
unsupervised learning of finite mixture
models with deterministic annealing for

large-scale data analysis

jong youl choi

Submitted to the faculty of the University Graduate School
in partial fulfillment of the requirements

for the degree
Doctor of Philosophy

in the School of Informatics and Computing
Indiana University

January 2012

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the require-

ments for the degree of Doctor of Philosophy.

Doctoral Committee

Geoffrey Fox, Ph.D.

Paul Purdom, Ph.D.

David Wild, Ph.D.

Sun Kim, Ph.D.

January 12, 2012

Jong Youl Choi: Unsupervised Learning Of Finite Mixture Models With Deterministic Anneal-

ing For Large-scale Data Analysis, Thesis, © January 2012.

website:

http://www.cs.indiana.edu/~jychoi/

e-mail:

jychoi@cs.indiana.edu

http://www.cs.indiana.edu/~jychoi/
mailto:jychoi@cs.indiana.edu

D E D I C AT I O N

This thesis is dedicated to my lovely wife, Hyejong Jang, who always endures everything

with me and gives endless love and encouragement

iv

A C K N O W L E D G E M E N T S

I would like to express my sincere gratitude to my advisor, Professor Geoffrey Fox, for

his support and guidance of my research and his endless patience. Without his help, it

would be impossible to write this thesis. I am extremely fortunate to have him as my

advisor.

I also would like to thank my research committee: Professor Paul Purdom, Professor

Sun Kim, and Professor David Wild, for valuable discussions and insightful comments.

I am very grateful to have been a Ph.D. student in the School of Informatics and Com-

puting where I could enjoy intellectual conversations and interactions with bright many

professors and researchers.

My sincere thanks also goes to Professor Judy Qiu for her help and guidance on projects

I worked with and new challenges that inspired me. I am indebted to my previous

advisor, Dr. Markus Jakobsson, who gave me a great opportunity to start my Ph.D. study

and provided countless help and advice.

I would like to thank my friend, Youngsang Shin, who didn’t hesitate to give invaluable

advice and immense help on my researches and life in Bloomington. I also thank to my

fellow, Seung-Hee Bae, a fantastic collaborator and a lab mate to discuss many things

on research. I wish to express my thanks to my lab fellows Thilina Gunarathne, Yang

Ruan, Saliya Ekanayake, Hui Li, Tak-Lon Wu, Yuduo Zhou, and Bingjing Zhang for their

collaboration and comments for my research.

v

I would like to give my special thank to my wife, Hyejong Jang, for everything during

my study. My sincere thanks goes to my parents, who gave everything and support me

always. Last but not the least, I would like to extend my thanks to my parents-in-law for

generous support and encouragement.

vi

A B S T R A C T

The finite mixture model forms one of the most fundamental foundations in the fields of

statistical pattern recognition, data mining, and machine learning to access the essential

structure of observed random sample data. It aims at building a probabilistic generative

model by which one can virtually reproduce the observed sample data from a mixture

of a finite number of probabilistic distributions called latent components or sources. The

finite mixture model provides a flexible and convenient way to explain a wide variety

of random phenomena of observed sample data in a generative process of mixing finite

random sources.

One of the main challenges in the finite mixture model is to search an optimal model

parameter set from a large parameter space. The standard method used to fit a finite mix-

ture model is the Expectation-Maximization (EM) algorithm. However, the EM algorithm

for finite mixture model has a serious drawback; it can find only local optimum solutions

and thus the quality of answer can be heavily affected by initial conditions and vary. An-

other important problem is the overfitting problem showing poor predicting performance

on unseen data.

We have observed that a global optimization heuristic, known as Deterministic Anneal-

ing (DA), can outperform the traditional EM algorithm for parameter fitting in certain

types of mixture models and provide an overfitting avoidance property. The DA algo-

rithm, developed by K. Rose and G. Fox, has been proven its success in avoiding the local

optimum problem and widely used in solving many data mining algorithms. Although

vii

many researches have been performed on both theoretic perspectives and clustering ap-

plications, the use of the DA, however, has not been widely reported in many real data

mining applications, despite of its superior quality and additional functions, such as learn-

ing hierarchical structures of data and overfitting avoidance. This is the main motivation

in this work: applying the DA algorithm to finite mixture models and developing new

algorithms and functions.

More specifically, in this thesis, we focus two well-known data mining algorithms which

are based on the finite mixture model: i) Generative Topographic Mapping (GTM) for

dimension reduction and data visualization, and ii) Probabilistic Latent Semantic Analy-

sis (PLSA) for text mining. Those two algorithms have been widely used in the fields of

data visualization and text mining, but still suffer from the local optimum problem due

to the use of the EM algorithm in their original developments. We extend those EM-based

algorithms by using the DA algorithm to improve their qualities in parameter estimation

and overfitting avoidance.

viii

L I S T O F A C R O N Y M S

DA Deterministic Annealing

DA-GTM Generative Topographic Mapping with Deterministic Annealing

DA-PLSA Probabilistic Latent Semantic Analysis with Deterministic Annealing

EM Expectation-Maximization

EM-GTM Generative Topographic Mapping with Expectation-Maximization

EM-PLSA Probabilistic Latent Semantic Analysis with Expectation-Maximization

FMM-1 Finite Mixture Model Type-1

FMM-2 Finite Mixture Model Type-2

GTM Generative Topographic Mapping

LDA Latent Dirichlet Allocation

LSA Latent Semantic Analysis

MLE Maximum Likelihood Estimation

PLSA Probabilistic Latent Semantic Analysis

SVD Singular Value Decomposition

ix

C O N T E N T S

1 introduction . 1

1.1 Thesis Organization . 4

1.2 Bibliographic Notes . 5

1.3 Notation and conventions . 5

2 finite mixture models and deterministic annealing 7

2.1 Finite Mixture Models . 7

2.1.1 Expectation Maximization Algorithm 9

2.2 Deterministic Annealing . 12

2.2.1 Phase Transition . 14

2.2.2 Adaptive cooling schedule . 16

2.2.3 Overfitting Avoidance . 17

3 generative topographic mapping with deterministic annealing . . 19

3.1 Generative Topographic Mapping . 19

3.2 Deterministic Annealing for Generative Topographic Mapping 22

3.3 Phase Transitions . 25

3.4 Experiments . 30

3.5 Conclusions and Future Work . 33

4 probabilistic latent semantic analysis with deterministic annealing 35

4.1 Probabilistic Latent Semantic Analysis 35

x

contents xi

4.2 Deterministic Annealing for Probabilistic Latent Semantic Analysis . . 39

4.2.1 Parameter Estimation for Prediction 41

4.3 Phase Transitions . 46

4.4 Experiments . 50

4.4.1 Performance of DA . 50

4.4.2 Avoiding overfitting . 50

4.4.3 Comparison with LDA . 55

4.4.4 Corpus visualization with GTM 57

4.5 Conclusions and Future Work . 59

5 summary and future work . 60

Appendices . 63

a derivatives of the free energy function of da-gtm 63

a.1 First derivatives . 64

a.2 Second derivatives . 65

b derivatives of the free energy function of da-plsa 66

b.1 First order derivatives . 67

b.2 Second order derivatives . 67

bibliography . 69

1 I N T R O D U C T I O N

Finite mixture modeling forms one of the most fundamental foundations in the fields of

statistical pattern recognition, data mining, and machine learning to access the essential

structures of observed random sample data.

It aims at building a probabilistic model in which a random sample is drawn from a

mixture of a finite number of probabilistic distributions called components or sources [24,

36]. The idea is that those components (or sources) can be used to abstract or summarize

the random sample data. However, in general, since no direct information of components

is available initially from a given random sample data, we call such components in a

mixture model as hidden or latent components and the main task in building a finite

mixture model is to uncover such hidden (or latent) components.

Since seeking hidden components or sources to fit observed sample data the best, a

finite mixture model is also called as a latent class model or a topic model (especially in text

mining area). The process of learning can fall under the category of unsupervised learning

in that finding latent components is solely based on observed sample data with no use of

any external information. Also, due to its random sample generating capability, a finite

mixture model is known as a generative model which can randomly generate observable

data.

The finite mixture model provides a flexible and convenient way to explain a wide

variety of random phenomena of observed sample data as a generative process of mixing

finite user-defined random sources [13, 24].

1

introduction 2

Due to its usefulness to provide a flexible and powerful tool of modeling complex

observed data, the finite mixture model has been continued to receive increasing attention

over years, from both a practical and a theoretical point of view [13, 24] and applied

in broad range of areas involving statistical modeling, such as clustering [18, 24], text

mining [5, 15], image processing [35], speech recognition [27], to name a few.

One of the main challenges in the finite mixture model is to search an optimal model

parameter set to fit observed sample data, called mixture model fitting, from a large param-

eter space. In general, the mixture model fitting is known as a NP-hard problem [1]. The

standard method used to fit a finite mixture model is the Expectation-Maximization (EM)

algorithm [12, 13, 24]. However, the EM algorithm for finite mixture model has one se-

rious drawback; it can find only local optimum solutions, not global solutions, and thus

the quality of the answer can be largely affected by initial conditions. We have observed

that a novel global optimization heuristic, called Deterministic Annealing (DA), can out-

perform the traditional EM algorithm for searching optimal parameters in certain types

of mixture model fitting problems.

The DA algorithm, pioneered by K. Rose and G. Fox [28–31], has been proven its suc-

cess in avoiding local optimum problem and widely used in solving many data mining

algorithms [17, 23, 32, 37]. Although many researches have been performed on both the-

oretic perspectives [28, 37] and clustering applications [17, 23, 32, 38], the use of the DA,

however, has not been widely reported in many real data mining applications, despite

of its superior quality and overfitting avoidance with a systematic approach. This is the

main topic we study in this work: applying the DA algorithm to solve the finite mixture

model problem and developing new algorithms.

More specifically, in this thesis, we focus two well-known data mining algorithms which

are based on the finite mixture model: i) Generative Topographic Mapping (GTM) for

introduction 3

dimension reduction and data visualization, and ii) Probabilistic Latent Semantic Anal-

ysis (PLSA) for text mining. Those two algorithms have been widely used in the fields

of data visualization and text mining, but still suffer from the local optimum problem

due to the use of the EM algorithm in their original developments. Although a DA-like

approach has been discussed in [15], the proposed solution is different from the point

of view of the traditional DA algorithm proposed by K. Rose and G. Fox [28–31]. We

extend those EM-based algorithms by using the DA algorithm to improve their qualities

in parameter estimation and overfitting avoidance.

Overfitting is often referred in a supervised learning setting to describe a problem

that a model looses its generality and thus shows large performance differences between

a training set and a validation set. In this thesis, we use overfitting in unsupervised

learning, where we do not have a managed testing set, in order to refer a model with

poor predictive performance for unseen data.

Our contributions in this thesis are summarized as follows:

i) Propose a generalized approach to solve the finite mixture model problem by using a

novel optimization algorithm, called DA, to guard against the local optimum problem

and help to achieve global optimum solutions.

ii) Develop a DA-based algorithm for GTM, named DA-GTM.

iii) Present the first and second order differential equations of the new objective function

of DA-GTM for completing algorithm in deciding starting parameters.

iv) Propose a new fast and stable convergence scheme for DA-GTM.

v) Develop a DA-based algorithm for PLSA, named DA-PLSA.

vi) Provide the first and second order differential equations of the new objective function

of DA-PLSA to determine an initial condition.

1.1 thesis organization 4

vii) Present experimental results of our DA-GTM and DA-PLSA, compared with the tra-

ditional EM-based algorithms.

1.1 thesis organization

The rest of this thesis is orgranized as follows:

• In Chapter 2, we give a broad overview of the finite mixture model and its EM al-

gorithm as the standard model fitting and parameter estimation method. Especially

we define two finite mixture models we focus in this thesis. We also review the DA

algorithm for the optimal finite mixture model fitting.

• In Chapter 3, we present a DA algorithm for GTM, named DA-GTM, and demon-

strate the performance results compared with the original GTM which uses an EM

method.

• In Chapter 4, we demonstrate how the PLSA problem can be solved by taking a DA

approach and present a new algorithm, named DA-PLSA, which is stemmed from

the original PLSA which utilizes an EM optimization.

• Lastly, we discuss the contributions of this thesis and future work.

1.2 bibliographic notes 5

1.2 bibliographic notes

The work presented in this thesis is solely the outcome of my own research and includes

none of any work in collaboration. Most of the GTM related work in this thesis have been

presented and published as conference papers [8–10] and a journal paper [7].

1.3 notation and conventions

In this thesis, we use a normal typeface to indicate scalar values, e.g., σ and β, while

using bold typeface for vectors and matrices. To distinguish vectors and matrices, we use

a lower case symbol for vectors, e.g., x, y, and an upper case symbol for matrices, e.g.,

X, Y . We also use an upper case letter for constants without a bold typeface, e.g., N, D.

