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ABSTRACT 

 
The Internet of Things (IoT) many be thought of as the 
availability of physical objects, or devices, on the Internet 
[1].  Given such an arrangement it is possible to access 
sensor data and control actuators remotely. Furthermore 
such data may be combined with data from other sources, 
e.g., with data that is contained in the Web and/or 
operated on by scalable cloud hosted system(s) to create 
services far richer than can be provided by isolated 
embedded systems [2,3].  This is the vision of the Internet 
of Things.   
 
We present a cloud-compatible open source messaging 
system and extendable API named ‘IoTCloud’ that 
enables developers to write scalable high performance 
IoT and sensor-centric applications.  The IoTCloud 
software is written in Java and built on popular open 
source packages such as Apache Active MQ [4] and 
JBoss Netty [5].  We will present an overview of the IoT 
Cloud architecture and describe its developer API.   
 
Next we introduce the FutureGrid – a geographically 
distributed and heterogeneous cloud test bed [6,7] – used 
in our experiments.  Our preliminary results indicate that 
a distributed cloud infrastructure like the FutureGrid 
coupled with o u r  f le x ib le  Io T  f ramewo rk  is a n  
e n v i r o n m e n t  suitable for the study and development 
of new, scalable, collaborative/IoT/sensor-centric  
applications. 
 
Finally we report on our initial study of measured 
characteristics of this middleware system running on the 
FutureGrid. 
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1. INTRODUCTION 
 
Since the standardization of the TCP/IP protocol suite over 
thirty years ago, the Internet has grown steadily from a 
collection of small research networks to a ubiquitous 
worldwide network of interconnected networks that 
serviced nearly two billion unique users in 2009 [8].  Now 
with the widespread availability of wireless Internet 
connectivity combined with the low cost of miniature 
electronic devices it possible to imagine the Internet 
expanded to include objects, embedded with sensors, 
communicating over the Internet in in vast numbers [9].  
These smart objects are ordinary physical things that are 
augmented by a small computer which includes a sensor or 
actuator and a communication device [3].  A smart object 
is thus an embedded system, consisting of a thing (the 
physical entity) and a component (the computer) that 
processes the sensor data and supports a, usually, wireless 
communication link to the Internet [2]. 

 
Smart objects can be battery-operated, but not 
always, and typically have three components: a CPU 
(8-, 16- or 32-bit micro-controller), memory (a few 
tens of kilobytes) and a low-power wireless 
communication device (from a few kilobits/s to a few 
hundreds of kilobits/s). The size is small and the 
price is low: a few square mm and few dollars [10]. 

 
The technical issues involved with the IoT vision are not 
related to the functional capabilities of smart objects – 
there many such embedded systems are connected to the 
Internet today – but in the potentially massive numbers of 
smart objects involved.  Some examples of these issues 
are: identification of smart objects, management and 
organization of networks of smart objects, data privacy 
and trustworthiness.  Therefore, there is a need for scalable 
systems that will explore these and the other related 
technical issues involved in creating IoT applications.  As 
a step towards this our preliminary effort is on focused 
developing a sensor-centric middleware capable of 
supporting applications that incorporate a wide variety of 
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sensor types and a large number of geographically 
distributed sensors.  We also discuss the suitability of 
distributed clouds for hosting our middleware and discuss 
an initial measurement of the performance of our system in 
the context of scalable real-time collaborative sensor-
centric applications. 
 
The rest of this paper is organized as follows.  Firstly, we 
present the architecture of our IoTCloud framework and 
describe the API available to end-users.  Secondly, we 
give an overview of the FutureGrid [6,11], the underlying 
heterogeneous distributed cloud infrastructure that we 
conduct the experiments on.  Then, we discuss the 
experimental setup and report performance measurements 
in several scenarios.  Lastly, we present our conclusions 
and future work. 
 
2. IoTCloud Architecture 
 
We have adopted an open architecture for the IOTCloud 
middleware system. From a very high view the architecture 
is based on four main components. 

