
Architecture and Measured Characteristics of a
 Cloud Based Internet of Things API

Geoffrey C. Fox, Supun Kamburugamuve
School of Informatics and Computing and Community Grids Laboratory

Indiana University, Bloomington IN 47408 USA
{gcf, skamburu}@indiana.edu

Ryan Hartman

 Community Grids Laboratory
Indiana University, Bloomington IN 47408 USA

rdhartma@indiana.edu

ABSTRACT

The Internet of Things (IoT) many be thought of as the
availability of physical objects, or devices, on the Internet
[1]. Given such an arrangement it is possible to access
sensor data and control actuators remotely. Furthermore
such data may be combined with data from other sources,
e.g., with data that is contained in the Web and/or
operated on by scalable cloud hosted system(s) to create
services far richer than can be provided by isolated
embedded systems [2,3]. This is the vision of the Internet
of Things.

We present a cloud-compatible open source messaging
system and extendable API named ‘IoTCloud’ that
enables developers to write scalable high performance
IoT and sensor-centric applications. The IoTCloud
software is written in Java and built on popular open
source packages such as Apache Active MQ [4] and
JBoss Netty [5]. We will present an overview of the IoT
Cloud architecture and describe its developer API.

Next we introduce the FutureGrid – a geographically
distributed and heterogeneous cloud test bed [6,7] – used
in our experiments. Our preliminary results indicate that
a distributed cloud infrastructure like the FutureGrid
coupled with o u r f le x ib le Io T f ramewo rk is a n
e n v i r o n m e n t suitable for the study and development
of new, scalable, collaborative/IoT/sensor-centric
applications.

Finally we report on our initial study of measured
characteristics of this middleware system running on the
FutureGrid.

KEYWORDS: Internet of Things, IoT, distributed cloud,
collaboration, sensor-centric applications, smart objects,
FutureGrid

1. INTRODUCTION

Since the standardization of the TCP/IP protocol suite over
thirty years ago, the Internet has grown steadily from a
collection of small research networks to a ubiquitous
worldwide network of interconnected networks that
serviced nearly two billion unique users in 2009 [8]. Now
with the widespread availability of wireless Internet
connectivity combined with the low cost of miniature
electronic devices it possible to imagine the Internet
expanded to include objects, embedded with sensors,
communicating over the Internet in in vast numbers [9].
These smart objects are ordinary physical things that are
augmented by a small computer which includes a sensor or
actuator and a communication device [3]. A smart object
is thus an embedded system, consisting of a thing (the
physical entity) and a component (the computer) that
processes the sensor data and supports a, usually, wireless
communication link to the Internet [2].

Smart objects can be battery-operated, but not
always, and typically have three components: a CPU
(8-, 16- or 32-bit micro-controller), memory (a few
tens of kilobytes) and a low-power wireless
communication device (from a few kilobits/s to a few
hundreds of kilobits/s). The size is small and the
price is low: a few square mm and few dollars [10].

The technical issues involved with the IoT vision are not
related to the functional capabilities of smart objects –
there many such embedded systems are connected to the
Internet today – but in the potentially massive numbers of
smart objects involved. Some examples of these issues
are: identification of smart objects, management and
organization of networks of smart objects, data privacy
and trustworthiness. Therefore, there is a need for scalable
systems that will explore these and the other related
technical issues involved in creating IoT applications. As
a step towards this our preliminary effort is on focused
developing a sensor-centric middleware capable of
supporting applications that incorporate a wide variety of

mailto:rdhartma@indiana.edu

sensor types and a large number of geographically
distributed sensors. We also discuss the suitability of
distributed clouds for hosting our middleware and discuss
an initial measurement of the performance of our system in
the context of scalable real-time collaborative sensor-
centric applications.

The rest of this paper is organized as follows. Firstly, we
present the architecture of our IoTCloud framework and
describe the API available to end-users. Secondly, we
give an overview of the FutureGrid [6,11], the underlying
heterogeneous distributed cloud infrastructure that we
conduct the experiments on. Then, we discuss the
experimental setup and report performance measurements
in several scenarios. Lastly, we present our conclusions
and future work.

