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Abstract. HPJava is an environment for scientific and parallel program-
ming using Java. It is based on an extended version of the Java language.
One feature that HPJava adds to Java is a multi-dimensional array, or
multiarray, with properties similar to the arrays of Fortran. We are us-
ing Adlib as our high-level collective communication library. Adlib was
originally developed using C++ by the Parallel Compiler Runtime Con-
sortium (PCRC). Many functionalities of this high-level communication
library is following its predecessor. However, many design issues are re-
considered and re-implemented according to Java environment. Detailed
functionalities and implementation issues of this collective library will be
described.

1 Introduction

The basic features of HPJava [10] [11] [12] have been described in several ear-
lier publications. In this paper we will jump straight into a discussion of the
implementation of some collective communications in HPJava.

The main characteristic change from Java to HPJava is to add a concept of
multi-dimensional arrays, called ”multiarrays”. And to support parallel program-
ming, HPJava creates ”multiarrays” by extending multiarrays. These ”multiar-
rays” are very closely modeled on the arrays of High Performance Fortran (HPF).
The new distributed data structures are cleanly integrated into the syntax of the
language. In other word, new distributed data structure doesn’t interfere with

⋆ Correspondence to: Han-ku Lee, School of Internet and Multimedia Engineering,
Konkuk University, Seoul, Korea



the existing syntax and semantics of Java-for example ordinary Java arrays are
left unaffected.

New syntaxes in the source HPJava program is translated to an intermediate
standard Java file and this Java file is compiled using ordinary Java compiler.
The preprocessor that performs this task is reasonably sophisticated. During the
preprocessor phase, it performs a complete static semantic check of the source
program, following rules that include all the static rules of the Java Language
Specification [9]. So it should not normally happen that a program accepted by
the HPJava preprocessor would be rejected by the backend Java compiler. The
translation scheme depends on type information, so we were essentially forced to
do a complete type analysis for HPJava (which is a superset of standard Java).
Moreover we wanted to produce a practical tool, and we felt users would not
accept a simpler preprocessor that did not do full checking.

The current version of the preprocessor also works hard to preserve line-
numbering in the conversion from HPJava to Java. This means that the line
numbers in run-time exception messages accurately refer back to the HPJava
source. Clearly this is very important for easy debugging.

A translated and compiled HPJava program is a standard Java class file,
ready for execution on a distributed collection of JIT-enabled Java Virtual Ma-
chines. All externally visible attributes of an HPJava class can be transparently
reconstructed from Java signatures stored in the class file. This makes it possible
to build libraries operating on distributed arrays, while maintaining the usual
portability and compatibility features of Java. The libraries themselves can be
implemented in HPJava, or in standard Java, or as JNI interfaces to other lan-
guages. The HPJava language specification documents the mapping between
distributed arrays and the standard-Java components they translate to.

Java version of Adlib APIs
Other application−level

mpjdev

Pure Java

MPJ and

(e.g. IBM SP3, Sun HPC)
Parallel Hardware

Native MPI

Networks of PCs
SMPs or

Fig. 1. An HPJava communication stack

Currently HPJava is supplied with one library for parallel computing-a Java
version of the Adlib library of collective operations on distributed arrays [14]. A
version of the mpiJava [1] binding of MPI can also be called directly from HPJava
programs. Figure 1 summarizes an HPJava communication libraries stack. This
figure shows how high-level collective libraries and low-level device library are
working together.



2 Related Works

UC Berkeley is developing Titanium [3] to add a comprehensive set of parallel
extensions to the Java language. Support for a shared address space and compile-
time analysis of patterns of synchronization is supported.

The Timber [2] project is developed from Delft University of Technology. It
extends Java with the Spar primitives for scientific programming, which include
multidimensional arrays and tuples. It also adds task parallel constructs like a
foreach construct.

Jade [8] from University of Illinois at Urbana-Champaign focuses on message-
driven parallelism extracted from interactions between a special kind of dis-
tributed object called a Chare. It introduces a kind of parallel array called a
ChareArray. Jade also supports code migration.

HPJava differs from these projects in emphasizing a lower-level (MPI-like)
approach to parallelism and communication, and by importing HPF-like distri-
bution formats for arrays. Another significant difference between HPJava and
the other systems mentioned above is that HPJava translates to Java byte codes,
relying on clusters of conventional JVMs for execution. The systems mentioned
above typically translate to C or C++. While HPJava may pay some price in
performance for this approach, it tends to be more fully compliant with the
standard Java platform.

3 High-level Collective Communications

A C++ library Adlib [6] was completed in the Parallel Compiler Runtime Con-
sortium (PCRC) [7] project. It was a high-level runtime library designed to
support translation of data-parallel languages. It incorporated a built-in repre-
sentation of a distributed array, and a library of communication and arithmetic
operations acting on these arrays. The array model supported general HPF-like
distribution formats, and arbitrary regular sections.