However, exceptions to this convention do appear.

We organize data by using vectors and matrices. We let x1, . . . , xN denote an ob-

served or random sample data of size N, where xi is a D-dimensional random row

vector (1 6 i 6 N). We organize N-turple sample data into a N ×D matrix denoted

by X = (xTr
1 , . . . , xTr

N)
Tr such that row i of X contains i-th sample data xn where Tr repre-

sents a transpose. To access each element in a matrix, we use subscripts such that xij is

an (i, j) element of X. Similarly, we let y1, . . . , yK denote component data or latent data

of size K, where yk is a D-dimensional vector (1 6 k 6 K). We also organize such K-tuple

data set into K×D matrix denoted by Y = (yTr
1 , . . . ,yTr

K)
Tr so that k-th latent vector yk

equals row k. Also, ykj denotes an (k, j) element of Y .

1.3 notation and conventions 6

We use vectors for an array of scalar values. For example, we let π = (π1, . . . , πK)

denote mixing proportions or weights where each scalar quantity πk(1 6 k 6 K) holds

0 6 πk 6 1 and in total
∑K
k=1 πk = 1.

We let | · | and ‖ · ‖ denote L1-norm and L2-norm, respectively, to represent size of vec-

tors or distances between two vectors. For example,

| x | =

D∑
i=1

| xi | (1.1)

‖ x−y ‖ =

√√√√ D∑
i=1

(xi − yi)2 (1.2)

2 F I N I T E M I X T U R E M O D E L S A N D D E T E R M I N -

I S T I C A N N E A L I N G

In this chapter, we introduce finite mixture models and the Deterministic Annealing (DA)

algorithm.

2.1 finite mixture models

In the finite mixture model, we model the probability distribution of observed sample

data as a mixture distribution of finite number of components in a way in which each

sample is independently drawn from a mixture distribution of latent or hidden components

of size K with mixing weights. In machine learning, this modeling process falls under

the category of unsupervised learning as we aim at finding a model and its parameters

solely from the given sample data without using any external information. In general, we

can assume any form of distributions as a latent component but in practice we use one of

well-defined conventional continuous or discrete distributions, such as Gaussian, Poisson,

multinomial, and so on.

Formally, in the finite mixture model, we model the probability distribution of the

i-th (multivariate) sample data xi as a mixture distribution of K components and de-

7

2.1 finite mixture models 8

fine the probability of xi by a conditional probability with a mixing weight vector π =

(π1, . . . , πK) and component-specific parameters Ω = {ω1, . . . , ωK} as follows:

P(xi |Ω,π) =
K∑
k=1

πkP(xi |ωk) (2.1)

where the parameter set Ω represents a general component-specific parameter set; it can

be parameters for latent cluster centers or distribution parameters for components, and

π = {π1, . . . , πK} denotes mixing weights constrained by
∑
k πk = 1 for all k and each

element is bounded by 0 6 πk 6 1.

In general, the mixing weights π1, . . . , πK are system-wide parameters in that all sam-

ple data will share the same mixing weights. This model, often called as a mixture of

unigrams [5], is the traditional finite model widely used in the most algorithms, includ-

ing density estimation and clustering, where K components are closely related to the

centers of clusters [18]. This is also the model used in GTM [4, 10].

Relaxing the condition constrained on the mixing weights, we can further extend the

previous model to build a more flexible model, in a way in which each sample has its own

mixing weights rather than system-wide shared weights used in the previous definition.

This relaxed version of the finite mixture model can be defined by

P(xi |Ω,Ψ) =
K∑
k=1

ψikP(xi |ωk) (2.2)

where Ω represents a general parameter set as defined above and a new mixing weight

Ψ = {ψ1, . . . , ψN} represents a set of N weight vectors of size K, so that each weight

vector ψi represents K mixing weights ψi = (ψi1, . . . ,ψiK) corresponding to the i-th

sample data xi and is constrained by
∑K
k=1ψik = 1 and 0 6 ψik 6 1. This is the model

we will use for PLSA [15, 16]. More details will be discussed in Chapter 4.

2.1 finite mixture models 9

In this thesis, we focus those two mixture models defined in Eq. (2.1) and Eq. (2.2). Here-

after we call those two finite mixture models as Finite Mixture Model Type-1 (FMM-1) and

Finite Mixture Model Type-2 (FMM-2) respectively.

2.1.1 Expectation Maximization Algorithm

In analyzing random sample data with finite mixture models, we seek a set of mixture

model parameters so that a model can optimally fit a given sample data set. In statistics,

this process is called model fitting or parameter estimation. One of the most well known

estimators to measure the goodness of fitting or assess the quality of parameters is called

a Maximum Likelihood Estimation (MLE). In the MLE framework, we search a set of

parameters which maximizes likelihood, or equivalently log of likelihood known as log-

likelihood, of a given sample data set.

By using MLE in the finite mixture models defined above, our goal can be stated as

follows; Given that the sample data is independent and identically distributed (i.i.d), the

likelihood of the sample data is

P(X |Ω) =

N∏
i=1

P(xi |Ω) (2.3)

and we seek parameters which maximize the following log-likelihood L, defined by,

L = logP(X |Ω) (2.4)

=

N∑
i=1

logP(xi |Ω) (2.5)

2.1 finite mixture models 10

However, finding optimal parameters, i.e., model fitting, by using MLE in finite mix-

ture models is in general intractable except the most trivial cases. Traditionally in finite

mixture models, an iterative optimization method, called EM algorithm developed by

Dempster et al. [12], has been widely used for model fitting.

The EM algorithm searches for a solution by iteratively refining local solutions by taking

two consecutive steps per iteration: Expectation step (E-step) and Maximization step (M-

step). The high-level description of the EM steps for the finite mixture models can be

summarized as follows.

• E-step : we evaluate an expectation denoted by rki which is the conditional asso-

ciation probability of the k-th component related to the i-th sample data, defined

by

rki = P(k | i) (2.6)

=
P(xi |ωk)∑
k ′ P(xi |ωk ′)

(2.7)

where

K∑
k=1

rki = 1 (2.8)

The value rki is called in many different ways; responsibility, membership probabil-

ity, and association probability. Basically, it represents how likely sample xi can be

generated by component ωk.

2.1 finite mixture models 11

• M-step : using the values computed in E-step, we find parameters which will locally

maximize the log-likelihood L∗, defined by,

L∗ = argmax
Ω

L (2.9)

= argmax
Ω

N∑
i=1

logP(xi |Ω) (2.10)

To determine such parameters, we use the first derivative test; i.e., we compute the

first-order derivatives of L with respect to each parameter and test if they become

zero, such that ∂L/∂ωk = 0. This requires exact knowledge of probability distribu-

tions of components. Thus, details of M-step may vary from different models. The

M-step of our focus algorithms, GTM and PLSA, will be discussed in Section 3.1

and Section 4.1 respectively.

Although the EM algorithm has been widely used in many optimization problems in-

cluding the finite mixture models we are discussing, it has been shown a severe limitation,

known as the local optima problem [37], in which the EM method can be easily trapped

in local optima, failing to find a global optimum, and so the outputs are very sensitive to

initial conditions. The problem can be worse if we need accurate solutions for, such as,

density estimation or visualization in scientific data analysis. This may also cause poor

quality of query results in text mining.

To overcome such problem occurred in the finite mixture model problems with EM,

including our main focus algorithms GTM [3, 4] and PLSA [15, 16], we apply a novel

optimization method, called DA [28], to avoid local optimum and seek robust solutions

against poor initial conditions. We will discuss more details of DA in the next.

2.2 deterministic annealing 12

2.2 deterministic annealing

The DA algorithm [28–31] has been successfully applied to solve many optimization prob-

lems in various machine learning algorithms and applied in many problems, such as

clustering [17, 28, 38], visualization [23], protein alignment [6], and so on. The core ca-

pability of the DA algorithm is to avoid local optimum and pursue a global optimum

solution in a deterministic way [28], which contrasts to stochastic methods used in the

simulated annealing [22], by controlling the level of randomness or smoothness. The DA

algorithm, adapted from a physical process known as annealing, finds a solution in a

way in which an optimal solution is gradually revealed as lowering a numeric temperature

which controls randomness or smoothness.

At each level of temperature, the DA algorithm chooses an optimal state by following

the principle of maximum entropy [19–21], developed by E. T. Jaynes, a rational approach

to choose the most unbiased and non-committal answer for a given condition. In short,

the principle of maximum entropy, which is a heuristic approach to be used to choose

an answer with constrained information, states that if we choose an answer with the

largest entropy when other information is unknown, we will have the most unbiased and

non-committal answer.

To find a solution with the largest entropy, the DA algorithm introduces a new objective

function F, called free energy, an analogy to the Helmholtz free energy in statistical physics,

defined by

F = 〈D〉− T S (2.11)

where 〈D〉 represents an expected cost, T is a Lagrange multiplier, also known as a numeric

temperature, and S is an entropy.

2.2 deterministic annealing 13

It is known that minimization of the free energy F is achieved when the association

probabilities defined in Eq. (2.6) forms a Gibbs distribution, such as

P(k | i) =
exp (−d(i,k)/T)

Zi
(2.12)

where d(k, i) represents an association cost between ωk and xi, also called distortion,

and Zi is a normalization function, also known as partition function in statistical physics.

With Eq. (2.12), we can restate the free energy defined by Eq. (2.11) as

F = −T
N∑
i=1

logZi (2.13)

where the partition function Zi is defined by

Zi =

K∑
k=1

exp
(
−d(i,k)

T

)
(2.14)

In the DA algorithm, we choose at each level of temperatures an answer which mini-

mizes the free energy [28]. A standard method of parameter estimation, also known as

model fitting, in finite mixture models is the EM algorithm, which suffers from the local

optimum problem characterized by high-variance answers with different random starts.

To overcome such problem, we use the DA algorithm which is robust against the random

initialization problem and shows a proven ability to avoid local optimum for finding

global optimum solutions.

2.2 deterministic annealing 14

With the DA algorithm, the traditional objective function based on MLE in the finite

mixture models will be replaced to use the following new objective function based on the

free energy estimation:

F∗ = argmin
Ω

F (2.15)

In this thesis, we focus on developing new DA objective functions for GTM and PLSA

based on the finite mixture models, FMM-1 and FMM-2, defined as Eq. (2.1) and Eq. (2.2)

respectively. By using Eq. (2.13), we propose a general free energy function as follows:

FFMM = −T
N∑
i=1

log
K∑
k=1

{
c(i,k)P(xi |ωk)

}1/T
(2.16)

where c(i,k) represents a weight coefficient related with a conditional probability of data

xi given component ωk, P(xi |ωk).

Details will be discussed in Section 3.2 and Section 4.2 respectively.

2.2.1 Phase Transition

As one of the characteristic behaviors of the DA algorithm, the free energy estimation un-

dergoes an irregular sequence of rapid changes of state, called phase transitions, when we

are lowering the numeric temperature [28–30]. As a result, at some ranges of temperatures

we cannot obtain all distinctive solutions but, instead, we only obtain a limited number

of effective solutions [28, 39]. For an example, in the DA clustering algorithm proposed

by K. Rose and G. Fox [28, 30], we can see only one effective cluster at a high temperature

and observe unique clusters gradually pop out subsequently as the temperature is getting

lowered.

2.2 deterministic annealing 15

Thus, in DA, solutions will be revealed by degrees as the annealing process proceeds,

starting with a high temperature and ending in a low temperature. In other words, as we

do annealing (i.e., lowering temperatures) during the DA process, we will observe a series

of specific temperatures, called critical temperatures, at which the problem space radically

changes and solutions burst out in a manner in which a tree grows.

A question is how we can find or predict such phase transitions. In DA, we can describe

phase transitions as a moment of losing stability of the objective function, the free energy

F, and turning to be unstable. Mathematically, that moment corresponds to the point

in which the Hessian matrix, the second-order partial derivatives, of the object function

loses its positive definiteness.

In our finite mixture framework, the Hessian matrix, the second-order partial deriva-

tives of the free energy F with respect to component variablesω1, . . . , ωK, can be defined

as a block matrix:

H =


H11 · · · H1K

...
...

HK1 · · · HKK

 , (2.17)

where an element Hkk ′ is

Hkk ′ =
∂2F

∂ωTr
k ∂ωk ′

(2.18)

for 1 6 k,k ′ 6 K.

At a critical temperature (a moment of a phase transition), the Hessian H will be un-

stable and lose its positive definiteness. This temperature is called a critical temperature.

Thus, we can define critical temperatures as the point to make the determinant of Hessian

matrix H be zero (det(H) = 0).

