
High Performance Parallel Computing with Clouds and

Cloud Technologies

Jaliya Ekanayake and Geoffrey Fox

School of Informatics and Computing,

Indiana University, Bloomington, IN 47405, USA
{jekanaya,gcf}@indiana.edu

Abstract. Infrastructure services (Infrastructure-as-a-service), provided by

cloud vendors, allow any user to provision a large number of compute instances

fairly easily. Whether leased from public clouds or allocated from private

clouds, utilizing these virtual resources to perform data/compute intensive

analyses requires employing different parallel runtimes to implement such

applications. Among many parallelizable problems, most “pleasingly parallel”

applications can be performed using MapReduce technologies such as Hadoop,

CGL-MapReduce, and Dryad, in a fairly easy manner. However, many

scientific applications, which have complex communication patterns, still

require low latency communication mechanisms and rich set of communication

constructs offered by runtimes such as MPI. In this paper, we first discuss large

scale data analysis using different MapReduce implementations and then, we

present a performance analysis of high performance parallel applications on

virtualized resources.

Keywords: Cloud, Virtualization, MapReduce, Dryad, Parallel Computing.

1 Introduction

The introduction of commercial cloud infrastructure services such as Amazon EC2/S3

[1-2] and GoGrid[3] allow users to provision compute clusters fairly easily and

quickly by paying a monetary value only for the duration of the usage of resources.

The provisioning of resources happens in minutes as opposed to the hours and days

required in the case of traditional queue-based job scheduling systems. In addition,

the use of such virtualized resources allows the user to completely customize the

Virtual Machine (VM) images and use them with root/administrative privileges,

which is another feature that is hard to achieve with traditional infrastructures.

The availability of open source cloud infrastructure software such as Nimbus [4]

and Eucalyptus [5], and the open source virtualization software stacks such as Xen

Hypervisor[6], allows organizations to build private clouds to improve the resource

utilization of the available computation facilities. The possibility of dynamically

provisioning additional resources by leasing from commercial cloud infrastructures

makes the use of private clouds more promising.

With all the above promising features of cloud, we can assume that the

accessibility to computation power is no longer a barrier for the users who need to

perform large scale data/compute intensive applications. However, to perform such

computations, two major pre-conditions need to be satisfied: (i) the application should

be parallelizable to utilize the available resources; and (ii) there should be an

appropriate parallel runtime support to implement it.

We have applied several cloud technologies such as Hadoop[7], Dryad and

DryadLINQ[8,9], and CGL-MapReduce[10], to various scientific applications wiz: (i)

Cap3[11] data analysis; (ii) High Energy Physics(HEP) data analysis; (iv) Kmeans

clustering[12]; and, (v) Matrix Multiplication. The streaming based MapReduce [13]

runtime - CGL-MapReduce- developed by us extends the MapReduce model to

iterative MapReduce domain as well. Our experience suggests that although most

“pleasingly parallel” applications can be performed using cloud technologies such as

Hadoop, CGL-MapReduce, and Dryad, in a fairly easy manner, scientific

applications, which require complex communication patterns, still require more

efficient runtime support such as MPI[14].

In order to understand the performance implications of virtualized resources on

MPI applications, we performed an extensive analysis using Eucalyptus based private

cloud infrastructure. The use of a private cloud gives us complete control over both

VMs and bare-metal nodes, a feature that is impossible to achieve in commercial

cloud infrastructures. It also assures a fixed network topology and bandwidth with the

nodes deployed in the same geographical location, improving the reliability of our

results. For this analysis, we used several MPI applications with different

communication/computation characteristics, namely Matrix Multiplication, Kmeans

Clustering, and Concurrent Wave Equation Solver and performed them on several

VM configurations. Instead of measuring individual characteristics such as

bandwidth and latency using micro benchmarks we used real applications to

understand the effect of virtualized resources for such applications, which makes our

results unique.

In the sections that follow, we first present the work related to our research

followed by a brief introduction to the data analysis applications we used. Section 4

presents the results of our evaluations on cloud technologies and a discussion. In

section 5, we discuss an approach with which to evaluate the performance

implications of using virtualized resources for high performance parallel computing.

Section 6 presents the results of this evaluation along with a discussion of the results.

In the final section we give our conclusions and we discuss implications for future

work.

2 Related Work

Traditionally, most parallel applications achieve fine grained parallelism using

message passing infrastructures such as PVM [15] and MPI. Applications achieve

coarse-grained parallelism using workflow frameworks such as Kepler [16] and

Taverna [17], where the individual tasks could themselves be parallel applications

written in MPI. Software systems such as Falkon [18], SWARM [19], and DAGMan

[20] can be used to schedule applications which comprise of a collection of a large

number of individual sub tasks.

