Indeed, each node
can play alternatively the role of client or server. Our main contribution is to
conceive PastryGrid protocol (based on Pastry) for Desktop Grid in order to support
a wider class of applications, especially the distributed application with precedence
between tasks. Comparing to a centralized system, we evaluate our approach on
the Grid'5000 testbed using more than 205 machines and a workload composed of
100 distributed applications (more than 2500 tasks). Obtained results show that our
decentralized system outperforms a centralized one (XtremWeb-CH), with respect
to the turnaround time.

Reis and Cerqueira describe CPUReserve, a tool which guarantees processing
performance isolation among applications and makes resource sharing more
flexible. Unlike traditional approaches to isolate performance, CPUReserve is
entirely implemented at user level, so it does not incur kernel recompiling or system
overload by instancing virtual machines. CPUReserve allows the configuration of
the active scheduling policy and simplifies the development of new ones, as
policies can be implemented in a scripting language as well as in C. Considering
CPUReserve's characteristics, the authors believe that it can be useful in a broad
range of situations, including when reservation is desired for isolating performance,
saving energy in mobile devices and large scale clusters, reducing the heating
produced by machines, and providing different testbeds for scalability tests.

Finger et al. discuss the prediction of the availability of a resource (CPU, RAM, disk
space) as a fundamental activity in opportunistic grids, that is, computer grids which
employs the idle time of its components to perform high-performance computations.
In this work they describe a method to perform such predictions employing Use
Pattern Analysis (UPA). This prediction method is based on the assumption of the
existence of several classes of computational resource use patterns, which can be
used to predict resource availability. For example, one such class can represent a
typical working day, another can represent a holiday. Experiments made with an
implementation of the UPA method show the feasibility of its use in the scheduling
of grid tasks with very little overhead. The experiments also demonstrate the
method's superiority over other predictive and non-predictive methods.

Kuijl et al. propose a Grid scheduling algorithm using multi-attribute utility theory
and multi-objective optimization. Grid computing emerges as an infrastructure for
large-scale data processing, resource sharing, and scientific computing. The
algorithm makes the optimal decisions based on the available set of objectives. By
comparing to a deadline-and-budget algorithm (DBC) with three objectives, we
show that the proposed Multi-Objective Optimization (MOO) scheduling algorithm is

capable of obtaining a broader set of non-dominated solutions. The obtained
solutions are also of higher quality, which are in close proximity to the Pareto
optimal front.

For Martins et al., in a P2P computational grid there is no real assurance that
intelligent cheating nodes will not damage neither the grid applications nor the other
nodes into the environment. With the aim to handle the existence of these rational
nodes, the diagnosis model here presented detects and excludes misbehaving
units by using mechanisms such as reputation-based analysis, voting scheme and
honeypots. In order to validate the diagnosis model, experiments were run in the a
grid simulator, where results show that all intelligent cheating nodes can be
detected, with an accuracy of 99.4% of jobs being correctly processed. Besides, a
graphical user interface were implemented for visualizing the simulations.

Costa and Cardozo describe in their paper, the integration of the MPI
programming model as part of the InteGrade grid computing middleware. Parallel
processing is among the first motivations for the introduction of grid computing as
well as for a major part of its success. Parallel applications can benefit from the
larger amount of resources that is available on the grid as compared to the usual
environments based on clusters and supercomputers. The ability to run unmodified
parallel applications on grid environments is thus an important goal for grid
computing research. MPI is one of the most popular programming models for
parallel applications, meaning that a large number of existing parallel applications
can benefit from this integration and the ability to be executed on top of resources
provided by a grid infrastructure. In addition, because InteGrade is primarily aimed
at opportunistic grids, such infrastructure can be composed of existing, non-
dedicated, computing resources, which provide their idle capacity for use in the
grid. Another important issue addressed in their work is related to fault tolerance, as
non-dedicated resources may become unavailable at any time. The execution
management of MPI applications on InteGrade thus includes a checkpointing and
recovery mechanism, which allows an application's tasks to be paused and
resumed on different nodes of the grid when they experience any kind of failure in
their previous execution sites. The authors have evaluated the performance of their
execution engine, which shows very little overhead compared to MPI applications
running on the MPICH2 platform. They argue that such overhead can be
compensated by the larger amount of resources available on a grid environment.