2.2 deterministic annealing 16

Iteration

Te
m

p

1

2

3

4

5

200 400 600 800 1000

(a) exponential
Iteration

Te
m

p

2

3

4

5

200 400 600 800 1000

(b) linear
Iteration

Te
m

p

1

2

3

4

5

200 400 600 800 1000 1200

(c) adaptive

Figure 1: Various cooling schedule schemes. While exponential (a) and linear (b) is fixed and pre-
defined, our new cooling scheme (c) is adaptive that the next temperature is determined
in the on-line manner.

We will cover details of derivation and usages for GTM and PLSA in Section 3.3 and

Section 4.3 respectively.

2.2.2 Adaptive cooling schedule

The DA algorithm has been applied in many areas and proved its success in avoiding

local optimum and pursuing global solutions. However, to the best of our knowledge, no

literature has been found about the cooling schedule of the DA algorithm. Commonly

used cooling schedule is exponential (Figure 1a), such as T = αT , or linear (Figure 1b),

such as T = T − δ for invariant coefficients α and δ. Those scheduling schemes are fixed

in that cooling temperatures are pre-defined and the coefficient α or δwill not be changed

during the annealing process, regardless of the complexity of a given problem.

However, as we discussed previously, the DA algorithm undergoes the phase transi-

tions in which the problem space (or free energy) can change dramatically. To avoid such

drastic changes and make the transitions smoother, one may try to use very small α or δ

coefficient. However, the procedure can go too long to be used in practice.

2.2 deterministic annealing 17

To overcome such problem, we propose an adaptive cooling schedule in which cooling

temperatures are determined dynamically during the annealing process. More specifi-

cally, at every iteration in the DA algorithm, we predict the next phase transition temper-

ature and move to that temperature as quickly as possible. Figure 1c shows an example

of an adaptive cooling schedule, compared with fixed cooling schedules, Figure 1a and

Figure 1b.

Another advantage we can expect in using our adaptive cooling schedule scheme is that

users have no need to set anymore coefficients regarding cooling schedule. The adaptive

cooling process will automatically suggest next temperatures, based on a given problem

complexity. The adaptive cooling schedule for GTM will be discussed in Section 3.3.

2.2.3 Overfitting Avoidance

In statistical machine learning, overfitting (or overtraining) is a phenomena that a trained

model works too well on the training example but shows poor predictive performance

on unseen data [2, 25]. Especially in a supervised learning setting, an overfitting prob-

lem can be observed when training errors are getting smaller while validation errors

are increasing. Such overfitting problem, in general, contributes to the poor predictive

power of a trained model and causes a serious issue in many statistical machine learn-

ing, data mining, and information retrieval where predictive power for unseen data is

a valuable property. A few general solutions suggested in the areas are regularization,

cross-validation, early stopping, and so on.

In this thesis, we use DA in the finite mixture model framework to guard against the

overfitting problem in an unsupervised learning setting where we do not have a managed

testing set. We refer overfitting to a model with poor generalization quality.

2.2 deterministic annealing 18

Besides avoiding local optima problem discussed earlier, DA can also provide a capabil-

ity for overfitting avoidance finding a generalized solution. In fact, DA natively supports

generalized solutions. Note that DA starts to find a model in a smoothed probability

surface in a high numeric temperature and gradually tracking an optimum solution in

a bumpy and complex probability surface on lowering the numeric temperature [26]. In

other words, DA has naturally an ability to control smoothness of a solution. We can

exploit this feature of DA to obtain a less- or non-overfitted model.

Overfitting avoidance of DA has been investigated in various places [16, 33, 34]. In this

thesis, we take a similar approach to exploit DA’s overfitting avoidance for improving

predicting power for PLSA, a text mining algorithm. Details will be discussed in Sec-

tion 4.2.

3 G E N E R AT I V E TO P O G R A P H I C M A P P I N G W I T H

D E T E R M I N I S T I C A N N E A L I N G

In this chapter, we introduce the Generative Topographic Mapping (GTM) algorithm and

describe how the GTM problem can be solved in the finite mixture model framework.

Especially, we show the GTM algorithm is based on the Finite Mixture Model Type-1

(FMM-1), defined in Eq. (2.1). Then, we propose a new DA algorithm for GTM, named

Generative Topographic Mapping with Deterministic Annealing (DA-GTM). In the next,

we start with brief overviews of the GTM problem and discuss how we use the DA

algorithm for parameter estimation in GTM and predicting phase transition in DA-GTM,

followed by experimental results.

3.1 generative topographic mapping

The GTM [3, 4] algorithm is a visualization algorithm designed to find a non-linear mani-

fold embedding in a low dimension space (say, L-dimension) for a given high dimensional

data set (say D-dimensional) by using K latent components. More specifically, the GTM

algorithm seeks K latent variables, denoted by z1, . . . , zK, in L-dimension space, also

called latent space, such that zk ∈ RL(k = 1, ...,K), which can optimally represent the

19

3.1 generative topographic mapping 20

Data Space (D dimension)Latent Space (L dimension)

zk yk

xn

f

Figure 2: Non-linear embedding by GTM

given N data points, denoted by x1, . . . , xN, in the D-dimension space, also called data

space, which usually L� D (See Figure 2).

For this end, the GTM algorithm finds a low dimensional embedding by using the

following two steps: First, mapping the K latent variables, z1, . . . , zK, in the latent space

to the data space with respect to a non-linear mapping f : RL 7→ RD. Let us denote

the mapped points in the data space as y1, . . . , yK. Secondly, fitting the mapped points

y1, . . . , yK, considered as K components, to theN sample data points x1, . . . , xN by using

FMM-1 defined in Eq. (2.1).

Note that the GTM algorithm uses explicitly the Gaussian probability as a component

distribution, specifically, defined by a Gaussian centered on yk with covariance Σk. With-

out losing generality, we assume the Gaussian as an isotropic Gaussian with scalar vari-

ance σ2, such that the conditional probability density P(xi |yk,σ2) is defined by the fol-

lowing Gaussian distribution N:

P(xi |yk,σ2) = N(xi |yk,σ2) (3.1)

=

(
1

2πσ2

)D/2
exp
{
−
1

2σ2
‖ xi −yk ‖

2

}
(3.2)

3.1 generative topographic mapping 21

In summary, the GTM algorithm is the FMM-1 in which a sample data is modeled by

P(xi |Y,σ2) =

K∑
k=1

1

K
N(xi |yk,σ2). (3.3)

In the GTM algorithm, we uses an uniform mixing weight, such that πk = 1/K for all

k (1 6 k 6 K), as the Gaussian can control its variance σ2 for varying mixing weights.

Also, the component variables y1, . . . , yK, serving as centers of Gaussian or means, are

mapped by a non-linear function from L-dimension to D-dimension. The choice of the

non-linear mapping f : RL 7→ RD can be made from any parametric, non-linear model.

In the original GTM algorithm [3, 4], a generalized linear regression model has been used,

in which the map is a linear combination of a set of fixed M basis functions, such that,

yk = φTr
kW, (3.4)

where a column vector φk = (φk1, ...,φkM) is a mapping of zk by the M basis function

φm : RL 7→ R for m = 1, ...,M, such that φkm = φm(zk) and W is a M×D matrix

containing weight parameters. With a matrix notation, we can simplify the above equation

by

Y =ΦW (3.5)

where Φ is K×M matrix of which row k represents φk = (φk1, ...,φkM)Tr.

3.2 deterministic annealing for generative topographic mapping 22

With this model setting, the GTM algorithm corresponds to a Gaussian mixture model

problem of FMM-1 and seeks an optimal set of parameters, y1, . . . , yK and σ2, which

maximizes the following log-likelihood of GTM, LGTM, defined by

LGTM(Y ,σ2) =

N∑
i=1

log

{
1

K

K∑
k=1

N(xi |yk,σ2)

}
(3.6)

3.2 deterministic annealing for generative topographic

mapping

The GTM algorithm uses an EM method which starts with a random initial matrixW and

iteratively refines a solution to maximize Eq. (3.6), which can be easily trapped in local

optima. Thus, an output (which is a mapping) produced by the original GTM algorithm

can vary depending on initial parameters, which is known as the random initial value

problem. Instead of using the EM, we have applied a DA approach to find a global

optimum solution. With the use of the DA algorithm, we can have more robust GTM

maps without suffering the random initial value problem.

To apply the DA algorithm, as discussed in Section 2.2, we need a new free energy

function for GTM, named FGTM, which we will minimize through iterations. By using the

definitions for free energy, used in the paper by K. Rose [28], we can drive a free energy

3.2 deterministic annealing for generative topographic mapping 23

function for the GTM algorithm as follows; First, we let define the association cost d(n,k)

using a Gaussian distribution by

d(i,k) = − log P(xi,yk) (3.7)

= − log {P(yk)P(xi |yk)} (3.8)

= − log
{
1

K
N(xi |yk,σ2)

}
(3.9)

By using Eq. (2.12), then, we can define Zi by

Zi =

K∑
k=1

(
1

K

)β
N(xi |yk,σ2)β (3.10)

Here, for brevity, we use an inverse numeric temperature denoted by β, such that β = 1/T.

Finally, by using Eq. (2.13), we can have the free energy function for GTM, FGTM, as

follows:

FGTM(Y ,σ2,β) = −
1

β

N∑
i=1

logZi (3.11)

= −
1

β

N∑
i=1

log

{(
1

K

)β K∑
k=1

N(xi |yk,σ2)β
}

(3.12)

which is the objective function for the DA-GTM algorithm to minimize as changing tem-

perature from high (equivalent β near zero) and to low (equivalently β = 1.0).

Notice that the free energy function of DA-GTM, FGTM (3.12), and the MLE (3.6) of

GTM differ only the use of the inverse temperature variable β and the sign. Especially, at

β = 1.0, we have

LGTM(Y ,σ2) = −FGTM(Y ,σ2,β) (3.13)

3.2 deterministic annealing for generative topographic mapping 24

and thus we can conclude that the original GTM algorithm’s target function LGTM is just

a special case of FGTM.

To minimize (3.12), we need to find parameters to make the following two partial

derivatives be zero (Detailed derivations can be found in Appendix A):

∂FGTM

∂yk
=

1

σ2

N∑
i=1

ρki(xi −yk) (3.14)

∂FGTM

∂σ2
= −σ4

N∑
i=1

K∑
k=1

ρki

(
Dσ2

2
−
1

2
‖xi −yk‖2

)
(3.15)

where ρki is a property, known as responsibility, such that,

ρki =
P(xi |yk,σ2)β∑K
k ′=1 P(xi |yk ′ ,σ2)β

(3.16)

By using the same matrix notations used in the GTM paper [3, 4], the DA-GTM algo-

rithm can be written as a process to seek an optimal weight W and variance σ2 at each

temperature T.

W = (ΦTrGΦ)−1ΦTrRX (3.17)

1

σ2
=

1

ND

N∑
i=1

K∑
k=1

ρki‖xi −yk‖2 (3.18)

where X is a N×D data matrix, Φ is a K×M basis matrix, G′ is a K×K diagonal matrix

with elements γk =
∑N
n (ρki)

1
T .

3.3 phase transitions 25

3.3 phase transitions

As we discussed in Section 2.2, DA algorithms undergoes phase transitions as lowering

the temperatures. At some temperature, we can not obtain all distinct solutions but,

instead, we can only obtain a number of effective solutions. All solutions will gradually

pop out while the annealing process proceeds as with lowering the temperature.

In the DA-GTM algorithm, we can observe the same behavior. As an example, at

a very high temperature, the DA-GTM algorithm gives only one effective latent point

that all yk’s are collapsed to, corresponding to the center of data, denoted by x̄, such

that x̄ =
∑N
i=1 xi/N. At a certain temperature as we lowering temperature gradually,

components, y1, . . . , yK, which were settled (or stable) in their positions, start to explode

(or move). We call this temperature as the first critical temperature, denoted by T(1)
c or,

equivalently, β(1)
c = 1/T(1)

c , where the superscript indicates a sequence. As we further

lowering the temperature, we can observe a series of subsequent phase transitions and

thus multiple critical temperatures, such as T(2)
c , T(3)

c , . . . , T(K)
c . Especially obtaining the

first phase transition T(1)
c is an important task since we should start our annealing process

with an initial temperature higher than T(1)
c .

In the DA algorithm, we define a phase transition as a moment of losing stability of the

DA’s objective function, the free energy F, and turning to be unstable. Mathematically,

that moment corresponds to the status in which the Hessian of the object function loses

its positive definiteness.

3.3 phase transitions 26

For our DA-GTM algorithm, we can write the following Hessian matrix as a block

matrix:

H =


H11 · · · H1K

...
...