Once these applications are developed, in the traditional approach, they are

executed on compute clusters, super computers, or Grid infrastructures [21] where the

focus on allocating resources is heavily biased by the availability of computational

power. The application and the data both need to be moved to the available

computational power in order for them to be executed. Although these infrastructures

are highly efficient in performing compute intensive parallel applications, when the

volumes of data accessed by an application increases, the overall efficiency decreases

due to the inevitable data movement.

Cloud technologies such as Google MapReduce, Google File System (GFS) [22],

Hadoop and Hadoop Distributed File System (HDFS) [7], Microsoft Dryad, and

CGL-MapReduce adopt a more data-centered approach to parallel runtimes. In these

frameworks, the data is staged in data/compute nodes of clusters or large-scale data

centers, such as in the case of Google. The computations move to the data in order to

perform data processing. Distributed file systems such as GFS and HDFS allow

Google MapReduce and Hadoop to access data via distributed storage systems built

on heterogeneous compute nodes, while Dryad and CGL-MapReduce support reading

data from local disks. The simplicity in the programming model enables better

support for quality of services such as fault tolerance and monitoring. Table 1

highlights the features of three cloud technologies that we used.

Table 1. Comparison of features supported by different cloud technologies.

Feature Hadoop Dryad & DryadLINQ CGL-MapReduce

Programming

Model

MapReduce DAG based execution

flows

MapReduce with

Combine phase

Data Handling HDFS Shared directories/

Local disks

Shared file system /

Local disks

Intermediate Data

Communication

HDFS/

Point-to-point via

HTTP

Files/TCP pipes/ Shared

memory FIFO

Content Distribution

Network

(NaradaBrokering[23])

Scheduling Data locality/

Rack aware

Data locality/ Network

topology based

run time graph

optimizations

Data locality

Failure Handling Persistence via

HDFS

Re-execution of

map and reduce

tasks

Re-execution of vertices Currently not

implemented

(Re-executing map

tasks, redundant reduce

tasks)

Monitoring Monitoring support

of HDFS,

Monitoring

MapReduce

computations

Monitoring support for

execution graphs

Programming interface

to monitor the progress

of jobs

Language

Support

Implemented using

Java

Other languages are

supported via

Hadoop Streaming

Programmable via C#

DryadLINQ provides

LINQ programming

API for Dryad

Implemented using Java

Other languages are

supported via Java

wrappers

Y. Gu, et al., present Sphere [24] architecture, a framework which can be used to

execute user-defined functions on data stored in a storage framework named Sector,

in parallel. Sphere can also perform MapReduce style programs and the authors

compare the performance with Hadoop for tera-sort application. Sphere stores

intermediate data on files, and hence is susceptible to higher overheads for iterative

applications.

All-Paris [25] is an abstraction that can be used to solve a common problem of

comparing all the elements in a data set with all the elements in another data set by

applying a given function. This problem can be implemented using typical

MapReduce frameworks such as Hadoop, however for large data sets, the

implementation will not be efficient, because all map tasks need to access all the

elements of one of the data sets. We can develop an efficient iterative MapReduce

implementation using CGL-MapReduce to solve this problem. The algorithm is

similar to the matrix multiplication algorithm we will explain in section 3.

Lamia Youseff, et al., presents an evaluation on the performance impact of Xen on

MPI [26]. According to their evaluations, the Xen does not impose considerable

overheads for HPC applications. However, our results indicate that the applications

that are more sensitive to latencies (smaller messages, lower communication to

computation ratios) experience higher overheads under virtualized resources, and this

overhead increases as more and more VMs are deployed per hardware node. From

their evaluations it is not clear how many VMs they deployed on the hardware nodes,

or how many MPI processes were used in each VM. According to our results, these

factors cause significant changes in results. Running 1-VM per hardware node

produces a VM instance with a similar number of CPU cores as in a bare-metal node.

However, our results indicate that, even in this approach, if the parallel processes

inside the node communicate via the network, the virtualization may produce higher

overheads under the current VM architectures.

C. Evangelinos and C. Hill discuss [27] the details of their analysis on the

performance of HPC benchmarks on EC2 cloud infrastructure. One of the key

observations noted in their paper is that both the OpenMPI and the MPICH2-nemsis

show extremely large latencies, while the LAM MPI, the GridMPI, and the MPICH2-

scok show smaller smoother latencies. However, they did not explain the reason for

this behavior in the paper. We also observed similar characteristics and a detailed

explanation of this behavior and related issues are given in section 5.