1. IOTCloud Controller 
2. Message Broker 
3. Sensors 
4. Applications 

 

 
IOTCloud Controller component is responsible for 
managing the Message Broker, Sensors and Application. It 
is at the center of the IOTCloud architecture and 
coordinates the communication between sensors and 
applications. Also it maintains the status information about 
the system and publishes it to the interested applications. 
Sensors produce a series of data over the time and 
applications can register for acquiring this data.  Also 
applications can control the sensors as well as receive the 
status information about the system. Figure 1. Shows the 
architecture of the IOTCloud in a very high view. 
 
We will look at each of these parts in more details 
separately. 
 
IOTCloud Middleware 
 
IOTCloud Contrller is a coordinator and a configuration 
manager between the communication parties. It creates the 
paths to establish the connections among the Applications 
and Sensors. These paths are created in the message 
brokers. Also it maintains the status information about the 
various sensors and applications.  For example if an 
application wishes to know, the names of the sensors that 
belong to a particular group, that information is available in 
through the middle-ware system. 

 
Figure 1. 



We believe that the interoperability is a key, to a 
technology that is designed to connect various devices 
together. To gain the interoperability, IOTCloud exposes a 
Web Services [4] API for applications and sensors. Sensors 
use this API for registering to the IOTCloud and getting the 
required information. Application also uses the web 
services API for same purposes. The web services are 
written using Apache Axis2 and hosted in a Jetty server. 
 
Apart from the status information about the system, 
IOTCloud stores various configuration information needed 
by the applications and sensors to communicate with each 
other. The information about the brokers and how to 
connect to them are stored in the controller, so that sensors 
and applications can use this information without the 
knowledge of explicit configurations of underlying 
message transfer mechanisms. 
 
Message Broker 
 
In general sense, we use the term “message broker” to refer 
a system that accept messages and distribute it to set of 
targets. We use a JMS [5] style message broker to handle 
block type data and streaming message broker to handle 
streaming data. All the routing rules and configuration of 
the broker are managed by the controller and the specific 
details of the broker is hidden from the application and 
sensor developers. 
 
JMS Message Broker 
 
This broker is used for distributing data messages, all the 
updates and control messages making it a key part in the 
IOTCLoud architecture. IOTCloud supports a JMS 1.1 
specification compatible message broker. JMS style broker 
runs as a separate entity from the controller. We use 
Apache ActiveMQ [6] as the message broker for this 
implementation. 
 
Streaming Message Broker 
 
Streaming message broker is a simple low footprint HTTP 
server written using the Netty [7] technology. It is a 
streaming server with a constant memory usage for 
streaming the messages to multiple targets. 
 
Sensor 
 
A Sensor is a component that can publish time dependent 
data. The sensor module facilitates the development of 
sensors by providing mechanisms for exchanging data 
between the actual sensor and the IOTCloud. A typical 
example is a GPS sensor. A user trying to connect a GPS to 
the IOTCloud should use the Sensor module to register 
itself to the middle-ware systems as well as to send and 
receive information. 

The IOTCloud supports two types of sensors and the 
distinction is made upon the nature of the data the sensor is 
producing. There are sensors that produce data in discrete 

time intervals. The best example is a GPS sensor. It only 
produces data in a fixed rate and the data is independent of 
each other for most of the practical purposes. Due to that, 
we though it is better to fit this type of sensors in to a 
category called block sensors. They support sending data as 
independent messages. The other type of sensors produces 
a continuous data stream. The best example is, a video 
camera producing a stream in very high data rate. 
IOTCloud has the streaming sensor type to handle sensors 
producing a data stream. 

IOTCloud by design supports both types of sensors using 
different message transfer mechanisms. For block type of 
data, it uses a JMS style messaging. So the data packets are 
discrete and there is no correlation between the messages. 
For streaming data, IOTCloud uses a HTTP based 
streaming message server. We have chosen HTTP because 
of its wide adoption and support for streaming data via the 
chunking. 

Apart from sending data, every sensor should listen for the 
control messages. A control message carries information 
about an operation that the sensor should perform. One of 
the best examples is a sensor that has start and stop 
functions like a video camera. An application that is 
registered to the IOTCloud should be able to turn on or off 
the video camera.  This information is sent as a control 
message to the sensor. 

