
Scalable Data Clustering Using Fermi GPUs on FutureGrid

(Report Draft, 2012)

ABSTRACT

The applications in science are creating huge amount of data sets.

These data sets need to be classified into subsets in order to draw

some meaningful conclusions. Data clustering is the statistical

analysis process that groups similar objects into relatively

homogeneous sets which are called clusters. The computational

demands of data clustering grow rapidly. And it is very time

consuming for single CPU to processing large data sets. To

address this computational demands, we explored several parallel

programming models for Fuzz C-means clustering algorithm on

NVidia Fermi GPU architecture on the FutureGrid. We

implemented C-means with CUDA and scale the program to

GPUs cluster through a hybrid usage of MPI and OpenMP. In

addition, a MapReduce implementation of C-means is also given

and discussed. We evaluated the performance of different

implementations of C-means on GPUs and compare their results

with that of traditional Intel architecture chips. The results showed

that CUDA implementation of C-means on single C2070 Fermi

GPU card gave 70x and 10x speedup as compared to CPU

implementation on Intel Xeon processor with 1 core and 12 cores

respectively.

Keywords

Data Clustering, CUDA, GPU, Programming Models.

1. INTRODUCTION
The applications in science are creating huge amount of data sets.

These data sets need to be classified into subsets in order to draw

some meaningful conclusions. Data clustering is the statistical

analysis process that groups similar objects into relatively

homogeneous sets which are called clusters. Data clustering has a

wide variety of fields, such as data mining, machine learning,

geology, astronomy, and bioinformatics, etc. The nature of the

data similarity or distance varies significantly from one

application to another. Therefore there has been extensive

research and a myriad of clustering techniques developed in the

past decades.

Multivariate data clustering techniques were created several

decades ago; however the application to the field of flow

cytometry only has limited discussion. There has been a recent

surge in research activity over the past few years applying

multivariate data clustering to flow cytometry data. Multivariate

techniques have the potential to use the full multidimensional

nature of the data, to find cell populations of interest (that are

difficult to isolate with sequential bivariate gating), and to allow

analysts to make more sound statistical inferences from the

results. Flow cytometry data sets are complex, containing millions

of events, dozens of dimensions, and potentially hundreds of

natural clusters. The multivariate clustering techniques require

intensively computation, and the computational demands grow

rapidly as the number of clusters, events, and dimensions increase.

This makes it time consuming to analyze a flow cytometry data set

thoroughly using a single CPU. Fortunately, many clustering

techniques are of parallel processing capability.

The GPUs have become booming parallel systems. GPUs have

hundreds of processor cores and thousands of threads running

concurrently on these cores, thus because of intensive computing

power they are much faster than the CPU. The NVIDIA® Fermi

architecture is the next-generation compute architecture for

NVIDIA® CUDA™ applications.

The performance of the GPUs applications highly depends on

whether the programs can exploit parallelism provided by the

underlying multiprocessor architecture. As a result, there is a large

need to explore programing models to leverage the computational

power of these new GPUs architecture. CUDA technology [5] is a

new hardware and software solution for general purpose parallel

computing from NVIDIA. CUDA is a parallel programming

model and software environment that leverages the parallel

computational horsepower of GPU for non-graphics computing in

a fraction of the time required on a CPU. The latest version of

CUDA can run parallel program on multi-core CPU as well.

The programming paradigm provided by CUDA has allowed

developers to utilize the power of these scalable parallel

processors with relative ease, enabling them to achieve speedups

of several times on a variety of sophisticated applications. Since

NVIDIA released CUDA in 2007, a lot of scalable parallel

programs were rapidly developed for a wide range of applications,

including matrix solvers, sorting, searching, computational

chemistry, and physics models. These applications scale

transparently to hundreds of processor cores and thousands of

concurrent threads.

Figure 1: NVIDIA CUDA Framework

2. Parallel Programming Models on GPUs
GPU has shown its incredible power in high performance systems

such as Tianhe 1A and Blue water. The programming model is

critical to leverage these GPU systems in the respect of

performance, programmability, and event power efficiency. In this

report, we evaluated four parallel programming models for C-

means on Fermi GPU architecture which include: CUDA,

OpenMP, MPI, and MapReduce.

