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Abstract. Infrastructure services (Infrastructure-as-a-service), provided by 

cloud vendors, allow any user to provision a large number of compute instances 

fairly easily. Whether leased from public clouds or allocated from private 

clouds, utilizing these virtual resources to perform data/compute intensive 

analyses requires employing different parallel runtimes to implement such 

applications. Among many parallelizable problems, most “pleasingly parallel” 

applications can be performed using MapReduce technologies such as Hadoop, 

CGL-MapReduce, and Dryad, in a fairly easy manner. However, many 

scientific applications, which have complex communication patterns, still 

require low latency communication mechanisms and rich set of communication 

constructs offered by runtimes such as MPI. In this paper, we first discuss large 

scale data analysis using different MapReduce implementations and then, we 

present a performance analysis of high performance parallel applications on 

virtualized resources.  

Keywords: Cloud, Virtualization, MapReduce, Dryad, Parallel Computing. 

1 Introduction 

The introduction of commercial cloud infrastructure services such as Amazon EC2/S3 

[1-2] and GoGrid[3]  allow users to provision compute clusters fairly easily and 

quickly by paying a monetary value only for the duration of the usage of resources. 

The provisioning of resources happens in minutes as opposed to the hours and days 

required in the case of traditional queue-based job scheduling systems. In addition, 

the use of such virtualized resources allows the user to completely customize the 

Virtual Machine (VM) images and use them with root/administrative privileges, 

which is another feature that is hard to achieve with traditional infrastructures. 

The availability of open source cloud infrastructure software such as Nimbus [4] 

and Eucalyptus [5], and the open source virtualization software stacks such as Xen 

Hypervisor[6], allows organizations to build private clouds to improve the resource 

utilization of the available computation facilities. The possibility of dynamically 

provisioning additional resources by leasing from commercial cloud infrastructures 

makes the use of private clouds more promising. 

With all the above promising features of cloud, we can assume that the 

accessibility to computation power is no longer a barrier for the users who need to 



perform large scale data/compute intensive applications. However, to perform such 

computations, two major pre-conditions need to be satisfied: (i) the application should 

be parallelizable to utilize the available resources; and (ii) there should be an 

appropriate parallel runtime support to implement it. 

We have applied several cloud technologies such as Hadoop[7], Dryad and 

DryadLINQ[8,9], and CGL-MapReduce[10], to various scientific applications wiz: (i) 

Cap3[11] data analysis; (ii) High Energy Physics(HEP) data analysis; (iv) Kmeans 

clustering[12]; and, (v) Matrix Multiplication. The streaming based MapReduce [13] 

runtime - CGL-MapReduce- developed by us extends the MapReduce model to 

iterative MapReduce domain as well. Our experience suggests that although most 

“pleasingly parallel” applications can be performed using cloud technologies such as 

Hadoop, CGL-MapReduce, and Dryad, in a fairly easy manner, scientific 

applications, which require complex communication patterns, still require more 

efficient runtime support such as MPI[14].  

In order to understand the performance implications of virtualized resources on 

MPI applications, we performed an extensive analysis using Eucalyptus based private 

cloud infrastructure. The use of a private cloud gives us complete control over both 

VMs and bare-metal nodes, a feature that is impossible to achieve in commercial 

cloud infrastructures. It also assures a fixed network topology and bandwidth with the 

nodes deployed in the same geographical location, improving the reliability of our 

results. For this analysis, we used several MPI applications with different 

communication/computation characteristics, namely Matrix Multiplication, Kmeans 

Clustering, and Concurrent Wave Equation Solver and performed them on several 

VM configurations.  Instead of measuring individual characteristics such as 

bandwidth and latency using micro benchmarks we used real applications to 

understand the effect of virtualized resources for such applications, which makes our 

results unique.  

In the sections that follow, we first present the work related to our research 

followed by a brief introduction to the data analysis applications we used. Section 4 

presents the results of our evaluations on cloud technologies and a discussion. In 

section 5, we discuss an approach with which to evaluate the performance 

implications of using virtualized resources for high performance parallel computing. 

Section 6 presents the results of this evaluation along with a discussion of the results. 

In the final section we give our conclusions and we discuss implications for future 

work. 

2 Related Work 

Traditionally, most parallel applications achieve fine grained parallelism using 

message passing infrastructures such as PVM [15] and MPI. Applications achieve 

coarse-grained parallelism using workflow frameworks such as Kepler [16] and 

Taverna [17], where the individual tasks could themselves be parallel applications 

written in MPI. Software systems such as Falkon [18], SWARM [19], and DAGMan 

[20] can be used to schedule applications which comprise of a collection of a large 

number of individual sub tasks. 



Once these applications are developed, in the traditional approach, they are 

executed on compute clusters, super computers, or Grid infrastructures [21] where the 

focus on allocating resources is heavily biased by the availability of computational 

power. The application and the data both need to be moved to the available 

computational power in order for them to be executed. Although these infrastructures 

are highly efficient in performing compute intensive parallel applications, when the 

volumes of data accessed by an application increases, the overall efficiency decreases 

due to the inevitable data movement.  