Edward Walker presents benchmark results of performing HPC applications using

“high CPU extra large” instances provided by EC2 and on a similar set of local

hardware nodes [28]. The local nodes are connected using infiniband switches while

Amazon EC2 network technology is unknown. The results indicate about 40%-1000%

performance degradation on EC2 resources compared to the local cluster. Since the

differences in operating systems and the compiler versions between VMs and bare-

metal nodes may cause variations in results, for our analysis we used a cloud

infrastructure that we have complete control. In addition we used exactly similar

software environments in both VMs and bare-metal nodes. In our results, we noticed

that applications that are more susceptible to latencies experience higher performance

degradation (around 40%) under virtualized resources. The bandwidth does not seem

to be a consideration in private cloud infrastructures.

Ada Gavrilvska, et al., discuss several improvements over the current

virtualization architectures to support HPC applications such as HPC hypervisors

(sidecore) and self-virtualized I/O devices [29]. We notice the importance of such

improvements and research. In our experimental results, we used hardware nodes with

8 cores and we deployed and tested up to 8VMs per node in these systems. Our results

show that the virtualization overhead increases with the number of VMs deployed on

a hardware node. These characteristics will have a larger impact on systems having

more CPU cores per node. A node with 32 cores running 32 VM instances may

produce very large overheads under the current VM architectures.

3 Data Analysis Applications

The applications we implemented using cloud technologies can be categorized into

three classes, depending on the communication topologies wiz: (i) Map-only; (ii)

MapReduce; and (iii) Iterative/Complex. In our previous papers [10,30], we have

presented details of MapReduce style applications and a Kmeans clustering

application that we developed using cloud technologies, and the challenges we faced

in developing these applications. Therefore, in this paper, we simply highlight the

characteristics of these applications in table 2 and present the results. The two new

applications that we developed, Cap3 and matrix multiplication, are explained in more

detail in this section.

Table 2. Map-Only and MapReduce style applications.

Feature Map-only MapReduce

Program/data

flow

Cap3 Analysis application

implemented as a map-only

operation. Each map task

processed a single input data file

and produces a set of output data

files.

HEP data analysis application

implemented using MapReduce

programming model (ROOT is an object-

oriented data analysis framework).

More

Examples

Converting a collection of

documents to different formats,

processing a collection of

medical images, and

Brute force searches in

cryptography

Histogramming operations,

distributed search, and distributed sorting.

3.1 Cap3

Cap3 is a sequence assembly program that operates on a collection of gene sequence

files which produce several output files. In parallel implementations, the input files

are processed concurrently and the outputs are saved in a predefined location. For our

analysis, we have implemented this application using Hadoop, CGL-MapReduce and

DryadLINQ.

3.2 Iterative/Complex Style applications

Parallel applications implemented using message passing runtimes can utilize various

communication constructs to build diverse communication topologies. For example, a

matrix multiplication application that implements Cannon’s Algorithm [31] assumes

parallel processes to be in a rectangular grid. Each parallel process in the gird

communicates with its left and top neighbors as shown in Fig. 1(left). The current

cloud runtimes, which are based on data flow models such as MapReduce and Dryad,

do not support this behavior, where the peer nodes communicate with each other.

Therefore, implementing the above type of parallel applications using MapReduce or

Dryad models requires adopting different algorithms.

Fig. 1. Communication topology of matrix multiplication applications implemented using

Cannon’s algorithm (left) and MapReduce programming model (right).

We have implemented matrix multiplication applications using Hadoop and CGL-

MapReduce by adopting a row/column decomposition approach to split the matrices.

To clarify our algorithm, let’s consider an example where two input matrices A and B

produce matrix C, as the result of the multiplication process. We split the matrix B

into a set of column blocks and the matrix A into a set of row blocks. In each

iteration, all the map tasks consume two inputs: (i) a column block of matrix B, and

(ii) a row block of matrix A; collectively, they produce a row block of the resultant

matrix C. The column block associated with a particular map task is fixed throughout

the computation while the row blocks are changed in each iteration. However, in

Hadoop’s programming model (typical MapReduce model), there is no way to specify

this behavior and hence, it loads both the column block and the row block in each

iteration of the computation. CGL-MapReduce supports the notion of long running

map/reduce tasks where these tasks are allowed to retain static data in memory across

invocations, yielding better performance for iterative MapReduce computations. The

communication pattern of this application is shown in Fig. 1(right).