2.1 CUDA C++
Currently, NVIDIA's CUDA toolkit is the most widely used GPU

programming toolkit available. It includes a compiler for

development of GPU kernels in an extended dialect of C that

supports a limited set of features from C++, and eliminates other

language features (such as recursive functions) that do not map to

GPU hardware capabilities. The CUDA programming model is

focused entirely on data parallelism, and provides convenient

lightweight programming abstractions that allow programmers to

express kernels in terms of a single thread of execution, which is

expanded at runtime to a collection of blocks of tens of threads

that cooperate with each other and share resources, which expands

further into an aggregate of tens of thousands of such threads

running on the entire GPU device. Since CUDA uses language

extensions, the work of packing and unpacking GPU kernel

parameters and specifying various runtime kernel launch

parameters is largely taken care of by the CUDA compiler. This

makes the host side of CUDA code relatively uncluttered and easy

to read.

2.2 Combining OpenMP and CUDA
Since NVIDIA's GPU driver allows only one CPU thread talk to

one GPU device at a time, you'll need to use multiple CPU

threads to cooperate with multiple GPU devices in a single

program. OpenMP (Open Multiprocessing) is an API that

supports multi-platform shared memory multiprocessing

programming in C, C++. OpenMP uses a portable, scalable model

that gives programmers a simple and flexible interface for

developing parallel applications for platforms ranging from the

standard desktop computer to the supercomputer. Combining

OpenMP and CUDA framework can make use of multiple GPUs

cards that deployed on single compute node.

2.3 Combining OpenMP, MPI, and CUDA
Many of the HPC applications have been implemented using MPI

for parallelizing the application. The simplest way to start

building an MPI application that uses GPU-accelerated kernels is

to use NVIDIA’s nvcc compiler for compiling everything. The

nvcc compiler wrapper is somewhat more complex than the

typical mpicc compiler wrapper, so it is easier to make MPI code

into .cu (since CUDA is a proper superset of C) and compile with

nvcc than the other way around. The important point is to resolve

the INCLUDE and LIB paths for MPI since by default nvcc only

finds the system and CUDA libs and includes.

In one scenario, one could run one MPI thread per GPU, thus

ensuring that each MPI thread has access to a unique GPU and

does not share it with other threads. On Lincoln this will result in

unused CPU cores. In another scenario, one could run one MPI

thread per CPU. In this case, on Lincoln multiple MPI threads

will end up sharing the same GPUs, potentially oversubscribing

the available GPUs. On AC the outcome from both scenarios is

the same.

2.4 Combining MapReduce and CUDA
We investigated a MapReduce framework named Mars on

graphics processors (GPUs). MapReduce is a distributed

programming framework originally proposed by Google for the

ease of development of web search applications on a large number

of CPUs. Compared with commodity CPUs, GPUs have an order

of magnitude higher computation power and memory bandwidth,

but are harder to program since their architectures are designed as

a special-purpose co-processor and their programming interfaces

are typically for graphics applications. Mars hides the

programming complexity of the GPU behind the simple and

familiar MapReduce interface. It is up to 70 times faster than its

CPU-based counterpart for C-means application. We implemented

C-means with Mars on an NVIDIA T2070 GPU on FutureGrid,

which contains hundreds of processors.

3. Data Clustering Applications

3.1 C-means Application
Fuzzy c-means is an algorithm of clustering which allows one

element to belong to two or more clusters with different

probability. This method is frequently used in multivariate

clustering. This algorithm is based on minimization of the

following objective function:

M is a real number greater than 1, N is the number of elements.

Uij is the value of membership of Xi in cluster Cj. ||Xi-Cj|| is the

norm expressing the similarity between the measured and the

center. where m is any real number greater than 1, uij is the degree

of membership of xi in the cluster j, xi is the ith of d-dimensional

measured data, cj is the d-dimension center of the cluster, and ||*||

is any norm expressing the similarity between any measured data

and the center. Fuzzy partitioning is performed through an

iterative optimization of the objective function shown above.