Cloud technologies such as Google MapReduce, Google File System (GFS) [22], 

Hadoop and Hadoop Distributed File System (HDFS) [7], Microsoft Dryad, and 

CGL-MapReduce adopt a more data-centered approach to parallel runtimes. In these 

frameworks, the data is staged in data/compute nodes of clusters or large-scale data 

centers, such as in the case of Google. The computations move to the data in order to 

perform data processing.  Distributed file systems such as GFS and HDFS allow 

Google MapReduce and Hadoop to access data via distributed storage systems built 

on heterogeneous compute nodes, while Dryad and CGL-MapReduce support reading 

data from local disks.  The simplicity in the programming model enables better 

support for quality of services such as fault tolerance and monitoring. Table 1 

highlights the features of three cloud technologies that we used. 

Table 1.  Comparison of features supported by different cloud technologies.  

Feature Hadoop Dryad & DryadLINQ CGL-MapReduce 

Programming 

Model 

MapReduce DAG based execution 

flows 

MapReduce with  

Combine phase 

Data Handling HDFS Shared directories/ 

Local disks 

Shared file system / 

Local disks 

Intermediate Data 

Communication 

HDFS/ 

Point-to-point via 

HTTP 

Files/TCP pipes/ Shared 

memory FIFO 

Content Distribution 

Network 

(NaradaBrokering[23]) 

Scheduling Data locality/ 

Rack aware 

Data locality/ Network 

topology based 

run time graph 

optimizations 

Data locality 

Failure Handling Persistence via 

HDFS 

Re-execution of 

map and reduce 

tasks 

Re-execution of vertices Currently not 

implemented 

(Re-executing map 

tasks, redundant reduce 

tasks) 

Monitoring Monitoring support 

of HDFS, 

Monitoring 

MapReduce 

computations 

Monitoring  support for 

execution graphs 

Programming interface 

to monitor the progress 

of  jobs 

Language 

Support 

Implemented using 

Java 

Other languages are 

supported via 

Hadoop Streaming 

Programmable via C#  

DryadLINQ  provides 

LINQ programming 

API for Dryad 

Implemented using Java 

Other languages are 

supported via Java 

wrappers 



Y. Gu, et al., present Sphere [24] architecture, a framework which can be used to 

execute user-defined functions on data stored in a storage framework named Sector, 

in parallel. Sphere can also perform MapReduce style programs and the authors 

compare the performance with Hadoop for tera-sort application. Sphere stores 

intermediate data on files, and hence is susceptible to higher overheads for iterative 

applications. 

All-Paris [25]  is an abstraction that can be used to solve a common problem of 

comparing all the elements in a data set with all the elements in another data set by 

applying a given function. This problem can be implemented using typical 

MapReduce frameworks such as Hadoop, however for large data sets, the 

implementation will not be efficient, because all map tasks need to access all the 

elements of one of the data sets. We can develop an efficient iterative MapReduce 

implementation using CGL-MapReduce to solve this problem. The algorithm is 

similar to the matrix multiplication algorithm we will explain in section 3.  

Lamia Youseff, et al., presents an evaluation on the performance impact of Xen on 

MPI [26]. According to their evaluations, the Xen does not impose considerable 

overheads for HPC applications.  However, our results indicate that the applications 

that are more sensitive to latencies (smaller messages, lower communication to 

computation ratios) experience higher overheads under virtualized resources, and this 

overhead increases as more and more VMs are deployed per hardware node. From 

their evaluations it is not clear how many VMs they deployed on the hardware nodes, 

or how many MPI processes were used in each VM. According to our results, these 

factors cause significant changes in results. Running 1-VM per hardware node 

produces a VM instance with a similar number of CPU cores as in a bare-metal node. 

However, our results indicate that, even in this approach, if the parallel processes 

inside the node communicate via the network, the virtualization may produce higher 

overheads under the current VM architectures. 

C. Evangelinos and C. Hill discuss [27] the details of their analysis on the 

performance of HPC benchmarks on EC2 cloud infrastructure. One of the key 

observations noted in their paper is that both the OpenMPI and the MPICH2-nemsis 

show extremely large latencies, while the LAM MPI, the GridMPI, and the MPICH2-

scok show smaller smoother latencies. However, they did not explain the reason for 

this behavior in the paper. We also observed similar characteristics and a detailed 

explanation of this behavior and related issues are given in section 5. 

Edward Walker presents benchmark results of performing HPC applications using 

“high CPU extra large” instances provided by EC2 and on a similar set of local 

hardware nodes [28]. The local nodes are connected using infiniband switches while 

Amazon EC2 network technology is unknown. The results indicate about 40%-1000% 

performance degradation on EC2 resources compared to the local cluster. Since the 

differences in operating systems and the compiler versions between VMs and bare-

metal nodes may cause variations in results, for our analysis we used a cloud 

infrastructure that we have complete control. In addition we used exactly similar 

software environments in both VMs and bare-metal nodes. In our results, we noticed 

that applications that are more susceptible to latencies experience higher performance 

degradation (around 40%) under virtualized resources. The bandwidth does not seem 

to be a consideration in private cloud infrastructures. 