4 Evaluations and Analysis

For our evaluations, we used two different compute clusters (details are shown in

Table 3). DryadLINQ applications are run on the cluster Ref A while Hadoop, CGL-

MapReduce, and MPI applications are run on the cluster Ref B. We measured the

performance (average running time with varying input sizes) of these applications and

then we calculated the overhead introduced by different parallel runtimes using the

following formula, in which P denotes the number of parallel processes (map tasks)

used and T denotes time as a function of the number of parallel processes used. T(1)

is the time it takes when the task is executed using a single process. T(P) denotes the

time when an application is executed using P number of parallel processes (For the

results in Fig. 2 to Fig. 5, we used 64 CPU cores and hence the P=64). The results of

these analyses are shown in Fig. 2 –5. Most applications have running times in

minutes range and we noticed that the fluctuations in running time are less than 5%

for most cloud runtimes. The average times shown in figures are calculated using the

results of 5 repeated runs of the applications. We used Hadoop release 0.20, the

academic release of DryadLINQ (Note: The academic release of Dryad only exposes

the DryadLINQ API for programmers. Therefore, all our implementations are written

using DryadLINQ although it uses Dryad as the underlying runtime).

Overhead = [P * T(P) –T(1)]/T(1). (1)

Table 3. Different computation clusters used for the analyses.

Cluster

Ref

Nodes used

/Total CPU cores

CPU Memory Operating System

Ref A 8/64 2x Intel(R) Xeon(R)

CPU L5420

2.50GHz

16GB Windows Server 2008

– 64 bit HPC Edition

(Service Pack 1)

Ref B 8/64 2 x Intel(R) Xeon(R)

CPU L5420

2.50GHz

32GB Red Hat Enterprise

Linux Server release

5.3 - 64 bit

Fig. 2. Performance of the Cap3 application.

Fig. 3. Performance of HEP data analysis applications.

Fig. 4. Performance of different implementations of Kmeans Clustering application (Note: X

axis is in log scale).

All three cloud runtimes work competitively well for the CAP3 application. In the

Hadoop implementation of HEP data analysis, we kept the input data in a high

performance parallel file system rather than in the HDFS because the analysis scripts

written in ROOT could not access data from HDFS. This causes Hadoop’s map tasks

to access data remotely resulting lower performance compared to DryadLINQ and

CGL-MapReduce implementations, which access input files from local disks. Both

DryadLINQ and Hadoop show higher overheads for Kmeans clustering application,

and Hadoop shows higher overheads for the Matrix multiplication application. CGL-

MapReduce shows a close performance to the MPI for large data sets in the case of

Kmeans clustering and matrix multiplication applications, highlighting the benefits of

supporting iterative computations and the faster data communication mechanism in

the CGL-MapReduce.

Fig. 5. Overhead induced by different parallel programming runtimes for the matrix

multiplication application (8 nodes are used).

 From these results, it is clearly evident that the cloud runtimes perform

competitively well for both the Map-only and the MapReduce style applications.

However, for iterative and complex classes of applications, cloud runtimes show

considerably high overheads compared to the MPI versions of the same applications,

implying that, for these types of applications, we still need to use high performance

parallel runtimes or use alternative approaches. (Note: The negative overheads

observed in the matrix multiplication application are due to the better utilization of a

cache by the parallel application than the single process version). These observations

lead us to the next phase of our research.

5 Performance of MPI on Clouds

After the previous observations, we analyzed the performance implications of cloud

for parallel applications implemented using MPI. Specifically, we were trying to find

the overhead of virtualized resources, and understand how applications with different

communication-to-computation (C/C) ratios perform on cloud resources. We also

evaluated different CPU core assignment strategies for VMs in order to understand

the performance of VMs on multi-core nodes.

Commercial cloud infrastructures do not allow users to access the bare hardware

nodes, in which the VMs are deployed, a must-have requirement for our analysis.

Therefore, we used a Eucalyptus-based cloud infrastructure deployed at our university

for this analysis. With this cloud infrastructure, we have complete access to both

virtual machine instances and the underlying bare-metal nodes, as well as the help of

the administrators; as a result, we could deploy different VM configurations

allocating different CPU cores to each VM. Therefore, we selected the above cloud

infrastructure as our main test bed.

 For our evaluations, we selected three MPI applications with different

communication and computation requirements, namely, (i) the Matrix multiplication,

(ii) Kmeans clustering, and (iii) the Concurrent Wave Equation solver. Table 4

highlights the key characteristics of the programs that we used for benchmarking.

Table 4. Computation and communication complexities of the different MPI applications used.

Application Matrix multiplication Kmeans Clustering Concurrent Wave Equation

Description Implements Cannon’s

Algorithm

Assume a rectangular

process grid (Fig.1-

left)

Implements Kmeans

Clustering Algorithm

Fixed number of

iterations are

performed in each test

A vibrating string is

decomposed (split) into

points, and each MPI

process is responsible for

updating the amplitude of a

number of points over

time.

