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 1. BACKGROUND 

This special issue focuses on “advanced scheduling strategies and Grid programming 
environments”, and is based on selected papers from the 6th International Workshop on 
Middleware for Grid Computing (MGC 2008) and 2nd Latin American Grid (LAGrid 2008) 
workshop . The authors were invited to provide extended versions of their original papers 
taking into account comments and suggestions raised during the peer review process and 
comments from the audience during the workshops. MGC 2008 relevant contributions 
have been provided by Kane and Dillaway, Abbes et al., Reis and Cerqueira,  Finger et al. 
and Kuijl et al. From the LAGrid 2008 side relevant contribuitions as well have been  
provided by Martins et al., Costa and Cardozo, Mury et al. and Cáceres et al. These 
contributions focus mainly on: 
 

 performance of running parallel algorithms with considerable communication among 
processors on the InteGrade grid;  

 prediction of the availability of a resource (CPU, RAM, disk space) as a 
fundamental activity in opportunistic grids;  

 Cyclotron - a prototype cycle-scavenging grid that addresses the security and 
usability concerns typical of enterprises considering deployment of such systems;  

 a decentralized and fault-tolerant software system, called PastryGrid, for Desktop 
Grid resources management;  

 integration of the MPI programming model as part of the InteGrade grid computing 
middleware;  

 Grid scheduling algorithm using multi-attribute utility theory and multi-objective 
optimization;  

 diagnosis model for detecting and excluding misbehaving units by using 
mechanisms such as reputation-based analysis, voting scheme and honeypots; 

 task distribution, load balancing and failure treatment in a grid environment and 
 a tool called CPUReserve which guarantees processing performance isolation 

among applications and makes resource sharing more flexible. 
 
Grid-enabled environments have been motivated by work in service-oriented computing, 
and designed as a set of services that are provided by individuals or institutions. In this 
scenario, a level of automation is necessary to achieve scalability, requiring intelligent 
infrastructure management capabilities to be utilized alongside existing approaches. 
Despite the emerging complexity and capability made available in Grid environments, it is 
worthy to mention that developing cross-grid applications that span different virtual 
organizations (VOs) has remained difficult. For instance, there is no co-scheduling of 
resources across more than one VO.  
 



Cloud computing concepts have recently emerged to address limitations of Grid 
environments, a key focus is the use of virtualization technologies (at both platform and 
middleware levels) and replication through machine/service imaging. However limitations 
initially found with Grid computing remain. It is useful to note that a computing Cloud can 
be designed on top of an existing Grid, as it also comprises heterogeneous components 
that have been integrated using a top-down approach. Similarly, Cloud computing systems 
are mostly created with the objective of providing a determined set of capabilities to a user, 
so the interface is an important part of the design. 
 
Scheduling challenges for enabling the deployment and execution of Grid-based parallel 
applications have been addressed by the selected papers in this special issue, with the 
development of models and techniques evaluated accordingly by prototyping and 
simulations.  
 

2. SPECIAL ISSUE PAPERS 
Kane discusses Cyclotron a prototype cycle-scavenging grid that addresses the 
security and usability concerns typical of enterprises considering deployment of 
such systems. Although enterprises have large numbers of workstations that remain 
idle outside of working hours, and are thus ideal for use in a cycle-scavenging grid, 
current solutions have failed to address the security requirements of many 
enterprises. Cycle-scavenging grids have been far more successful in academic 
environments and volunteer computing projects where security considerations are 
typically less stringent. Consequently, enterprises have continued to favor the 
deployment of dedicated and centrally administered compute clusters, incurring the 
cost of the cluster, its infrastructure, cooling, power, and personnel on top of the 
cost of the workstations on employees' desks that remain idle two-thirds of the time. 
To address these enterprise requirements, Cyclotron executes jobs inside a virtual 
machine environment on employee’s workstations. This provides a greater degree 
of isolation from the workstation host than do other solutions, and allows the use of 
a homogenous operating environment for grid application development and 
execution. Access control is managed by a declarative security-policy based 
infrastructure, that supports flexible authorization rules and the constrained 
delegation of access rights. Code objects, both virtual machine images and 
individual code bundles, are treated as first-class entities with a unique identity 
described by their hash values. This allows Cyclotron to both verify the integrity of 
deployed code and provide policy-based control over what is allowed to execute in 
the grid. 
 