2. IoTCloud Architecture

We have adopted an open architecture for the IOTCloud
middleware system. From a very high view the architecture
is based on four main components.

1. IOTCloud Controller
2. Message Broker
3. Sensors
4. Applications

IOTCloud Controller component is responsible for
managing the Message Broker, Sensors and Application. It
is at the center of the IOTCloud architecture and
coordinates the communication between sensors and
applications. Also it maintains the status information about
the system and publishes it to the interested applications.
Sensors produce a series of data over the time and
applications can register for acquiring this data. Also
applications can control the sensors as well as receive the
status information about the system. Figure 1. Shows the
architecture of the IOTCloud in a very high view.

We will look at each of these parts in more details
separately.

IOTCloud Middleware

IOTCloud Contrller is a coordinator and a configuration
manager between the communication parties. It creates the
paths to establish the connections among the Applications
and Sensors. These paths are created in the message
brokers. Also it maintains the status information about the
various sensors and applications. For example if an
application wishes to know, the names of the sensors that
belong to a particular group, that information is available in
through the middle-ware system.

Figure 1.

We believe that the interoperability is a key, to a
technology that is designed to connect various devices
together. To gain the interoperability, IOTCloud exposes a
Web Services [4] API for applications and sensors. Sensors
use this API for registering to the IOTCloud and getting the
required information. Application also uses the web
services API for same purposes. The web services are
written using Apache Axis2 and hosted in a Jetty server.

Apart from the status information about the system,
IOTCloud stores various configuration information needed
by the applications and sensors to communicate with each
other. The information about the brokers and how to
connect to them are stored in the controller, so that sensors
and applications can use this information without the
knowledge of explicit configurations of underlying
message transfer mechanisms.

Message Broker

In general sense, we use the term “message broker” to refer
a system that accept messages and distribute it to set of
targets. We use a JMS [5] style message broker to handle
block type data and streaming message broker to handle
streaming data. All the routing rules and configuration of
the broker are managed by the controller and the specific
details of the broker is hidden from the application and
sensor developers.

JMS Message Broker

This broker is used for distributing data messages, all the
updates and control messages making it a key part in the
IOTCLoud architecture. IOTCloud supports a JMS 1.1
specification compatible message broker. JMS style broker
runs as a separate entity from the controller. We use
Apache ActiveMQ [6] as the message broker for this
implementation.

Streaming Message Broker

Streaming message broker is a simple low footprint HTTP
server written using the Netty [7] technology. It is a
streaming server with a constant memory usage for
streaming the messages to multiple targets.

Sensor

A Sensor is a component that can publish time dependent
data. The sensor module facilitates the development of
sensors by providing mechanisms for exchanging data
between the actual sensor and the IOTCloud. A typical
example is a GPS sensor. A user trying to connect a GPS to
the IOTCloud should use the Sensor module to register
itself to the middle-ware systems as well as to send and
receive information.

The IOTCloud supports two types of sensors and the
distinction is made upon the nature of the data the sensor is
producing. There are sensors that produce data in discrete

time intervals. The best example is a GPS sensor. It only
produces data in a fixed rate and the data is independent of
each other for most of the practical purposes. Due to that,
we though it is better to fit this type of sensors in to a
category called block sensors. They support sending data as
independent messages. The other type of sensors produces
a continuous data stream. The best example is, a video
camera producing a stream in very high data rate.
IOTCloud has the streaming sensor type to handle sensors
producing a data stream.

IOTCloud by design supports both types of sensors using
different message transfer mechanisms. For block type of
data, it uses a JMS style messaging. So the data packets are
discrete and there is no correlation between the messages.
For streaming data, IOTCloud uses a HTTP based
streaming message server. We have chosen HTTP because
of its wide adoption and support for streaming data via the
chunking.