Ada Gavrilvska, et al., discuss several improvements over the current 

virtualization architectures to support HPC applications such as HPC hypervisors 

(sidecore) and self-virtualized I/O devices [29].  We notice the importance of such 

improvements and research. In our experimental results, we used hardware nodes with 

8 cores and we deployed and tested up to 8VMs per node in these systems. Our results 

show that the virtualization overhead increases with the number of VMs deployed on 

a hardware node. These characteristics will have a larger impact on systems having 

more CPU cores per node. A node with 32 cores running 32 VM instances may 

produce very large overheads under the current VM architectures. 

3 Data Analysis Applications 

The applications we implemented using cloud technologies can be categorized into 

three classes, depending on the communication topologies wiz: (i) Map-only; (ii) 

MapReduce; and (iii) Iterative/Complex. In our previous papers [10,30], we have 

presented details of MapReduce style applications and a Kmeans clustering 

application that we developed using cloud technologies, and the challenges we faced 

in developing these applications. Therefore, in this paper, we simply highlight the 

characteristics of these applications in table 2 and present the results. The two new 

applications that we developed, Cap3 and matrix multiplication, are explained in more 

detail in this section. 

Table 2.  Map-Only and MapReduce style applications.  

Feature Map-only MapReduce 

Program/data 

flow 

 
Cap3 Analysis application 

implemented as a map-only 

operation. Each map task 

processed a single input data file 

and produces a set of output data 

files. 

 
HEP data analysis application 

implemented using MapReduce 

programming model (ROOT is an object-

oriented data analysis framework). 

More 

Examples 

Converting a collection of 

documents to different formats, 

processing a collection of 

medical images, and 

Brute force searches in 

cryptography 

Histogramming operations, 

distributed search, and distributed sorting. 



3.1 Cap3 

Cap3 is a sequence assembly program that operates on a collection of gene sequence 

files which produce several output files. In parallel implementations, the input files 

are processed concurrently and the outputs are saved in a predefined location. For our 

analysis, we have implemented this application using Hadoop, CGL-MapReduce and 

DryadLINQ. 

3.2 Iterative/Complex Style applications 

Parallel applications implemented using message passing runtimes can utilize various 

communication constructs to build diverse communication topologies. For example, a 

matrix multiplication application that implements Cannon’s Algorithm [31] assumes 

parallel processes to be in a rectangular grid. Each parallel process in the gird 

communicates with its left and top neighbors as shown in Fig. 1(left). The current 

cloud runtimes, which are based on data flow models such as MapReduce and Dryad, 

do not support this behavior, where the peer nodes communicate with each other. 

Therefore, implementing the above type of parallel applications using MapReduce or 

Dryad models requires adopting different algorithms.  

 
  

 

Fig. 1. Communication topology of matrix multiplication applications implemented using 

Cannon’s algorithm (left) and MapReduce programming model (right).  

We have implemented matrix multiplication applications using Hadoop and CGL-

MapReduce by adopting a row/column decomposition approach to split the matrices. 

To clarify our algorithm, let’s consider an example where two input matrices A and B 

produce matrix C, as the result of the multiplication process. We split the matrix B 

into a set of column blocks and the matrix A into a set of row blocks. In each 

iteration, all the map tasks consume two inputs: (i) a column block of matrix B, and 

(ii) a row block of matrix A; collectively, they produce a row block of the resultant 

matrix C. The column block associated with a particular map task is fixed throughout 

the computation while the row blocks are changed in each iteration. However, in 

Hadoop’s programming model (typical MapReduce model), there is no way to specify 

this behavior and hence, it loads both the column block and the row block in each 

iteration of the computation. CGL-MapReduce supports the notion of long running 

map/reduce tasks where these tasks are allowed to retain static data in memory across 



invocations, yielding better performance for iterative MapReduce computations. The 

communication pattern of this application is shown in Fig. 1(right). 

4 Evaluations and Analysis 

For our evaluations, we used two different compute clusters (details are shown in 

Table 3). DryadLINQ applications are run on the cluster Ref A while Hadoop, CGL-

MapReduce, and MPI applications are run on the cluster Ref B. We measured the 

performance (average running time with varying input sizes) of these applications and 

then we calculated the overhead introduced by different parallel runtimes using the 

following formula, in which P denotes the number of parallel processes (map tasks) 

used and T denotes time as a function of the number of parallel processes used. T(1) 

is the time it takes when the task is executed using a single process. T(P) denotes the 

time when an application is executed using P number of parallel processes (For the 

results in Fig. 2 to Fig. 5, we used 64 CPU cores and hence the P=64). The results of 

these analyses are shown in Fig. 2 –5. Most applications have running times in 

minutes range and we noticed that the fluctuations in running time are less than 5% 

for most cloud runtimes. The average times shown in figures are calculated using the 

results of 5 repeated runs of the applications. We used Hadoop release 0.20, the 

academic release of DryadLINQ (Note: The academic release of Dryad only exposes 

the DryadLINQ API for programmers. Therefore, all our implementations are written 

using DryadLINQ although it uses Dryad as the underlying runtime). 