The Adlib series of libraries support collective operations on distributed ar-
rays. All members of some active process group, which may or may not be the en-
tire set of processes executing the program, must invoke a call to a collective oper-
ation simultaneously. Communication patterns supported include HPF/Fortran
90 intrinsic such as cshift. More importantly they include the regular-section
copy operation, remap, which copies elements between shape-conforming array
sections regardless of source and destination mapping. Another function, write-
Halo, updates ghost areas of a distributed array. Various collective gather and
scatter operations allow irregular patterns of access. The library also provides
essentially all Fortran 90 arithmetic transformational functions on distributed
arrays and various additional HPF library functions.

Figure 2 shows how collective communication is used in HPJava. It creates
a general purpose matrix multiplication routine that works for arrays with any
distributed format. This program takes arrays which may be distributed in both
their dimensions, and copies into the temporary array with a special distribution



public class Comm {

public void matmul(float [[-,-]] c, float [[-,-]] a, float [[-,-]] b) {

Group2 p = c.grp();

Range x = c.rng(0);

Range y = c.rng(1);

int N = a.rng(1).size();

float [[-,*]] ta = new float [[x, N]] on p;

float [[*,-]] tb = new float [[N, y]] on p;

Adlib.remap(ta, a);

Adlib.remap(tb, b);

on(p)

overall(i = x for : )

overall(j = y for : ) {

float sum = 0;

for(int k = 0; k < N ; k++)

sum += ta [i, k] * tb [k, j];

c[i, j] = sum;

}

}

Fig. 2. A general Matrix multiplication in HPJava.

format for better performance. A collective communication schedule remap() is
used to copy the elements of one distributed array to another. From the viewpoint
of this paper, the most important part of this code is communication method.
One of the most characteristic and important communication library methods,
remap(), takes two arrays as arguments and copies the elements of the source
array to the destination array, regardless of the distribution format of the two
arrays.

3.1 Implementation of Collectives

By using a characteristic example of collective communication, we will discuss
implementation of the Java Adlib collectives. For illustration we concentrate on
the important remap operation. Although it is a powerful and general operation,
it is actually one of the more simple collectives to implement in the HPJava
framework.

General algorithms for this primitive have been described by other authors.
For example it is essentially equivalent to the operation called Regular Section Copy Sched



public abstract class BlockMessSchedule {

BlockMessSchedule(int rank, int elementLen,boolean isObject) { ... }

void sendReq(int offset, int[] strs, int[] exts, int dstId) { ... }

void recvReq(int offset, int[] strs, int[] exts, int srcId) { ... }

void build() { ... }

void gather() { ... }

void scatter() { ... }

...

}

Fig. 3. API of the class BlockMessSchedule

in [4]. In this section we want to illustrate how this kind of operation can be im-
plemented in terms of the particular Range and Group hierarchies of HPJava
(complemented by a suitable set of messaging primitives).

Constructor and public method of the remap schedule for distributed arrays
of float element can be described as follows:

class RemapFloat extends Remap {

public RemapFloat (float # dst, float # src) {...}

public void execute() {...}

. . .

}

The remap schedule combines two functionalities: it reorganizes data in the
way indicated by the distribution formats of source and destination array. Also,
if the destination array has a replicated distribution format, it broadcasts data
to all copies of the destination. Here we will concentrate on the former aspect,
which is handled by an object of class RemapSkeleton contained in every
Remap object.

During construction of a RemapSkeleton schedule, all send messages, re-
ceive messages, and internal copy operations implied by execution of the schedule
are enumerated and stored in light-weight data structures. These messages have
to be sorted before sending, for possible message agglomeration, and to ensure
a deadlock-free communication schedule. These algorithms, and maintenance of
the associated data structures, are dealt with in a base class of RemapSkeleton
called BlockMessSchedule. The API for the super class is outlined in Figure 3.
To set-up such a low-level schedule, one makes a series of calls to sendReq and
recvReq to define the required messages. Messages are characterized by an off-
set in some local array segment, and a set of strides and extents parameterizing
a multi-dimensional patch of the flat Java array. Finally the build() operation
does any necessary processing of the message lists. The schedule is executed in
a ”forward” or ”backward” direction by invoking gather() or scatter().



The implementation details of BlockMessSchedule will not be discussed
in greater detail here because they are not particularly specific to our HPJava
system, and the principles are fairly well known (see for example [4]).

However we do wish to describe in a little more detail the implementation
of the higher-level RemapSkeleton schedule on top of BlockMessSchedule.
This provides some insight into the structure HPJava distributed arrays, and
the underlying role of the special Range and Group classes.