Grain size (n) Number of points in a

matrix block handled

by each MPI process

Number of data points

handled by a single

MPI process

Number of points handled

by each MPI process

Communicati

on Pattern

Each MPI process

communicates with its

neighbors in both row

wise and column wise

All MPI processes

send partial clusters to

one MPI process (rank

0). Rank 0 distribute

the new cluster centers

to all the nodes

In each iteration, each MPI

process exchanges

boundary points with its

nearest neighbors

Computation

per MPI

process

O(𝑛
3
) O(𝑛

3
) 𝑂 𝑛

Communicati

on per MPI

process

O(𝑛
2
) 𝑂 1 𝑂 1

C/C
O

1

 𝑛
 𝑂

1

𝑛
 𝑂

1

𝑛

Message Size 𝑛
2
= n 𝐷 – Where D is the

number of cluster

centers.

Each message contains a

double value

Communicati

on routines

used

MPI_Sendrecv_replac

e()

MPI_Reduce()

MPI_Bcast()

MPI_Sendrecv()

6 Benchmarks and Results

The Eucalyptus (version 1.4) infrastructure we used is deployed on 16 nodes of an

iDataplex cluster, each of which has 2 Quad Core Intel Xeon processors (for a total of

8 CPU cores) and 32 GB of memory. In the bare-metal version, each node runs a Red

Hat Enterprise Linux Server release 5.2 (Tikanga) operating system. We used

OpenMPI version 1.3.2 with gcc version 4.1.2. We then created a VM image from

this hardware configuration, so that we have a similar software environment on the

VMs once they are deployed. The virtualization is based on Xen hypervisor (version

3.0.3). Both bare-metal and virtualized resources utilize giga-bit Ethernet connections.

When VMs are deployed using Eucalyptus, it allows configuring the number of

CPU cores assigned to each VM image. For example, with 8 core systems, the CPU

core allocation per VM can range from 8 cores to 1 core per VM, resulting in several

different CPU core assignment strategies. In Amazon EC2 infrastructure, the standard

instance type has ½ a CPU per VM instance [28]. In the current version of

Eucalyptus, the minimum number of cores that we can assign for a particular VM

instance is 1; hence, we selected five CPU core assignment strategies (including the

bare-metal test) listed in Table 5.

Table 5. Different hardware/virtual machine configurations used for performance evaluations.

Ref Description Number of CPU

cores accessible

to the virtual or

bare-metal node

Amount of

memory (GB)

accessible to the

virtual or bare-

metal node

Number of

virtual or bare-

metal nodes

deployed

BM Bare-metal node 8 32 16

1-VM-8-

core

1 VM instance per

bare-metal node

8 30 (2GB is

reserved for

Dom0)

16

2-VM-4-

core

2 VM instances per

bare-metal node

4 15 32

4-VM-2-

core

4 VM instances per

bare-metal node

2 7.5 64

8-VM-1-

core

8 VM instances per

bare-metal node

1 3.75 128

We ran all the MPI tests, on all 5 hardware/VM configurations, and measured the

performance and calculated speed-ups and overheads. We calculated two types of

overheads for each application using formula (1). The total overhead induced by the

virtualization and the parallel processing is calculated using the bare-metal single

process time as T(1) in the formula (1). The parallel overhead is calculated using the

single process time from a corresponding VM as T(1) in formula (1). The average

times shown in figures are obtained using 60 repeated runs for each and every

measurement.

 In all the MPI tests we performed, we used the following invariant to select the

number of parallel processes (MPI processes) for a given application.

Number of MPI processes = Number of CPU cores used. (2)

For example, for the matrix multiplication application, we used only half the

number of nodes (bare-metal or VMs) available to us, so that we have 64 MPI

processes = 64 CPU cores. (This is mainly because the matrix multiplication

application expects the MPI processes to be in a square grid, in contrast to a

rectangular grid). For Kmeans clustering, we used all the nodes, resulting in a total of

128 MPI processes utilizing all 128 CPU cores. Some of the results of our analysis

highlighting different characterizes we observe are shown in Fig. 6 through 13.

Fig. 6. Performance of the matrix multiplication application (Number of MPI processes = 64).

Fig. 7. Speed-up of the matrix multiplication application (Matrix size = 5184x5184).

For the matrix multiplication, the graphs show very close performance

characteristics in all the different hardware/VM configurations. As we expected, the

bare-metal has the best performance and the speedup values, compared to the VM

configurations (apart from the region close to the matrix size of 4096x4096 where the

VM perform better than the bare-metal. We have performed multiple tests at this

point, and found that it is a due to cache performances of the bare-metal node). After

the bare-metal, the next best performance and speed-ups are recorded in the case of 1-

VM per bare-metal node configuration, in which the performance difference is mainly

due to the overhead induced by the virtualization. However, as we increase the

number of VMs per bare-metal node, the overhead increases. At the 81 processes, 8-

VMs per node configuration shows about a 34% decrease in speed-up compared to

the bare-metal results.