According to Mury et al., task management in grid computing has always been a
challenge. Several papers proposed adaptive models to deal with this issue, taking
into account the characteristics of the resources and their behavior in this
heterogeneous environment, without linking this analysis to the contribution that
could be obtained when also considering the behavior of users or groups of users.
The work "Task distribution models in grid: towards a profile-based approach" seeks
to deal with this influence and shows the benefits that can be obtained for the
solution of problems such as task distribution, load balancing and failure treatment
in a grid environment.

Finally, Cáceres et al., in the paper Performance Results of Running Parallel

Applications on the InteGrade, investigate the performance of running parallel
algorithms with considerable communication among processors on the InteGrade
grid. The InteGrade is a multi-institution project that intends to exploit the idle time
of computing resources in computer laboratories. Since costly communication on a
grid can be prohibitive, the authors explore the so-called systolic or wavefront
paradigm to design the parallel algorithms in which no global communication is
used. To evaluate the InteGrade middleware, three parallel algorithms were
considered: to compute the matrix chain product problem, the 0-1 knapsack
problem, and the local sequence alignment problem. Their results show that these
three applications running under the InteGrade middleware and MPI take slightly
more time than the same applications running on a cluster with only LAM-MPI
support. The results can be considered promising and the time difference between
the two is not substantial. The conclusion is that the overhead of the InteGrade
middleware is acceptable, in view of the benefits obtained to facilitate the use of
grid computing by the user.

 3. CLOUDS VISION AND BEYOND [MGC,08]

Computing Clouds provide a useful basis for improving current Grid developments (current
examples include the Nimbus project, which utilizes Globus Toolkit 4 (GT4)). For instance,
the requirement of fault tolerance and resilience (supported through redundancy) can be
achieved by automatically deploying more instances of a resource or service image. Also,
the need for considering system emulation can be avoided as the service entities will
naturally conserve their interfaces. As information and knowledge evolve, different
encoding formats may arise, and migration will eventually be necessary to interpret them
correctly. However, developers only have to consider maintaining image files of the
software representing services in the appropriate layers. A distributed but unique image file
repository inside a Cloud could potentially simplify development and maintenance
processes. This image file repository would publish system profiles of services, allowing
for new equipment to more easily adopt the Grid operating system by downloading an
appropriate image file. This scheme has the potential of facilitating maintenance and
enforcing levels of homogenization. Image file managers like VirtualBox offer the possibility
of using image snapshots, which save smaller changes that affect base image files and
thus provide customized images. This is particularly useful for deploying clones that differ
only in their network configuration or security profile.

The purpose of using a computing Cloud is to provide a narrower interface while
abstracting away implementation details. Installing a Cloud on top of an existing Grid
supposes the loss of flexibility, because the layer on top of it (applications, portals) will not
have access to the wide range of Grid capabilities. However, different levels of abstraction
can be produced to satisfy specific needs. Specialist software, hereby referred to as
“agents” can operate intelligently over this infrastructure. Hence, a user should only be
aware of the instantiation of the image files containing the agents, and the Virtual
Machines (VMs) containing data processing and resource management capabilities, may
be managed and scaled automatically.

The concept of ontology needs to be used to characterize knowledge metadata according
to the situation. A particular ontology provides a framework for the development and
knowledge sharing by establishing a common terminology, and can layout an interface of
an element that is part of that environment. A Cloud’s usage mode may be described by an
ontology, thereby constraining the interface of any agent participating in the Cloud to cover

aspects of that ontology. This constraint can be enforced in the image files available in the
Cloud repository. In an e-Science scenario, multiple Clouds may be necessary depending
on the ontology used, each with a defined usage mode according to the particular field or
need. Under a Web Services (using WSDL) implementation, a common data terminology
among images or snapshots can be attained by using shared XSD files to declare and
define data types. However, WSDL cannot currently characterize a common terminology
for functions or roles of services. The OWL Web Ontology Language has the necessary
capabilities to express this terminology.