To produce an implementation of the RemapSkeleton class that works in-
dependently of the detailed distribution format of the arrays we rely on virtual
functions of the Range class to enumerate the blocks of index values held by
each process. These virtual functions, implemented differently for different dis-
tribution formats, encode all-important information about those formats. To a
large extent the communication code itself is distribution format independent.

BlockRange

CyclicRange

Range

IrregRange

ExtBlockRange

CollapsedRange

Dimension

Fig. 4. The HPJava Range hierarchy

The range hierarchy of HPJava is illustrated in Figure 4 and some of the
relevant virtual functions are displayed in the API of Figure 5. The most relevant
methods optionally take arguments that allow one to specify a contiguous or
striped subrange of interest. The Triplet and Block classes represent simple
struck–like objects holding a few int fields describing respectively a ”triplet”
interval, and the strided interval of ”global” and ”local” subscripts that the
distribution format maps to a particular process. In the examples here Triplet
is used only to describe a range of process coordinates that a range or subrange
is distributed over.

Now the RemapSkeleton communication schedule is built by two subrou-
tines called sendLoop and recvLoop that enumerate messages to be sent and
received respectively. Figure 6 sketches the implementation of sendLoop. This
is a recursive function-it implements a multidimensional loop over the rank di-
mensions of the arrays. It is initially called with r = 0. There is little point going



public abstract class Range {

public int size() {...}

public int format() {...}

...

public Block localBlock() {...}

public Block localBlock(int lo, int hi) {...}

public Block localBlock(int lo, int hi, int stp) {...}

public Triplet crds() {...}

public Block block(int crd) {...}

public Triplet crds(int lo, int hi) {...}

public Block block(int crd, int lo, int hi) {...}

public Triplet crds(int lo, int hi, int stp) {...}

public Block block(int crd, int lo, int hi, int stp) {...}

. . .

}

Fig. 5. Partial API of the class Range

into full detail of the algorithm here, but an important thing to note is how this
function uses the virtual methods on the range objects of the source and desti-
nation arrays to enumerate blocks-local and remote-of relevant subranges, and
enumerates the messages that must be sent. Figure 7 illustrates the significance
of some of the variables in the code. When the offset and all extents and strides
of a particular message have been accumulated, the sendReq() method of the
base class is invoked. The variables src and dst represent the distributed array
arguments. The inquiries rng() and grp() extract the range and group objects
of these arrays.

Of the collective communication schedules currently implemented in Adlib,
all except WriteHalo share with Remap this property that their implementa-
tion code does not explicitly depend on the distribution format of the arrays.
All rely heavily on the methods and inquiries of the Range and Group classes,
which abstract the distribution format of arrays.

3.2 Other Schedules in Adlib

We described main characteristic example of the regular communications, remap().
This section we will overview functionalities of all collective operations in Adlib.
The Adlib has three main families of collective operation: regular communica-
tions, reduction operations, and irregular communications. We discuss usage and
high-level API overview of Adlib methods.

The method shift() is a communication schedule for shifting the elements
of a distributed array along one of its dimensions, placing the result in another



private void sendLoop(int offset, Group remGrp, int r){

if(r == rank) {

sendReq(offset, steps, exts, world.leadId(remGrp));

} else {

Block loc = src.rng(r).localBlock();

int offsetElem = offset + src.str(r) * loc.sub_bas;

int step = src.str(r) * loc.sub_stp;

Range rng = dst.rng(r);

Triplet crds = rng.crds(loc.glb_lo, loc.glb_hi, loc.glb_stp);

for (int i = 0, crd = crds.lo; i < crds.count; i++, crd += crds.stp){

Block rem = rng.block3(crd, loc.glb_lo, loc.glb_hi, loc.glb_stp);

exts[r] = rem.count;

steps[r] = step * rem.glb_stp;

sendLoop(offsetElem + step * rem.glb_lo,

remGrp.restrict(rng.dim(), crd), r + 1) ;

}

}

}

Fig. 6. sendLoop method for Remap

array. In general we have the signature:

void shift(T # destination, T # source,

int shiftAmount, int dimension)

where the variable T runs over all primitive types and Object, and the nota-
tion T # means a multiarray of arbitrary rank, with elements of type T . The
shiftAmount argument, which may be negative, specifies the amount and direc-
tion of the shift. In the second form the dimension argument is in the range
0, . . . , R − 1 where R is the rank of the arrays: it selects the array dimension in
which the shift occurs. The source and destination arrays must have the same
shape, and they must also be identically aligned.

The function broadcast(), which is actually a simplified form of remap().
There are two signatures:

T broadcast(T [[]] source)

and
T broadcast(T source, Group root)

The first form takes rank-0 distributed array as argument and broadcasts the
element value to all processes of the active process group. Typically it is used
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Fig. 7. Illustration of sendLoop operation for remap

with a scalar section to broadcast an element of a general array to all members of
the active process group. The second form of broadcast() just takes an ordinary
Java value as the source. This value should be defined on the process or group of
processes identified by root. It is broadcast to all members of the active process
group.