Abbes et al. discuss that Desktop Grid systems are attractive when running 
distributed applications with significant computational requirements. While the 
increasing number of users of such systems does demonstrate the potential of 
Desktop Grid, current implementations, for instance Boinc, United Devices, 
Seti@Home, Distributed.Net and Xtrem-Web still follow the client-server or 
master/slave paradigm. The computing power which can be obtained from these 
systems is constrained by the performance criteria of the master. This is particularly 
the case for data-intensive applications. Then, depending on the performance of the 
master, with many thousands of workers (or slaves), the central scheduler could 
become a bottleneck. Such problem does not occur with a decentralized resources 



management. Furthermore, centralized platforms require a full supervision by an 
administrative staff which guarantees the operation of the master. Although the 
crash of the master is infrequent and replication techniques can resolve this 
problem when it occurs, we still believe in the need to decentralized approaches, 
since all computing departments do not have the same type of equipment quality 
and resources. This paper proposes a decentralized and fault-tolerant software 
system, called PastryGrid, for Desktop Grid resources management. Its main 
principle is to eliminate the need for a centralized server, therefore to remove the 
single point of failure and bottleneck of existing Desktop Grids. Indeed, each node 
can play alternatively the role of client or server. Our main contribution is to 
conceive PastryGrid protocol (based on Pastry) for Desktop Grid in order to support 
a wider class of applications, especially the distributed application with precedence 
between tasks. Comparing to a centralized system, we evaluate our approach on 
the Grid'5000 testbed using more than 205 machines and a workload composed of 
100 distributed applications (more than 2500 tasks). Obtained results show that our 
decentralized system outperforms a centralized one (XtremWeb-CH), with respect 
to the turnaround time. 
 
Reis and Cerqueira describe CPUReserve, a tool which guarantees processing 
performance isolation among applications and makes resource sharing more 
flexible. Unlike traditional approaches to isolate performance, CPUReserve is 
entirely implemented at user level, so it does not incur kernel recompiling or system 
overload by instancing virtual machines. CPUReserve allows the configuration of 
the active scheduling policy and simplifies the development of new ones, as 
policies can be implemented in a scripting language as well as in C. Considering 
CPUReserve's characteristics, the authors believe that it can be useful in a broad 
range of situations, including when reservation is desired for isolating performance, 
saving energy in mobile devices and large scale clusters, reducing the heating 
produced by machines, and providing different testbeds for scalability tests. 
 
Finger et al. discuss the prediction of the availability of a resource (CPU, RAM, disk 
space) as a fundamental activity in opportunistic grids, that is, computer grids which 
employs the idle time of its components to perform high-performance computations. 
In this work they describe a method to perform such predictions employing Use 
Pattern Analysis (UPA). This prediction method is based on the assumption of the 
existence of several classes of computational resource use patterns, which can be 
used to predict resource availability. For example, one such class can represent a 
typical working day, another can represent a holiday. Experiments made with an 
implementation of the UPA method show the feasibility of its use in the scheduling 
of grid tasks with very little overhead. The experiments also demonstrate the 
method's superiority over other predictive and non-predictive methods.  
 
Kuijl et al. propose a Grid scheduling algorithm using multi-attribute utility theory 
and multi-objective optimization. Grid computing emerges as an infrastructure for 
large-scale data processing, resource sharing, and scientific computing. The 
algorithm makes the optimal decisions based on the available set of objectives. By 
comparing to a deadline-and-budget algorithm (DBC) with three objectives, we 
show that the proposed Multi-Objective Optimization (MOO) scheduling algorithm is 



capable of obtaining a broader set of non-dominated solutions. The obtained 
solutions are also of higher quality, which are in close proximity to the Pareto 
optimal front. 
 
For Martins et al., in a P2P computational grid there is no real assurance that 
intelligent cheating nodes will not damage neither the grid applications nor the other 
nodes into the environment. With the aim to handle the existence of these rational 
nodes, the diagnosis model here presented detects and excludes misbehaving 
units by using mechanisms such as reputation-based analysis, voting scheme and 
honeypots. In order to validate the diagnosis model, experiments were run in the a 
grid simulator, where results show that all intelligent cheating nodes can be 
detected, with an accuracy of 99.4% of jobs being correctly processed. Besides, a 
graphical user interface were implemented for visualizing the simulations. 
 
Costa and Cardozo describe in their paper, the integration of the MPI 
programming model as part of the InteGrade grid computing middleware. Parallel 
processing is among the first motivations for the introduction of grid computing as 
well as for a major part of its success. Parallel applications can benefit from the 
larger amount of resources that is available on the grid as compared to the usual 
environments based on clusters and supercomputers. The ability to run unmodified 
parallel applications on grid environments is thus an important goal for grid 
computing research. MPI is one of the most popular programming models for 
parallel applications, meaning that a large number of existing parallel applications 
can benefit from this integration and the ability to be executed on top of resources 
provided by a grid infrastructure. In addition, because InteGrade is primarily aimed 
at opportunistic grids, such infrastructure can be composed of existing, non-
dedicated, computing resources, which provide their idle capacity for use in the 
grid. Another important issue addressed in their work is related to fault tolerance, as 
non-dedicated resources may become unavailable at any time. The execution 
management of MPI applications on InteGrade thus includes a checkpointing and 
recovery mechanism, which allows an application's tasks to be paused and 
resumed on different nodes of the grid when they experience any kind of failure in 
their previous execution sites. The authors have evaluated the performance of their 
execution engine, which shows very little overhead compared to MPI applications 
running on the MPICH2 platform. They argue that such overhead can be 
compensated by the larger amount of resources available on a grid environment. 
 