Agents participating in the marketplace can be designed to meet a particular usage mode
and ontology, allowing them to participate in a Cloud that enforces the use of that ontology.
Hence, a Coud can be considered as the implementation of a marketplace. In a brokering
scenario, managing the computing profile of a service instance allows dynamic offering of
services. Computing resources associated with a service can escalate or diminish
according to user needs in a particular time. If a Cloud is implemented on third-party
infrastructure, the problem of delivering user needs can be optimized to save unnecessary
payment costs. Also, instances of the same Grid services can be deployed with different
computing profiles to widen the spectrum of offers and stimulate competition.

In this context, scaling can support two situations: (a) to deal with increased processing
power, additional low-level services can be deployed automatically, and (b) to deal with
increased number of users, additional high-level services can be instantiated to serve the
interface. The first solution can be implemented with Grid middleware that incorporates an
index service to register Grid services, so that the high-level services can discover
additional low-level services deployed in the Cloud and take them into account. The
second solution can be achieved by using load balancing at the interface nodes. For
instance, Cloud computing is particularly useful in the implementation of the master-worker
paradigm, as multiple workers can be spawned dynamically by creating more instances.
These workers need only register themselves with the index service to become available
to the master. This approach has the advantage of having to configure the worker’s
environment only once.

Let’s now consider three examples of Clouds which rely heavily on virtualization of
hardware, operating systems, and applications. We can say that Amazon’s EC2 enables
the use of different image instances and has a simple interface for managing them. A
similar architecture can be adopted in computational science, primarily for abstracting the
deployment and configuration of services. The S3 Cloud provides automatic provision of a
namespace and intrinsic redundancy, providing the necessary abstraction of physical
location and the reliability to handle scientific data. However, it does not offer a way to
seamlessly attach metadata to it, making it an incomplete solution for the management of
information and knowledge. This architecture should be improved to be able to participate
in the e-Science field, but it could be considered as a step in the right direction given the
simplicity of use. The architecture provided by the 3Tera Cloud is ideal for deploying high
level services and creating new ones by aggregation. Its graphical interface offers an easy
way to manage services. Similar graphical interfaces can be created to represent
information and knowledge, as metadata provides a meaningful graphical representation.
The user would have direct access only to this information, while lower level information
would be dealt with by a brokering entity. This kind of end-to-end virtualization should be
adopted by developers, to offer e-Scientists the possibility of simplified, yet useful
interfaces, to enable them to pursue their goals more effectively.

In summary, the emergence of computing Clouds has already caused an impact on IT

industry. Many enterprises are deciding to make use of virtual data centres to facilitate
infrastructure management and reduce the need for hardware maintenance. This type of
cyberinfrastructure reduces the complexity involved in deployment of services, at the cost
of losing flexibility with a narrower interface, a cost that many users may be willing to pay
to deploy applications in a distributed environment.

The intrinsic virtualization gained by using image files offers support for redundancy and a
more effective scaling to maximize usage of computing resources. A higher level of
homogenization can be obtained by providing a standard operating system throughout the
Cloud, and it can be made available in a distributed image file repository to facilitate the
inclusion of new systems into the Cloud. However, the time spent to download and deploy
an image file in a host remains a factor that needs to be considered. Image snapshots
come to aid in this situation and can also be used to provide similar services with different
computing profiles and Qualities of Service. The real-time management of virtual instance
capabilities can produce a market of services that adapts dynamically to demand.