HK1 · · · HKK

 , (3.19)

where a sub matrixHij is a second derivative of the free energy FGTM as shown in Eq. (2.11).

More specifically, Hij can be written as follows:

Hkk =
∂2FGTM

∂yTr
k ∂yk

(3.20)

= −
1

σ4T

N∑
i=1

{
ρki(1− ρki)(xi −yk)

Tr(xi −yk) − Tσ2ρkiID
}

, or (3.21)

Hkk ′ =
∂2FGTM

∂yTr
k ∂yk ′

(3.22)

=
1

σ4T

N∑
i=1

{
−ρkiρk ′n(xi −yk)

Tr(xi −yk ′)
}

(k 6= k ′), (3.23)

where k,k ′ = 1, . . . ,K, and ID is an identity matrix of size D. Note that Hkk and Hkk ′ are

D×D matrices and thus, H ∈ RKD×KD.

As discussed in Section 2.2.1, we can compute the critical points which satisfy det(H) =

0. However, the size of the hessian matrixH can be too big to compute in practice. Instead,

we compute critical points by dividing the problem into smaller pieces. The sketch of the

algorithm is as follows:

1. For each component yk, let assume yk is split into two sub-components, say yk and

yk ′ (See Figure ??). Note we dropped superscripts for brevity.

3.3 phase transitions 27

2. Compute a local Hessian for yk (let denote Hk) defined by

Hk =

 Hkk Hkk ′

Hkk ′ Hkk

 (3.24)

where Hkk and Hkk ′ are defined by Eq. (3.20) and Eq. (3.22) respectively but we let

ρki = ρki/2 as we divide responsibilities too. Then, find a candidate of next critical

temperature Tc,k by letting det(Hk) = 0.

3. Choose the most largest yet lower than the current T among {Tc,k} for all k =

1, . . . ,K.

To compute det(Hk) = 0, let define the following:

Ux|yk =

N∑
i=1

ρki(xi −yk)
Tr(xi −yk) (3.25)

Vx|yk =

N∑
i=1

(ρki)
2(xi −yk)

Tr(xi −yk) (3.26)

Then, we can rewrite Eq. (3.20) and Eq. (3.22) by

Hkk = −
1

Tσ4
(
2Ux|yk −Vx|yk − 2Tσ

2γkID
)

(3.27)

Hkk ′ = −
1

Tσ4
(
−Vx|yk

)
(3.28)

We can also rewrite Eq. (4.19) by

Hk = −
1

Tσ2


 2Ux|yk −Vx|yk −Vx|yk

−Vx|yk 2Ux|yk −Vx|yk

− 2Tγkσ2I2D

 (3.29)

3.3 phase transitions 28

Thus, by letting det(H) = 0, we get the following eigen equation:

eig


 2Ux|yk −Vx|yk −Vx|yk

−Vx|yk 2Ux|yk −Vx|yk


 = 2Tγkσ2 (3.30)

where eig(A) denotes eigenvalues of A.

We can further simplify the above equation by using the Kronecker product ⊗:

eig


 2 0

0 2

⊗Ux|yk −
 1 1

1 1

⊗Vx|yk
 = 2Tγkσ2 (3.31)

Finally, Tc,k can be computed by

Tc,k =
1

2γkσ2
λmax,k (3.32)

where λmax,k is the largest, but lower than a current temperature T, eigenvalue of the

lefthand side of Eq. (3.31).

The first critical temperature T(1)
c is a special case of Eq. (3.32). With the Hessian

matrix defined above, we can compute the first phase transition point occurred at T(1)
c .

Assuming that the system has not yet undergone the first phase transition and the current

temperature is high enough, then we will have all yk’s overlapped in the center of the

data point, denoted by y0 = x̄ =
∑N
i=1 xi/N, and equal responsibilities, such as ρki =

ρk ′n = 1/2 for all k and n.

Then, the second derivatives can be rewritten by

Hkk = −
N

4Tσ4
(
Sx|y0 − 2Tσ

2ID
)

(3.33)

Hkk ′ = −
N

4Tσ4
(
−Sx|y0

)
(3.34)

3.3 phase transitions 29

Algorithm 1 GTM with Deterministic Annealing
DA-GTM

1: Set T > Tc by using Eq. (3.37)
2: Choose randomly M basis function
φm(m = 1, ...,M)

3: Compute Φ whose element φkm =
φm(zk)

4: Initialize randomly W
5: Compute σ2 by Eq. (3.18)
6: while T > 1 do
7: Update W by Eq. (3.17)
8: Update σ2 by Eq. (3.18)
9: T ← NextCriticalTemp

10: end while
11: return Φ,W,σ2

Algorithm 2 Find the next critical temperature
NextCriticalTemp

1: for k = 1 to K do
2: Λk ← {∅}
3: for each λ ∈ eig

(
Ux|yk −Vx|yk

)
do

4: if λ < Tγkσ2 then
5: Λk ← Λk ∪ λ
6: end if
7: end for
8: λmax,k ← max(Λk)
9: Tc,k ← λmax,k/γkσ

2

10: end for
11: return Tc ← max({Tc,k})

where Sx|y0 represents a covariance matrix of centered data set such that,

Sx|y0 =
1

N

N∑
i=1

(xi −y0)
Tr(xi −y0) (3.35)

and the Hessian matrix also can be rewritten by

eig


 1 −1

−1 1

⊗NSx|y0
 = 2Tγkσ2 (3.36)

Thus, the first critical temperature is

Tc =
1

σ2
λmax (3.37)

where λmax is the largest eigenvalue of Sx|y0 .

With Eq. (3.32) and Eq. (3.37), we can process DA-GTM with an adaptive cooling

scheme discussed in Section 2.2.2. The overall pseudo code is shown in Algorithm 1

and Algorithm 2.

3.4 experiments 30

Maximum Log−Likelihood = 1532.555

Dim1

D
im

2

−1.0

−0.5

0.0

0.5

1.0

●

●

●
●

●●

●●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●
●

●

● ●

●
●●

●

●
●

●●

●

●

●●
●

●

●

●

●
●

●

●
●●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●

●●●

●

●

●

●
●

●

●

●

●
●

● ●
●

●

●

●

●

● ●

●

●
●●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●
●

● ●

●

● ●

●

●

● ● ●●

●

●

●

●

●

●●

●
●

●

●
●

● ●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●
●

●

●
●

●

●

●
●

●

●
●

●

●
●

●
●● ●

●

● ●

●

●

●

●

●

●

●

●

● ●●
●● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●● ●

●

●

●
●

●●

●●

●

●

● ●

●

●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

● ●

●

●●

●

●
●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●
●

●

● ●

●

●

●
● ●●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●● ●

●

● ●

●

●

●

●

●

●

●

●

● ●●
●● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

● ●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

(a) EM-GTM

Maximum Log−Likelihood = 1636.235

Dim1
D

im
2

−1.0

−0.5

0.0

0.5

1.0

●
●

●

●

●
●

●●

●● ●
●

●

●●
●●

●

●
●

●

●

●● ●
●

●

●

●

● ●
●

●
●

●

●

● ●
●

●

●

●

●● ●● ●
●

●

●
● ●
●●

●
●

●

●

●
●

●

●

●

●
●●

●
●

●

●

●●

●

●

●

●

●●
● ●

●

●
●

●
●● ●

●

●

●●

●
●● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●
●

●
●

●

●
●

●

●

● ●

●

●

●● ●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
● ●

●

●

●

●●● ●
●

●● ●●

●

● ●●●
●

●

●

●
● ●

●

●●
●

●

● ●
● ●● ●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●

● ●
●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●● ●●

● ●

●

●

●
●

● ●● ●
●

●
● ●

●●

●

●

●

● ●●●
●

●
●

● ●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●

●
● ●

●

●

●●
●●

●

●
●

●

●

●● ●

●

●

●

●

● ●

●

●
●

●

●

● ●

●

●

●

●

●● ●● ●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●●

● ●

●

●
●

●
●●

●

●

●

●●

●
●● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●
●

●

●

● ●

●

●

●● ●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●●● ●
●

●●
●●

●

● ●●●

●

●

●

●
●

●

●

●●

●

●

● ●
●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

● ●
●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●●

●
●

●

●

●
●

● ●● ●
●

●

● ●

●●

●

●

●

●
●●●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●

●

●
●

●

−1.0 −0.5 0.0 0.5 1.0

(b) DA-GTM with exp. scheme

Maximum Log−Likelihood = 1721.554

Dim1

D
im

2

−1.0

−0.5

0.0

0.5

1.0

●
●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

● ●●

●●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●
●● ●●

●
●
●

●

● ●

●●

●
●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●
●

●

●
●

● ●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●●

●

●
●

●
●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●

● ●●

●

●

●
●

●
●

● ●

●

●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●●
●

●

●
●

●

●●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

● ●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

● ●●

●

●

●
●

●
●

● ●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

(c) DA-GTM with adaptive scheme

Labels
A
B
C

Figure 3: Comparison of (a) EM-GTM, (b) DA-GTM with exponential, and (c) DA-GTM
with adaptive cooling scheme for the oil-flow data which has 3-phase clusters
(A=Homogeneous, B=Annular, and C=Stratified configuration). Plots are drawn by a
median result among 10 random-initialized executions for each scheme. As a result,
DA-GTM with adaptive cooling scheme (c) has produced the largest maximum log-
likelihood and thus the plot shows better separation of the clusters, while EM-GTM (a)
has output the smallest maximum log-likelihood and the result shows many overlaps.

3.4 experiments

To compare the performances of our DA-GTM algorithm with the original EM-based

GTM (hereafter EM-GTM for short), we have performed a set of experiments by using

two datasets: i) the oil flow data used in the original GTM papers [3, 4], obtained from

the GTM website1, which has 1,000 points having 12 dimensions for 3-phase clusters and

ii) a chemical compound data set obtained from PubChem database2, which is a NIH-

funded repository for over 60 million chemical compounds and provides various chemical

information including structural fingerprints and biological activities, for the purpose of

chemical information mining and exploration. In this paper we have randomly selected a

subset of 1,000 elements having 166 dimensions.

1 GTM homepage, http://www.ncrg.aston.ac.uk/GTM/
2 PubChem project, http://pubchem.ncbi.nlm.nih.gov/

http://www.ncrg.aston.ac.uk/GTM/
http://pubchem.ncbi.nlm.nih.gov/

3.4 experiments 31

Start Temperature

Lo
g−

Li
ke

lih
oo

d
(ll

h)

0.0

0.5

1.0

1.5

2.0

N/A 5 7 9

Type

EM

Adaptive

Exp−A

Exp−B

Figure 4: Comparison of EM-GTM with DA-GTM in various settings. Average of 10 random
initialized runs are measured for EM-GTM, DA-GTM with 3 cooling schemes (adaptive,
exponential with α = 0.95 (Exp-A) and α = 0.99 (Exp-B).

In Figure 3, we have compared for the oil-flow data maximum log-likelihood produced

by EM-GTM, DA-GTM with exponential cooling scheme, and DA-GTM with adaptive

cooling scheme and present corresponding GTM plots as outputs, known as posterior-

mean projection plot [3, 4], in the latent space. For each algorithm, we have executed 10

runs with different random setups, chosen a median result, and drawn a GTM plot. As

a result, DA-GTM with adaptive cooling scheme (Figure 3c) has produced the largest

maximum log-likelihood (best performance), while EM-GTM (Figure 3a) produced the

smallest maximum log-likelihood (worst performance). Also, as seen in the figures, a

plot with larger maximum log-likelihood shows better separation of the clusters.

3.4 experiments 32

Iteration

Lo
g−
Li

ke
lih

oo
d

va
lu

e

−8000

−6000

−4000

−2000

0

2000

2000 4000 6000 8000

Type
Likelihood

Average Log-Likelihood
of EM-GTM

(a) Progress of log-likelihood

Iteration

Te
m

pe
ra

tu
re

1

2

3

4

5

6

7
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

2000 4000 6000 8000

Type
● Temp

Starting Temperature

1st Critical Temperature

(b) Adaptive changes in cooling schedule

Figure 5: A progress of DA-GTM with adaptive cooling schedule. This example show how DA-
GTM with adaptive cooling schedule progresses through iterations

In the next, we have compared the performance of EM-GTM and DA-GTM with 3 dif-

ferent cooling schemes: i) Adaptive schedule, which we have prosed in this thesis, ii) Ex-

ponential schedule with a cooling coefficients α = 0.95 (denoted Exp-A hereafter), and iii)

Exponential schedule with a cooling coefficients α = 0.99 (denoted Exp-B hereafter). For

each DA-GTM setting, we have also applied 3 different starting temperature 5, 6, and 7,

which are all larger values than the 1st critical temperature which is about 4.64 computed

by Eq. (3.37). Figure 4 shows the summary of our experiment results in which numbers

are estimated by the average of 10 executions with different random initialization.