Applications 

Data produces by the sensor should go through the 
IOTCloud to the applications. Applications listen on the 
sensor data and control the sensors by sending control data. 
Any application can listen on one or more sensors. After 
the registration to the IOTCLoud, application can choose 
the sensor from which it receives data, using filters. If the 
application directly knows the name of the sensor it can 
readily bind to it. But most of the time applications are 
looking for sensors with some criteria like for example a 
GPS sensor that belongs to the group “Indiana Lab”.  

There is a notification mechanism to send updates about 
the sensor status to the applications. Some of these update 
messages are produced by the IOTCloud itself and some 
are produced by the sensors. Applications can choose to 
accept all or set of updates about the system. 

Update Distribution 

Since the sensors and applications are ad-hoc it is required 
to send the states changes to the applications. When a client 
joins it only knows about the available sensors. A sensor of 
interest to the Application may come online after the 
Application starts its operation on the available sensors. So 



the application should know about the new sensor 
immediately upon its arrival. These kinds of updates are 
delivered to the interested sensors whenever they are 
available. Also IOTCloud maintains the state of its sensors 
internally. It periodically pushes this information to the 
interested applications as well. All the updates are handled 
through the message brokers and the middle-ware system 
so that the system knows about the status of the connected 
components. 

Application Programing Interface (API) 

From the users perspective the important APIs are the 
Sensor API and Application API. The sensor API is 
designed to facilitate easy development of Sensors and 
publish data to the IOT cloud. Apart from the data 
publication these APIs are used to control the behavior of 
the sensors depending on the control messages coming 
from the Applications as well as IOT Cloud. 

The Application API is designed to facilitate the easy 
consumption of the data published by the sensors. Also the 
API has mechanisms for applications to listen on the 
changes to the sensors and IOT cloud. Also it has methods 
for sending control information to the sensors as well. 

Both these API’s are available as Java APIs for the initial 
version. We believe these API’s should be available in 
languages like C/C++ as well. This is possible because we 
are using standards based technologies like Web Services 
and HTTP for communicating between the sensors and the 
applications. 

Sensor API 

Sensor API provides routines to register the sensor to the 
IOTCloud and publishing the data to it. Also sensors can 
listen for the controls messages sent both by the 
middleware system as well as applications. 

First a sensor has to initialize the IOTCloud libraries by 
pointing the bootstrap configuration files. These 
configuration files include the information needed by the 
underlying transports that does the actual web service 
messaging. 

Then it can register itself to the sensor cloud by providing 
its name, type of the sensor and group. Type of the sensor 
denotes weather it is a block sensor or a streaming sensor. 
Once it is registered it can start sending the data. Data 
should be prepared by the user and should be wrapped 
inside the message API provided by the IOTCloud. 

Also after starting its operation, sensors receive control 
information from the middleware. It is up to the sensor 
implementer to act upon this control data. After completing 

its operation a sensor should notify the middleware system 
that it is going to terminate. Middleware system also 
periodically checks for the status of the sensors. If a sensor 
failed to respond within a given time sensor cloud assumes 
that the sensor no longer available and closes the 
communication paths. 

Application API 

The application API consists of several classes for 
registering an application with the IOTCloud and getting 
sensor data. Here is the typical sequence of actions an 
Application will take for registering itself and getting some 
data. 

First it has to initialize the IOTCloud libraries by pointing 
to the configuration files. This is similar to the process by 
the sensors. 

Then it can register itself with the IOTCloud by pointing to 
the IOTClouds URL. Here the underlying APIs will talk to 
the controller to get information about the protocols it 
supports and the mechanism for connecting to it. For 
example the application receives information about the 
transports that are supported by the controller. Here the 
ports of the HTTP transport or the JNDI properties of the 
JMS transport are sent through this call. So it is a discovery 
process for the Application. 

Once the Application is registered to the controller it can 
request information about the sensors that are connected to 
the system. Various filters can be used to get only the 
required list of sensors. For example it can get only the list 
of GPS sensors by specifying the filter that filters the 
sensors by the group of the sensors. 

Once the Application has the names or the ID’s of the 
sensors it can register itself for that sensors data stream. 
When there is data from the system the registered 
application are notified and they can receive the data. Data 
is processes according to the application and the sensor 
requirements. Once the application is no longer interested 
in receiving data, it can un-register itself from the 
IOTCloud. 