The concept of an ontology can be used to further describe the usage mode that
characterizes a Cloud, and the interfaces that its entities should expose. A particular
ontology used can be embedded in the image files, creating specialized services. This
ontology-based classification will hep differentiate between different Cloud instances and
deployments; however, the underlying implementation will be the same, constituted of the
Grid fabric and the Grid middleware. The user would be aware of the Cloud selection
according to the profile of the task, but the deployment and execution of the task should be
transparent and easy, through the use of a graphical interface. One Cloud may represent a
virtual organization, or many virtual organizations that agree to common semantics. The
graphical interface may only deal with VMs. Management of the lower-level services may
be hidden from the user and dealt with by a brokering service with VM instantiation and
destroying capabilities, achieving automated scaling of the application processing power.

Existing Grid middleware can be deployed in a Cloud environment, as Grid services can
run inside image instances, and multiple agents performing the same functions can be
spawned from a single image easily. If an index service is available for discovering these
services, the network configuration of each VM may be unknown, adding flexibility to the
design. In this fashion, the master-worker paradigm can be easily deployed in a Cloud
environment.

Cloud computing may be introduced in TeraGrid to encourage development of applications
through a simplified interface. Clouds could potentially fill in the gap of the knowledge layer
management with more abstract descriptions of content, marking a step towards the grid
vision. Security in the cloud and applications that span over different Clouds remain an
open issue, but the higher level of homogenization throughout the nodes and
standardization of interfaces should improve development in these areas.

 4. ACKNOWLEDGEMENTS

We would like to thank the authors for contributing papers on their research in middleware
for Grid computing for this special issue, and thank all the reviewers for providing
constructive reviews and in helping to shape this special issue. Finally we would like to
thank Prof. Geoffrey Fox for providing us an opportunity to bring this special issue to the
research community. Previous issues can be found at [CPE,04], [CPE,06], [CPE,07],
[CPE,08] and [MGC,03], [MGC,04], [MGC,05], [MGC,06], [MGC,07] and [MGC,08].

 5. REFERENCES

[CPE,04] Schulze, B., Nandkumar, R., Magedanz, T., Concurrency and Computation:
Practice and Experience - Special Issue on Middleware for Grid Computing, Wiley
Interscience; 16(5), 2004.

[CPE,06] Schulze, B., Nandkumar, R., Concurrency and Computation: Practice and
Experience - Special Issue on Middleware for Grid Computing, Wiley Interscience; 18(6),
2006.

[CPE,07] Schulze, B., Coulson, G., Nandkumar, R., Henderson, P., Concurrency and
Computation: Practice and Experience - Special Issue on Middleware for Grid
Computing, Wiley Interscience; 19(14), 2007.

[CPE,08] Schulze, B., Nandkumar, R., Abramson, D., Buyya, R., Concurrency and
Computation: Practice and Experience - Special Issue on Middleware for Grid
Computing, Wiley Interscience; 20(9), 2008.

[MGC,03] Schulze, B., Nandkumar, R., Magedanz, T., Proceedings of the 1st International
Workshop on Middleware for Grid Computing, PUC-Rio, pp. 169-266; Rio de Janeiro,
2003.

[MGC,04] Schulze, B., Nandkumar, R., Proceedings of the 2nd International Workshop on
Middleware for Grid Computing, ACM International Conference Proceeding Series,
Vol.76, 2004.

[MGC,05] Schulze, B., Nandkumar, R., Henderson, P., Proceedings of the 3rd International
Workshop on Middleware for Grid Computing, ACM International Conference
Proceeding Series;, Vol.117, 2005.

[MGC,06] Schulze, B., Nandkumar, R., Abramson, D., Buyya, R., Proceedings of the 4th
International Workshop on Middleware for Grid Computing, ACM International
Conference Proceeding Series;, Vol.194, 2006.

[MGC,07] Schulze, B., Rana, O., Meyer, J., Cirne, W., Proceedings of the 5th International
Workshop on Middleware for Grid Computing, ACM International Conference
Proceeding Series;, Vol.64, 2007.

[MGC,08] G V. Mc Evoy, B Schulze, Using clouds to address grid limitations,
Proceedings of the 6th international workshop on Middleware for Grid Computing
Leuven, Belgium, Article No. 11, Vol 72.