Apart from sending data, every sensor should listen for the
control messages. A control message carries information
about an operation that the sensor should perform. One of
the best examples is a sensor that has start and stop
functions like a video camera. An application that is
registered to the IOTCloud should be able to turn on or off
the video camera. This information is sent as a control
message to the sensor.

Applications

Data produces by the sensor should go through the
IOTCloud to the applications. Applications listen on the
sensor data and control the sensors by sending control data.
Any application can listen on one or more sensors. After
the registration to the IOTCLoud, application can choose
the sensor from which it receives data, using filters. If the
application directly knows the name of the sensor it can
readily bind to it. But most of the time applications are
looking for sensors with some criteria like for example a
GPS sensor that belongs to the group “Indiana Lab”.

There is a notification mechanism to send updates about
the sensor status to the applications. Some of these update
messages are produced by the IOTCloud itself and some
are produced by the sensors. Applications can choose to
accept all or set of updates about the system.

Update Distribution

Since the sensors and applications are ad-hoc it is required
to send the states changes to the applications. When a client
joins it only knows about the available sensors. A sensor of
interest to the Application may come online after the
Application starts its operation on the available sensors. So

the application should know about the new sensor
immediately upon its arrival. These kinds of updates are
delivered to the interested sensors whenever they are
available. Also IOTCloud maintains the state of its sensors
internally. It periodically pushes this information to the
interested applications as well. All the updates are handled
through the message brokers and the middle-ware system
so that the system knows about the status of the connected
components.

Application Programing Interface (API)

From the users perspective the important APIs are the
Sensor API and Application API. The sensor API is
designed to facilitate easy development of Sensors and
publish data to the IOT cloud. Apart from the data
publication these APIs are used to control the behavior of
the sensors depending on the control messages coming
from the Applications as well as IOT Cloud.

The Application API is designed to facilitate the easy
consumption of the data published by the sensors. Also the
API has mechanisms for applications to listen on the
changes to the sensors and IOT cloud. Also it has methods
for sending control information to the sensors as well.

Both these API’s are available as Java APIs for the initial
version. We believe these API’s should be available in
languages like C/C++ as well. This is possible because we
are using standards based technologies like Web Services
and HTTP for communicating between the sensors and the
applications.

Sensor API

Sensor API provides routines to register the sensor to the
IOTCloud and publishing the data to it. Also sensors can
listen for the controls messages sent both by the
middleware system as well as applications.

First a sensor has to initialize the IOTCloud libraries by
pointing the bootstrap configuration files. These
configuration files include the information needed by the
underlying transports that does the actual web service
messaging.

Then it can register itself to the sensor cloud by providing
its name, type of the sensor and group. Type of the sensor
denotes weather it is a block sensor or a streaming sensor.
Once it is registered it can start sending the data. Data
should be prepared by the user and should be wrapped
inside the message API provided by the IOTCloud.

Also after starting its operation, sensors receive control
information from the middleware. It is up to the sensor
implementer to act upon this control data. After completing

its operation a sensor should notify the middleware system
that it is going to terminate. Middleware system also
periodically checks for the status of the sensors. If a sensor
failed to respond within a given time sensor cloud assumes
that the sensor no longer available and closes the
communication paths.

Application API

The application API consists of several classes for
registering an application with the IOTCloud and getting
sensor data. Here is the typical sequence of actions an
Application will take for registering itself and getting some
data.

First it has to initialize the IOTCloud libraries by pointing
to the configuration files. This is similar to the process by
the sensors.

Then it can register itself with the IOTCloud by pointing to
the IOTClouds URL. Here the underlying APIs will talk to
the controller to get information about the protocols it
supports and the mechanism for connecting to it. For
example the application receives information about the
transports that are supported by the controller. Here the
ports of the HTTP transport or the JNDI properties of the
JMS transport are sent through this call. So it is a discovery
process for the Application.

Once the Application is registered to the controller it can
request information about the sensors that are connected to
the system. Various filters can be used to get only the
required list of sensors. For example it can get only the list
of GPS sensors by specifying the filter that filters the
sensors by the group of the sensors.