Fig. 8. Performance of Kmeans clustering (Number of MPI Processes = 128).

Fig. 9. Total overhead of the Kmeans clustering (Number of MPI Processes = 128).

Fig. 10. Speed-up of the Kmeans clustering (Number of data points = 860160).

Fig. 11. Parallel overhead of the Kmeans clustering (Number of MPI Processes = 128).

Fig. 12. Performance of the Concurrent Wave Solver (Number of MPI Processes = 128).

Fig. 13. Total overhead of the Concurrent Wave Solver (Number of MPI Processes = 128)

In Kmeans clustering, the effect of virtualized resources is much clearer than in

the case of the matrix multiplication. All VM configurations show a lower

performance compared to the bare-metal configuration. In this application, the

amount of data transferred between MPI processes is extremely low compared to the

amount of data processed by each MPI process, and also, in relation to the amount of

computations performed. Fig. 9 and Fig. 11 show the total overhead and the parallel

overhead for Kmeans clustering under different VM configurations. From these two

calculations, we found that, for VM configurations, the overheads are extremely large

for data set sizes of less than 10 million points, for which the bare-metal overhead

remains less than 1 (<1 for all the cases). For larger data sets such as 40 million

points, all overheads reached less than 0.5. The slower speed-up of the VM

configurations (shown in Fig. 10) is due to the use of a smaller data set (~800K

points) to calculate the speed-ups. The overheads are extremely large for this region

of the data sizes, and hence, it resulted in lower speed-ups for the VMs.

 Concurrent wave equation splits a number of points into a set of parallel processes,

and each parallel process updates its portion of the points in some number of steps.

An increase in the number of points increases the amount of the computations

performed. Since we fixed the number of steps in which the points are updated, we

obtained a constant amount of communication in all the test cases, resulting in a C/C

ratio of O(1/n). In this application also, the difference in performance between the

VMs and the bare-metal version is clearer, and at the highest grain size the total

overhead of 8-VMs per node is about 7 times higher than the overhead of the bare-

metal configuration. The performance differences between the different VM

configurations become smaller with the increase in grain size.

From the above experimental results, we can see that the applications with lower

C/C ratios experience a slower performance in virtualized resources. When the

amount of data transferred between MPI processes is large, as in the case of the

matrix multiplication, the application is more susceptible to the bandwidth than the

latency. From the performance results of the matrix multiplication, we can see that the

virtualization has not affected the bandwidth considerably. However, all the other

results show that the virtualization has caused considerable latencies for parallel

applications, especially with smaller data transfer requirements. The effect on latency

increases as we use more VMs in a bare-metal node.

According to the Xen para-virtualization architecture [6], domUs (VMs that run on

top of Xen para-virtualization) are not capable of performing I/O operations by

themselves. Instead, they communicate with dom0 (privileged OS) via an event

channel (interrupts) and the shared memory, and then the dom0 performs the I/O

operations on behalf of the domUs. Although the data is not copied between domUs

and dom0, the dom0 needs to schedule the I/O operations on behalf of the domUs.

Fig. 14(top) and Fig. 14 (bottom) shows this behavior in 1-VM per node and 8-VMs

per node configurations we used.

Fig. 14. Communication between dom0 and domU when 1-VM per node is deployed (top).

Communication between dom0 and domUs when 8-VMs per node are deployed (bottom).

In all the above parallel applications we tested, the timing figures measured

correspond to the time for computation and communication inside the applications.

Therefore, all the I/O operations performed by the applications are network-

dependent. From Fig. 14 (bottom), it is clear that Dom0 needs to handle 8 event

channels when there are 8-VM instances deployed on a single bare-metal node.

Although the 8 MPI processes run on a single bare-metal node, since they are in

different virtualized resources, each of them can only communicate via Dom0. This

explains the higher overhead in our results for 8-VMs per node configuration. The

architecture reveals another important feature as well - that is, in the case of 1-VM

per node configuration, when multiple processes (MPI or other) that run in the same

VM communicate with each other via the network, all the communications must be

scheduled by the dom0. This results higher latencies. We could verify this by running

the above tests with LAM MPI (a predecessor of OpenMPI, which does not have

improved support for in-node communications for multi-core nodes). Our results

indicate that, with LAM MPI, the worst performance for all the test occurred when 1-

VM per node is used. For example, Fig. 15 shows the performance of Kmeans

clustering under bare-metal, 1-VM, and 8-VMs per node configurations. This

observation suggests that, when using VMs with multiple CPUs allocated to each of

them for parallel processing, it is better to utilize parallel runtimes, which have better

support for in-node communication.

Fig. 15. LAM vs. OpenMPI (OMPI) under different VM configurations.

7 Conclusions and Future Work

From all the experiments we have conducted and the results obtained, we can come to

the following conclusions on performing parallel computing using cloud and cloud

technologies.