Adlib has some support for irregular communications in the form of collective
gather() and scatter() operations. The simplest form of the gather operation
for one-dimensional arrays has prototypes

void gather(T [[-]] destination, T [[-]] source, int [[-]] subscripts) ;

The subscripts array should have the same shape as, and be aligned with, the
destination array. In pseudocode, the gather operation is equivalent to

for all i in {0, . . . , N − 1} in parallel do

destination [i] = source [subscripts[i]] ;

where N is the size of the destination (and subscripts) array.
The basic scatter function has very similar prototypes, but the names

source and destination are switched. Currently the HPJava version of Adlib
does not support combining scatters, although these could be added in later
releases.

You can find complete list of Adlib schedules in [12]. Information, API, and
usage on the each schedule are described in this paper.

4 A Multigrid Application and Benchmark Results

The multigrid method [5] is a fast algorithm for solution of linear and nonlinear
problems. It uses a hierarchy or stack of grids of different granularity (typically
with a geometric progression of grid-spacings, increasing by a factor of two up
from finest to coarsest grid). Applied to a basic relaxation method, for example,
multigrid hugely accelerates elimination of the residual by restricting a smoothed



version of the error term to a coarser grid, computing a correction term on the
coarse grid, then interpolating this term back to the original fine grid. Because
computation of the correction term on the fine grid can itself be handled as a
relaxation problem, the strategy can be applied recursively all the way up the
stack of grids.

The experiments were performed on the SP3 installation at Florida State
University. The system environment for SP3 runs were as follows:

– System: IBM SP3 supercomputing system with AIX 4.3.3 operating system
and 42 nodes.

– CPU: A node has Four processors (Power3 375 MHz) and 2 gigabytes of
shared memory.

– Network MPI Settings: Shared “css0” adapter with User Space(US) commu-
nication mode.

– Java VM: IBM ’s JIT
– Java Compiler: IBM J2RE 1.3.1

For best performance, all sequential and parallel Fortran and Java codes were
compiled using -O5 or -O3 with -qhot or -O (i.e. maximum optimization) flag.
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Fig. 8. Laplace Equation with Size of 5122.

First we present some results for the computational kernel of the multigrid
code, namely unaccelerated red-black relaxation algorithm. Figure 8 gives our
results for this kernel on a 512 by 512 matrix. The results are encouraging. The
HPJava version scales well, and eventually comes quite close to the HPF code
(absolute megaflop performances are modest, but this feature was observed for
all our codes, and seems to be a property of the hardware).

The flat lines at the bottom of the graph give the sequential Java and Fortran
performances, for orientation. We did not use any auto parallelization feature
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here. Corresponding results for the complete multigrid code are given in Figure 9.
The results here are not as good as for simple red-black relaxation-both HPJava
speed relative to HPF, and the parallel speedup of HPF and HPJava are less
satisfactory.

The poor performance of HPJava relative to Fortran in this case can be
attributed largely to the naive nature of the translation scheme used by the
current HPJava system. The overheads are especially significant when there are
many very tight overall constructs (with short bodies). Experiments done else-
where [11] leads us to believe these overheads can be reduced by straightforward
optimization strategies which, however, are not yet incorporated in our source-
to-source translator.

The modest parallel speedup of both HPJava and HPF is due to communi-
cation overheads. The fact that HPJava and HPF have similar scaling behavior,
while absolute performance of HPJava is lower, suggests the communication li-
brary of HPJava is slower than the communications of the native SP3 HPF
(otherwise the performance gap would close for larger numbers of processors).
This is not too surprising because Adlib is built on top of a portability layer
called mpjdev, which is in turn layered on MPI. We assume the SP3 HPF is
more carefully optimized for the hardware. Of course the lower layers of Adlib
could be ported to exploit low-level features of the hardware (we already did
some experiments in this direction, interfacing Java to LAPI [13]).

5 Conclusions and Future Work

We have explored enabling parallel, high-performance computation-in particular
development of scientific software in the network-aware programming language,
Java. Traditionally, this kind of computing was done in Fortran. Arguably, For-
tran is becoming a marginalized language, with limited economic incentive for



vendors to produce modern development environments, optimizing compilers for
new hardware, or other kinds of associated software expected by today’s pro-
grammers. Java looks like a promising alternative for the future.

We have discussed in detail the design and development of high-level library
for HPJava-this is essentially communication library. The Adlib API is pre-
sented as high-level communication library. This API is intended as an example
of an application level communication library suitable for data parallel program-
ming in Java. This library fully supports Java object types, as part of the basic
data types. We discussed implementation issues of collective communications in
depth. The API and usage of other types of collective communications were also
presented.
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