Once the Application has the names or the ID’s of the
sensors it can register itself for that sensors data stream.
When there is data from the system the registered
application are notified and they can receive the data. Data
is processes according to the application and the sensor
requirements. Once the application is no longer interested
in receiving data, it can un-register itself from the
IOTCloud.

Message API

IOTCloud has two broader categories of message types and
these represent control messages and data messages. Both
Application API and Sensor API use these message types
for message access.

Control Message is a message with a specific command
and some key value pairs associated with it. The meaning
of control messages is a contract between the sensor and

the client. There are some reserved control messages that
IOTCloud explicitly uses for controlling the behavior of
sensors in pre-defined situations like when shutting down
the IOTCLoud.

Since different sensors can send different messages with
different semantics IOTCloud doesn’t try to infer or act
upon the message itself. For the middleware a message is
just a data block or a stream. Message schema is strictly a
contract between the sensors and its consumers. Since there
are two types of sensors namely block type sensor and
streaming sensors, IOTCloud provide mechanisms for
supporting block data of messages and streaming data
messages.

It is up to the sensor and application programmer to figure
out the meaning of the data messages with different mime
types. Some sensors like still cameras may send pictures in
JPEG format and vedio cameras may send it in a vedio-
encoding format. It is up to the sensor application to figure
out the type of the messages and decode it according to its
requirements.

3. FUTUREGRID

FutureGrid [8] is a part of the Extreme Science and
Engineering Discovery Environment (XSEDE) [14]. The
FutureGrid provides a capability that makes it possible for
researchers to tackle complex research challenges in
computer science related to the use and security of grids
and clouds. These include topics ranging from
authentication, authorization, scheduling, virtualization,
middleware design, interface design and cybersecurity, to
the optimization of grid-enabled and cloud-enabled
computational schemes for researchers in astronomy,
chemistry, biology, engineering, atmospheric science and
epidemiology [11]. The project has several computing
clusters at different locations with a sophisticated virtual
machine and workflow-based simulation environment to
support research on cloud computing, multicore
computing, new algorithms and software paradigms.

Unlike production cloud systems like the Amazon EC2,
Microsoft Azure or Google App Engine for commercial
applications, or XSEDE for scientific computing,
FutureGrid, by contrast, is oriented towards developing
tools and technologies rather than providing production
computational capacity [15].

FutureGrid is an infrastructure comprising currently
approximately 4,000 cores at six sites - Indiana University
(11 Teraflop IBM 1024 cores, 7 Teraflop Cray 684 cores,
5 Teraflop Disk Rich 512 cores), University of Chicago (7
Teraflop IBM 672 cores), University of California San
Diego Supercomputing Center (7 Teraflop IBM 672
cores), University of Florida (3 Teraflop IBM 256 cores),

Purdue University (4 Teraflop Dell 384 cores) and Texas
Advanced Computing Center (8 Teraflop Dell 768 cores) -
connected by a high-speed, network which is dedicated
except for public link to Texas Advanced Computing
Center. It is an experimental test-bed that could support
large-scale research on distributed and parallel systems,
algorithms, middleware and applications. Figure 2. shows
the connectivity of the six sites.

Figure 2. FutureGrid connectivity

FutureGrid includes services accessible to users to run
HPC (High Performance Computing) jobs such as MPI, or
Hadoop. It also supports several popular Grid and Cloud
environments including the Eucalyptus, Nimbus and
OpenStack Clouds.

Eucalyptus [16, 17] is an open source software platform
that implements an Infrastructure-as-a-Service (IaaS)-style
cloud computing. Eucalyptus provides an Amazon Web
Services (AWS)-compliant, EC2-based web service
interface for interacting with the cloud service.
Additionally, Eucalyptus provides Walrus, an AWS
storage-compliant service, and a user interface for
managing users and images.