Cloud technologies work well for most pleasingly-parallel problems. Their support

for handling large data sets, the concept of moving computation to data, and the better

quality of services provided such as fault tolerance and monitoring, simplify the

implementation details of such problems over the traditional systems.

Although cloud technologies provide better quality of services such fault tolerance

and monitoring, their overheads are extremely high for parallel applications that

require complex communication patterns and even with large data sets, and these

overheads limit the usage of cloud technologies for such applications. It may be

possible to find more “cloud friendly” parallel algorithms for some of these

applications by adopting more coarse grained task/data decomposition strategies and

different parallel algorithms. However, for other applications, the sheer performance

of MPI style parallel runtimes is still desirable.

Enhanced MapReduce runtimes such as CGL-MapReduce allows iterative style

applications to utilize the MapReduce programming model, while incurring minimal

overheads compared to the other runtimes such as Hadoop and Dryad.

Handling large data sets using cloud technologies on cloud resources is an area

that needs more research. Most cloud technologies support the concept of moving

computation to data where the parallel tasks access data stored in local disks.

Currently, it is not clear to us how this approach would work well with the VM

instances that are leased only for the duration of use. A possible approach is to stage

the original data in high performance parallel file systems or Amazon S3 type storage

services, and then move to the VMs each time they are leased to perform

computations.

MPI applications that are sensitive to latencies experience moderate-to-higher

overheads when performed on cloud resources, and these overheads increase as the

number of VMs per bare-hardware node increases. For example, in Kmeans

clustering, 1-VM per node shows a minimum of 8% total overhead, while 8-VMs per

node shows at least 22% overhead. In the case of the Concurrent Wave Equation

Solver, both these overheads are around 50%. Therefore, we expect the CPU core

assignment strategies such as ½ of a core per VM to produce very high overheads for

applications that are sensitive to latencies.

Improved virtualization architectures that support better I/O capabilities, and the

use of more latency insensitive algorithms would ameliorate the higher overheads in

some of the applications. The former is more important as it is natural to run many

VMs on future many core CPU architectures.

Applications those are not susceptible to latencies, such as applications that

perform large data transfers and/or higher Communication/Computation ratios, show

minimal total overheads in both bare-metal and VM configurations. Therefore, we

expect that the applications developed using cloud technologies will work fine with

cloud resources, because the milliseconds-to-seconds latencies that they already have

under the MapReduce model will not be affected by the additional overheads

introduced by the virtualization. This is also an area we are currently investigating.

We are also building applications (biological DNA sequencing) whose end to end

implementation from data processing to filtering (data-mining) involves an integration

of MapReduce and MPI.

Acknowledgements

We would like to thank Joe Rinkovsky and Jenett Tillotson from IU UITS for their

dedicated support in setting up a private cloud infrastructure and helping us with

various configurations associated with our evaluations.

References

1. Amazon Elastic Compute Cloud (EC2), http://aws.amazon.com/ec2/

2. Amazon Simple Storage Service (S3), http://aws.amazon.com/s3/

3. GoGrid Cloud Hosting, http://www.gogrid.com/

4. Keahey, K., Foster, I., Freeman, T., Zhang, X.: Virtual Workspaces: Achieving Quality of

Service and Quality of Life in the Grid. Scientific Programming Journal, vol. 13, No. 4, pp.

265-276. Special Issue: Dynamic Grids and Worldwide Computing (2005)

5. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., Zagorodnov,

D.: The Eucalyptus Open-source Cloud-computing System. CCGrid09: the 9th IEEE

International Symposium on Cluster Computing and the Grid, Shanghai, China (2009)

6. Barham, P., Dragovic, B., Fraser, K., Hand, S. Harris, T. Ho, A., Neugebauer, R. Pratt, I.,

Warfield, A.,: Xen and the art of virtualization. In Proceedings of the Nineteenth ACM

Symposium on Operating Systems Principles, pp. 164-177. SOSP '03. ACM, New York

(2003). DOI= http://doi.acm.org/10.1145/945445.945462

7. Apache Hadoop, http://hadoop.apache.org/core/

8. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: Distributed data-parallel

programs from sequential building blocks. European Conference on Computer

Systems(2007)

9. Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, U., Gunda, P., Currey, J.:

DryadLINQ: A System for General-Purpose Distributed Data-Parallel Computing Using a

http://aws.amazon.com/ec2/
http://aws.amazon.com/s3/
http://www.gogrid.com/
http://doi.acm.org/10.1145/945445.945462
http://hadoop.apache.org/core/

High-Level Language. Symposium on Operating System Design and Implementation

(OSDI), San Diego, CA(2008)