As a result shown in Figure 4, the DA-GTM outperforms EM-GTM in all cases. Also,

our proposed adaptive cooling scheme mostly outperforms other static cooling schemes.

Figure 5 shows an example of execution of DA-GTM algorithm with adaptive cooling

schedule.

3.5 conclusions and future work 33

Maximum Log−Likelihood = −36584.455

Dim1

D
im

2

−1.0

−0.5

0.0

0.5

1.0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

(a) EM-GTM

Maximum Log−Likelihood = −36456.181

Dim1
D

im
2

−1.0

−0.5

0.0

0.5

1.0

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●
●

●

●● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●
●

●●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●
●

●
●

●

● ●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

● ●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

(b) DA-GTM with exp. scheme

Figure 6: Comparison of (a) EM-GTM and (b) DA-GTM with exponential scheme for 1,000 ele-
ment PubChem dataset having 166 dimensions. Plots are drawn as a median result of
10 randomly initialized executions of EM-GTM and DA-GTM. The average maximum
log-likelihood from DA-GTM algorithm (−36, 608) is larger than one from EM-GTM
(−36, 666).

We have also compared EM-GTM and DA-GTM with exponential cooling scheme for

the 1,000 element PubChem dataset which has 166 dimensions. As shown in Figure 6,

DA-GTM’s output is better than EM-GTM’s since DA-GTM’s average maximum log-

likelihood (−36, 608) is larger than EM-GTM’s (−36, 666).

3.5 conclusions and future work

In this chapter, we have showed how the GTM problem can be solved in a finite mixture

framework and presented a new method to achieve better optimization. In the line of

this approach, We have developed DA-GTM to solve the original GTM problem based on

3.5 conclusions and future work 34

the EM method. Our new algorithm uses as an optimization method the DA algorithm

which is more resilient against the local optima problem and less sensitive to poor initial

conditions, from which the original EM-based GTM was suffered. In addition, we have

also developed a new cooling scheme, called adaptive cooling schedule. In contrast to

the conventional cooling schemes, such as linear or exponential cooling schemes, which

are all pre-defined and fixed, our new adaptive cooling scheme can adjust the granularity

of cooling speed in an on-line manner. In our experiments, we showed new DA-GTM

algorithm and adaptive cooling scheme can outperform the conventional GTM algorithm.

4 P R O B A B I L I S T I C L AT E N T S E M A N T I C A N A LY-

S I S W I T H D E T E R M I N I S T I C A N N E A L I N G

In this chapter, we introduce the Probabilistic Latent Semantic Analysis (PLSA) algorithm

and discuss how the PLSA problem can be solved with the DA algorithm in the finite

mixture framework. Especially, we show the model used in PLSA is based on the Fi-

nite Mixture Model Type-2 (FMM-2) we defined in Eq. (2.2). In the next, we start with

brief overviews of the PLSA problem and discuss how we apply the DA algorithm for

parameter estimation and learning in the PLSA algorithm and present a new algorithm,

named Probabilistic Latent Semantic Analysis with Deterministic Annealing (DA-PLSA),

followed by experimental results.

4.1 probabilistic latent semantic analysis

The PLSA algorithm [15, 16], also known as a aspect or topic model, is an algorithm for

modeling binary and count data, aiming at recovering or deducting a generative process

from which one can obtain essential probabilistic structures or latent aspects of data.

Results from PLSA can be used for summarization, clustering, and classification. Among

many application areas reported in the literature, such as document indexing [5, 15],

35

4.1 probabilistic latent semantic analysis 36

video processing [35], and speech recognition [27], PLSA shows prominent capability in

analyzing and retrieval of text document, which is our focus in this thesis.

PLSA was stemmed from an algorithm called Latent Semantic Analysis (LSA) [11, 14],

which is based on a linear algebra method, called Singular Value Decomposition (SVD),

to extract the most dominant features of sample data by using a linear combination and

L2-norm approximation, adding a statical model which allows us to have principled ap-

proaches and statistical foundations. Especially, in the field of text document analysis and

linguistics, PLSA has been used for building probabilistic models of text and languages.

The probabilistic model used in PLSA is called a latent variable model in which we

assume data (or documents) is generated from a set of latent components (or topics). This

model exactly corresponds to one of the finite mixture models we discuss in Section 2.1

(especially FMM-2. We will discuss shortly). In other words, in the context of the finite

mixture model for text analysis, PLSA seeks a finite number of topics which can represent

optimally the documents given in a corpus.

During the optimization process finding a model and model parameters, PLSA uses an

EM method. However, this fitting process suffers two severe problems: one is the local

optimum problem in which one would observe large variations of solutions, depending

on random starting settings; the other is the overfitting problem in that EM chooses a

model too close to the given data so that a solution loses its generality. Model generality

is an important feature in information retrieval as it is directly related to the predictive

power of a model for unseen data.

Overfitting is often referred in a supervised learning setting to describe a problem that

a model looses its generality and thus shows large performance differences between a

training set and a validation set. We use overfitting in an unsupervised learning setting,

4.1 probabilistic latent semantic analysis 37

where we do not have a managed testing set, in order to refer a model with poor predictive

performance for unseen data.

This is our motivation to solve the PLSA problem with DA. Using DA in the place

of EM in PLSA allows us i) to avoid local optimum problem and help to find a global

solution with small variations and ii) to prevent overfitting and give more smoothed

answers.

Latent Dirichlet Allocation (LDA), one of the most popular text mining algorithms, has

been proposed by D. Blei at. al [5] to overcome overfitting problem in PLSA. LDA is

an extension of PLSA and pursues a smoothed (generalized) model by using Dirichlet

prior, called Dirichlet prior smoothing. Our DA based solution shares the same objective

with LDA; seeking a smoothed model. However, we achieve smoothing effects in a DA

framework in which no prior knowledge is required. We show a simple performance

comparison in Section 4.4

Before discussing details of the DA algorithm for PLSA, we briefly review the PLSA

algorithm. In PLSA, we denote a collection of N text documents, called a corpus of size

N, as X = {x1, . . . , xN} where xi (1 6 i 6 N) represents a document vector. In this

corpus, we have a vocabulary set containing total D unique words (or terms) denoted by

{w1, . . . , wD} and thus each document xi is aD-dimensional vector where its j-th element

represents the number of occurrences (or frequency) of word wj. One may summarize the

corpus X in a rectangular N×D matrix, called co-occurence (or document-term) matrix

X = [xij]ij for 1 6 i 6 N and 1 6 j 6 D, in a way in which an element xij denotes the

frequency of word wj occurred in a document xi.

Then, we can define a topic as a generative function that will create a document (i.e, a

list of words and word frequencies) by following a multinomial distribution over words.

4.1 probabilistic latent semantic analysis 38

More specifically, if a document is generated from a certain topic, say k-th topic, its

conditional probability can be written by

P(xi | ζk = 1) = Multi(xi |θk) (4.1)

where ζk is called a latent class, a binary random variable indicating association with the

k-th latent class, and Multi(xi |θk) represents a multinomial probability of xi over word

probability θk = (θk1, . . . , θkD) where θkj represents a word probability P(wj | ζk = 1),

defined by

Multi(xi |θk) =
Γ (| xi |+ 1)∏D
j=1 Γ(xij + 1)

D∏
j=1

(
θkj
)xij (4.2)

where Γ(·) represents a gamma function, an extension of the factorial function such that

Γ(n) = (n− 1)! .

Assuming we have total K topics in a given corpus, the marginal document probability

can be defined as a mixture of topics written by

P(xi |Θ,Ψ) =
K∑
k=1

ψikMulti(xi |θk) (4.3)

where a word probability set is denoted by Θ = {θ1, . . . , θK} and a mixture weight set is

presented by Ψ = [ψik]ik for each mixture weight ψik with the constraint 0 6 ψik 6 1

and
∑
kψik = 1.

Please note this is Type 2 of our finite mixture model, FMM-2, defined in Eq. (2.2),

where the component specific parameters Ω = {ω1, . . . , ωK} correspond to the word

probability Θ = {θ1, . . . , θK}. Also, a mixture weight ψik is a document level parameter,

rather than a corpus level, in that each document will have different mixture weights over

4.2 deterministic annealing for probabilistic latent semantic analysis 39

the finite number of topics. This is the key difference that distinguished from the other

mixture model in which weights are uniform throughout random samples (e.g., GTM).

Then, the probability of the full set of documents in the corpus can be written by

P(X |Θ,Ψ) =
N∏
i=1

K∑
k=1

ψikMulti(xi |θk) (4.4)

and the log-likelihood can be defined by

LPLSA(X,Θ,Ψ) =
N∑
i=1

log

{
K∑
k=1

ψikMulti(xi |θk)

}
(4.5)

Eq. (4.5) is the objective function in the original PLSA algorithm to maximize by using

EM. In the following we will discuss how the DA algorithm can be used for the PLSA

problem.

4.2 deterministic annealing for probabilistic latent se-

mantic analysis

To maximize the log-likelihood function shown in Eq. (4.5), T. Hofmann has proposed

an EM algorithm for model fitting in PLSA [15, 16]. However, as we discussed in Sec-

tion 2.2, EM finds only local solutions. In addition, the EM algorithm does not provide

a systematic way to avoid the overfitting problem, which is an important issue in text

mining and retreival. Simply, in the EM algorithm, one may try to stop optimization ear-

lier before reaching convergence (known as early stopping) but it is not enough for better

performance.

4.2 deterministic annealing for probabilistic latent semantic analysis 40

To overcome such problem, we propose a new DA algorithm for PLSA, named Proba-

bilistic Latent Semantic Analysis with Deterministic Annealing (DA-PLSA). In fact, in the

paper on PLSA [16], T. Hofmann has also proposed a DA-like algorithm, called Tempered

EM. However, the Tempered EM is different from the traditional DA algorithm in that the

cooling schedule is reversed and is only applied to solve overfitting problem (we will

discuss soon). Our proposed DA-PLSA algorithm is more closed to the DA approach

presented by K. Rose and G. Fox [28, 29].

To optimize the PLSA model fitting with DA, we define a new objective function for

PLSA, free energy FPLSA, given by

FPLSA = −
1

β

N∑
i=1

log
K∑
k=1

{ψkiMulti (xi |θk)}
β (4.6)

where β represents inverse computational temperature, defined by β = 1/T. Unlike the

Tempered EM where temperatures are changed from a low temperature (1.0) to a high

temperature, we will gradually lower a temperature from high to low (equivalently, β

will be changed from near zero to 1). At each temperature, we have the following internal

EM steps to minimize FPLSA.

• E-step : we evaluate the responsibility ρki, defined by

ρki =
P(xi |θk,ψk)β∑K

k ′=1 P(xi |θk ′ ,ψk ′)β
(4.7)

=
{ψkiMulti (xi |θk)}

β∑K
k ′=1 {ψk ′iMulti (xi |θk ′)}

β
(4.8)

4.2 deterministic annealing for probabilistic latent semantic analysis 41

• M-step : we maximize FPLSA by computing the following parameters:

θk =

∑N
n=1 ρkixi∣∣∣∑Nn=1 ρkixi ∣∣∣ (4.9)

ψik =
ρki∑K
k=1 ρki

(4.10)

Those parameters are chosen as to make the first derivate of FPLSA, ∂FPLSA/∂θk and

∂FPLSA/∂ψik, be zero (Details of derivation is shown in Appendix B).

4.2.1 Parameter Estimation for Prediction

As we mentioned previously, predicting power for unseen data is highly valuable, es-

pecially, in the text mining area and many researches have been performed to increase

predicting power by avoiding the overfitting problem and seeking a general solution. The

original PLSA algorithm with EM suffers from the overfitting problem because the EM

model fitting finds parameters too specific to a given dataset, so that a result model may

lose its generality for unseen data. This overfitting problem can be prevented by using

the DA algorithm.

The DA algorithm is an algorithm which can control smoothness or generality at each

level of temperature while doing annealing. In fact, DA finds a solution in a way it

gradually refines a solution iteratively, starting from a state of large entropy, which is

called a smoothed solution, and ending at a state achieving an optimal solution specific

to a problem. In short, DA refines a solution annealed from a high temperature to a low

temperature such as T = 1.0. Our intuition in using DA to solve the overfitting problem

of PLSA is that we find a smoothed model starting from high temperature but before

4.2 deterministic annealing for probabilistic latent semantic analysis 42

reaching at T = 1.0, expecting that the model has more predictive power for unseen data

which is not included in the sample data used for modeling.