Overhead = [P * T(P) –T(1)]/T(1). (1) 

Table 3.  Different computation clusters used for the analyses.  

Cluster 

Ref 

# Nodes used 

/Total CPU cores 

CPU Memory Operating System 

Ref A 8/64 2x Intel(R) Xeon(R) 

CPU L5420  

2.50GHz 

16GB Windows Server 2008 

– 64 bit HPC Edition  

(Service Pack 1) 

Ref B 8/64 2 x Intel(R) Xeon(R) 

CPU L5420  

2.50GHz 

32GB Red Hat Enterprise 

Linux Server release 

5.3 - 64 bit 

 



 
Fig. 2. Performance of the Cap3 application. 

 
Fig. 3. Performance of HEP data analysis applications. 

 
Fig. 4. Performance of different implementations of Kmeans Clustering application (Note: X 

axis is in log scale). 



 

All three cloud runtimes work competitively well for the CAP3 application. In the 

Hadoop implementation of HEP data analysis, we kept the input data in a high 

performance parallel file system rather than in the HDFS because the analysis scripts 

written in ROOT could not access data from HDFS. This causes Hadoop’s map tasks 

to access data remotely resulting lower performance compared to DryadLINQ and 

CGL-MapReduce implementations, which access input files from local disks. Both 

DryadLINQ and Hadoop show higher overheads for Kmeans clustering application, 

and Hadoop shows higher overheads for the Matrix multiplication application. CGL-

MapReduce shows a close performance to the MPI for large data sets in the case of 

Kmeans clustering and matrix multiplication applications, highlighting the benefits of 

supporting iterative computations and the faster data communication mechanism in 

the CGL-MapReduce.  

 

Fig. 5. Overhead induced by different parallel programming runtimes for the matrix 

multiplication application (8 nodes are used). 

 From these results, it is clearly evident that the cloud runtimes perform 

competitively well for both the Map-only and the MapReduce style applications. 

However, for iterative and complex classes of applications, cloud runtimes show 

considerably high overheads compared to the MPI versions of the same applications, 

implying that, for these types of applications, we still need to use high performance 

parallel runtimes or use alternative approaches. (Note: The negative overheads 

observed in the matrix multiplication application are due to the better utilization of a 

cache by the parallel application than the single process version). These observations 

lead us to the next phase of our research. 

5 Performance of MPI on Clouds 

After the previous observations, we analyzed the performance implications of cloud 

for parallel applications implemented using MPI. Specifically, we were trying to find 

the overhead of virtualized resources, and understand how applications with different 



communication-to-computation (C/C) ratios perform on cloud resources. We also 

evaluated different CPU core assignment strategies for VMs in order to understand 

the performance of VMs on multi-core nodes.  

Commercial cloud infrastructures do not allow users to access the bare hardware 

nodes, in which the VMs are deployed, a must-have requirement for our analysis. 

Therefore, we used a Eucalyptus-based cloud infrastructure deployed at our university 

for this analysis. With this cloud infrastructure, we have complete access to both 

virtual machine instances and the underlying bare-metal nodes, as well as the help of 

the administrators; as a result, we could deploy different VM configurations 

allocating different CPU cores to each VM. Therefore, we selected the above cloud 

infrastructure as our main test bed. 

 For our evaluations, we selected three MPI applications with different 

communication and computation requirements, namely, (i) the Matrix multiplication, 

(ii) Kmeans clustering, and (iii) the Concurrent Wave Equation solver. Table 4 

highlights the key characteristics of the programs that we used for benchmarking. 

Table 4.  Computation and communication complexities of the different MPI applications used.   

Application Matrix multiplication Kmeans Clustering Concurrent Wave Equation 

Description Implements Cannon’s 

Algorithm  

Assume a rectangular 

process grid (Fig.1- 

left) 

Implements Kmeans 

Clustering Algorithm 

Fixed number of 

iterations are 

performed in each test 

A vibrating string is 

decomposed (split) into 

points, and each MPI 

process is responsible for 

updating the amplitude of a 

number of points over 

time. 