Nimbus is an open source toolkit that allows one to turn a
cluster into an IaaS cloud [18]. Nimbus on FutureGrid
allows users to run virtual machines on FutureGrid
hardware. A Nimbus account user can easily upload
custom-built virtual machine (VM) image or customize an
image provided by FutureGrid. When a VM is booted, it
is assigned a public IP address (and/or an optional private
address). The VM is accessible by logging in as root via
SSH. A user can then run services, performs
computations, and configure the system as desired.
After using and configuring the VM, the modified VM
image can be saved to the Nimbus image repository.

OpenStack is an open source, IaaS cloud computing platform

founded by Rackspace Hosting and NASA and widely used
in industry [18]. It includes three components: Compute
(Nova), Object Storage (Swift) and Image Service (Glance).
OpenStack is also fully Amazon EC2 complaint and supports
an (AWS)-complaint web interface. OpenStack images are
manipulated with the familiar euca2ools [19]. Our
FutureGrid experiments were performed using OpenStack for
virtual machine deployment/management.

4. Performance Characteristics

Previous experiments have investigated our messaging
system performance at the network, message, and
application level [20-22]. We find that a pub/sub based
middleware is an appropriate model for scalable sensor-
centric, collaborative, and IoT applications. In this section
we present the performance characteristics of a single
message broker as a function of the number of subscriber
instances.

For this experiment we created a virtual sensor to simulate
a typical data stream from an IP Camera. We selected the
popular TRENDnet TV-IP422WN ip camera as our
baseline [21]. The TV-IP422WN camera publishes
audio/video data over an RTSP stream at a rate of
approximately 1800kbps when using the following
encoding:

Video: codec MPEG4; width: 640; height: 480;
format: YUV420P; frame-rate: 30 frames/sec;
Audio: codec PCM_MULAW; sample rate: 8000;
channels: 1; format: FMT_S16

In order to simulate video sensors of this type we publish
randomized data in 7680 bytes packets at a rate of 30
packets per second. It is worth noting that this frame rate
and packet size is also reasonable simulation of Microsoft
Kinect sensor [24].

Our software was deployed on the FutureGrid using a single
OpenStack m1.large instance [25] to host the middleware and
the simulated sensor. Subscribers were then deployed across
multiple m1.large instances as necessary. Figure 3. shows the
average message latency versus the number of clients.
Latencies of less than 300 milliseconds are required for real-
time video conferencing applications [20].

Figure 3.

Therefore in terms of message delivery times alone a single
broker is capable of supporting approximately 200 clients
participating in a simulated real-time video conferencing
application. However, in real-time of collaborative video
applications message latency is not the only factor, uniformity
of the message latency must also be considered. In order to
achieve a satisfactory user experience the video packets must
also be delivered in a uniform (i.e. non-jittery) manner [19].
Figure 4. shows the average jitter versus number of clients.

Figure 4.

Here we see acceptable jitter until we reach approximately 150
clients. This number is a better estimate of the true number of
clients a single broker can support and maintain good
performance. To verify this conclusion we also examine how
the jitter various over time. These results are show in Figure 5.

0

200

400

600

800

1000

1200

0 100 200 300

La
nt

em
cy

 in
 m

s

Number of Clients

Single Broker Average Message
Latency

0

50

100

150

200

0 100 200 300

Jit
te

r i
n

m
s

Number of Clients

Single Broker Average Jitter

Figure 5.

The here the jitter (as a function of time) is acceptably low until
the number of clients reaches approximately 150 clients. We
have demonstrated therefore that a single broker is capable of
supporting 150 clients participating in a real-time video
conferencing application where 640x480 video is streamed at
30 frames per second. Scaling is achieved by deploying
additional brokers in the cloud to support an arbitrary client
load.

In previous work [18-20] we have shown a single broker is
capable of supporting larger number of clients in the case
where the sensor data packet size was lower. Many IoT
applications will consist of sensors with significantly smaller
packet sizes and transmission frequencies e.g. gps, rfid, ZigBee
etc. In these cases we expect our system to support potentially
thousands of clients with a single broker. Further work is
planned to examine this scenario.