To measure the quality of predictive power of unseen data, we utilize the technique

used in Tempered EM, known as V-fold cross validation. In V-fold cross-validation, we

randomly partition the original data into V smaller subsets. Then, we use only (V − 1)

subsets, called the training set, for training and learning models and the remaining one

subset, called the testing set or validation set, for only measuring a predictive power (or

generality) of the trained model. In a series of PLSA related papers [5, 15, 16], to access

the quality of the predictive power of a trained PLSA model, it is proposed to measure a

quantity, called perplexity, of a testing set as unseen data by using the parameters leaned

from the training set. Perplexity is a log-averaged inverse probability [5], defined by,

Perplexity = exp

(
−
∑N
i=1 logP(xi)∑N
i=1 | xi |

)
(4.11)

where xi is a document and | xi | represents the total sum of word frequencies of document

xi. In short, a lower perplexity score indicates better generalization performance.

Note, perplexity is closely related to the log-likelihood of a corpus, such that

Perplexity = exp

(
−LPLSA∑N
i=1 | xi |

)
(4.12)

and thus,

Perplexity ∝ −LPLSA (4.13)

4.2 deterministic annealing for probabilistic latent semantic analysis 43

In this thesis, however, we propose using the total sum of log-likelihood of both training

set and testing set, named total perplexity, defined by,

Total Perplexity = a ·LPLSA(Xtraining,Θ,Ψ) + b ·LPLSA(Xtesting,Θ,Ψ) (4.14)

for mixing weight coefficients a,b.

In our proposed DA-PLSA, at each iteration we measure the total perplexity, defined

in Eq. (4.14), by using both training (if a > 0) and testing set and stop annealing at

the temperature in which the total perplexity is maximized. For an example, Figure 7

shows the changes of log-likelihood of both a training set and a testing set by using

the Associated Press (AP) dataset (Details are summarized in Table 1). In Figure 7, we

can observe that the log-likelihood (LLH) of the training set is steadily improved, as we

proceed annealing from a high temperature to a low temperature. However, the LLH

of the testing set is decreasing because the model fitting is losing its generality. Our

proposed solution using total perplexity is to stop annealing when the total perplexity is

maximized. In this example shown in Figure 7, we use a = b = 0.5 for measuring the

total perplexity (green dotted line). This scheme suggest that we stop annealing at about

T = 49.98, so that the sum of perplexity is maximized.

In Figure 7, we can also observe the overfitting problem; a steep drop of log-likelihood

of the testing set. This is mainly because, during the model fitting process in DA-PLSA,

the smoothed word probabilities at high temperatures become rigid so that word proba-

bilities tend to be extreme, either close to one or zero, at lower temperature. This harms

the log-likelihood of the testing set. To show the changes of word probabilities at different

temperatures, in Figure 8 we have compared (a) log probabilities of words at the optimal

temperature found by the total perplexity (T = 49.98) and (b) ones at T = 1.0. As shown

in this example, DA-PLSA finds a general solution at higher temperature larger than 1.0.

4.2 deterministic annealing for probabilistic latent semantic analysis 44

Changes of Log−Likelihood

Temperature

Lo
g−

lik
el

ih
oo

d

−2000

−1500

−1000

151050100

Training Set

Testing Set

Total Perplexity

Figure 7: Changes of log-likelihoods of of the training set and the testing set in DA-PLSA for the
Associated Press dataset with K=100. The sum (dotted line) represents total perplexity.
Temperatures are log-scale as we used an exponential cooling scheme.

4.2 deterministic annealing for probabilistic latent semantic analysis 45

W
o

rd
 I

n
d

e
x

Topic Index

20 40 60 80 100

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

−40

−35

−30

−25

−20

−15

−10

−5

0

(a) T = 49.98

W
o

rd
 I

n
d

e
x

Topic Index

20 40 60 80 100

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

−40

−35

−30

−25

−20

−15

−10

−5

0

(b) T = 1.00

Figure 8: A Heat map of word probability of the AP data set at different temperatures: (a) one is
measured at the optimal temperature in which total perplexity is maximized (T = 49.98)
and (b) the other is taken at T = 1.0. Probabilities are log scaled.

4.3 phase transitions 46

4.3 phase transitions

As we discussed in Section 2.2, our DA-PLSA algorithm will undergo phase transitions

in which the free energy FPLSA changes drastically when the temperature is lowering.

Also, as we discussed previously in DA-GTM, we can define such phase transitions of

DA-PLSA as a moment of losing stability of the objective function, the free energy FPLSA,

and turning to be unstable. I.e., phase transitions can occur at the moment in which

the Hessian of DA-PLSA loses its positive definiteness. The Hessian matrix of DA-PLSA

can be also defined in the same form shown in Eq. (3.23) with the following sub matrix

definitions:

Hkk =
∂

∂θTr
k

(
∂FPLSA

∂θk

)
(4.15)

= −
1

β

N∑
n=1

{(
ρki − ρ

2
ki

)
β2
(
xiθ

−1
k

)Tr (
xiθ

−1
k

)
− ρkiβdiag

(
xiθ

−2
k

)}
(4.16)

Hkk ′ =
∂

∂θTr
k ′

(
∂FPLSA

∂θk

)
(4.17)

= −
1

β

N∑
n=1

{
−ρkiρk ′iβ

(
xiθ

−1
k

)Tr (
xiθ

−1
k

)}
(4.18)

where diag(d) represents a diagonal matrix whose diagonal element is vector d and

k,k ′ = 1, · · · ,K.

Now we can compute the critical points which satisfy det(H) = 0. However, the size of

the hessian matrix H can be too big to compute. Instead, we compute critical points by

dividing the problem into pieces. The sketch of the algorithm for each iteration (t) is as

follows:

4.3 phase transitions 47

1. For each component θk, let assume θ(t)k is duplicated into two sub components, say

θ
(t+1)
k and θ(t+1)k ′ . For brevity, we will drop superscripts for a iteration index.

2. Compute a local Hessian for θk (let denote Hk) defined by

Hk =

 Hkk Hkk ′

Hkk ′ Hkk

 (4.19)

where Hkk and Hkk ′ are defined by Eq. (3.20) and Eq. (3.22) respectively but we let

ρki = ρki/2 as we split responsibilities too.

Find a candidate of next critical temperature Tc,k by letting det(Hk) = 0.

3. Choose the most largest but lower than the current T among {Tc,k}.

To compute det(Hk) = 0, let define the following:

UX |θk =

N∑
i=1

(√
ρkixiθ

−1
k

)Tr (√
ρkixiθ

−1
k

)
(4.20)

VX |θk =

N∑
i=1

(
ρkixiθ

−1
k

)Tr (
ρkixiθ

−1
k

)
(4.21)

GX |θk = diag

(
N∑
i=1

ρkixiθ
−2
k

)
(4.22)

Then, we can rewrite Eq. (4.16) and Eq. (4.18) by

Hkk = −
β

4

(
2UX |θk −VX |θk −

2

β
GX |θk

)
(4.23)

Hkk ′ = −
β

4

(
−VX |θk

)
(4.24)

4.3 phase transitions 48

And,

Hk = −
β

4


 2UX |θk −VX |θk −VX |θk

−VX |θk 2UX |θk −VX |θk

−
2

β

 1 0

0 1

⊗GX |θk

(4.25)

= −
β

4


 2 0

0 2

⊗UX |θk −

 1 1

1 1

⊗VX |θk −
2

β

 1 0

0 1

⊗GX |θk

(4.26)

Since we can decompose G such that GX |θk = A
TrA, we can rewrite Eq. (4.26) by

Hk = −
β

4
ATr

Λk − 2

β

 1 0

0 1

⊗ I
A (4.27)

where

Λk =
(
ATr

)−1
 1 0

0 1

⊗UX |θk −

 1 1

1 1

⊗VX |θk

A−1 (4.28)

Then, by letting detH = 0, we get the following eigen equation:

eig (Λk) =
2

β
(4.29)

Thus, a critical temperature Tc,k can be computed by

Tc,k = 1/β (4.30)

= λmax,k/2 (4.31)

where λmax,k represents one of the eigenvalues of Λk which is the largest but lower than

current temperature T.

4.4 experiments 49

Table 1: Summary of the Associated Press dataset for 10-fold cross validation.

AP dataset Train set Test set (10%) Total

Num. of documents 2,022 224 2,246

Num. of words 10,439 10,439 10,439

Sparseness (ratio of zero frequency elements) 0.9871 0.9874

NIPS dataset Train set Test set (10%) Total

Num. of documents 1,350 150 1,500

Num. of words 12,339 12,339 12,419

Sparseness (ratio of zero frequency elements) 0.9598 0.9590

Now we can compute the first critical temperature T(1)
c . When K = 1, we haveUX |θk =

VX |θk . Then,

Λk =
(
ATr

)−1
 1 −1

−1 1

⊗UX |θk

A−1 (4.32)

=

 1 −1

−1 1

⊗{(ATr
)−1

UX |θkA
−1

}
(4.33)

Thus, the first critical temperature T(1)
c can be computed by

T(1)
c = λmax (4.34)

where λmax is the largest eigenvalue of eig
((
ATr

)−1
UX |θkA

−1

)

4.4 experiments 50

4.4 experiments

In this section, we show experiment results of DA-PLSA in comparison of the original

PLSA algorithm (hereafter EM-PLSA for short). For our experiments, we used known

datasets, called Associated Press news dataset (hereafter AP data) and NIPS conference

papers dataset (hereafter NIPS data). Details are summarized in Table 1.

4.4.1 Performance of DA

First, we compared the full performance of DA-PLSA (annealing until T = 1.0) and tra-

ditional EM-PLSA by using the AP data with various latent dimensions (also called the

number of hidden components). Figure 9 shows the changes of maximum log-likelihood

obtained by DA and EM algorithm of PLSA with different number of latent compo-

nents. As we can see, DA-PLSA consistently outperforms EM-PLSA by showing larger

log-likelihood values.

4.4.2 Avoiding overfitting

Without early stopping, i.e., fitting a model lowering temperatures until T = 1.0, as shown

in the previous experiment, we may find an optimal PLSA model which generates the

maximum log-likelihood for a given sample, i.e., fully optimized, by using DA. How-

ever, we may also suffer from an overfitting problem. Especially, in the text mining, a

model with predicting power for unseen data is more valuable than a model with over-

specific to a given sample. Avoiding such overfitting problem is an important issue. As

4.4 experiments 51

Maximum Log−Likelihood

Latent space dimensions

Lo
g−

lik
el

ih
oo

d

−800

−700

−600

−500

−400

●

●

●

●

●

●

●

●

DA

EM

1 5 10 50 100 500

Figure 9: Quality comparison between the EM-PLSA and DA-PLSA by using the maximum log-
likelihood values at T = 1.0 with respect to various latent dimensions. DA-PLSA out-
performs EM-PLSA for all latent dimensions. Numbers are measured by the average of
100 randomly initialized experiments. A bar represents variation.

4.4 experiments 52

Changes of Log−Likelihood

Temperature

Lo
g−

lik
el

ih
oo

d

−1200

−1100

−1000

−900

−800

−700

151050100

Training Set

Testing Set

Mix B

Mix C

A B C D

Figure 10: Comparison of DA and EM with the AP dataset. Lines are representing LLH of DA
and EM of train set and test set when test set’s LLH is maximized.

4.4 experiments 53

Latent space dimensions

Lo
g−
lik
el
ih
oo
d

−820

−800

−780

−760

−740

−720

−700

�

�

�

�

�

�
�

�

1 5 10 50 100 500

Method
� DA−Train

DA−Test
EM−Train
EM−Test

(a) a = 0.0, b = 1.0

Latent space dimensions

Lo
g−
lik
el
ih
oo
d

−800

−700

−600

−500

�

�

�

�

�

�

�

�

1 5 10 50 100 500

Method
� DA−Train

DA−Test
EM−Train
EM−Test

(b) a = 0.5, b = 0.5

Latent space dimensions

Lo
g−
lik
el
ih
oo
d

−1000

−800

−600

−400

�

�

�

�

�

�

�

�

1 5 10 50 100 500

Method
� DA−Train

DA−Test
EM−Train
EM−Test

(c) a = 0.9, b = 0.1

Latent space dimensions

Lo
g−
lik
el
ih
oo
d

−3000

−2500

−2000

−1500

−1000

−500

�
�

�
�

�
�

�

�

1 5 10 50 100 500

Method
� DA−Train

DA−Test
EM−Train
EM−Test

DA−Train

DA−Test

EM−Train

EM−Test

(d) a = 1.0, b = 0.0

Figure 11: Maximum perplexity for different stop conditions with AP data.