Within each iteration, the algorithm updates the membership uij

and the cluster centers cj by:

 (1)

 (2)

This iteration will stop when , where 'e' is a

termination criterion between 0 and 1, whereas k are the iteration

steps.

Algorithm of C-means with CUDA:

 1) Copy data to GPU

 2) DistanceMatrix kernel

 3) MembershipMatrix kernel

 4) UpdateCenters kernel, copy partial centers to

host from GPUs

 5) ClusterSizes kernel, copy cluster sizes to

host from each GPU

 6) Aggregate partial cluster centers and reduce

 10) Compute difference between current cluster

centers and previous iteration.

 11) Compute cluster distance and memberships

using final centers.

4. Performance Evaluation
To provide an advanced and uniform evaluation platform, the

FutureGrid systems are used. The FutureGrid project provides a

capability that makes it possible for researchers to tackle complex

research challenges in computer science related to the use and

security of grids and clouds. Table1 summarizes characteristic of

GPUs cluster named Delta on the FutureGrid.

Table 1. GPUs cluster on FutureGrid

GPU Type nVIDIA Tesla C2070

GPUs per node 2

RAM 16 GB DDR3 1333 MHz

Memory per node [GB] 192

Total GPUs 32

Cores per GPU 448

CPU type Intel Xeon 5660

CPU Speed 2.80 GHz

CPUs (cores) per node 2 (12)

As shown in Table 1, Delta is a new 16-node experimental cluster,

where each node has 2 NVIDIA Tesla C2075 GPUs with 448

processing cores. The NVIDIA cards were used to evaluate

performance of the C-means GPU programs. The corresponding

sequential or threaded CPU code was executed as normal on the

Intel Xeons under the normal process scheduling mechanisms

provided under Red Hat Enterprise Linux 6.

4.1 C-means performance on single GPU

Figure 2: relative speedup of GPU implementation as compared to

CPU implementation with 12 cores and 1 core respectively.

We first look at the performance comparision between CPU and

GPU implementations of C-means. Figure 2 is the relative

speedup of CUDA implementation of C-means as compared to

CPU implementations. The job turnaround time of CUDA C-

means program included the GPU kernel, CPU sequential, and

memcpy between host and device memory. As shown in figure 2,

GPU implementation is 10 times and 70 times faster than CPU

implmentations with 12 core and 11 cores respectively. One

should note there is only minor performance fluctuation for

different input data as both CPU and GPU have the very large

memory space on each node as shown in table 1.

Figure 3: performance of MapReduce implementaiton of C-means

Next, we evalute performance of MapReduce implementation of

C-means on single GPU card with input data size range from

1million to 7 million events. The results indicated that the

MapReduce implementation has a very slow performance as

comapred to pure CUDA implementation. The reason is because

the MapReduce framework (Mars) used in this report is designed

for previous Tesla GPU architecture, and more importantly there

is no local combiner in Mars to perform the parallel reduce

computation. As a result, the overhead of reduce stage in

MapReduce implementation is similar to that sequntial version

run on single CPU. By profiling the MapReduce program, we

found that overhead in reduce stage of MapReduce C-means take

up to 80% of overall overhead.

4.2 C-means performance on multiple GPUs

Figure 4: performance CUDA implementation on multiple GPUs

As each compute node in table 1 has two GPU cards, we

implemented C-means by combining OpenMP and CUDA to

leverage both GPU cards. Results in Figure 4 indicated the super

linear speedup of OpenMP implementation with two GPU cards.

We profiled overhead components of each OpenMP process, and

found the performance gain come from GPU kernel due to

reduced size of input data. When running the GPU program with

half input data size, there is less memory bandwidth contention

among thousands of threads on each GPU card.

4.3 C-means performance on GPU cluster

Figure 5: Speedup of MPI/OpenMP implmenetation of C-means

on multiple GPUs.