5. Conclusion

We presented our open sourced IoTCloud framework and gave
an overview of its architecture and the extensible API we
provide to develop scalable IoT and other sensor-centric
applications. Next we described the FutureGrid, the
experimental testbed for cloud development, we use for our
development and testing. Finally we conducted a preliminary
study to analyze the performance characteristics of our
middleware in the context of high end real-time video sensors.

KEYWORDS: Internet of Things, IoT, distributed cloud,
collaboration, sensor-centric applications, smart objects,
FutureGrid

ACKNOWLEGMENTS

We thank Alex Ho of Anabas Inc., Sankarbala
Manoharan and Vignesh Ravindran of Indiana
University for their important contributions to th i s
work. This material is based upon work supported in part
by the National Science Foundation under Grant No.
0910812 to Indiana University for "FutureGrid: An
Experimental, High- Performance Grid Test-bed." Other
partners in the FutureGrid project include U. Chicago, U.
Florida, San Diego Supercomputer Center - UC San
Diego, U. Southern California, U. Texas at Austin, U.
Tennessee at Knoxville, U. of Virginia.

BIOGRAPHY

GEOFFREY C. FOX received a Ph.D. in Theoretical
Physics from Cambridge University and is now the
Associate Dean for Research and Graduate Studies at the
School of Informatics and Computing Indiana University
Bloomington and professor of Computer Science,
Informatics, and Physics at Indiana University where he is
director of the Community Grids Laboratory. He
previously held positions at Caltech, Syracuse University
and Florida State University.

SUPUN KAMBURUGAMUVA is a PHD Student in the
Computer Science Department of Indiana University
Bloomington. He is an Apache Software Foundation
member and is a contributor on many open source projects
including Apache Web Services and Apache Synapse. He
has been actively contributing in developing middleware
systems in to cloud environment, which is being his major
area of interest.

RYAN HARTMAN is software developer with
experience in a wide range of topics, technologies and
industries. He has led many successful projects from
numerical modeling of physical systems, to Doppler
Weather Radar control systems, to web-based software
distribution systems and currently onto cloud computing.

REFERENCES

1. Postscapes. Internet of Things Definition. [accessed

2012 February 6]; Available from:
http://postscapes.com/internet-of-things-definition.

2. Hermann Kopetz, Real-Time Systems Series. 2011,

Spring US, ISBN 978-1-4419-8236-0. pages. 307-
323. DOI: 10.1007/978-1-4419-8237-7_13

3. Luigi Atzori, Antonio Lera, The Internet of

1

10

100

1000

-50 50 150 250 350

Jit
te

r i
n

m
s

Packet Number

Jitter versus Packet Number (Time)

10 Clients

50 Clients

100
Clients

http://postscapes.com/internet-of-things-definition

Things: A survey. Computer Networks Volume
54, Issue 15, 28 October 2010. pages. 2787–
2805. DOI: 10.1016/j.comnet.2010.05.010

4. RAO, A. 2002. Web Services Unleashed, garage insigh
 http://www.garage.com/newsletter/index.shtml

5. Hapner, M., Burridge, R., Sharma, R., Fialli, J.,
and Stout, K. 2002. Java Message Service. Sun
Microsystems Inc., Santa Clara, CA.

6. Apache. ActiveMQ open source messaging system.

[accessed 2012 February 6]; Available from:
http://activemq.apache.org/.

7. JBoss. Netty - the Java NIO Client Server Socket

Framework. [accessed 2012 February 6]; Available
from: http://www.jboss.org/netty.

 8. Geoffrey Fox. FutureGrid Platform FGPlatform:

Rationale and Possible Directions (White Paper).
2010 [2012 February 6]; Available from:
http://grids.ucs.indiana.edu/ptliupages/publications/F
GPlatform.docx.