Grain size (n) Number of points in a 

matrix block handled 

by each MPI process 

Number of data points 

handled by a single 

MPI process 

Number of points handled 

by each MPI process 

Communicati

on Pattern 

Each MPI process 

communicates with its 

neighbors in both row 

wise and column wise 

All MPI processes 

send partial clusters to 

one MPI process (rank 

0). Rank 0 distribute 

the new cluster centers 

to all the nodes 

In each iteration, each MPI 

process exchanges 

boundary points with its 

nearest neighbors 

Computation 

per MPI 

process 

O(  𝑛 
3
) O(  𝑛 

3
) 𝑂 𝑛  

Communicati

on per MPI 

process 

O(  𝑛 
2
) 𝑂 1  𝑂 1  

C/C 
O  

1

 𝑛
  𝑂  

1

𝑛
  𝑂  

1

𝑛
  

Message Size   𝑛 
2
= n 𝐷 – Where D is the 

number of cluster 

centers. 

Each message contains a 

double value 

Communicati

on  routines 

used 

MPI_Sendrecv_replac

e() 

MPI_Reduce() 

MPI_Bcast() 

MPI_Sendrecv() 



6 Benchmarks and Results 

The Eucalyptus (version 1.4) infrastructure we used is deployed on 16 nodes of an 

iDataplex cluster, each of which has 2 Quad Core Intel Xeon processors (for a total of 

8 CPU cores) and 32 GB of memory. In the bare-metal version, each node runs a Red 

Hat Enterprise Linux Server release 5.2 (Tikanga) operating system. We used 

OpenMPI version 1.3.2 with gcc version 4.1.2. We then created a VM image from 

this hardware configuration, so that we have a similar software environment on the 

VMs once they are deployed. The virtualization is based on Xen hypervisor (version 

3.0.3). Both bare-metal and virtualized resources utilize giga-bit Ethernet connections.  

When VMs are deployed using Eucalyptus, it allows configuring the number of 

CPU cores assigned to each VM image. For example, with 8 core systems, the CPU 

core allocation per VM can range from 8 cores to 1 core per VM, resulting in several 

different CPU core assignment strategies. In Amazon EC2 infrastructure, the standard 

instance type has ½ a CPU per VM instance [28]. In the current version of 

Eucalyptus, the minimum number of cores that we can assign for a particular VM 

instance is 1; hence, we selected five CPU core assignment strategies (including the 

bare-metal test) listed in Table 5. 

Table 5.  Different hardware/virtual machine configurations used for performance evaluations.   

Ref Description Number of CPU 

cores accessible 

to the virtual or 

bare-metal node 

Amount of 

memory (GB) 

accessible to the 

virtual or bare-

metal node 

Number of 

virtual or bare-

metal nodes 

deployed 

BM Bare-metal node 8 32 16 

1-VM-8-

core 

1 VM instance per 

bare-metal node 

8 30 (2GB is 

reserved for 

Dom0) 

16 

2-VM-4- 

core 

2  VM instances per 

bare-metal node 

4 15 32 

4-VM-2-

core 

4 VM instances per 

bare-metal node 

2 7.5 64 

8-VM-1-

core 

8 VM instances per 

bare-metal node 

1 3.75 128 

 

We ran all the MPI tests, on all 5 hardware/VM configurations, and measured the 

performance and calculated speed-ups and overheads. We calculated two types of 

overheads for each application using formula (1). The total overhead induced by the 

virtualization and the parallel processing is calculated using the bare-metal single 

process time as T(1) in the formula (1). The parallel overhead is calculated using the 

single process time from a corresponding VM as T(1) in formula (1). The average 

times shown in figures are obtained using 60 repeated runs for each and every 

measurement. 

  In all the MPI tests we performed, we used the following invariant to select the 

number of parallel processes (MPI processes) for a given application. 



Number of MPI processes = Number of CPU cores used. (2) 

For example, for the matrix multiplication application, we used only half the 

number of nodes (bare-metal or VMs) available to us, so that we have 64 MPI 

processes = 64 CPU cores. (This is mainly because the matrix multiplication 

application expects the MPI processes to be in a square grid, in contrast to a 

rectangular grid). For Kmeans clustering, we used all the nodes, resulting in a total of 

128 MPI processes utilizing all 128 CPU cores. Some of the results of our analysis 

highlighting different characterizes we observe are shown in Fig. 6 through 13. 

 
Fig. 6. Performance of the matrix multiplication application (Number of MPI processes = 64). 

 
Fig. 7. Speed-up of the matrix multiplication application (Matrix size = 5184x5184). 

 

For the matrix multiplication, the graphs show very close performance 

characteristics in all the different hardware/VM configurations. As we expected, the 

bare-metal has the best performance and the speedup values, compared to the VM 

configurations (apart from the region close to the matrix size of 4096x4096 where the 

VM perform better than the bare-metal. We have performed multiple tests at this 

point, and found that it is a due to cache performances of the bare-metal node). After 

the bare-metal, the next best performance and speed-ups are recorded in the case of 1-

VM per bare-metal node configuration, in which the performance difference is mainly 

due to the overhead induced by the virtualization. However, as we increase the 



number of VMs per bare-metal node, the overhead increases. At the 81 processes, 8-

VMs per node configuration shows about a 34% decrease in speed-up compared to 

the bare-metal results. 