10. Ekanayake, J., Pallickara, S., Fox, G.: MapReduce for Data Intensive Scientific Analysis.

Fourth IEEE International Conference on eScience pp.277-284, Indianapolis (2008)

11. Huang, X., Madan,A.: CAP3: A DNA Sequence Assembly Program. Genome Research.

vol. 9, no. 9, pp. 868-877 (1999)
12. Hartigan, J.: Clustering Algorithms. Wiley (1975)

13. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. ACM

Commun., vol. 51, pp. 107-113 (2008)

14. MPI (Message Passing Interface), http://www-unix.mcs.anl.gov/mpi/

15. Dongarra, J., Geist,A., Manchek, R., Sunderam, V.: Integrated PVM framework supports

heterogeneous network computing. Computers in Physics, vol. 7 No. 2, pp. 166–75 (1993)

16. Lud¨ascher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger-Frank, E., Jones, M., Lee, E.,

Tao, J., Zhao, Y.: Scientific Workflow Management and the Kepler System. Concurrency

and Computation: Practice & Experience (2005)

17. Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M., Li, P., Oinn, T.: Taverna: a

tool for building and running workflows of services. Nucleic Acids Research, (Web Server

issue):W729 (2006)

18. Raicu, I., Zhao, Y., Dumitrescu, C., Foster, I., Wilde, M.: Falkon: a Fast and Light-weight

tasK executiON framework. In Proceedings of the ACM/IEEE Conference on

Supercomputing, Nevada, SC '07. ACM, New York (2007) DOI=

http://doi.acm.org/10.1145/1362622.1362680

19. Pallickara, S., Pierce, M.: SWARM: Scheduling Large-Scale Jobs over the Loosely-

Coupled HPC Clusters. Fourth IEEE International Conference on eScience, pp.285-292

(2008)

20. Frey, J.: Condor DAGMan: Handling Inter-Job Dependencies.

http://www.bo.infn.it/calcolo/condor/dagman/

21. Foster, I.: The Anatomy of the Grid: Enabling Scalable Virtual Organizations. In

Proceedings of the 7th international Euro-Par Conference Manchester on Parallel

Processing (2001)

22. Ghemawat, S., Gobioff, H., Leung, S.: The Google file system. SIGOPS Oper. Syst. Rev.

37, No. 5, pp. 29-43 (2003) DOI= http://doi.acm.org/10.1145/1165389.945450

23. Pallickara, S., Fox, G.: NaradaBrokering: A Distributed Middleware Framework and

Architecture for Enabling Durable Peer-to-Peer Grids. Middleware 2003, pp. 41-61.

24. Gu, Y., Grossman, R.: Sector and Sphere: The Design and Implementation of a High

Performance Data Cloud. Philosophical Transactions A Special Issue associated with the

UK e-Science All Hands Meeting (2008)

25. Moretti, C., Bui, H., Hollingsworth, K., Rich, B., Flynn, P., Thain, D.: All-Pairs: An

Abstraction for Data Intensive Computing on Campus Grids. IEEE Transactions on Parallel

and Distributed Systems (2009)

26. Youseff, L., Wolski, R., Gorda, B., Krintz, C.: Evaluating the Performance Impact of Xen

on MPI and Process Execution For HPC Systems. In Proceedings of the 2nd international

Workshop on Virtualization Technology in Distributed Computing. IEEE Computer

Society, Washington DC (2006) DOI= http://dx.doi.org/10.1109/VTDC.2006.4

27. Constantinos, E., Hill, N.: Cloud Computing for parallel Scientific HPC Applications:

Feasibility of Running Coupled Atmosphere-Ocean Climate Models on Amazon's EC2.

Cloud Computing and Its Applications, Chicago, IL (2008)

28. Walker, E.: benchmarking Amazon EC2 for high-performance scientific computing,

http://www.usenix.org/publications/login/2008-10/openpdfs/walker.pdf

29. Gavrilovska, A., Kumar, S., Raj, K., Gupta, V., Nathuji, R., Niranjan, A., Saraiya, P.:

High-Performance Hypervisor Architectures: Virtualization in HPC Systems. In 1st

Workshop on System-level Virtualization for High Performance Computing (2007).

http://www-unix.mcs.anl.gov/mpi/

30. Fox, G., Bae, S., Ekanayake, J., Qiu, X., Yuan, H.: Parallel Data Mining from Multicore to

Cloudy Grids. High Performance Computing and Grids workshop(2008)

31. Johnsson, S., Harris, T., Mathur, K.: Matrix multiplication on the connection machine. In

Proceedings of the 1989 ACM/IEEE Conference on Supercomputing. pp.326-332

Supercomputing '89. ACM, New York (1989) DOI=

http://doi.acm.org/10.1145/76263.76298