 9. Javier Diaz, Gregor von Laszewski, Fugang Wang,
Andrew J. Younge and Geoffrey Fox FutureGrid
Image Repository: A Generic Catalog and Storage
System for Heterogeneous Virtual Machine Images
3rd IEEE International Conference CloudCom on
Cloud Computing Technology and Science, Athens
Greece, November 29 - December 1 2011
http://grids.ucs.indiana.edu/ptliupages/publications/jdi
azCloudCom2011.pdf

 10. Google. Public Data. [accessed 2012 February 7];

Available from:
http://www.google.com/publicdata/explore?ds=d5bnc
ppjof8f9_&ctype=l&met_y=it_net_user&hl=en&dl=e
n

 11. The Internet of Things Council Homepage, [accessed

2012 February 8]; Available from:
http://www.theinternetofthings.eu/what-is-the-
internet-of-things

12. Adam Dunkels, JP Vasseur. IP for Smart Objects

Internet Protocol for Smart Objects (IPSO) Alliance
White Paper #1 September 2008 Available From:
http://www.sics.se/~adam/dunkels08ipso.pdf

13. XSEDE Homepage, [accessed 2012 February 7];

Available from https://www.xsede.org/home

14. Geoffrey Fox. Interview on FutureGrid. 2009

September 29 [accessed 2012 February 7]; by Sander
Olson Available from:
http://nextbigfuture.com/2009/09/interview-of-
geoffrey-fox-director-of.html.

15. Nurmi D., Wolski R., Grzegorczyk C., Obertelli G.,
Soman S., Youseff L., and Zagorodnov D., The
Eucalyptus Open-Source Cloud-Computing System,
in 9th IEEE/ACM International Symposium on
Cluster Computing and the Grid. CCGRID '09. 18-21
May, 2009. Shanghai. pages. 124-131. DOI:
10.1109/CCGRID.2009.93.

16. Eucalyptus Open Source Cloud Software. [accessed

2012 February 7] Available from:
http://open.eucalyptus.com/.

17. Nimbus Cloud Computing for Science. [accessed 2012

February 7]; Available from:
http://www.nimbusproject.org/.

18. OpenStack. Open source software for building private

and public clouds. [accessed 2012 February 7]
Available from: http://openstack.org

19. OpenStack. Euca2ools Commands. [accessed 2012

February 7] Available from:
http://docs.openstack.org/diablo/openstack-
compute/starter/content/Euca2ools_Commands-
d1e2791.html

20. Geoffry Fox, Alex Ho, and Eddy Chan, Measured

Charatericstics of FutureGrid Clouds for Scalable
Collaborative Sensor-Centric Grid Applications.
IEEE International Symposium on Collaborative
Technologies and Systems CTS 2011, Waleed Smari,
Editor. May 23-27, Philadelphia.
http://grids.ucs.indiana.edu/ptliupages/publications/cts
_2011_paper_mod_6%5B1%5D.pdf

21. Shrideep Pallickara, Hasan Bulut, Pete Burnap,

Geoffrey Fox, Ahmet Uyar, and David Walker.
Support for High Performance Real-time
Collaboration within the NaradaBrokering Substrate.
2005 May [accessed 2011 March 11]; Available
from:
http://grids.ucs.indiana.edu/ptliupages/publications/N
B-Collaboration_update.pdf.

22. Ahmet Uyar and Geoffrey Fox, Investigating the

Performance of Audio/Video Service Architecture I:
Single Broker, in IEEE International Symposium on
Collaborative Technologies and Systems CTS05.
May, 2005, IEEE. St. Louis Missouri, USA. pages.
120-127.
http://grids.ucs.indiana.edu/ptliupages/publications/Si
ngleBroker-cts05-submitted.PDF. DOI:
http://doi.ieeecomputersociety.org/10.1109/ISCST.20
05.1553303.