One flaw of current GPUs architecture (including Fermi) is the

lack of connection between GPUs nodes in both software and

hardware. The message passaing interface, MPI, is the tradition

approach to connect distributed program on ditributed memory

archticture. And we use a hybrid of MPI, OpenMP, and CUDA to

bridge the hardware gap between socket and PCI interface of

GPUs nodes. Figure 5 showed the speedup of

MPI/OpenMP/CUDA implementation of C-means for 7 million

events using up to 18 GPU cards (9nodes with 2 cards each) on

GPU cluster. The kernel speedup is cacluated by only measuring

the GPU kernel overhead, while overall speedup is caculated by

measuring GPU kernel, CPU overhead, and memcpy between

device and host memory. As expected, the kernel speedup is

higher than overall speedup which contains overhead in

sequetnail component. In addition, as showed in Figure 5, there is

big performance fluctuation for different number of GPU nodes

due to the memory coalesced issue related with input granularity.

5. Conclusion and Future Work
We evaluated four parallel programming models for C-means

application on Fermi GPUs on the FutureGrid, which include

CUDA, OpenMP, MPI, and MapReduce. The CUDA

implementation of C-means gave 70x and 10x speedup as

compared to CPU implementation with 1 core and 12 cores

respectively. We showed that the traditional parallel programming

technical -- OpenMP and MPI can scale the data clustering

program to multiple GPU nodes on the FutureGrid with

reasonable parallel overhead and at the cost of put more software

development burden on developers. The MapReduce/CUDA

implementation required less programming effort, but it just gave

2x speedup as compared to the CPU implementation on single

core. As a result, more research work should be done to optimize

the MapReduce framework on GPUs. For example, a local

combiner for threads within the same block, can increase speedup

of C-means significantly.

While CUDA gave comparable performance, achieving the

maximum throughput and utilization of the GPUs is still difficult

task even for the simple parallel applications. The developers need

have sophisticated knowledge about the details of warps, the

memory hierarchy, and the efficient use of a limited PCIX bus. In

addition, if developers want to scale their program to multiple

GPU nodes, they have to make a hybrid use of MPI, OpenMP,

and CUDA framework, and handle the messaging very carefully.

Therefore a user-friendly programming model that aids rather than

thwarts efficient implementations is needed. This parallel

programming model must seamlessly transition not only between

intra-node CPU-GPU computation, but also inter-node CPU-CPU

communication. While there is a number of hybrid MPI+CUDA

applications that exist, this is not a robust enough programming

model to be used at much large scale system. A higher level,

uniform programming model that works on HPC Clusters or

Cloud (virtual clusters) cores on traditional Intel architecture chip,

cores on GPU could be a solution.

References
[1] NVIDIA, “NVIDIA CUDA Programming Guide”. [Online]

available:

http://developer.nvidia.com/object/cuda_downloads.html

[2] CUDA C/C++ SDK CODE Samples. Technical Report.

NVIDIA Corporation. 2012

http://developer.NVIDIA.com/cuda-cc-sdk-code-samples.

[3] David Patterson “The Top10 innovations in the New NVIDIA

Fermi Architecture, and the Top3 Next Challenges”

Technical Report. 2009.

[4] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K.

Govindaraju, and Tuyong Wang. Mars: A MapReduce

Framework on Graphics Processors. PACT 2008.

[5] Andrew Pangborn, Gregor von Laszewski “Scalable Data

Clustering using GPUs” Paper Draft. 2009.

[6] The Fermi GPU

Architecture：http://developer.nvidia.com/cuda-gpus

[7] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified

data processing on large clusters. OSDI’04. 2004.

[8] The OpenACC Application Programming Interface:

http://www.openacc-standard.org/

[9] Judy Qiu, Seung-Hee. Performance of windows multicore

systems on threading and MPI. CCGrid’10. 2010.

[10] http://en.wikipedia.org/wiki/Fuzzy_clustering

http://developer.nvidia.com/cuda-cc-sdk-code-samples
http://developer.nvidia.com/cuda-gpus
http://www.openacc-standard.org/