 
Fig. 8. Performance of Kmeans clustering (Number of MPI Processes = 128 ). 

 

 
Fig. 9. Total overhead of the Kmeans clustering (Number of MPI Processes = 128 ). 

 

 
Fig. 10. Speed-up of the Kmeans clustering (Number of data points  = 860160 ). 



 

 
Fig. 11. Parallel overhead of the Kmeans clustering (Number of MPI Processes = 128). 

 

 
Fig. 12. Performance of the Concurrent Wave Solver (Number of MPI Processes = 128 ). 

 

 
Fig. 13. Total overhead of the Concurrent Wave Solver (Number of MPI Processes = 128 ) 

 



In Kmeans clustering, the effect of virtualized resources is much clearer than in 

the case of the matrix multiplication. All VM configurations show a lower 

performance compared to the bare-metal configuration. In this application, the 

amount of data transferred between MPI processes is extremely low compared to the 

amount of data processed by each MPI process, and also, in relation to the amount of 

computations performed. Fig. 9 and Fig. 11 show the total overhead and the parallel 

overhead for Kmeans clustering under different VM configurations. From these two 

calculations, we found that, for VM configurations, the overheads are extremely large 

for data set sizes of less than 10 million points, for which the bare-metal overhead 

remains less than 1 (<1 for all the cases).  For larger data sets such as 40 million 

points, all overheads reached less than 0.5. The slower speed-up of the VM 

configurations (shown in Fig. 10) is due to the use of a smaller data set (~800K 

points) to calculate the speed-ups. The overheads are extremely large for this region 

of the data sizes, and hence, it resulted in lower speed-ups for the VMs. 

 Concurrent wave equation splits a number of points into a set of parallel processes, 

and each parallel process updates its portion of the points in some number of steps. 

An increase in the number of points increases the amount of the computations 

performed. Since we fixed the number of steps in which the points are updated, we 

obtained a constant amount of communication in all the test cases, resulting in a C/C 

ratio of O(1/n).  In this application also, the difference in performance between the 

VMs and the bare-metal version is clearer, and at the highest grain size the total 

overhead of 8-VMs per node is about 7 times higher than the overhead of the bare-

metal configuration. The performance differences between the different VM 

configurations become smaller with the increase in grain size. 

From the above experimental results, we can see that the applications with lower 

C/C ratios experience a slower performance in virtualized resources. When the 

amount of data transferred between MPI processes is large, as in the case of the 

matrix multiplication, the application is more susceptible to the bandwidth than the 

latency. From the performance results of the matrix multiplication, we can see that the 

virtualization has not affected the bandwidth considerably. However, all the other 

results show that the virtualization has caused considerable latencies for parallel 

applications, especially with smaller data transfer requirements. The effect on latency 

increases as we use more VMs in a bare-metal node.   

According to the Xen para-virtualization architecture [6], domUs (VMs that run on 

top of Xen para-virtualization) are not capable of performing I/O operations by 

themselves. Instead, they communicate with dom0 (privileged OS) via an event 

channel (interrupts) and the shared memory, and then the dom0 performs the I/O 

operations on behalf of the domUs. Although the data is not copied between domUs 

and dom0, the dom0 needs to schedule the I/O operations on behalf of the domUs. 

Fig. 14(top) and Fig. 14 (bottom) shows this behavior in 1-VM per node and 8-VMs 

per node configurations we used. 

 



 
 

 
 
Fig. 14. Communication between dom0 and domU when 1-VM per node is deployed (top). 

Communication between dom0 and domUs when 8-VMs per node are deployed (bottom). 

 

In all the above parallel applications we tested, the timing figures measured 

correspond to the time for computation and communication inside the applications. 

Therefore, all the I/O operations performed by the applications are network-

dependent. From Fig. 14 (bottom), it is clear that Dom0 needs to handle 8 event 

channels when there are 8-VM instances deployed on a single bare-metal node. 

Although the 8 MPI processes run on a single bare-metal node, since they are in 

different virtualized resources, each of them can only communicate via Dom0. This 

explains the higher overhead in our results for 8-VMs per node configuration. The 

architecture reveals another important feature as well -  that is, in the case of 1-VM 

per node configuration, when multiple processes (MPI or other) that run in the same 

VM communicate with each other via the network, all the communications must be 

scheduled by the dom0. This results higher latencies. We could verify this by running 

the above tests with LAM MPI (a predecessor of  OpenMPI, which does not have 

improved support for in-node communications for multi-core nodes). Our results 

indicate that, with LAM MPI, the worst performance for all the test occurred when 1-

VM per node is used.  For example, Fig. 15 shows the performance of Kmeans 

clustering under bare-metal, 1-VM, and 8-VMs per node configurations. This 

observation suggests that, when using VMs with multiple CPUs allocated to each of 

them for parallel processing, it is better to utilize parallel runtimes, which have better 

support for in-node communication. 



 
Fig. 15. LAM vs. OpenMPI (OMPI) under different VM configurations. 