According to Mury et al., task management in grid computing has always been a 
challenge. Several papers proposed adaptive models to deal with this issue, taking 
into account the characteristics of the resources and their behavior in this 
heterogeneous environment, without linking this analysis to the contribution that 
could be obtained when also considering the behavior of users or groups of users. 
The work "Task distribution models in grid: towards a profile-based approach" seeks 
to deal with this influence and shows the benefits that can be obtained for the 
solution of problems such as task distribution, load balancing and failure treatment 
in a grid environment. 
 
Finally, Cáceres et al., in the paper Performance Results of Running Parallel 



Applications on the InteGrade, investigate the performance of running parallel 
algorithms with considerable communication among processors on the InteGrade 
grid. The InteGrade is a multi-institution project that intends to exploit the idle time 
of computing resources in computer laboratories. Since costly communication on a 
grid can be prohibitive, the authors explore the so-called systolic or wavefront 
paradigm to design the parallel algorithms in which no global communication is 
used. To evaluate the InteGrade middleware, three parallel algorithms were 
considered: to compute the matrix chain product problem, the 0-1 knapsack 
problem, and the local sequence alignment problem. Their results show that these 
three applications running under the InteGrade middleware and MPI take slightly 
more time than the same applications running on a cluster with only LAM-MPI 
support. The results can be considered promising and the time difference between 
the two is not substantial. The conclusion is that the overhead of the InteGrade 
middleware is acceptable, in view of the benefits obtained to facilitate the use of 
grid computing by the user. 
 

 3. CLOUDS VISION AND BEYOND [MGC,08] 

Computing Clouds provide a useful basis for improving current Grid developments (current 
examples include the Nimbus project, which utilizes Globus Toolkit 4 (GT4)). For instance, 
the requirement of fault tolerance and resilience (supported through redundancy) can be 
achieved by automatically deploying more instances of a resource or service image. Also, 
the need for considering system emulation can be avoided as the service entities will 
naturally conserve their interfaces. As information and knowledge evolve, different 
encoding formats may arise, and migration will eventually be necessary to interpret them 
correctly. However, developers only have to consider maintaining image files of the 
software representing services in the appropriate layers. A distributed but unique image file 
repository inside a Cloud could potentially simplify development and maintenance 
processes. This image file repository would publish system profiles of services, allowing 
for new equipment to more easily adopt the Grid operating system by downloading an 
appropriate image file. This scheme has the potential of facilitating maintenance and 
enforcing levels of homogenization. Image file managers like VirtualBox offer the possibility 
of using image snapshots, which save smaller changes that affect base image files and 
thus provide customized images. This is particularly useful for deploying clones that differ 
only in their network configuration or security profile. 
 
The purpose of using a computing Cloud is to provide a narrower interface while 
abstracting away implementation details. Installing a Cloud on top of an existing Grid 
supposes the loss of flexibility, because the layer on top of it (applications, portals) will not 
have access to the wide range of Grid capabilities. However, different levels of abstraction 
can be produced to satisfy specific needs. Specialist software, hereby referred to as 
“agents” can operate intelligently over this infrastructure. Hence, a user should only be 
aware of the instantiation of the image files containing the agents, and the Virtual 
Machines (VMs) containing data processing and resource management capabilities, may 
be managed and scaled automatically.  
 
The concept of ontology needs to be used to characterize knowledge metadata according 
to the situation. A particular ontology provides a framework for the development and 
knowledge sharing by establishing a common terminology, and can layout an interface of 
an element that is part of that environment. A Cloud’s usage mode may be described by an 
ontology, thereby constraining the interface of any agent participating in the Cloud to cover 



aspects of that ontology. This constraint can be enforced in the image files available in the 
Cloud repository. In an e-Science scenario, multiple Clouds may be necessary depending 
on the ontology used, each with a defined usage mode according to the particular field or 
need. Under a Web Services (using WSDL) implementation, a common data terminology 
among images or snapshots can be attained by using shared XSD files to declare and 
define data types. However, WSDL cannot currently characterize a common terminology 
for functions or roles of services. The OWL Web Ontology Language has the necessary 
capabilities to express this terminology. 
 