Message API 

IOTCloud has two broader categories of message types and 
these represent control messages and data messages. Both 
Application API and Sensor API use these message types 
for message access. 
 
Control Message is a message with a specific command 
and some key value pairs associated with it. The meaning 
of control messages is a contract between the sensor and 



the client. There are some reserved control messages that 
IOTCloud explicitly uses for controlling the behavior of 
sensors in pre-defined situations like when shutting down 
the IOTCLoud. 
 
Since different sensors can send different messages with 
different semantics IOTCloud doesn’t try to infer or act 
upon the message itself. For the middleware a message is 
just a data block or a stream. Message schema is strictly a 
contract between the sensors and its consumers. Since there 
are two types of sensors namely block type sensor and 
streaming sensors, IOTCloud provide mechanisms for 
supporting block data of messages and streaming data 
messages. 
 
It is up to the sensor and application programmer to figure 
out the meaning of the data messages with different mime 
types. Some sensors like still cameras may send pictures in 
JPEG format and vedio cameras may send it in a vedio-
encoding format. It is up to the sensor application to figure 
out the type of the messages and decode it according to its 
requirements. 
 
 
3. FUTUREGRID 
 
FutureGrid [8] is a part of the Extreme Science and 
Engineering Discovery Environment (XSEDE) [14].   The 
FutureGrid provides a capability that makes it possible for 
researchers to tackle complex research challenges in 
computer science related to the use and security of grids 
and clouds. These include topics ranging from 
authentication, authorization, scheduling, virtualization, 
middleware design, interface design and cybersecurity, to 
the optimization of grid-enabled and cloud-enabled 
computational schemes for researchers in astronomy, 
chemistry, biology, engineering, atmospheric science and 
epidemiology [11].  The project has several computing 
clusters at different locations with a sophisticated virtual 
machine and workflow-based simulation environment to 
support research on cloud computing, multicore 
computing, new algorithms and software paradigms. 
 
Unlike production cloud systems like the Amazon EC2, 
Microsoft Azure or Google App Engine for commercial 
applications, or XSEDE for scientific computing, 
FutureGrid, by contrast, is oriented towards developing 
tools and technologies rather than providing production 
computational capacity [15]. 
 
FutureGrid is an infrastructure comprising currently 
approximately 4,000 cores at six sites - Indiana University 
(11 Teraflop IBM 1024 cores, 7 Teraflop Cray 684 cores, 
5 Teraflop Disk Rich 512 cores), University of Chicago (7 
Teraflop IBM 672 cores), University of California San 
Diego Supercomputing Center (7 Teraflop IBM 672 
cores), University of Florida (3 Teraflop IBM 256 cores), 

Purdue University (4 Teraflop Dell 384 cores) and Texas 
Advanced Computing Center (8 Teraflop Dell 768 cores) - 
connected by a high-speed, network which is dedicated 
except for public link to Texas Advanced Computing 
Center.   It is an experimental test-bed that could support 
large-scale research on distributed and parallel systems, 
algorithms, middleware and applications.   Figure 2. shows 
the connectivity of the six sites. 
 
 

 
Figure 2. FutureGrid connectivity 

 
FutureGrid includes services accessible to users to run 
HPC (High Performance Computing) jobs such as MPI, or 
Hadoop. It also supports   several popular Grid and Cloud 
environments including the Eucalyptus, Nimbus and 
OpenStack Clouds. 

 
Eucalyptus [16, 17] is an open source software platform 
that implements an Infrastructure-as-a-Service (IaaS)-style 
cloud computing. Eucalyptus provides an Amazon Web 
Services (AWS)-compliant, EC2-based web service 
interface for interacting with the cloud service. 
Additionally, Eucalyptus provides Walrus, an AWS 
storage-compliant service, and a user interface for 
managing users and images. 

 
Nimbus is an open source toolkit that allows one to turn a 
cluster into an IaaS cloud [18]. Nimbus on FutureGrid 
allows users to run virtual machines on FutureGrid 
hardware. A Nimbus account user can easily upload 
custom-built virtual machine (VM) image or customize an 
image provided by FutureGrid. When a VM is booted, it 
is assigned a public IP address (and/or an optional private 
address). The VM is accessible by logging in as root via 
SSH. A user can then run services, performs 
computations, and configure the system as desired.   
After using and configuring the VM, the modified VM 
image can be saved to the Nimbus image repository. 
 