7 Conclusions and Future Work 

From all the experiments we have conducted and the results obtained, we can come to 

the following conclusions on performing parallel computing using cloud and cloud 

technologies. 

Cloud technologies work well for most pleasingly-parallel problems. Their support 

for handling large data sets, the concept of moving computation to data, and the better 

quality of services provided such as fault tolerance and monitoring, simplify the 

implementation details of such problems over the traditional systems. 

Although cloud technologies provide better quality of services such fault tolerance 

and monitoring, their overheads are extremely high for parallel applications that 

require complex communication patterns and even with large data sets, and these 

overheads limit the usage of cloud technologies for such applications. It may be 

possible to find more “cloud friendly” parallel algorithms for some of these 

applications by adopting more coarse grained task/data decomposition strategies and 

different parallel algorithms. However, for other applications, the sheer performance 

of MPI style parallel runtimes is still desirable.  

Enhanced MapReduce runtimes such as CGL-MapReduce allows iterative style 

applications to utilize the MapReduce programming model, while incurring minimal 

overheads compared to the other runtimes such as Hadoop and Dryad. 

Handling large data sets using cloud technologies on cloud resources is an area 

that needs more research. Most cloud technologies support the concept of moving 

computation to data where the parallel tasks access data stored in local disks. 

Currently, it is not clear to us how this approach would work well with the VM 

instances that are leased only for the duration of use. A possible approach is to stage 

the original data in high performance parallel file systems or Amazon S3 type storage 

services, and then move to the VMs each time they are leased to perform 

computations.  

MPI applications that are sensitive to latencies experience moderate-to-higher 

overheads when performed on cloud resources, and these overheads increase as the 

number of VMs per bare-hardware node increases. For example, in Kmeans 

clustering, 1-VM per node shows a minimum of 8% total overhead, while 8-VMs per 



node shows at least 22% overhead. In the case of the Concurrent Wave Equation 

Solver, both these overheads are around 50%. Therefore, we expect the CPU core 

assignment strategies such as ½ of a core per VM to produce very high overheads for 

applications that are sensitive to latencies.  

Improved virtualization architectures that support better I/O capabilities, and the 

use of more latency insensitive algorithms would ameliorate the higher overheads in 

some of the applications. The former is more important as it is natural to run many 

VMs on future many core CPU architectures. 

Applications those are not susceptible to latencies, such as applications that 

perform large data transfers and/or higher Communication/Computation ratios, show 

minimal total overheads in both bare-metal and VM configurations. Therefore, we 

expect that the applications developed using cloud technologies will work fine with 

cloud resources, because the milliseconds-to-seconds latencies that they already have 

under the MapReduce model will not be affected by the additional overheads 

introduced by the virtualization. This is also an area we are currently investigating. 

We are also building applications (biological DNA sequencing) whose end to end 

implementation from data processing to filtering (data-mining) involves an integration 

of MapReduce and MPI. 

Acknowledgements 

We would like to thank Joe Rinkovsky and Jenett Tillotson from IU UITS for their 

dedicated support in setting up a private cloud infrastructure and helping us with 

various configurations associated with our evaluations. 

References 

1.   Amazon Elastic Compute Cloud (EC2), http://aws.amazon.com/ec2/ 

2.   Amazon Simple Storage Service (S3), http://aws.amazon.com/s3/ 

3.   GoGrid Cloud Hosting, http://www.gogrid.com/ 

4.   Keahey, K., Foster, I., Freeman, T., Zhang, X.: Virtual Workspaces: Achieving Quality of   

Service and Quality of Life in the Grid. Scientific Programming Journal, vol. 13, No. 4, pp. 

265-276. Special Issue: Dynamic Grids and Worldwide Computing (2005) 

5.   Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., Zagorodnov, 

D.: The Eucalyptus Open-source Cloud-computing System. CCGrid09: the 9th IEEE 

International Symposium on Cluster Computing and the Grid, Shanghai, China (2009)  

6.   Barham, P., Dragovic, B., Fraser, K., Hand, S. Harris, T. Ho, A., Neugebauer, R. Pratt, I., 

Warfield, A.,: Xen and the art of virtualization. In Proceedings of the Nineteenth ACM 

Symposium on Operating Systems Principles, pp. 164-177. SOSP '03. ACM, New York 

(2003). DOI= http://doi.acm.org/10.1145/945445.945462 

7.   Apache Hadoop, http://hadoop.apache.org/core/ 

8.   Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: Distributed data-parallel 

programs from sequential building blocks. European Conference on Computer 

Systems(2007) 

9.   Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, U., Gunda, P., Currey, J.: 

DryadLINQ: A System for General-Purpose Distributed Data-Parallel Computing Using a 

http://aws.amazon.com/ec2/
http://aws.amazon.com/s3/
http://www.gogrid.com/
http://doi.acm.org/10.1145/945445.945462
http://hadoop.apache.org/core/


High-Level Language. Symposium on Operating System Design and Implementation 

(OSDI), San Diego, CA(2008) 