23. Trendnet. Secure View Wireless Day/Night Pan Tilt
Zoom Internet Camera. [accessed 2012 February 8]
Available from:
http://www.trendnet.com/products/proddetail.asp?pro
d=155_TV-IP422W

http://activemq.apache.org/
http://www.jboss.org/netty
http://grids.ucs.indiana.edu/ptliupages/publications/F%20GPlatform.docx
http://grids.ucs.indiana.edu/ptliupages/publications/F%20GPlatform.docx
http://grids.ucs.indiana.edu/ptliupages/publications/jdiazCloudCom2011.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/jdiazCloudCom2011.pdf
http://www.google.com/publicdata/explore?ds=d5bncppjof8f9_&ctype=l&met_y=it_net_user&hl=en&dl=en
http://www.google.com/publicdata/explore?ds=d5bncppjof8f9_&ctype=l&met_y=it_net_user&hl=en&dl=en
http://www.google.com/publicdata/explore?ds=d5bncppjof8f9_&ctype=l&met_y=it_net_user&hl=en&dl=en
http://www.theinternetofthings.eu/what-is-the-internet-of-things
http://www.theinternetofthings.eu/what-is-the-internet-of-things
http://www.sics.se/~adam/dunkels08ipso.pdf
https://www.xsede.org/home
http://nextbigfuture.com/2009/09/interview-of-geoffrey-fox-director-of.html
http://nextbigfuture.com/2009/09/interview-of-geoffrey-fox-director-of.html
http://open.eucalyptus.com/
http://www.nimbusproject.org/
http://openstack.org/
http://docs.openstack.org/diablo/openstack-compute/starter/content/Euca2ools_Commands-d1e2791.html
http://docs.openstack.org/diablo/openstack-compute/starter/content/Euca2ools_Commands-d1e2791.html
http://docs.openstack.org/diablo/openstack-compute/starter/content/Euca2ools_Commands-d1e2791.html
http://grids.ucs.indiana.edu/ptliupages/publications/cts_2011_paper_mod_6%5B1%5D.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/cts_2011_paper_mod_6%5B1%5D.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/NB-Collaboration_update.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/NB-Collaboration_update.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/NB-Collaboration_update.pdf
http://grids.ucs.indiana.edu/ptliupages/publications/SingleBroker-cts05-submitted.PDF
http://grids.ucs.indiana.edu/ptliupages/publications/SingleBroker-cts05-submitted.PDF
http://grids.ucs.indiana.edu/ptliupages/publications/SingleBroker-cts05-submitted.PDF
http://doi.ieeecomputersociety.org/10.1109/ISCST.20
http://doi.ieeecomputersociety.org/10.1109/ISCST.20
http://www.trendnet.com/products/proddetail.asp?prod=155_TV-IP422W
http://www.trendnet.com/products/proddetail.asp?prod=155_TV-IP422W

24. Microsoft. Kinect for Windows. [accessed 2012

February 8] Available from:
http://www.microsoft.com/en-us/kinectforwindows/

25. Open Stack. OpenStack Manuals. [accessed 2012

February 8] Available from:
http://docs.openstack.org/diablo/openstack-
compute/starter/content/Instance_Type_Management-
d1e2734.html

http://www.microsoft.com/en-us/kinectforwindows/
http://docs.openstack.org/diablo/openstack-compute/starter/content/Instance_Type_Management-d1e2734.html
http://docs.openstack.org/diablo/openstack-compute/starter/content/Instance_Type_Management-d1e2734.html
http://docs.openstack.org/diablo/openstack-compute/starter/content/Instance_Type_Management-d1e2734.html

	Architecture and Measured Characteristics of a
	Cloud Based Internet of Things API
	Geoffrey C. Fox, Supun Kamburugamuve
	Ryan Hartman
	ABSTRACT
	IOTCloud Middleware
	Figure 1.
	Message Broker
	JMS Message Broker
	Streaming Message Broker
	Sensor
	Applications
	Update Distribution
	Application Programing Interface (API)
	Sensor API
	Application API
	Message API
	Figure 2. FutureGrid connectivity
	Figure 3.
	Figure 4.
	Figure 5.
	ACKNOWLEGMENTS
	BIOGRAPHY
	REFERENCES