4.4 experiments 54

Maximum Sum of Log−Likelihood of Training And Testing Sets

Latent space dimensions

Lo
g−

lik
el

ih
oo

d

−3000

−2500

−2000

●

●

●

●

●

●
●

●

1 5 10 50 100 500

Method

● DA−Train

DA−Test

EM−Train

EM−Test

(a) a = 0.0, b = 1.0

Maximum Sum of Log−Likelihood of Training And Testing Sets

Latent space dimensions

Lo
g−

lik
el

ih
oo

d

−3500

−3000

−2500

−2000

−1500

●

●

●

●

●

●

●

●

1 5 10 50 100 500

Method

● DA−Train

DA−Test

EM−Train

EM−Test

(b) a = 0.5, b = 0.5

Maximum Sum of Log−Likelihood of Training And Testing Sets

Latent space dimensions

Lo
g−

lik
el

ih
oo

d

−3500

−3000

−2500

−2000

−1500

●

●

●

●

●

●

●

●

1 5 10 50 100 500

Method

● DA−Train

DA−Test

EM−Train

EM−Test

(c) a = 0.9, b = 0.1

Maximum Sum of Log−Likelihood of Training And Testing Sets

Latent space dimensions

Lo
g−

lik
el

ih
oo

d

−10000

−8000

−6000

−4000

−2000

●
●

●
●

●
●

●

●

1 5 10 50 100 500

Method

● DA−Train

DA−Test

EM−Train

EM−Test

(d) a = 1.0, b = 0.0

Figure 12: Maximum perplexity for different stop conditions with NIPS data.

4.4 experiments 55

discussed, we avoid overfitting in DA-PLSA by stoping annealing process before reaching

the terminal temperature T = 1.0.

In this experiment, we compare four different stopping conditions with different mix-

ing weight coefficients for measuring total perplexity defined in Eq. (4.14). We consider

the following different stopping conditions: A (a = 0.0,b = 1.0), B (a = 0.5,b = 0.5), C

(a = 0.9,b = 0.1), and D (a = 1.0,b = 0.0) for the AP data with different latent com-

ponents. For an example, shown in Figure 10 (K = 20), we stopped the annealing with

different conditions and measured LLH of a training and a testing set. Results are shown

in Figure 11. Obviously the case with D (Figure 11(d)) shows the serious overfitting prob-

lem. Namely, the log-likelihoods of the training set (both DA and EM) are increasing but

LLHs of the testing set are decreasing. However, the case with A (Figure 11(a)) shows a

success story. The LLH values of training and testing set are moving in a synchronized

way and thus with no serious overfitting problem. We have observed similar trends in

NIPS data shown in Figure 12.

4.4.3 Comparison with LDA

We have compared our DA-PLSA performance with LDA [5]. As the definitions of quality

in both algorithms are slightly different, it is impossible to compare two algorithms side

by side. Instead, we use the program1 developed by D. Blei, the original author of LDA,

and plug the word probabilities generated as an output from our DA-PLSA. A result is

shown in Figure 13. DA-PLSA shows a comparable performance result with LDA. This

is our initial work in performing quality study compared with LDA. More thorough

performance study remains as future work.

1 Available at http://www.cs.princeton.edu/~blei/lda-c/

http://www.cs.princeton.edu/~blei/lda-c/

4.4 experiments 56

Test Set Log−Likelihood

Latent space dimensions

Lo
g−

lik
el

ih
oo

d

−1640

−1620

−1600

−1580

−1560

−1540

�

�

�

�

�

�

�

�

1 5 10 50 100 500

LDA

DA-PLSA

Figure 13: Performance comparison between LDA and DA-PLSA. We plugged the word proba-
bilities generated as an output from our DA-PLSA into the LDA program developed
by D. Blei.

4.4 experiments 57

Corpus
in high-dim.

Embedded
Corpus in 3D

Corpus
in K-dim.DA-PLSA DA-GTM

Figure 14: A workflow to visualize large and high-dimensional document corpus in a virtual
3-dimensional space. A high-dimensional document corpus will be processed by
DA-PLSA to reduce the original dimension to an arbitrary smaller dimension, then,
followed by DA-GTM to compute an optimal embedding in a 3-dimensional space.

4.4.4 Corpus visualization with GTM

Visualization of high-dimensional data in a low-dimension space is the core of exploratory

data analysis in which users seek the most meaningful information hidden under the

intrinsic complexity of data mostly due to high dimensionality. Especially, we have visu-

alized a large and high-dimensional document corpus in a virtual 3-dimensional space

by using a workflow shown in Figure 14. In the workflow, a high-dimensional document

corpus will be processed by DA-PLSA to reduce the original dimension to an arbitrary

smaller dimension, say K, then, followed by DA-GTM to compute an optimal embedding

in a 3-dimensional space.

As an example shown in Figure 15, the AP data is visualized in a 3D space by using

a visualization program, called PlotViz3
2, developed by the author. 20 topics (K = 20) is

chosen for DA-PLSA and the 3-dimensional embedding is computed by DA-GTM. The

legend shows well-clustered 8 topics among 20 topics and the top 8 largest probability

words in each topic are shown in the table.

2 PlotViz3, a cross-platform tool for visualizing large and high-dimensional data. Available at http://
salsahpc.indiana.edu/pviz3/

http://salsahpc.indiana.edu/pviz3/
http://salsahpc.indiana.edu/pviz3/

4.4 experiments 58

Topic 3 Topic 4 Topic 7 Topic 9 Topic 12 Topic 13 Topic 15 Topic 20

marriage mandate mandate lately lately mandate mandate oferrell
kuwaits kuwaits resolve informal overdue fcc commuter van
algerias cardboard fabrics PSY ACK fabrics kuwaits fcc

commuter commuter kuwaits referred fcc ACK cardboard attorneys
exam fabrics cardboard oferrell oferrell campbell fcc Anticomm

cardboard minnick fcc ACK corroon cardboard turbulence lately
accuse glow commuter Anitcomm resolve solis fabrics formation
exceed theyd oferrell clearly van sikhs exam ACK

Figure 15: The AP data is visualized in a 3D space. 20 topics (K = 20) is chosen for DA-PLSA
and the 3-dimensional embedding is computed by DA-GTM. The legend shows well-
clustered 8 topics among 20 topics and the top 8 largest probability words in each topic
are shown in the table.

4.5 conclusions and future work 59

4.5 conclusions and future work

In this chapter, we have showed how the PLSA problem can be solved by a mixture model

framework and we solve the problem by using a novel algorithm, called DA.

As a result, we have presented a new algorithm, named DA-PLSA, to solve the PLSA

problem which originally utilized the EM algorithm for optimal model fitting. Instead

of using EM which can cause the local optima problem and the overfitting problem, we

applied the DA algorithm to avoid the problems EM suffered. In DA-PLSA, we proposed

a new early stopping condition to avoid the overfitting problem and add generality to a

model for better predictive power. In addition, we proposed a workflow to visualize large

and high-dimensional corpus in a virtual 3-dimensional space, processed by DA-PLSA

followed by DA-GTM.

Our experimental results support the new DA-PLSA algorithm outperforms the orig-

inal EM-PLSA algorithm for getting better optimal solutions and avoiding overfitting

problems.

5 S U M M A R Y A N D F U T U R E W O R K

In this thesis, we have presented finite mixture models to solve two of the well-known

data mining algorithms based on a dimension reduction method; i) the GTM algorithm

for dimension reduction and visualization and ii) the PLSA algorithm for text mining

and retrieval. To solve the challenging model fitting problem arising in the finite mix-

ture models, we propose a new approach using a novel optimization method, called DA.

The standard method, using the EM algorithm, notably causes the local optima problem

and the overfitting problem. Our newly proposed DA algorithms, named DA-GTM and

DA-PLSA, are developed to avoid those problems and give better optimization perfor-

mance and model fitting for unseen data to increase predicting power which is more

important, especially, in the text mining area.

More specifically, in Chapter 3, we show how the GTM problem can be solved in a finite

mixture framework and present a DA-based algorithm, DA-GTM, to solve the original

GTM problem based on the EM method. Our experiments show the new algorithm is

more resilient against the local optima problem and thus less sensitive to initial conditions,

from which the original EM-based GTM suffered. In addition, we present a new cooling

scheme, called adaptive cooling schedule. In contrast to the conventional cooling schemes,

such as a linear and a exponential cooling scheme, which are all pre-defined and fixed,

our new adaptive cooling scheme can adjust the granularity of cooling speed in an on-line

manner.

60

summary and future work 61

In Chapter 4, we show how the PLSA problem can be solved by a mixture model

framework and present DA-PLSA as a solution to avoid problems caused by the original

EM-based PLSA algorithm suffered. Especially, we propose a new early stopping condi-

tion to avoid the overfitting problem and add generality to a model for better predictive

power as an important feature in information retrieval. Lastly, we propose a workflow to

visualize large and high-dimensional corpus in a virtual 3-dimensional space, processed

by DA-PLSA followed by DA-GTM. We provide our experimental results to support the

new DA-PLSA algorithm outperforms the original EM-PLSA algorithm for getting better

optimal solutions and avoiding the overfitting problem.

There remain many new and exciting research directions to explore for future work.

First, it would be interesting to further investigate a dynamic method to decide the op-

timal number of latent components in the finite mixture model. As the DA algorithm

gradually grows the number of latent components in a way as a binary tree grows, it may

possible to develop a method to decide a stopping condition for growing the tree. Sec-

ond, by exploiting the tree structure generated by DA, we can develop a method to infer

a hierarchical structure of sample data. Lastly, it would be interesting to perform a per-

formance study for data-intensive analysis by implementing in various high-performance

platforms and parallel programming models, such as MPI, MapReduce, or partitioned

global address space (PGAS).

Appendices

62

A D E R I VAT I V E S O F T H E F R E E E N E R GY F U N C -

T I O N O F DA - GT M

In this appendix, we derive the first and second derivatives of the free energy for GTM,

FGTM defined in Eq. (3.12), which we re-write by

FGTM(Y ,σ2,β) = −
1

β

N∑
i=1

log

{(
1

K

)β K∑
k=1

N(xi |yk,σ2)β
}

(A.1)

where N represents a Gaussian distribution defined by

N(xi |yk,σ2) =

(
1

2πσ2

)D/2
exp
{
−
1

2σ2
‖ xi −yk ‖

2

}
(A.2)

We re-write the responsibility, ρki, by

ρki =
P(xi |yk,σ2)β∑K
k ′=1 P(xi |yk ′ ,σ2)β

(A.3)

=
N(xi |yk,σ2)β∑K
k=1N(xi |yk,σ2)β

(A.4)

63

a.1 first derivatives 64

a.1 first derivatives

The first order derivatives of FGTM with respect to latent component yk can be written by

∂FGTM

∂yk
= −

1

β

N∑
n=1

(
1
K

)β
N(xi |yk,σ2)β∑K

k=1

(
1
K

)β
N(xi |yk,σ2)β

β

(
1

σ2

)
(xi −yk) (A.5)

= −
1

β

N∑
n=1

ρkiβ

(
1

σ2

)
(xi −yk) (A.6)

Since the first order derivatives of N(xi |yk,σ2)β with respect to σ is

∂N(xi |yk,σ2)β

∂σ
= N(xi |yk,σ2)β

{
−Dβ

1

σ
+β

1

σ3
‖xi −yk‖2

}
, (A.7)

the first order derivatives of FGTM with respect to σ can be written by,

∂FGTM

∂σ
= −

1

β

N∑
n=1

ρki

{
−Dβ

1

σ
+β

1

σ3
‖xi −yk‖2

}
(A.8)

Also, the first order derivatives of ρki with respect to latent component yk and yk ′

(k 6= k ′) can be written by, respectively,

∂ρki
∂yk

=
(
ρki − ρ

2
ki

)
β
1

σ2
(xi −yk) (A.9)

∂ρki
∂yk ′

= −ρkiρk ′iβ
1

σ2
(xi −yk ′) (A.10)

a.2 second derivatives 65

a.2 second derivatives

The second order derivatives of FGTM with respect to latent component yk can be written

by

∂

∂yTr
k

(
∂FGTM

∂yk

)
= −

1

β

N∑
n=1

{(
∂ρki

∂yTr
k

)
β
1

σ2
(xi −yk ′) − ρkiβ

1

σ2

}
(A.11)

= −
1

β

N∑
n=1

{(
ρki − ρ

2
ki

)
β2

1

σ4
(xi −yk)

Tr (xi −yk) − ρkiβ
1

σ2

}
(A.12)

Similarly, the second order derivative with respect to latent component yk ′ can be

written by

∂

∂yTr
k ′

(
∂FGTM

∂yk

)
= −

1

β

N∑
n=1

{(
∂ρki

∂yTr
k ′

)
β
1

σ2
(xi −yk ′)

}
(A.13)

= −
1

β

N∑
n=1

{
−ρkiρk ′iβ

2 1

σ4
(xi −yk ′)

Tr (xi −yk)

}
(A.14)

B D E R I VAT I V E S O F T H E F R E E E N E R GY F U N C -

T I O N O F DA - P L S A

In this appendix, we derive the first and the second derivatives of the free energy for

PLSA, FPLSA, defined in Eq. (4.6), which we re-write by

FPLSA = −
1

β

N∑
i=1

log
K∑
k=1

ψ
β
kiMulti (xi |θk)

β (B.1)

where Multi represents a multinomial distribution of document xi over word probabilities

θk, defined by

Multi(xi |θk) =
Γ (| xi |+ 1)∏D
j=1 Γ(xij + 1)

D∏
j=1

(
θkj
)xij (B.2)

where Γ(·) is the gamma function, an extension of the factorial function such as Γ(n) =

(n− 1)! .