10. Ekanayake, J., Pallickara, S., Fox, G.: MapReduce for Data Intensive Scientific Analysis. 

Fourth IEEE International Conference on eScience pp.277-284, Indianapolis (2008) 

11. Huang, X., Madan,A.: CAP3: A DNA Sequence Assembly Program. Genome Research. 

vol. 9, no. 9, pp. 868-877 (1999) 
12. Hartigan, J.: Clustering Algorithms. Wiley (1975) 

13. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. ACM 

Commun., vol. 51, pp. 107-113 (2008) 

14. MPI (Message Passing Interface), http://www-unix.mcs.anl.gov/mpi/ 

15. Dongarra, J., Geist,A., Manchek, R., Sunderam, V.: Integrated PVM framework supports 

heterogeneous network computing. Computers in Physics, vol. 7 No. 2, pp. 166–75 (1993) 

16. Lud¨ascher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger-Frank, E., Jones, M., Lee, E., 

Tao, J., Zhao, Y.: Scientific Workflow Management and the Kepler System. Concurrency 

and Computation: Practice & Experience (2005) 

17. Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M., Li, P., Oinn, T.: Taverna: a 

tool for building and running workflows of services. Nucleic Acids Research, (Web Server 

issue):W729 (2006) 

18. Raicu, I., Zhao, Y., Dumitrescu, C., Foster, I., Wilde, M.: Falkon: a Fast and Light-weight 

tasK executiON framework. In Proceedings of the ACM/IEEE Conference on 

Supercomputing, Nevada, SC '07. ACM, New York (2007) DOI= 

http://doi.acm.org/10.1145/1362622.1362680 

19. Pallickara, S., Pierce, M.: SWARM: Scheduling Large-Scale Jobs over the Loosely-

Coupled HPC Clusters. Fourth IEEE International Conference on eScience, pp.285-292 

(2008)  

20. Frey, J.: Condor DAGMan: Handling Inter-Job Dependencies. 

http://www.bo.infn.it/calcolo/condor/dagman/ 

21. Foster, I.: The Anatomy of the Grid: Enabling Scalable Virtual Organizations. In 

Proceedings of the 7th international Euro-Par Conference Manchester on Parallel 

Processing (2001) 

22. Ghemawat, S., Gobioff, H., Leung, S.: The Google file system. SIGOPS Oper. Syst. Rev. 

37, No. 5, pp. 29-43 (2003) DOI= http://doi.acm.org/10.1145/1165389.945450 

23. Pallickara, S., Fox, G.: NaradaBrokering: A Distributed Middleware Framework and 

Architecture for Enabling Durable Peer-to-Peer Grids. Middleware 2003, pp. 41-61. 

24. Gu, Y., Grossman, R.: Sector and Sphere: The Design and Implementation of a High 

Performance Data Cloud. Philosophical Transactions A Special Issue associated with the  

UK e-Science All Hands Meeting (2008) 

25. Moretti, C., Bui, H., Hollingsworth, K., Rich, B., Flynn, P., Thain, D.: All-Pairs: An 

Abstraction for Data Intensive Computing on Campus Grids. IEEE Transactions on Parallel 

and Distributed Systems (2009) 

26. Youseff, L., Wolski, R., Gorda, B., Krintz, C.: Evaluating the Performance Impact of Xen 

on MPI and Process Execution For HPC Systems. In Proceedings of the 2nd international 

Workshop on Virtualization Technology in Distributed Computing. IEEE Computer 

Society, Washington DC (2006) DOI= http://dx.doi.org/10.1109/VTDC.2006.4 

27. Constantinos, E., Hill, N.: Cloud Computing for parallel Scientific HPC Applications: 

Feasibility of Running Coupled Atmosphere-Ocean Climate Models on Amazon's EC2. 

Cloud Computing and Its Applications, Chicago, IL (2008) 

28. Walker, E.: benchmarking Amazon EC2 for high-performance scientific computing, 

http://www.usenix.org/publications/login/2008-10/openpdfs/walker.pdf 

29. Gavrilovska, A.,  Kumar, S., Raj, K., Gupta, V., Nathuji, R., Niranjan, A., Saraiya, P.: 

High-Performance Hypervisor Architectures: Virtualization in HPC Systems. In 1st 

Workshop on System-level Virtualization for High Performance Computing (2007). 

http://www-unix.mcs.anl.gov/mpi/


30. Fox, G., Bae, S., Ekanayake, J., Qiu, X., Yuan, H.: Parallel Data Mining from Multicore to 

Cloudy Grids. High Performance Computing and Grids workshop(2008) 

31. Johnsson, S., Harris, T., Mathur, K.: Matrix multiplication on the connection machine. In 

Proceedings of the 1989 ACM/IEEE Conference on Supercomputing. pp.326-332   

Supercomputing '89. ACM, New York (1989) DOI= 

http://doi.acm.org/10.1145/76263.76298 

 