Agents participating in the marketplace can be designed to meet a particular usage mode 
and ontology, allowing them to participate in a Cloud that enforces the use of that ontology. 
Hence, a Coud can be considered as the implementation of a marketplace. In a brokering 
scenario, managing the computing profile of a service instance allows dynamic offering of 
services. Computing resources associated with a service can escalate or diminish 
according to user needs in a particular time. If a Cloud is implemented on third-party 
infrastructure, the problem of delivering user needs can be optimized to save unnecessary 
payment costs. Also, instances of the same Grid services can be deployed with different 
computing profiles to widen the spectrum of offers and stimulate competition. 
 
In this context, scaling can support two situations: (a) to deal with increased processing 
power, additional low-level services can be deployed automatically, and (b) to deal with 
increased number of users, additional high-level services can be instantiated to serve the 
interface. The first solution can be implemented with Grid middleware that incorporates an 
index service to register Grid services, so that the high-level services can discover 
additional low-level services deployed in the Cloud and take them into account. The 
second solution can be achieved by using load balancing at the interface nodes. For 
instance, Cloud computing is particularly useful in the implementation of the master-worker 
paradigm, as multiple workers can be spawned dynamically by creating more instances. 
These workers need only register themselves with the index service to become available 
to the master. This approach has the advantage of having to configure the worker’s 
environment only once.  
 
Let’s now consider three examples of Clouds which rely heavily on virtualization of 
hardware, operating systems, and applications. We can say that Amazon’s EC2 enables 
the use of different image instances and has a simple interface for managing them. A 
similar architecture can be adopted in computational science, primarily for abstracting the 
deployment and configuration of services. The S3 Cloud provides automatic provision of a 
namespace and intrinsic redundancy, providing the necessary abstraction of physical 
location and the reliability to handle scientific data. However, it does not offer a way to 
seamlessly attach metadata to it, making it an incomplete solution for the management of 
information and knowledge. This architecture should be improved to be able to participate 
in the e-Science field, but it could be considered as a step in the right direction given the 
simplicity of use. The architecture provided by the 3Tera Cloud is ideal for deploying high 
level services and creating new ones by aggregation. Its graphical interface offers an easy 
way to manage services. Similar graphical interfaces can be created to represent 
information and knowledge, as metadata provides a meaningful graphical representation. 
The user would have direct access only to this information, while lower level information 
would be dealt with by a brokering entity. This kind of end-to-end virtualization should be 
adopted by developers, to offer e-Scientists the possibility of simplified, yet useful 
interfaces, to enable them to pursue their goals more effectively.  
 
In summary, the emergence of computing Clouds has already caused an impact on IT 



industry. Many enterprises are deciding to make use of virtual data centres to facilitate 
infrastructure management and reduce the need for hardware maintenance. This type of 
cyberinfrastructure reduces the complexity involved in deployment of services, at the cost 
of losing flexibility with a narrower interface, a cost that many users may be willing to pay 
to deploy applications in a distributed environment.  
 
The intrinsic virtualization gained by using image files offers support for redundancy and a 
more effective scaling to maximize usage of computing resources. A higher level of 
homogenization can be obtained by providing a standard operating system throughout the 
Cloud, and it can be made available in a distributed image file repository to facilitate the 
inclusion of new systems into the Cloud. However, the time spent to download and deploy 
an image file in a host remains a factor that needs to be considered. Image snapshots 
come to aid in this situation and can also be used to provide similar services with different 
computing profiles and Qualities of Service. The real-time management of virtual instance 
capabilities can produce a market of services that adapts dynamically to demand. 
 
The concept of an ontology can be used to further describe the usage mode that 
characterizes a Cloud, and the interfaces that its entities should expose. A particular 
ontology used can be embedded in the image files, creating specialized services. This 
ontology-based classification will hep differentiate between different Cloud instances and 
deployments; however, the underlying implementation will be the same, constituted of the 
Grid fabric and the Grid middleware. The user would be aware of the Cloud selection 
according to the profile of the task, but the deployment and execution of the task should be 
transparent and easy, through the use of a graphical interface. One Cloud may represent a 
virtual organization, or many virtual organizations that agree to common semantics. The 
graphical interface may only deal with VMs. Management of the lower-level services may 
be hidden from the user and dealt with by a brokering service with VM instantiation and 
destroying capabilities, achieving automated scaling of the application processing power.  
 
Existing Grid middleware can be deployed in a Cloud environment, as Grid services can 
run inside image instances, and multiple agents performing the same functions can be 
spawned from a single image easily. If an index service is available for discovering these 
services, the network configuration of each VM may be unknown, adding flexibility to the 
design. In this fashion, the master-worker paradigm can be easily deployed in a Cloud 
environment. 
 
Cloud computing may be introduced in TeraGrid to encourage development of applications 
through a simplified interface. Clouds could potentially fill in the gap of the knowledge layer 
management with more abstract descriptions of content, marking a step towards the grid 
vision. Security in the cloud and applications that span over different Clouds remain an 
open issue, but the higher level of homogenization throughout the nodes and 
standardization of interfaces should improve development in these areas. 
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