We re-write the responsibility, ρki, by

ρki =
ψ
β
kiMulti (xi |θk)

β∑K
k ′=1ψ

β
k ′iMulti (xi |θk ′)

β
(B.3)

66

b.1 first order derivatives 67

b.1 first order derivatives

The first order derivatives of FPLSA with respect to word probability θk can be written by

∂FPLSA

∂θk
= −

1

β

N∑
i=1

ψ
β
kiMulti (xi |θk)

β∑K
k ′=1ψ

β
k ′iMulti (xi |θk ′)

β

(
βxiθ

−1
k

)
(B.4)

= −
1

β

N∑
i=1

ρkiβxiθ
−1
k (B.5)

The first order derivatives of ρki with respect to word probability θk and θk ′ (k 6= k ′)

can be written by, respectively,

∂ρki
∂θk

=
(
ρki − ρ

2
ki

)
βxiθ

−1
k (B.6)

∂ρki
∂θk ′

= −ρkiρk ′iβxiθ
−1
k (B.7)

b.2 second order derivatives

The second order derivatives of FPLSA with respect to word probability θk can be written

by

∂

∂θTr
k

(
∂FPLSA

∂θk

)
= −

1

β

N∑
n=1


(
∂ρki

∂θTr
k

)
βxiθ

−1
k + ρkiβ

∂
(
xiθ

−1
k

)
∂θTr
k

 (B.8)

= −
1

β

N∑
n=1

{(
ρki − ρ

2
ki

)
β2
(
xiθ

−1
k

)Tr (
xiθ

−1
k

)
− ρkiβdiag

(
xiθ

−2
k

)}
(B.9)

where diag(d) represents a diagonal matrix whose diagonal element is vector d.

b.2 second order derivatives 68

Similarly, the second order derivative with respect to word probability θk ′ can be writ-

ten by

∂

∂θTr
k ′

(
∂FPLSA

∂θk

)
= −

1

β

N∑
n=1


(
∂ρki

∂θTr
k ′

)
βxiθ

−1
k + ρkiβ

∂
(
xiθ

−1
k

)
∂θTr
k ′

 (B.10)

= −
1

β

N∑
n=1

{
−ρkiρk ′iβ

(
xiθ

−1
k

)Tr (
xiθ

−1
k

)}
(B.11)

B I B L I O G R A P H Y

[1] D. Aloise, A. Deshpande, P. Hansen, and P. Popat. Np-hardness of euclidean sum-of-

squares clustering. Machine Learning, 75:245–248, 2009. 10.1007/s10994-009-5103-0.

(Cited on page 2.)

[2] C. Bishop and S. S. en ligne). Pattern recognition and machine learning, volume 4.

springer New York, 2006. (Cited on page 17.)

[3] C. Bishop, M. Svensén, and C. Williams. GTM: A principled alternative to the self-

organizing map. Advances in neural information processing systems, pages 354–360,

1997. (Cited on pages 11, 19, 21, 24, 30, and 31.)

[4] C. Bishop, M. Svensén, and C. Williams. GTM: The generative topographic mapping.

Neural computation, 10(1):215–234, 1998. (Cited on pages 8, 11, 19, 21, 24, 30, and 31.)

[5] D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. The Journal of Machine

Learning Research, 3:993–1022, 2003. (Cited on pages 2, 8, 35, 37, 42, and 55.)

[6] L. Chen, T. Zhou, and Y. Tang. Protein structure alignment by deterministic anneal-

ing. Bioinformatics, 21(1):51–62, 2005. (Cited on page 12.)

[7] J. Y. Choi, S.-H. Bae, J. Qiu, B. Chen, and D. Wild. Browsing large scale chemin-

formatics data with dimension reduction. Concurrency and Computation: Practice and

Experience, 2011. (Cited on page 5.)

69

bibliography 70

[8] J. Y. Choi, S.-H. Bae, J. Qiu, G. Fox, B. Chen, and D. Wild. Browsing large scale

cheminformatics data with dimension reduction. In Workshop on Emerging Computa-

tional Methods for Life Sciences (ECMLS), in conjunction with the 19th ACM International

Symposium on High Performance Distributed Computing (HPDC) 2010, HPDC ’10, pages

503–506, Chicago, Illinois, June 2010. ACM. (Cited on page 5.)

[9] J. Y. Choi, S.-H. Bae, X. Qiu, and G. Fox. High performance dimension reduction

and visualization for large high-dimensional data analysis. Cluster Computing and the

Grid, IEEE International Symposium on, 0:331–340, 2010.

[10] J. Y. Choi, J. Qiu, M. Pierce, and G. Fox. Generative Topographic Mapping by Deter-

ministic Annealing. In Proceedings of the 10th International Conference on Computational

Science and Engineering (ICCS 2010), 2010. (Cited on pages 5 and 8.)

[11] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman. Indexing by la-

tent semantic analysis. Journal of the American society for information science, 41(6):391–

407, 1990. (Cited on page 36.)

[12] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data

via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological),

39(1):1–38, 1977. (Cited on pages 2 and 10.)

[13] M. Figueiredo and A. Jain. Unsupervised learning of finite mixture models. IEEE

Transactions on pattern analysis and machine intelligence, pages 381–396, 2002. (Cited on

pages 1 and 2.)

[14] G. Furnas, S. Deerwester, S. Dumais, T. Landauer, R. Harshman, L. Streeter, and

K. Lochbaum. Information retrieval using a singular value decomposition model of

latent semantic structure. In Proceedings of the 11th annual international ACM SIGIR

bibliography 71

conference on Research and development in information retrieval, pages 465–480. ACM,

1988. (Cited on page 36.)

[15] T. Hofmann. Probabilistic latent semantic indexing. In Proceedings of the 22nd annual

international ACM SIGIR conference on Research and development in information retrieval,

pages 50–57. ACM, 1999. (Cited on pages 2, 3, 8, 11, 35, 39, and 42.)

[16] T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis. Ma-

chine Learning, 42(1):177–196, 2001. (Cited on pages 8, 11, 18, 35, 39, 40, and 42.)

[17] T. Hofmann and J. Buhmann. Pairwise data clustering by deterministic annealing.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(1):1–14, 1997. (Cited

on pages 2 and 12.)

[18] A. Jain, R. Duin, and J. Mao. Statistical pattern recognition: A review. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 22(1):4–37, 2000. (Cited on

pages 2 and 8.)

[19] E. Jaynes. Information theory and statistical mechanics. II. Physical review, 108(2):171–

190, 1957. (Cited on page 12.)

[20] E. Jaynes. Information theory and statistical methods I. Physics Review, 106(1957):620–

630, 1957.

[21] E. Jaynes. On the rationale of maximum-entropy methods. Proceedings of the IEEE,

70(9):939–952, 1982. (Cited on page 12.)

[22] S. Kirkpatric, C. Gelatt, and M. Vecchi. Optimization by simulated annealing. Science,

220(4598):671–680, 1983. (Cited on page 12.)

[23] H. Klock and J. Buhmann. Multidimensional scaling by deterministic annealing.

Lecture Notes in Computer Science, 1223:245–260, 1997. (Cited on pages 2 and 12.)

bibliography 72

[24] G. McLachlan and D. Peel. Finite mixture models, volume 299. Wiley-Interscience,

2000. (Cited on pages 1 and 2.)

[25] T. Mitchell. Machine learning and data mining. Communications of the ACM,

42(11):30–36, 1999. (Cited on page 17.)

[26] K. Nigam. Using unlabeled data to improve text classification. PhD thesis, Carnegie

Mellon University, 2001. (Cited on page 18.)

[27] D. Reynolds, T. Quatieri, and R. Dunn. Speaker verification using adapted gaussian

mixture models. Digital signal processing, 10(1-3):19–41, 2000. (Cited on pages 2

and 36.)

[28] K. Rose. Deterministic annealing for clustering, compression, classification, regres-

sion, and related optimization problems. Proceedings of the IEEE, 86(11):2210–2239,

1998. (Cited on pages 2, 3, 11, 12, 13, 14, 22, and 40.)

[29] K. Rose, E. Gurewitz, and G. Fox. A deterministic annealing approach to clustering.

Pattern Recognition Letters, 11(9):589–594, 1990. (Cited on page 40.)

[30] K. Rose, E. Gurewitz, and G. Fox. Statistical mechanics and phase transitions in

clustering. Physical Review Letters, 65(8):945–948, 1990. (Cited on page 14.)

[31] K. Rose, E. Gurewitz, and G. Fox. Vector quantization by deterministic annealing.

IEEE Transactions on Information Theory, 38(4):1249–1257, 1992. (Cited on pages 2, 3,

and 12.)

[32] V. Sindhwani, S. Keerthi, and O. Chapelle. Deterministic annealing for semi-

supervised kernel machines. In Proceedings of the 23rd international conference on Ma-

chine learning, pages 841–848. ACM New York, NY, USA, 2006. (Cited on page 2.)

bibliography 73

[33] D. Smith and J. Eisner. Minimum risk annealing for training log-linear models. In

Proceedings of the COLING/ACL on Main conference poster sessions, pages 787–794. As-

sociation for Computational Linguistics, 2006. (Cited on page 18.)

[34] N. Smith and J. Eisner. Annealing techniques for unsupervised statistical language

learning. In Proceedings of the 42nd Annual Meeting on Association for Computational

Linguistics, page 486. Association for Computational Linguistics, 2004. (Cited on

page 18.)

[35] M. Tipping and C. Bishop. Mixtures of probabilistic principal component analyzers.

Neural computation, 11(2):443–482, 1999. (Cited on pages 2 and 36.)

[36] D. Titterington, A. Smith, U. Makov, et al. Statistical analysis of finite mixture distribu-

tions, volume 38. Wiley New York, 1985. (Cited on page 1.)

[37] N. Ueda and R. Nakano. Deterministic annealing EM algorithm. Neural Networks,

11(2):271–282, 1998. (Cited on pages 2 and 11.)

[38] X. Yang, Q. Song, and Y. Wu. A robust deterministic annealing algorithm for data

clustering. Data & Knowledge Engineering, 62(1):84–100, 2007. (Cited on pages 2

and 12.)

[39] A. Yuille and J. Kosowsky. Statistical physics algorithms that converge. Neural Com-

putation, 6(3):341–356, 1994. (Cited on page 14.)

	Titlepage
	Dedication
	Acknowledgements
	Abstract
	List of Acronyms
	Contents
	1 Introduction
	1.1 Thesis Organization
	1.2 Bibliographic Notes
	1.3 Notation and conventions

	2 Finite Mixture Models and Deterministic Annealing
	2.1 Finite Mixture Models
	2.1.1 Expectation Maximization Algorithm

	2.2 Deterministic Annealing
	2.2.1 Phase Transition
	2.2.2 Adaptive cooling schedule
	2.2.3 Overfitting Avoidance

	3 Generative Topographic Mapping with Deterministic Annealing
	3.1 Generative Topographic Mapping
	3.2 Deterministic Annealing for Generative Topographic Mapping
	3.3 Phase Transitions
	3.4 Experiments
	3.5 Conclusions and Future Work

	4 Probabilistic Latent Semantic Analysis with Deterministic Annealing
	4.1 Probabilistic Latent Semantic Analysis
	4.2 Deterministic Annealing for Probabilistic Latent Semantic Analysis
	4.2.1 Parameter Estimation for Prediction

	4.3 Phase Transitions
	4.4 Experiments
	4.4.1 Performance of DA
	4.4.2 Avoiding overfitting
	4.4.3 Comparison with LDA
	4.4.4 Corpus visualization with GTM

	4.5 Conclusions and Future Work

	5 Summary and Future Work
	Appendices
	A Derivatives of the free energy function of DA-GTM
	A.1 First derivatives
	A.2 Second derivatives

	B Derivatives of the free energy function of DA-PLSA
	B.1 First order derivatives
	B.2 Second order derivatives

	Bibliography