OpenStack is an open source, IaaS cloud computing platform 



founded by Rackspace Hosting and NASA and widely used 
in industry [18]. It includes three components: Compute 
(Nova), Object Storage (Swift) and Image Service (Glance).  
OpenStack is also fully Amazon EC2 complaint and supports 
an (AWS)-complaint web interface.  OpenStack images are 
manipulated with the familiar euca2ools [19].  Our 
FutureGrid experiments were performed using OpenStack for 
virtual machine deployment/management. 
 
4. Performance Characteristics 

 

Previous experiments have investigated our messaging 
system performance at the network, message, and 
application level [20-22].  We find that a pub/sub based 
middleware is an appropriate model for scalable sensor-
centric, collaborative, and IoT applications.  In this section 
we present the performance characteristics of a single 
message broker as a function of the number of subscriber 
instances. 

For this experiment we created a virtual sensor to simulate 
a typical data stream from an IP Camera.  We selected the 
popular TRENDnet TV-IP422WN ip camera as our 
baseline [21].  The TV-IP422WN camera publishes 
audio/video data over an RTSP stream at a rate of 
approximately 1800kbps when using the following 
encoding: 

Video: codec MPEG4; width: 640; height: 480; 
format: YUV420P; frame-rate: 30 frames/sec;  
Audio: codec PCM_MULAW; sample rate: 8000; 
channels: 1; format: FMT_S16 

 
In order to simulate video sensors of this type we publish 
randomized data in 7680 bytes packets at a rate of 30 
packets per second.  It is worth noting that this frame rate 
and packet size is also reasonable simulation of Microsoft 
Kinect sensor [24]. 

 
Our software was deployed on the FutureGrid using a single 
OpenStack m1.large instance [25] to host the middleware and 
the simulated sensor.  Subscribers were then deployed across 
multiple m1.large instances as necessary.  Figure 3. shows the 
average message latency versus the number of clients.  
Latencies of less than 300 milliseconds are required for real-
time video conferencing applications [20]. 
 

 
Figure 3. 

 
Therefore in terms of message delivery times alone a single 
broker is capable of supporting approximately 200 clients 
participating in a simulated real-time video conferencing 
application.  However, in real-time of collaborative video 
applications message latency is not the only factor, uniformity 
of the message latency must also be considered.  In order to 
achieve a satisfactory user experience the video packets must 
also be delivered in a uniform (i.e. non-jittery) manner [19].  
Figure 4. shows the average jitter versus number of clients. 
 
 

 
Figure 4. 

 
Here we see acceptable jitter until we reach approximately 150 
clients.  This number is a better estimate of the true number of 
clients a single broker can support and maintain good 
performance.  To verify this conclusion we also examine how 
the jitter various over time.  These results are show in Figure 5. 
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Figure 5. 

 
The here the jitter (as a function of time) is acceptably low until 
the number of clients reaches approximately 150 clients.  We 
have demonstrated therefore that a single broker is capable of 
supporting 150 clients participating in a real-time video 
conferencing application where 640x480 video is streamed at 
30 frames per second.  Scaling is achieved by deploying 
additional brokers in the cloud to support an arbitrary client 
load. 
 
In previous work [18-20] we have shown a single broker is 
capable of supporting larger number of clients in the case 
where the sensor data packet size was lower.  Many IoT 
applications will consist of sensors with significantly smaller 
packet sizes and transmission frequencies e.g. gps, rfid, ZigBee 
etc.  In these cases we expect our system to support potentially 
thousands of clients with a single broker.  Further work is 
planned to examine this scenario.  
 
5. Conclusion 

 
We presented our open sourced IoTCloud framework and gave 
an overview of its architecture and the extensible API we 
provide to develop scalable IoT and other sensor-centric 
applications.  Next we described the FutureGrid, the 
experimental testbed for cloud development, we use for our 
development and testing.  Finally we conducted a preliminary 
study to analyze the performance characteristics of our 
middleware in the context of high end real-time video sensors. 
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